The Hydrodynamical Relevance of the Camassa–Holr

Archive for Rational Mechanics and Analysis 192, 165-186 DOI: 10.1007/s00205-008-0128-2

Citation Report

#	Article	IF	CITATIONS
1	The Camassa–Holm Equation on the Half-Line: aÂRiemann–Hilbert Approach. Journal of Geometric Analysis, 2008, 18, 285-323.	0.5	20
2	On an integrable two-component Camassa–Holm shallow water system. Physics Letters, Section A: General, Atomic and Solid State Physics, 2008, 372, 7129-7132.	0.9	364
3	Blowup and blowup rate of solutions to a weakly dissipative periodic rod equation. Journal of Mathematical Physics, 2009, 50, 083503.	0.5	12
4	Symmetric Waves Are Traveling Waves. International Mathematics Research Notices, 0, , .	0.5	5
5	Stability of Solitary Waves and Wave-Breaking Phenomena for the Two-Component Camassa-Holm System. International Mathematics Research Notices, 0, , .	0.5	19
6	Global weak solutions and breaking waves to the Degasperis–Procesi equation with linear dispersion. Journal of Mathematical Analysis and Applications, 2009, 360, 345-362.	0.5	2
7	An operator splitting method for the Degasperis–Procesi equation. Journal of Computational Physics, 2009, 228, 7805-7820.	1.9	25
8	Equations of the Camassa-Holm hierarchy. Theoretical and Mathematical Physics(Russian Federation), 2009, 160, 952-959.	0.3	5
9	Two-dimensional steady edge waves. Part I: Periodic waves. Wave Motion, 2009, 46, 363-371.	1.0	10
10	Two-component integrable systems modelling shallow water waves: The constant vorticity case. Wave Motion, 2009, 46, 389-396.	1.0	125
11	The global attractor of the viscous Fornberg–Whitham equation. Nonlinear Analysis: Theory, Methods & Applications, 2009, 71, 5176-5186.	0.6	11
12	Global weak solutions and wave breaking phenomena to the periodic Degasperis–Procesi equation with strong dispersion. Nonlinear Analysis: Theory, Methods & Applications, 2009, 71, 5280-5295.	0.6	10
13	New peakon, solitary wave and periodic wave solutions for the modified Camassa–Holm equation. Nonlinear Analysis: Theory, Methods & Applications, 2009, 71, 6011-6018.	0.6	11
14	On the relevance of soliton theory to tsunami modelling. Wave Motion, 2009, 46, 420-426.	1.0	26
15	Some geometric investigations on the Degasperis–Procesi shallow water equation. Wave Motion, 2009, 46, 412-419.	1.0	19
16	Steady periodic flow induced by the Korteweg-de Vries equation. Wave Motion, 2009, 46, 403-411.	1.0	16
17	On smooth traveling waves of an integrable two-component Camassa–Holm shallow water system. Wave Motion, 2009, 46, 397-402.	1.0	53
18	On the Cauchy problem for the periodic b-family of equations and of the non-uniform continuity of Degasperis–Procesi equation. Journal of Mathematical Analysis and Applications, 2009, 360, 47-56.	0.5	33

	CITA	CITATION REPORT	
#	Article	IF	CITATIONS
19	On the particle paths in solitary water waves. Quarterly of Applied Mathematics, 2009, 68, 81-90.	0.5	21
20	Wave Breaking and Persistence Properties for the Dispersive Rod Equation. SIAM Journal on Mathematical Analysis, 2009, 40, 2567-2580.	0.9	21
21	Long-time Asymptotics for the Camassa–Holm Equation. SIAM Journal on Mathematical Analysis, 2009 41, 1559-1588.), 0.9	153
23	Inverse scattering transform for the Degasperis–Procesi equation. Nonlinearity, 2010, 23, 2559-2575.	0.6	114
24	Well-posedness and blow-up solution for a modified two-component periodic Camassa–Holm system with peakons. Mathematische Annalen, 2010, 348, 415-448.	0.7	53
25	A self-adaptive moving mesh method for the Camassa–Holm equation. Journal of Computational and Applied Mathematics, 2010, 235, 229-243.	1.1	27
26	Global existence of weak solutions for a shallow water equation. Computers and Mathematics With Applications, 2010, 60, 2645-2652.	1.4	7
27	Orbital stability of peakons for the Degasperis–Procesi equation with strong dispersion. Nonlinear Analysis: Theory, Methods & Applications, 2010, 73, 538-546.	0.6	2
28	Optimal control of the viscous Dullin–Gottwalld–Holm equation. Nonlinear Analysis: Real World Applications, 2010, 11, 480-491.	0.9	30
29	Optimal control of the viscous generalized Camassa–Holm equation. Nonlinear Analysis: Real World Applications, 2010, 11, 1835-1846.	0.9	16
30	Global existence and blow-up phenomena for an integrable two-component Camassa–Holm shallow water system. Journal of Differential Equations, 2010, 248, 2003-2014.	1.1	163
31	The local well-posedness and existence of weak solutions for a generalized Camassa–Holm equation. Journal of Differential Equations, 2010, 248, 2038-2063.	1.1	65
32	Global solutions and blow-up phenomena to a shallow water equation. Journal of Differential Equations, 2010, 249, 693-706.	1.1	34
33	Global and singular solutions to the generalized Proudman–Johnson equation. Journal of Differential Equations, 2010, 249, 392-413.	1.1	14
34	On the global existence and wave-breaking criteria for the two-component Camassa–Holm system. Journal of Functional Analysis, 2010, 258, 4251-4278.	0.7	209
35	The limiting behavior of smooth periodic waves for the Degasperis–Procesi equation. Physics Letters, Section A: General, Atomic and Solid State Physics, 2010, 375, 36-38.	0.9	2
36	Optimal control of the viscous weakly dispersive Degasperis–Procesi equation. Nonlinear Analysis: Theory, Methods & Applications, 2010, 72, 933-945.	0.6	11
37	On a two-component Degasperis–Procesi shallow water system. Nonlinear Analysis: Real World Applications, 2010, 11, 4164-4173.	0.9	24

	CITATION I	LEPURI	
#	Article	IF	CITATIONS
38	A mathematical model for weakly nonlinear water wave propagation. Wave Motion, 2010, 47, 265-278.	1.0	4
39	Explicit peakon and solitary wave solutions for the modified Fornberg–Whitham equation. Applied Mathematics and Computation, 2010, 217, 1976-1982.	1.4	27
40	Variable depth KdV equations and generalizations to more nonlinear regimes. ESAIM: Mathematical Modelling and Numerical Analysis, 2010, 44, 347-370.	0.8	26
41	Non-Uniform Dependence for the Periodic CH Equation. Communications in Partial Differential Equations, 2010, 35, 1145-1162.	1.0	128
42	The Modified Camassa-Holm Equation. International Mathematics Research Notices, 0, , .	0.5	8
43	On solutions to the Holm–Staley <i>b</i> -family of equations. Nonlinearity, 2010, 23, 369-381.	0.6	50
44	Steady water waves. Bulletin of the American Mathematical Society, 2010, 47, 671-671.	0.8	64
45	The periodic b-equation and Euler equations on the circle. Journal of Mathematical Physics, 2010, 51, 053101.	0.5	23
46	Stability of negative solitary waves for an integrable modified Camassa–Holm equation. Journal of Mathematical Physics, 2010, 51, .	0.5	11
47	On the Cauchy problem for a generalized Degasperis–Procesi equation. Journal of Mathematical Physics, 2010, 51, .	0.5	5
48	Self-similar blowup solutions to the 2-component Camassa–Holm equations. Journal of Mathematical Physics, 2010, 51, 093524.	0.5	13
49	Existence and singularities of solutions to an integrable equation governing short-waves in a long-wave model. Journal of Mathematical Physics, 2010, 51, 093509.	0.5	2
50	Vadermonde-Type Odd-Soliton Solutions for the Whitham–Broer–Kaup Model in the Shallow Water Small-Amplitude Regime. Journal of Nonlinear Mathematical Physics, 2010, 17, 197.	0.8	6
51	EULER–POINCARÉ FLOWS ON THE LOOP BOTT–VIRASORO GROUP AND SPACE OF TENSOR DENSITIES	an <u>D (</u> 2) Tj	ETQq1 1 0.7
52	Wave Breaking and Global Existence for a Generalized Two-Component Camassa-Holm System. International Mathematics Research Notices, 0, , .	0.5	20
53	Existence of weak solutions in lower order Sobolev space for a Camassa–Holm-type equation. Journal of Physics A: Mathematical and Theoretical, 2010, 43, 095205.	0.7	10
54	Wave Breaking in the Ostrovsky–Hunter Equation. SIAM Journal on Mathematical Analysis, 2010, 42, 1967-1985.	0.9	47
55	The Generalized Hunter–Saxton System. SIAM Journal on Mathematical Analysis, 2010, 42, 1286-1304.	0.9	41

#	Article	IF	CITATIONS
56	Peakons Arising as Particle Paths Beneath Small-Amplitude Water Waves in Constant Vorticity Flows. Journal of Nonlinear Mathematical Physics, 2010, 17, 415.	0.8	3
57	Global weak solutions for the Novikov equation. Journal of Physics A: Mathematical and Theoretical, 2011, 44, 055202.	0.7	80
58	The Periodic <i>μ<</i> - <i>b</i> -Equation and Euler Equations on the Circle. Journal of Nonlinear Mathematical Physics, 2011, 18, 1.	0.8	8
59	Negative-order KdV equation with both solitons and kink wave solutions. Europhysics Letters, 2011, 94, 50003.	0.7	30
60	Two-component CH system: inverse scattering, peakons and geometry. Inverse Problems, 2011, 27, 045013.	1.0	50
61	Global Existence and Blow-Up Phenomena for the Periodic Hunter–Saxton Equation with Weak Dissipation. Journal of Nonlinear Mathematical Physics, 2011, 18, 139.	0.8	13
62	Parabolic Problems. Progress in Nonlinear Differential Equations and Their Application, 2011, , .	0.4	3
63	Microscale acoustofluidics: Microfluidics driven via acoustics and ultrasonics. Reviews of Modern Physics, 2011, 83, 647-704.	16.4	742
64	On the Cauchy problem for the Degasperis-Procesi equation. Quarterly of Applied Mathematics, 2011, 69, 445-464.	0.5	31
65	Waltzing peakons and compacton pairs in a cross-coupled Camassa–Holm equation. Journal of Physics A: Mathematical and Theoretical, 2011, 44, 265205.	0.7	11
66	On the Persistence of Decay Properties for the bâ^'Family of Equations. Advanced Nonlinear Studies, 2011, 11, 633-651.	0.7	1
67	The two-dimensional periodic <i>b</i> -equation on the diffeomorphism group of the torus. Journal of Physics A: Mathematical and Theoretical, 2011, 44, 465205.	0.7	1
68	Global conservative solutions of a modified two-component Camassa–Holm shallow water system. Journal of Differential Equations, 2011, 251, 3558-3582.	1.1	27
69	Well-posedness and blow-up phenomena for a higher order shallow water equation. Journal of Differential Equations, 2011, 251, 3488-3499.	1.1	17
70	Non-uniform dependence on initial data for the periodic Degasperis–Procesi equation. Journal of Mathematical Analysis and Applications, 2011, 384, 293-302.	0.5	3
71	Initial-Boundary Value Problem for the Camassa–Holm Equation with Linearizable Boundary Condition. Letters in Mathematical Physics, 2011, 96, 123-141.	0.5	2
72	Persistence Properties and Unique Continuation of Solutions to a Two-component Camassa–Holm Equation. Mathematical Physics Analysis and Geometry, 2011, 14, 101-114.	0.4	15
73	Equations of Pseudo-Spherical Type (After S.S. Chern and K. Tenenblat). Results in Mathematics, 2011, 60, 53-101.	0.4	13

#	Article	IF	CITATIONS
74	On the Cauchy problem for the two-component Camassa–Holm system. Mathematische Zeitschrift, 2011, 268, 45-66.	0.4	127
75	Analytic solutions of the Cauchy problem for two-component shallow water systems. Mathematische Zeitschrift, 2011, 269, 1113-1127.	0.4	31
76	The Degasperis–Procesi equation as a non-metric Euler equation. Mathematische Zeitschrift, 2011, 269, 1137-1153.	0.4	54
77	Local well-posedness and stability of peakons for a generalized Dullin–Gottwald–Holm equation. Nonlinear Analysis: Theory, Methods & Applications, 2011, 74, 2497-2507.	0.6	27
78	Limit behavior of the global solutions to the Degasperis–Procesi-type equation. Nonlinear Analysis: Theory, Methods & Applications, 2011, 74, 6004-6011.	0.6	0
79	Global existence and blow-up phenomena for the periodic Hunter–Saxton equation parametrized by the speed of the Galilean frame. Nonlinear Analysis: Real World Applications, 2011, 12, 2616-2624.	0.9	3
80	Periodic and solitary travelling-wave solutions of a CH–DP equation. Communications in Nonlinear Science and Numerical Simulation, 2011, 16, 3941-3948.	1.7	8
81	Loop soliton solutions of a short wave model for a degasperis-procesi equation. Journal of Marine Science and Application, 2011, 10, 220-225.	0.7	Ο
82	A three-component generalization of Camassa–Holm equation with N-peakon solutions. Advances in Mathematics, 2011, 226, 827-839.	0.5	63
83	The support of the momentum density of the Camassa–Holm equation. Applied Mathematics Letters, 2011, 24, 2128-2132.	1.5	7
84	Global weak solutions for a modified two-component Camassa–Holm equation. Annales De L'Institut Henri Poincare (C) Analyse Non Lineaire, 2011, 28, 623-641.	0.7	36
85	Global bifurcation of positive solutions of a second-order periodic boundary value problem with indefinite weight. Nonlinear Analysis: Theory, Methods & Applications, 2011, 74, 3379-3385.	0.6	13
86	Global existence and blow-up for a weakly dissipative DP equation. Nonlinear Analysis: Theory, Methods & Applications, 2011, 74, 4746-4753.	0.6	7
87	Blow-up and global existence for a general class of nonlocal nonlinear coupled wave equations. Journal of Differential Equations, 2011, 250, 1448-1459.	1.1	17
88	On the Cauchy problem for the periodic generalized Degasperis–Procesi equation. Journal of Functional Analysis, 2011, 260, 1428-1445.	0.7	5
89	Global weak solutions for a two-component Camassa–Holm shallow water system. Journal of Functional Analysis, 2011, 260, 1132-1154.	0.7	96
90	Global periodic conservative solutions of a periodic modified two-component Camassa–Holm equation. Journal of Functional Analysis, 2011, 261, 1204-1226.	0.7	30
91	A model containing both the Camassa–Holm and Degasperis–Procesi equations. Journal of Mathematical Analysis and Applications, 2011, 374, 458-469.	0.5	27

#	ARTICLE	IF	CITATIONS
92	Integrable hierarchies related to the Kuper-CH spectral problem. Journal of Mathematical Physics, 2011, 52, .	0.5	17
93	Global dissipative solutions of a modified two-component Camassa–Holm shallow water system. Journal of Mathematical Physics, 2011, 52, .	0.5	17
94	Global weak solutions and smooth solutions for a two-component Hunter-Saxton system. Journal of Mathematical Physics, 2011, 52, 103707.	0.5	5
95	Global existence and blow-up phenomena for a weakly dissipative periodic 2-component Camassa-Holm system. Journal of Mathematical Physics, 2011, 52, .	0.5	10
96	Nonuniform dependence for the Cauchy problem of the general b-equation. Journal of Mathematical Physics, 2011, 52, 033101.	0.5	6
97	Existence of permanent and breaking waves for the periodic Degasperis–Procesi equation with linear dispersion. Journal Fur Die Reine Und Angewandte Mathematik, 2011, 2011, .	0.4	1
98	Well-posedness and blow-up phenomena for a periodic two-component Camassa–Holm equation. Proceedings of the Royal Society of Edinburgh Section A: Mathematics, 2011, 141, 93-107.	0.8	23
99	ON THE LOW REGULARITY SOLUTIONS FOR A MODIFIED TWO-COMPONENT CAMASSA–HOLM SHALLOW WATER SYSTEM. Glasgow Mathematical Journal, 2011, 53, 611-621.	0.2	3
100	On a Periodic 2-Component Camassa–Holm Equation with Vorticity. Journal of Nonlinear Mathematical Physics, 2011, 18, 541.	0.8	1
101	The Local Strong and Weak Solutions for a Nonlinear Dissipative Camassa-Holm Equation. Abstract and Applied Analysis, 2011, 2011, 1-15.	0.3	0
102	Stability of Solitary Waves and Global Existence of a Generalized Two-Component Camassa–Holm System. Communications in Partial Differential Equations, 2011, 36, 2162-2188.	1.0	29
104	Initial Boundary Value Problem and Asymptotic Stabilization of the Two-Component Camassa-Holm Equation. Abstract and Applied Analysis, 2011, 2011, 1-20.	0.3	2
105	Wave Breaking and Propagation Speed for a Class of One-Dimensional Shallow Water Equations. Abstract and Applied Analysis, 2011, 2011, 1-15.	0.3	3
106	The Local and Global Existence of Solutions for a Generalized Camassa-Holm Equation. Abstract and Applied Analysis, 2012, 2012, 1-26.	0.3	6
107	A note on multi-dimensional Camassa–Holm-type systems on the torus. Journal of Physics A: Mathematical and Theoretical, 2012, 45, 125205.	0.7	7
108	On the Wave-Breaking Phenomena and Global Existence for the Generalized Periodic Camassa–Holm Equation. International Mathematics Research Notices, 2012, 2012, 4858-4903.	0.5	12
109	The Well-Posedness of Solutions for a Generalized Shallow Water Wave Equation. Abstract and Applied Analysis, 2012, 2012, 1-15.	0.3	4
110	Wave-breaking phenomena, decay properties and limit behaviour of solutions of the Degasperis—Procesi equation. Proceedings of the Royal Society of Edinburgh Section A: Mathematics, 2012, 142, 805-824.	0.8	3

#	Article	IF	CITATIONS
111	On the local well posedness and blow-up solution of a coupled Camassa-Holm equations in Besov Spaces. Journal of Mathematical Physics, 2012, 53, 013701.	0.5	12
112	Non-uniform dependence for a modified Camassa-Holm system. Journal of Mathematical Physics, 2012, 53, .	0.5	14
113	A Problem in the Classical Theory of Water Waves: Weakly Nonlinear Waves in the Presence of Vorticity. Journal of Nonlinear Mathematical Physics, 2012, 19, 137.	0.8	6
114	Geometrical Methods for Equations of Hydrodynamical Type. Journal of Nonlinear Mathematical Physics, 2012, 19, 161.	0.8	4
115	Solitary Traveling Water Waves of Moderate Amplitude. Journal of Nonlinear Mathematical Physics, 2012, 19, 104.	0.8	24
116	On the wave-breaking phenomena for the two-component Dullin-Gottwald-Holm system. Journal of the London Mathematical Society, 2012, 86, 810-834.	0.5	31
117	Breakdown for the Camassa–Holm Equation Using Decay Criteria and Persistence in Weighted Spaces. International Mathematics Research Notices, 2012, 2012, 5161-5181.	0.5	54
118	Global weak solutions for a periodic two-component Hunter-Saxton system. Quarterly of Applied Mathematics, 2012, 70, 285-297.	0.5	2
119	On the blow-up phenomena for a modified periodic two-component Camassa-Holm equation. IMA Journal of Applied Mathematics, 2012, 77, 563-577.	0.8	2
120	Persistence Properties of the Two-Component b-Family System. Advanced Nonlinear Studies, 2012, 12, 409-425.	0.7	0
121	Convergence of a Particle Method and Global Weak Solutions of a Family of Evolutionary PDEs. SIAM Journal on Numerical Analysis, 2012, 50, 1-21.	1.1	30
122	Clobal Existence for the Generalized Two-Component Hunter–Saxton System. Journal of Mathematical Fluid Mechanics, 2012, 14, 455-469.	0.4	28
123	Global weak solutions for a periodic two-componentÂμ-Hunter–Saxton system. Monatshefte Fur Mathematik, 2012, 168, 503-521.	0.5	12
124	On a Shallow Water Equation Perturbed in Schwartz Class. Mathematical Physics Analysis and Geometry, 2012, 15, 317-329.	0.4	0
125	Clobal Solutions for the Two-Component Camassa–Holm System. Communications in Partial Differential Equations, 2012, 37, 2245-2271.	1.0	41
126	Multi-loop soliton solutions and their interaction in the Degasperis–Procesi equation. Physica Scripta, 2012, 86, 015006.	1.2	14
127	Energy-preserving -Galerkin schemes for shallow water wave equations with peakon solutions. Physics Letters, Section A: General, Atomic and Solid State Physics, 2012, 376, 2633-2639.	0.9	7
128	On existence and uniqueness of the global weak solution for a shallow water equation. Applied Mathematics and Computation, 2012, 218, 11410-11420.	1.4	1

#	Article	IF	CITATIONS
129	Non-uniform continuity of periodic Holm–Staley -family of equations. Nonlinear Analysis: Theory, Methods & Applications, 2012, 75, 4821-4838.	0.6	4
130	On the solutions of the Dullin–Gottwald–Holm equation in Besov spaces. Nonlinear Analysis: Real World Applications, 2012, 13, 2580-2592.	0.9	9
131	GLOBAL WEAK SOLUTIONS FOR A PERIODIC HUNTER–SAXTON EQUATION WITH WEAK DISSIPATION. International Journal of Mathematics, 2012, 23, 1250036.	0.2	0
132	A New Blow-Up Criterion for the DGH Equation. Abstract and Applied Analysis, 2012, 2012, 1-10.	0.3	5
133	The Local Strong and Weak Solutions for a Generalized Novikov Equation. Abstract and Applied Analysis, 2012, 2012, 1-14.	0.3	1
134	Wave Breaking of the Camassa–Holm Equation. Journal of Nonlinear Science, 2012, 22, 235-245.	1.0	44
135	Conservative finite difference schemes for the Degasperis–Procesi equation. Journal of Computational and Applied Mathematics, 2012, 236, 3728-3740.	1.1	23
136	On the Cauchy problem of a periodic 2-component -Hunter–Saxton system. Nonlinear Analysis: Theory, Methods & Applications, 2012, 75, 131-142.	0.6	12
137	Analyticity of the Cauchy problem for two-component Hunter–Saxton systems. Nonlinear Analysis: Theory, Methods & Applications, 2012, 75, 253-259.	0.6	3
138	On the Cauchy problem for a two-component Degasperis–Procesi system. Journal of Differential Equations, 2012, 252, 2131-2159.	1.1	26
139	Wave breaking and global existence for the generalized periodic two-component Hunter–Saxton system. Journal of Differential Equations, 2012, 253, 319-355.	1.1	26
140	On the blow-up structure for the generalized periodic Camassa–Holm and Degasperis–Procesi equations. Journal of Functional Analysis, 2012, 262, 3125-3158.	0.7	71
141	On the wave-breaking phenomena for the periodic two-component Dullin–Gottwald–Holm system. Journal of Mathematical Analysis and Applications, 2012, 391, 415-428.	0.5	22
142	Coupled Camassa–Holm equations, <mml:math <br="" xmlns:mml="http://www.w3.org/1998/Math/MathML">altimg="si3.gif" display="inline" overflow="scroll"><mml:mi>N</mml:mi></mml:math> -peakons and infinitely many conservation laws. Journal of Mathematical Analysis and Applications, 2013, 403, 262-271.	0.5	12
143	On Solitary Waves and Wave-Breaking Phenomena for a Generalized Two-Component Integrable Dullin–Gottwald–Holm System. Journal of Nonlinear Science, 2013, 23, 617-656.	1.0	28
144	The local strong and weak solutions to a generalized Novikov equation. Boundary Value Problems, 2013, 2013, .	0.3	3
145	The existence of global weak solutions for a weakly dissipative Camassa-Holm equation in H 1 (R). Boundary Value Problems, 2013, 2013, .	0.3	1
146	The Hölder continuity of the solution map to the \$\$b\$\$ -family equation in weak topology. Mathematische Annalen, 2013, 357, 1245-1289.	0.7	24

#	Article	IF	CITATIONS
147	Stability of Peakons for an Integrable Modified Camassa-Holm Equation with Cubic Nonlinearity. Communications in Mathematical Physics, 2013, 322, 967-997.	1.0	74
148	Wave-Breaking and Peakons for a Modified Camassa–Holm Equation. Communications in Mathematical Physics, 2013, 319, 731-759.	1.0	191
149	The Properties of Solutions for a Generalized b-Family Equation with Peakons. Journal of Nonlinear Science, 2013, 23, 863-889.	1.0	30
150	Global conservative and multipeakon conservative solutions for the two-component Camassa-Holm system. Boundary Value Problems, 2013, 2013, .	0.3	1
151	On the ill-posedness of a weakly dispersive one-dimensional Boussinesq system. Journal D'Analyse Mathematique, 2013, 121, 299-316.	0.4	6
152	Algebro-geometric Solutions for the DegasperisProcesi Hierarchy. SIAM Journal on Mathematical Analysis, 2013, 45, 1216-1266.	0.9	16
153	Bi-Hamiltonian Structure of a Three-Component Camassa-Holm Type Equation. Journal of Nonlinear Mathematical Physics, 2013, 20, 126.	0.8	7
154	Well-posedness, blow-up phenomena and global existence for the generalized \$b\$-equation with higher-order nonlinearities and weak dissipation. Discrete and Continuous Dynamical Systems, 2013, 34, 843-867.	0.5	13
155	Wave breaking for a generalized weakly dissipative two-component Camassa–Holm system. Journal of Mathematical Analysis and Applications, 2013, 400, 406-417.	0.5	7
156	The existence of global strong and weak solutions for the Novikov equation. Journal of Mathematical Analysis and Applications, 2013, 399, 682-691.	0.5	32
157	On the model of the compressible hyperelastic rods and Euler equations on the circle. Journal of Differential Equations, 2013, 254, 648-659.	1.1	3
158	Evolutions of the momentum density, deformation tensor and the nonlocal term of the Camassa–Holm equation. Nonlinear Analysis: Theory, Methods & Applications, 2013, 88, 16-23.	0.6	1
159	Solitary wave solutions of the generalized two-component Hunter–Saxton system. Nonlinear Analysis: Theory, Methods & Applications, 2013, 89, 242-249.	0.6	15
160	The local and global existence of solutions for a generalized Camassa-Holm equation. Acta Mathematica Sinica, English Series, 2013, 29, 757-776.	0.2	0
161	On the Cauchy problem for the twoâ€component <i>b</i> â€family system. Mathematical Methods in the Applied Sciences, 2013, 36, 2154-2173.	1.2	6
162	On the global weak solutions for a modified twoâ€component Camassaâ€Holm equation. Mathematische Nachrichten, 2013, 286, 1287-1304.	0.4	14
163	On the Cauchy problem for a model equation for shallow water waves of moderate amplitude. Nonlinear Analysis: Real World Applications, 2013, 14, 2022-2026.	0.9	27
164	On the isospectral problem of the dispersionless Camassa–Holm equation. Advances in Mathematics, 2013, 235, 469-495.	0.5	27

#	Article	IF	CITATIONS
165	Stability of periodic peakons for the modified <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" altimg="si1.gif" display="inline" overflow="scroll"> <mml:mi>î¼< /mml:mi> -Camassaâ€"Holm equation. Physica D: Nonlinear Phenomena, 2013, 250, 66-74.</mml:mi></mml:math 	1.3	22
166	On the solutions of a model equation for shallow water waves of moderate amplitude. Journal of Differential Equations, 2013, 255, 2101-2129.	1.1	20
167	A note on the Cauchy problem of the Novikov equation. Applicable Analysis, 2013, 92, 1116-1137.	0.6	55
168	Hölder continuity of the solution map for the Novikov equation. Journal of Mathematical Physics, 2013, 54, .	0.5	44
169	Orbital stability of solitary waves of moderate amplitude in shallow water. Journal of Differential Equations, 2013, 255, 254-263.	1.1	28
170	On the weakly dissipative Camassa–Holm, Degasperis–Procesi, and Novikov equations. Journal of Differential Equations, 2013, 255, 441-448.	1.1	29
171	Well-posedness and analyticity for the Cauchy problem for the generalized Camassa–Holm equation. Journal of Mathematical Analysis and Applications, 2013, 405, 173-182.	0.5	13
172	Global weak solutions to the Novikov equation. Journal of Functional Analysis, 2013, 265, 520-544.	0.7	43
173	On the Cauchy problem for the modified Novikov equation with peakon solutions. Journal of Differential Equations, 2013, 254, 961-982.	1.1	37
174	The Degasperis–Procesi equation on the half-line. Nonlinear Analysis: Theory, Methods & Applications, 2013, 76, 122-139.	0.6	51
175	Periodic Conservative Solutions for a Modified Two-Component Camassa-Holm System with Peakons. Abstract and Applied Analysis, 2013, 2013, 1-12.	0.3	1
176	On the Multipeakon Dissipative Behavior of the Modified Coupled Camassa-Holm Model for Shallow Water System. Mathematical Problems in Engineering, 2013, 2013, 1-11.	0.6	4
177	The Local Strong Solutions and Global Weak Solutions for a Nonlinear Equation. Abstract and Applied Analysis, 2013, 2013, 1-5.	0.3	1
178	Colliding peakons and the formation of shocks in the Degasperis–Procesi equation. Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences, 2013, 469, 20130379.	1.0	7
179	On the τ-functions of the Degasperis–Procesi equation. Journal of Physics A: Mathematical and Theoretical, 2013, 46, 045205.	0.7	10
180	An optimal distributed control problem of the viscous generalized Camassa–Holm equation. Transactions of the Institute of Measurement and Control, 2013, 35, 409-416.	1.1	8
181	On the existence of global weak solutions to an integrable two-component Camassa–Holm shallow-water system. Proceedings of the Edinburgh Mathematical Society, 2013, 56, 755-775.	0.2	6
182	Global existence and blow-up phenomena for a weakly dissipative 2-component Camassa–Holm system. Applicable Analysis, 2013, 92, 398-410.	0.6	9

#	Article	IF	CITATIONS
183	Initial boundary value problem for a coupled Camassa–Holm system with peakons. Applicable Analysis, 2013, 92, 1254-1270.	0.6	2
184	Variational derivation of two-component Camassa–Holm shallow water system. Applicable Analysis, 2013, 92, 1241-1253.	0.6	7
185	Wave Breaking and Measure of Momentum Support for an Integrable Camassaâ€Holm System with Two Components. Studies in Applied Mathematics, 2013, 130, 417-430.	1.1	7
186	On the global weak solution to a generalized two-component Camassa-Holm system. Quarterly of Applied Mathematics, 2013, 71, 661-677.	0.5	2
187	The Cauchy problem for the generalized Degasperis-Procesi equation. Boundary Value Problems, 2013, 2013, .	0.3	0
188	The entropy weak solution to a generalized Degasperis-Procesi equation. Journal of Inequalities and Applications, 2013, 2013, .	0.5	0
189	Initial boundary value problems for the two-component shallow water systems. Revista Matematica Iberoamericana, 2013, 29, 911-938.	0.4	9
190	The Global Weak Solution for a Generalized Camassa-Holm Equation. Abstract and Applied Analysis, 2013, 2013, 1-6.	0.3	6
191	On the Cauchy Problem for the Two-Component Novikov Equation. Advances in Mathematical Physics, 2013, 2013, 1-11.	0.4	6
192	Several Dynamical Properties for a Nonlinear Shallow Water Equation. Mathematical Problems in Engineering, 2014, 2014, 1-8.	0.6	1
193	Limiting Behavior of Travelling Waves for the Modified Degasperis-Procesi Equation. Advances in Mathematical Physics, 2014, 2014, 1-13.	0.4	1
194	Peaked Traveling Wave Solutions to a Generalized Novikov Equation with Cubic and Quadratic Nonlinearities. Communications in Theoretical Physics, 2014, 61, 742-750.	1.1	1
195	Breaking waves for the periodic two-component Camassa-Holm system. Proceedings of the American Mathematical Society, 2014, 142, 2407-2415.	0.4	1
196	New solutions with peakon creation in the Camassa–Holm and Novikov equations. Journal of Nonlinear Mathematical Physics, 2014, 22, 1.	0.8	3
197	Algebro-geometric solutions for the two-component Hunter-Saxton hierarchy. Journal of Nonlinear Mathematical Physics, 2014, 21, 473.	0.8	0
198	On a spectral analysis of scattering data for the Camassa-Holm equation. Journal of Nonlinear Mathematical Physics, 2014, 22, 102.	0.8	1
199	Hölder Continuity for the Fokas–Olver–Rosenau–Qiao Equation. Journal of Nonlinear Science, 2014, 24, 1105-1124.	1.0	40
200	Orbital stability of peakons for a generalization of the modified Camassa–Holm equation. Nonlinearity, 2014, 27, 2297-2319.	0.6	23

#	Article	IF	CITATIONS
201	An integrable (2+1)-dimensional Camassa-Holm hierarchy with peakon solutions. Physica Scripta, 2014, 89, 105209.	1.2	1
202	The Local Stability of Solutions for a Nonlinear Equation. Abstract and Applied Analysis, 2014, 2014, 1-6.	0.3	Ο
203	On the Global Dissipative and Multipeakon Dissipative Behavior of the Two-Component Camassa-Holm System. Abstract and Applied Analysis, 2014, 2014, 1-16.	0.3	1
204	Nonlinear Functional Analysis of Boundary Value Problems 2013. Abstract and Applied Analysis, 2014, 2014, 1-3.	0.3	0
205	Nonlinear Water Waves and Nonlinear Evolution Equations with Applications. , 2014, , 1-59.		5
206	Global Conservative and Multipeakon Conservative Solutions for the Modified Camassa-Holm System with Coupling Effects. Mathematical Problems in Engineering, 2014, 2014, 1-17.	0.6	1
207	The Cauchy Problem for a Weakly Dissipative 2-Component Camassa-Holm System. Mathematical Problems in Engineering, 2014, 2014, 1-16.	0.6	1
208	Persistence properties and unique continuation for a generalized Camassa-Holm equation. Journal of Mathematical Physics, 2014, 55, .	0.5	24
209	Single peak solitary wave solutions for the generalized Camassa–Holm equation. Applicable Analysis, 2014, 93, 1909-1920.	0.6	3
210	On the behavior of the solution of the dissipative Camassa–Holm equation with the arbitrary dispersion coefficient. Journal of Differential Equations, 2014, 257, 4525-4541.	1.1	25
211	A threeâ€level linearized finite difference scheme for the camassa–holm equation. Numerical Methods for Partial Differential Equations, 2014, 30, 451-471.	2.0	9
212	Norm Inflation and Ill-Posedness for the Degasperis-Procesi Equation. Communications in Partial Differential Equations, 2014, 39, 2198-2215.	1.0	34
213	The Cauchy problem for the generalized Camassa-Holm equation. Applicable Analysis, 2014, 93, 1358-1381.	0.6	3
214	The investigation of local weak solutions for a generalized Novikov equation. Journal of Inequalities and Applications, 2014, 2014, .	0.5	0
215	The Cauchy problem for an integrable two-component model with peakon solutions. Applicable Analysis, 2014, 93, 840-858.	0.6	3
216	Blow-up and infinite propagation speed for a two-component b-family system. Boundary Value Problems, 2014, 2014, .	0.3	0
217	A note on the solution map for the periodic Camassa–Holm equation. Applicable Analysis, 2014, 93, 1745-1760.	0.6	28
218	Non-uniform continuity of the semiflow map associated to the porous medium equation. Bulletin of the London Mathematical Society, 2014, 46, 1145-1155.	0.4	0

#	Article	IF	CITATIONS
219	The Cauchy problem for the generalized hyperelastic rod wave equation. Mathematische Nachrichten, 2014, 287, 2116-2137.	0.4	12
220	Convergence analysis of the vortex blob method for the \$b\$-equation. Discrete and Continuous Dynamical Systems, 2014, 34, 1995-2011.	0.5	3
221	The stability of local strong solutions for a shallow water equation. Journal of Inequalities and Applications, 2014, 2014, .	0.5	5
222	Non-uniform continuity of the flow map for an evolution equation modeling shallow water waves of moderate amplitude. Nonlinear Analysis: Real World Applications, 2014, 17, 322-331.	0.9	11
223	Orbital stability of peakons for a generalized CH equation. Applied Mathematics and Computation, 2014, 232, 183-190.	1.4	0
224	Blowup issues for a class of nonlinear dispersive wave equations. Journal of Differential Equations, 2014, 256, 3981-3998.	1.1	42
225	Existence of positive periodic solutions for second-order functional differential equations. Monatshefte Fur Mathematik, 2014, 173, 67-81.	0.5	4
226	On the Small-Amplitude Long Waves in Linear Shear Flows and the Camassa–Holm Equation. Journal of Mathematical Fluid Mechanics, 2014, 16, 365-374.	0.4	0
227	Fourier Spectral Methods for Degasperis–Procesi Equation with Discontinuous Solutions. Journal of Scientific Computing, 2014, 61, 584-603.	1.1	17
228	Stability of peakons for the Novikov equation. Journal Des Mathematiques Pures Et Appliquees, 2014, 101, 172-187.	0.8	45
229	An Isospectral Problem for Global Conservative Multi-Peakon Solutions of the Camassa–Holm Equation. Communications in Mathematical Physics, 2014, 329, 893-918.	1.0	36
230	The well-posedness of local solutions for a generalized Novikov equation. Collectanea Mathematica, 2014, 65, 257-271.	0.4	1
231	Dissipative solutions for the modified two–component Camassa–Holm system. Nonlinear Differential Equations and Applications, 2014, 21, 339-360.	0.4	1
232	The Cauchy problem for the generalized Camassa–Holm equation in Besov space. Journal of Differential Equations, 2014, 256, 2876-2901.	1.1	21
233	Global conservative solutions for a model equation for shallow water waves of moderate amplitude. Journal of Differential Equations, 2014, 256, 1793-1816.	1.1	15
234	Continuity properties of the data-to-solution map for the generalized Camassa–Holm equation. Journal of Mathematical Analysis and Applications, 2014, 417, 635-642.	0.5	11
235	Orbital stability of the train of peakons for an integrable modified Camassa–Holm equation. Advances in Mathematics, 2014, 255, 1-37.	0.5	51
236	Well-posedness, wave breaking and peakons for a modified μ-Camassa–Holm equation. Journal of Functional Analysis, 2014, 266, 433-477.	0.7	31

#	Article	IF	CITATIONS
237	Stability of stationary solutions for nonintegrable peakon equations. Physica D: Nonlinear Phenomena, 2014, 269, 28-36.	1.3	11
238	On the persistence and unique continuation properties for an integrable two-component Dullin–Gottwald–Holm system. Nonlinear Analysis: Theory, Methods & Applications, 2014, 96, 38-46.	0.6	5
239	Non-uniform dependence on initial data for the modified Camassa-Holm equation on the line. Acta Mathematica Scientia, 2014, 34, 1781-1794.	0.5	1
240	Solitary wave solutions for nonlinear partial differential equations that contain monomials of odd and even grades with respect to participating derivatives. Applied Mathematics and Computation, 2014, 247, 213-217.	1.4	34
241	On the Cauchy problem for a two-component b-family system. Nonlinear Analysis: Theory, Methods & Applications, 2014, 111, 1-14.	0.6	12
242	Orbital Stability of Periodic Peakons to a GeneralizedÂμ-Camassa–Holm Equation. Archive for Rational Mechanics and Analysis, 2014, 211, 593-617.	1.1	20
243	Local-in-Space Criteria for Blowup in Shallow Water and Dispersive Rod Equations. Communications in Mathematical Physics, 2014, 330, 401-414.	1.0	72
244	Blow-Up Solutions and Peakons to a Generalized μ-Camassa–Holm Integrable Equation. Communications in Mathematical Physics, 2014, 331, 375-416.	1.0	23
245	Cauchy problem for an integrable threecomponent model with peakon solutions. Frontiers of Mathematics in China, 2014, 9, 537-565.	0.4	1
246	Hölder continuity for a modified Camassa–Holm system. Applied Mathematics and Computation, 2014, 234, 63-68.	1.4	Ο
247	DECOUPLED AND UNIDIRECTIONAL ASYMPTOTIC MODELS FOR THE PROPAGATION OF INTERNAL WAVES. Mathematical Models and Methods in Applied Sciences, 2014, 24, 1-65.	1.7	14
248	Traveling surface waves of moderate amplitude in shallow water. Nonlinear Analysis: Theory, Methods & Applications, 2014, 102, 105-119.	0.6	15
249	Nonuniform continuity of the solution map to the two component Camassa–Holm system. Journal of Mathematical Analysis and Applications, 2014, 416, 374-389.	0.5	1
250	On permanent and breaking waves in hyperelastic rods and rings. Journal of Functional Analysis, 2014, 266, 6954-6987.	0.7	49
251	Local well-posedness and wave breaking results for periodic solutions of a shallow water equation for waves of moderate amplitude. Nonlinear Analysis: Theory, Methods & Applications, 2014, 97, 145-154.	0.6	18
252	Hölder continuity on < mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" altimg="si1.gif" display="inline" overflow="scroll"> <mml:mi>î¼</mml:mi> <mml:mtext>-</mml:mtext> <mml:mi>b</mml:mi> equation Nonlinear Analysis: Theory. Methods & Applications, 2014, 102, 30-35.	0.6 1.	5
253	Blowup solutions for the generalized two-component Camassa–Holm system on the circle. Nonlinear Analysis: Theory, Methods & Applications, 2014, 105, 120-133.	0.6	5
254	On the low regularity solutions and wave breaking for an equation modeling shallow water waves of moderate amplitude. Nonlinear Analysis: Theory, Methods & Applications, 2014, 107, 1-11.	0.6	8

#	Article	IF	CITATIONS
255	Optimal control of a class of nonlocal dispersive equations. Nonlinear Analysis: Theory, Methods & Applications, 2014, 108, 99-113.	0.6	5
256	Wave breaking of an integrable Camassa–Holm system with two components. Nonlinear Analysis: Theory, Methods & Applications, 2014, 95, 107-116.	0.6	4
257	An asymptotic property of the Camassa–Holm equation. Nonlinear Analysis: Theory, Methods & Applications, 2014, 97, 55-64.	0.6	1
258	On the Cauchy problem of a weakly dissipative μ-Hunter–Saxton equation. Annales De L'Institut Henri Poincare (C) Analyse Non Lineaire, 2014, 31, 267-279.	0.7	7
259	The global solution and blow-up phenomena to a modified Novikov equation. Boundary Value Problems, 2014, 2014, .	0.3	3
260	Nonlocal symmetries and conservation laws of nonlocal Camassa-Holm type equations. Acta Mathematicae Applicatae Sinica, 2015, 31, 909-920.	0.4	1
261	Wellâ€posedness for the Cauchy problem of the modified Hunter–Saxton equation in the Besov spaces. Mathematical Methods in the Applied Sciences, 2015, 38, 4061-4074.	1.2	4
262	Maximum principle for optimal distributed control of viscous weakly dispersive Degasperis–Procesi equation. Mathematical Methods in the Applied Sciences, 2015, 38, 4576-4586.	1.2	1
263	The Periodic Boundary Value Problem for the Weakly Dissipativeμ-Hunter-Saxton Equation. Advances in Mathematical Physics, 2015, 2015, 1-9.	0.4	0
264	Orbital Stability of Solitary Traveling Waves of Moderate Amplitude. Advances in Mathematical Physics, 2015, 2015, 1-7.	0.4	0
265	Rigorous derivation and propagation speed property for a two-component Degasperis–Procesi system in shallow water regimes. Applied Mathematics and Computation, 2015, 259, 980-986.	1.4	0
266	A new two-component system modelling shallow-water waves. Quarterly of Applied Mathematics, 2015, 73, 331-346.	0.5	6
267	The dependences on initial data for the b-family equation in critical Besov space. Monatshefte Fur Mathematik, 2015, 177, 471-492.	0.5	15
268	The local well-posedness, existence and uniqueness of weak solutions for a model equation for shallow water waves of moderate amplitude. Journal of Differential Equations, 2015, 258, 4103-4126.	1.1	5
269	Symmetric waves are traveling waves for a shallow water equation modeling surface waves of moderate amplitude. Journal of Nonlinear Mathematical Physics, 2015, 22, 545.	0.8	11
270	On the solutions of the cross-coupled Camassa–Holm system. Nonlinear Analysis: Real World Applications, 2015, 23, 183-195.	0.9	4
271	Oscillation-induced blow-up to the modified Camassa–Holm equation with linear dispersion. Advances in Mathematics, 2015, 272, 225-251.	0.5	56
272	Global solutions to a special case of the generalized weakly dissipative periodic two-component Camassa–Holm system. Nonlinear Analysis: Theory, Methods & Applications, 2015, 117, 38-46.	0.6	4

#	Article	IF	CITATIONS
273	Derivation of the Camassa–Holm equations for elastic waves. Physics Letters, Section A: General, Atomic and Solid State Physics, 2015, 379, 956-961.	0.9	13
274	Qualitative Analysis for a New Integrable Two-Component Camassa–Holm System with Peakon and Weak Kink Solutions. Communications in Mathematical Physics, 2015, 336, 581-617.	1.0	29
275	The Cauchy problem for a higher order shallow water type equation on the circle. Journal of Differential Equations, 2015, 259, 4863-4896.	1.1	2
276	Global existence for the stochastic Degasperis-Procesi equation. Discrete and Continuous Dynamical Systems, 2015, 35, 5171-5184.	0.5	5
277	Local well-posedness and blow-up criteria for a two-component Novikov system in the critical Besov space. Nonlinear Analysis: Theory, Methods & Applications, 2015, 122, 1-22.	0.6	27
278	Optimal distributed controls of a class of nonlinear dispersive equations with cubic nonlinearity. Nonlinear Analysis: Theory, Methods & Applications, 2015, 122, 23-42.	0.6	5
279	Algebro-geometric Solutions for the Derivative Burgers Hierarchy. Journal of Nonlinear Science, 2015, 25, 1-35.	1.0	14
280	Clobal existence and local well-posedness for a three-component Camassa–Holm system with N-peakon solutions. Journal of Differential Equations, 2015, 259, 201-234.	1.1	4
281	Hamiltonian formulation of the extended Green–Naghdi equations. Physica D: Nonlinear Phenomena, 2015, 301-302, 1-7.	1.3	23
282	On the wave length of smooth periodic traveling waves of the Camassa–Holm equation. Journal of Differential Equations, 2015, 259, 2317-2332.	1.1	22
283	Blow-up phenomena and local well-posedness for a generalized Camassa–Holm equation in the critical Besov space. Nonlinear Analysis: Theory, Methods & Applications, 2015, 128, 1-19.	0.6	7
285	A New Fully Justified Asymptotic Model for the Propagation of Internal Waves in the CamassaHolm Regime. SIAM Journal on Mathematical Analysis, 2015, 47, 240-290.	0.9	12
286	A Synthetical Two omponent Model with Peakon Solutions. Studies in Applied Mathematics, 2015, 135, 248-276.	1.1	43
287	Global well-posedness and blow-up of solutions for the Camassa–Holm equations with fractional dissipation. Mathematische Zeitschrift, 2015, 281, 993-1020.	0.4	8
288	On some wave breaking for the nonlinear integrable shallow water wave equations. Nonlinear Analysis: Theory, Methods & Applications, 2015, 127, 352-361.	0.6	6
289	The Cauchy problem for the modified two-component Camassa–Holm system in critical Besov space. Annales De L'Institut Henri Poincare (C) Analyse Non Lineaire, 2015, 32, 443-469.	0.7	7
290	The global weak solutions to the Cauchy problem of the generalized Novikov equation. Applicable Analysis, 2015, 94, 1334-1354.	0.6	2
291	A local discontinuous Galerkin method for the Burgers–Poisson equation. Numerische Mathematik, 2015, 129, 321-351.	0.9	22

#	Article	IF	CITATIONS
292	On the Cauchy problem for the generalized Camassa–Holm equation. Monatshefte Fur Mathematik, 2015, 176, 423-457.	0.5	5
293	Orbital stability of the smooth solitary wave with nonzero asymptotic value for the mCH equation. Journal of Nonlinear Mathematical Physics, 2016, 23, 423.	0.8	0
294	Nonlinear Water Waves. Lecture Notes in Mathematics, 2016, , .	0.1	2
295	An Invariant Preserving Discontinuous Galerkin Method for the Camassa–Holm Equation. SIAM Journal of Scientific Computing, 2016, 38, A1919-A1934.	1.3	22
296	Long-time asymptotic solution structure of Camassa-Holm equation subject to an initial condition with non-zero reflection coefficient of the scattering data. Journal of Mathematical Physics, 2016, 57, 103508.	0.5	2
297	Infinitely many nonlocal conservation laws for the ABC equation with \$\$A+B+Ce 0\$\$ A + B + C ≠0. Calculus of Variations and Partial Differential Equations, 2016, 55, 1.	0.9	9
298	Dynamical stability of the train of smooth solitary waves to the generalized two-component Camassa-Holm system. Quarterly of Applied Mathematics, 2016, 75, 201-230.	0.5	1
299	The initial value problem for a Novikov system. Journal of Mathematical Physics, 2016, 57, .	0.5	14
300	The Cauchy problem for a 4-parameter family of equations with peakon traveling waves. Nonlinear Analysis: Theory, Methods & Applications, 2016, 133, 161-199.	0.6	21
301	Identification of an unknown coefficient in KdV equation from final time measurement. Journal of Inverse and Ill-Posed Problems, 2016, 24, .	0.5	7
302	A remark on the stability of peakons for the Degasperis–Procesi Equation. Nonlinear Analysis: Theory, Methods & Applications, 2016, 132, 318-326.	0.6	7
303	On the well-posedness of the Holm-Staley <i>b</i> -family of equations. Journal of Nonlinear Mathematical Physics, 2016, 23, 213.	0.8	10
304	On the periodic Cauchy problem for a coupled Camassa–Holm system with peakons. Zeitschrift Fur Angewandte Mathematik Und Physik, 2016, 67, 1.	0.7	5
305	Invariant subspaces and generalized functional separable solutions to the two-component b -family system. Acta Mathematica Scientia, 2016, 36, 753-764.	0.5	0
306	Non-uniform dependence on initial data for the generalized Degasperis–Procesi equation on the line. International Journal of Mathematics, 2016, 27, 1650026.	0.2	0
307	Blow-up of solutions for the dissipative Dullin–Gottwald–Holm equation with arbitrary coefficients. Journal of Differential Equations, 2016, 261, 1115-1127.	1.1	14
308	Wave-breaking phenomena for the nonlocal Whitham-type equations. Journal of Differential Equations, 2016, 261, 6029-6054.	1.1	19
309	Global existence of weak solutions for a three-component Camassa–Holm system with N-peakon solutions. IMA Journal of Applied Mathematics, 2016, 81, 1096-1111.	0.8	1

#	Article	IF	CITATIONS
310	Exact Traveling Wave Solutions and Bifurcations for a Shallow Water Equation Modeling Surface Waves of Moderate Amplitude. International Journal of Bifurcation and Chaos in Applied Sciences and Engineering, 2016, 26, 1650172.	0.7	0
311	Remarks on the well-posedness of Camassa–Holm type equations in Besov spaces. Journal of Differential Equations, 2016, 261, 6125-6143.	1.1	60
312	Lax Integrability of the Modified Camassa-Holm Equation and the Concept of Peakons. Journal of Nonlinear Mathematical Physics, 2016, 23, 563.	0.8	7
313	Geometric Numerical Integration for Peakon b-Family Equations. Communications in Computational Physics, 2016, 19, 24-52.	0.7	8
314	Hamiltonian structure for two-dimensional extended Green–Naghdi equations. Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences, 2016, 472, 20160127.	1.0	10
315	Derivation of Generalized Camassa-Holm Equations from Boussinesq-type Equations. Journal of Nonlinear Mathematical Physics, 2016, 23, 314.	0.8	6
316	Well-posedness and persistence property for a four-component Novikov system with peakon solutions. Monatshefte Fur Mathematik, 2016, 180, 853-891.	0.5	4
317	Infinite propagation speed and asymptotic behavior for a two-component Degasperis–Procesi system. Monatshefte Fur Mathematik, 2016, 181, 217-234.	0.5	4
318	Analysis on the blow-up of solutions to a class of integrable peakon equations. Journal of Functional Analysis, 2016, 270, 2343-2374.	0.7	46
319	The power series method for nonlocal and nonlinear evolution equations. Journal of Mathematical Analysis and Applications, 2016, 443, 834-847.	0.5	10
320	Unilateral global interval bifurcation theorem for periodic p-Laplacian and its applications. Boundary Value Problems, 2016, 2016, .	0.3	0
321	Liouville Correspondence Between the Modified KdV Hierarchy and Its Dual Integrable Hierarchy. Journal of Nonlinear Science, 2016, 26, 141-170.	1.0	30
322	On a Lagrangian Reduction and a Deformation of Completely Integrable Systems. Journal of Nonlinear Science, 2016, 26, 1133-1160.	1.0	9
323	Ill-Posedness for the b-Family of Equations. Journal of Nonlinear Science, 2016, 26, 1175-1190.	1.0	22
324	An optimal distributed control problem of the viscous Degasperis–Procesi equation. IMA Journal of Mathematical Control and Information, 2016, 33, 589-601.	1.1	1
325	The Cauchy problem and blow-up phenomena of a new integrable two-component Camassa–Holm system. Nonlinear Analysis: Theory, Methods & Applications, 2016, 132, 25-46.	0.6	2
326	Global dynamical behaviors in a physical shallow water system. Communications in Nonlinear Science and Numerical Simulation, 2016, 36, 285-302.	1.7	6
327	Well-posedness and global existence for a generalized Degasperis–Procesi equation. Nonlinear Analysis: Real World Applications, 2016, 28, 72-90.	0.9	22

		CITATION REPORT		
#	Article		IF	CITATIONS
328	Traveling Wave Solutions to the Burgers- $\hat{\mathbf{l}} \pm \hat{\mathbf{l}}^2$ Equations. Advanced Nonlinear Studies, 2	2016, 16, 147-157.	0.7	2
329	The global stabilization of the Camassa-Holm equation with a distributed feedback cor Value Problems, 2016, 2016, .	trol. Boundary	0.3	Ο
330	Stability of the Camassa-Holm peakons in the dynamics of a shallow-water-type system Variations and Partial Differential Equations, 2016, 55, 1.	1. Calculus of	0.9	8
331	A coupling problem for entire functions and its application to the long-time asymptotic wave equations. Nonlinearity, 2016, 29, 1036-1046.	ts of integrable	0.6	5
332	Singular solutions for a class of traveling wave equations arising in hydrodynamics. No Analysis: Real World Applications, 2016, 31, 57-76.	nlinear	0.9	7
333	An ??-family of equations with peakon traveling waves. Proceedings of the American M Society, 2016, 144, 3797-3811.	athematical	0.4	24
334	The existence of global weak solutions to the shallow water wave model with moderat Cogent Mathematics, 2016, 3, 1155829.	e amplitude.	0.4	0
335	Stability of the train of N solitary waves for the two-component Camassa–Holm shal system. Journal of Differential Equations, 2016, 260, 8403-8427.	low water	1.1	6
336	A new highly nonlinear shallow water wave equation. Journal of Evolution Equations, 20 539-567.	016, 16,	0.6	16
337	The Cauchy problem for a family of generalized Camassa–Holm equations. Applicable 1184-1213.	e Analysis, 2016, 95,	0.6	1
338	On weak solutions to a shallow water wave model of moderate amplitude. Applicable A 95, 1808-1829.	Analysis, 2016,	0.6	1
339	The generalized BBM-Burgers equations: convergence results for conservation law with discontinuous flux function. Applicable Analysis, 2016, 95, 503-523.	n	0.6	6
340	The properties of solutions to the dissipative 2-component Camassa–Holm system. ⁄ 2016, 95, 1165-1183.	Applicable Analysis,	0.6	1
341	Autonomous Ovsyannikov theorem and applications to nonlocal evolution equations a Journal of Functional Analysis, 2016, 270, 330-358.	nd systems.	0.7	31
342	Two-component equations modelling water waves with constant vorticity. Annali Di M Ed Applicata, 2016, 195, 249-271.	atematica Pura	0.5	33
343	The global weak solution for the shallow water wave model of moderate amplitude. Ap Analysis, 2017, 96, 663-678.	plicable	0.6	0
344	A remark on wave breaking for the Dullin–Gottwald–Holm equation. Applicable An 1928-1934.	alysis, 2017, 96,	0.6	3
345	On a generalized Camassa–Holm equation with the flow generated by velocity and it Applicable Analysis, 2017, 96, 679-701.	ts gradient.	0.6	7

#	Article	IF	CITATIONS
346	Blow-up phenomena and persistence property for the modified b-family of equations. Journal of Differential Equations, 2017, 262, 1161-1191.	1.1	4
347	Transfer of energy in Camassa–Holm and related models by use of nonunique characteristics. Journal of Differential Equations, 2017, 262, 1980-2024.	1.1	1
348	On the curvature blow-up phenomena for the Fokas–Qiao–Xia–Li equation. Journal of Mathematical Analysis and Applications, 2017, 450, 1275-1293.	0.5	4
349	Decay properties of solutions to a 4-parameter family of wave equations. Journal of Mathematical Analysis and Applications, 2017, 451, 393-404.	0.5	4
350	An integrable semi-discrete Degasperis–Procesi equation. Nonlinearity, 2017, 30, 2246-2267.	0.6	5
351	The algebro-geometric solutions for the Fokas–Olver–Rosenau–Qiao (FORQ) hierarchy. Journal of Geometry and Physics, 2017, 117, 105-133.	0.7	16
352	A four component cubic peakon (4CH) equation. Journal of Physics A: Mathematical and Theoretical, 2017, 50, 285204.	0.7	0
353	Classification of traveling wave solutions to the Green–Naghdi model. Wave Motion, 2017, 73, 45-56.	1.0	3
354	Well-posedness and continuity properties of the Fornberg–Whitham equation in Besov spaces. Journal of Differential Equations, 2017, 263, 4355-4381.	1.1	31
355	Well-posedness and wave breaking of the degenerate Novikov equation. Journal of Differential Equations, 2017, 263, 4634-4657.	1.1	5
356	Exact traveling wave solutions and \$\$L^{1}\$\$ L 1 stability for the shallow water wave model of moderate amplitude. Analysis and Mathematical Physics, 2017, 7, 245-254.	0.6	1
357	Global analyticity for a generalized Camassa–Holm equation and decay of the radius of spatial analyticity. Journal of Differential Equations, 2017, 263, 732-764.	1.1	13
358	Variational derivation of a geophysical Camassa–Holm type shallow water equation. Nonlinear Analysis: Theory, Methods & Applications, 2017, 156, 286-294.	0.6	9
359	Blow-up phenomena and global existence for a two-component Camassa–Holm system with an arbitrary smooth function. Nonlinear Analysis: Theory, Methods & Applications, 2017, 155, 176-185.	0.6	1
360	Continuity and asymptotic behaviors for a shallow water wave model with moderate amplitude. Journal of Differential Equations, 2017, 263, 910-933.	1.1	10
361	The Inverse Spectral Transform for the Conservative Camassa–Holm Flow with Decaying Initial Data. Archive for Rational Mechanics and Analysis, 2017, 224, 21-52.	1.1	30
362	Blow-up solutions for the modified b-family of equations. Nonlinear Analysis: Theory, Methods & Applications, 2017, 150, 19-37.	0.6	1
363	Blow-up phenomena and local well-posedness for a generalized Camassa–Holm equation with cubic nonlinearity. Nonlinear Analysis: Theory, Methods & Applications, 2017, 151, 208-226.	0.6	14

#	Article	IF	CITATIONS
364	Asymptotic expansions and solitons of the Camassa–Holm – nonlinear Schrödinger equation. Physics Letters, Section A: General, Atomic and Solid State Physics, 2017, 381, 3965-3971.	0.9	20
365	Breaking Waves And Solitary Waves To The Rotation-Two-Component CamassaHolm System. SIAM Journal on Mathematical Analysis, 2017, 49, 3573-3602.	0.9	16
366	Local-in-space blow-up criteria for a class of nonlinear dispersive wave equations. Journal of Differential Equations, 2017, 263, 5773-5786.	1.1	8
367	Blow-up phenomena and persistence properties for an integrable two-component peakon system. Journal of Differential Equations, 2017, 263, 5787-5812.	1.1	2
368	Stability analysis solutions of the nonlinear modified Degasperis–Procesi water wave equation. Journal of Ocean Engineering and Science, 2017, 2, 155-160.	1.7	9
369	A dressing method for soliton solutions of the Camassa-Holm equation. AIP Conference Proceedings, 2017, , .	0.3	8
370	Global existence and local well-posedness of the single-cycle pulse equation. Journal of Mathematical Physics, 2017, 58, 101515.	0.5	8
371	Stability of solitary traveling waves of moderate amplitude with non-zero boundary. Boundary Value Problems, 2017, 2017, .	0.3	0
372	Breaking waves and persistence property for a two-component Camassa–Holm system. Journal of Mathematical Analysis and Applications, 2017, 445, 1084-1096.	0.5	17
373	Blowâ€up for the <i>b</i> â€family of equations. Mathematical Methods in the Applied Sciences, 2017, 40, 1333-1345.	1.2	5
374	Dressing Method for the Degasperis–Procesi Equation. Studies in Applied Mathematics, 2017, 138, 205-226.	1.1	36
375	On measures of accretion and dissipation for solutions of the Camassa–Holm equation. Journal of Hyperbolic Differential Equations, 2017, 14, 721-754.	0.3	0
376	Generalizations of the short pulse equation. Letters in Mathematical Physics, 2018, 108, 927-947.	0.5	28
377	BÃæklund transformations for tri-Hamiltonian dual structures of multi-component integrable systems. Journal of Integrable Systems, 2017, 2, .	0.4	3
378	Global analytic solutions and traveling wave solutions of the Cauchy problem for the Novikov equation. Proceedings of the American Mathematical Society, 2017, 146, 1537-1550.	0.4	2
379	A Lagrangian View on Complete Integrability of the Two-Component Camassa–Holm System. Journal of Integrable Systems, 2017, 2, .	0.4	8
380	Dynamics of interlacing peakons (and shockpeakons) in the Geng–Xue equation. Journal of Integrable Systems, 2017, 2, xyw014.	0.4	24
381	Global solutions of the gravity-capillary water-wave system in three dimensions. Acta Mathematica, 2017, 219, 213-402.	1.4	54

#	Article	IF	CITATIONS
382	Coupled and scalar asymptotic models for internal waves over variable topography. Asymptotic Analysis, 2018, 106, 61-98.	0.2	2
383	Non-uniform dependence on initial data for the periodic Constantin-Lannes equation. Journal of Mathematical Physics, 2018, 59, .	0.5	4
384	Blowup criterion and persistent decay for a modified Camassa-Holm system. Journal of Mathematical Physics, 2018, 59, 021501.	0.5	2
385	The Camassa–Holm equation as an incompressible Euler equation: A geometric point of view. Journal of Differential Equations, 2018, 264, 4199-4234.	1.1	9
386	Higher-Order Hamiltonian Model for Unidirectional Water Waves. Journal of Nonlinear Science, 2018, 28, 543-577.	1.0	23
387	Lax Integrability and the Peakon Problem for the Modified Camassa–Holm Equation. Communications in Mathematical Physics, 2018, 358, 295-341.	1.0	27
388	Wave breaking analysis for the Fornberg–Whitham equation. Journal of Differential Equations, 2018, 265, 2886-2896.	1.1	18
389	A Liouville Property with Application to Asymptotic Stability for the Camassa–Holm Equation. Archive for Rational Mechanics and Analysis, 2018, 230, 185-230.	1.1	15
390	Asymptotic behavior of a weakly dissipative modified two-component Dullin–Gottwald–Holm system. Applied Mathematics Letters, 2018, 83, 65-72.	1.5	47
391	Blow-up issues for a two-component system modelling water waves with constant vorticity. Nonlinear Analysis: Theory, Methods & Applications, 2018, 172, 163-179.	0.6	6
392	Inverse Spectral Problem and Peakons of an Integrable Two-component Camassa-Holm System. Journal of Nonlinear Mathematical Physics, 2018, 25, 290.	0.8	1
393	The Cauchy Problem on a Generalized Novikov Equation. Bulletin of the Malaysian Mathematical Sciences Society, 2018, 41, 1859-1877.	0.4	1
394	The existence of the single peaked traveling waves to the -Novikov equation. Applicable Analysis, 2018, 97, 1540-1548.	0.6	6
395	The Cauchy problem for a generalized Camassa–Holm equation with the velocity potential. Applicable Analysis, 2018, 97, 354-367.	0.6	0
396	Global weak solutions for a two-component Camassa–Holm system with an arbitrary smooth function. Applicable Analysis, 2018, 97, 2085-2096.	0.6	0
397	Recent advances on the global regularity for irrotational water waves. Philosophical Transactions Series A, Mathematical, Physical, and Engineering Sciences, 2018, 376, 20170089.	1.6	14
398	An inverse problem for the KdV equation with Neumann boundary measured data. Journal of Inverse and Ill-Posed Problems, 2018, 26, 133-151.	0.5	6
399	Stability of the Camassa–Holm Multi-peakons in the Dynamics of a Shallow-Water-Type System. Journal of Dynamics and Differential Equations, 2018, 30, 1627-1659.	1.0	2

#	Article	IF	CITATIONS
400	The stability of solutions for the Fornberg–Whitham equation in L 1 (R) \$L^{1}(mathbb{R})\$ space. Boundary Value Problems, 2018, 2018, .	0.3	3
401	Breaking and permanent waves for the periodic μ-Degasperis–Procesi equation with linear dispersion. Advances in Difference Equations, 2018, 2018, .	3.5	0
402	Stability in the energy space of the sum of <i>N</i> peakons for a modified Camassa-Holm equation with higher-order nonlinearity. Journal of Mathematical Physics, 2018, 59, .	0.5	9
403	On a shallow-water approximation to the Green–Naghdi equations with the Coriolis effect. Advances in Mathematics, 2018, 340, 106-137.	0.5	33
404	Degasperis–Procesi peakon dynamical system and finite Toda lattice of CKP type. Nonlinearity, 2018, 31, 4746-4775.	0.6	13
405	Some Properties of Solutions to the Camassa–Holm-Type Equation with Higher-Order Nonlinearities. Journal of Nonlinear Science, 2018, 28, 1901-1914.	1.0	15
406	On a generalized Camassaâ€Holm type equation with ()â€degree nonlinearities. ZAMM Zeitschrift Fur Angewandte Mathematik Und Mechanik, 2018, 98, 1567-1573.	0.9	7
407	On the weak solutions and persistence properties for the variable depth KDV general equations. Nonlinear Analysis: Real World Applications, 2018, 44, 223-245.	0.9	2
408	Equations with Peakon Solutions in the Negative Order Camassa-Holm Hierarchy. Advances in Mathematical Physics, 2018, 2018, 1-11.	0.4	0
409	Construction of 2-Peakon Solutions and Ill-Posedness for the Novikov Equation. SIAM Journal on Mathematical Analysis, 2018, 50, 2968-3006.	0.9	28
410	A new generalised two-component Camassa–Holm type system with waltzing peakons and wave breaking. Nonlinear Differential Equations and Applications, 2018, 25, 1.	0.4	1
411	Radius of analyticity for the Camassa–Holm equation on the line. Nonlinear Analysis: Theory, Methods & Applications, 2018, 174, 1-16.	0.6	3
412	The optimal control problem with necessity condition for a viscous shallow water equation. Boundary Value Problems, 2018, 2018, .	0.3	0
413	The local well-posedness in Besov spaces and non-uniform dependence on initial data for the interacting system of Camassa–Holm and Degasperis–Procesi equations. Monatshefte Fur Mathematik, 2018, 187, 735-764.	0.5	1
414	Global weak solutions for a generalized Camassa–Holm equation. Mathematische Nachrichten, 2018, 291, 2457-2475.	0.4	1
415	On the instability of elliptic traveling wave solutions of the modified Camassa–Holm equation. Journal of Differential Equations, 2019, 266, 1946-1968.	1.1	12
416	Wave breaking and global existence for a family of peakon equations with high order nonlinearity. Nonlinear Analysis: Real World Applications, 2019, 45, 721-735.	0.9	16
417	Asymptotic stability and instability of explicit self-similar waves for a class of nonlinear shallow water equations. Communications in Nonlinear Science and Numerical Simulation, 2019, 79, 104928.	1.7	4

#	Article	IF	CITATIONS
418	Clobal solutions and blow-up phenomena for a generalized Degasperis–Procesi equation. Journal of Mathematical Analysis and Applications, 2019, 478, 604-624.	0.5	2
419	Weak solution of the Novikov equation and optimal control. European Journal of Control, 2019, 50, 1-10.	1.6	1
420	A rigidity result for the Holm–Staley b-family of equations with application to the asymptotic stability of the Degasperis–Procesi peakon. Nonlinear Analysis: Real World Applications, 2019, 50, 675-705.	0.9	11
421	Persistence properties and waveâ€breaking criteria for the Gengâ€Xue system. Mathematical Methods in the Applied Sciences, 2019, 42, 6999-7010.	1.2	6
422	On the Cauchy problem for the shallow-water model with the Coriolis effect. Journal of Differential Equations, 2019, 267, 6370-6408.	1.1	2
423	Large Time Behavior of Momentum Support for a Novikov Type Equation. Mathematical Physics Analysis and Geometry, 2019, 22, 1.	0.4	2
424	Classical and Nonclassical Solitary Waves in the General Degasperis—Procesi Model. Russian Journal of Mathematical Physics, 2019, 26, 384-390.	0.4	6
425	On sharp global well-posedness and ill-posedness for a fifth-order KdV-BBM type equation. Journal of Mathematical Analysis and Applications, 2019, 479, 688-702.	0.5	7
426	A non-local approach to waves of maximal height for the Degasperis-Procesi equation. Journal of Mathematical Analysis and Applications, 2019, 479, 25-44.	0.5	2
427	Non-uniform dependence and well-posedness for the rotation-Camassa-Holm equation on the torus. Journal of Differential Equations, 2019, 267, 5049-5083.	1.1	8
428	Peakon Solutions of Alice-Bob <mml:math <br="" xmlns:mml="http://www.w3.org/1998/Math/MathML">id="M1"><mml:mrow><mml:mi>b</mml:mi></mml:mrow></mml:math> -Family Equation and Novikov Equation. Advances in Mathematical Physics, 2019, 2019, 1-8.	0.4	4
429	Error estimates for Galerkin finite element methods for the Camassa–Holm equation. Numerische Mathematik, 2019, 142, 833-862.	0.9	8
430	Two-component generalizations of the Novikov equation. Journal of Nonlinear Mathematical Physics, 2019, 26, 390.	0.8	11
431	On a shallow-water model with the Coriolis effect. Journal of Differential Equations, 2019, 267, 3232-3270.	1.1	4
432	On the Cauchy problem for the fractional Camassa–Holm equation. Monatshefte Fur Mathematik, 2019, 190, 755-768.	0.5	4
433	Adaptive moving knots meshless method for Degasperis-Procesi equation with conservation laws. Applied Numerical Mathematics, 2019, 142, 90-101.	1.2	4
434	The Cauchy problem for shallow water waves of large amplitude in Besov space. Journal of Differential Equations, 2019, 267, 1705-1730.	1.1	7
435	Local well-posedness and blow-up phenomenon for a generalization two-component Camassa–Holm system. Journal of Evolution Equations, 2019, 19, 935-963.	0.6	0

#	Article	IF	CITATIONS
436	Periodic stochastic high-order Degasperis–Procesi equation with cylindrical fBm. Stochastics and Dynamics, 2019, 19, 1950043.	0.6	1
437	Analytical Cartesian solutions of the multi-component Camassa-Holm equations. Journal of Nonlinear Mathematical Physics, 2019, 26, 255.	0.8	1
438	Numerical Study of the Second-Order Correct Hamiltonian Model for Unidirectional Water Waves. Water Waves, 2019, 1, 3-40.	0.3	2
439	A Nonlocal Shallow-Water Model Arising from the Full Water Waves with the Coriolis Effect. Journal of Mathematical Fluid Mechanics, 2019, 21, 1.	0.4	38
440	New periodic wave solutions of a time fractional integrable shallow water equation. Applied Ocean Research, 2019, 85, 128-135.	1.8	25
441	The shock peakon wave solutions of the general Degasperis–Procesi equation. International Journal of Modern Physics B, 2019, 33, 1950351.	1.0	27
442	The Cauchy problem of the rotation Camassa–Holm equation in equatorial water waves. Applicable Analysis, 2021, 100, 2547-2563.	0.6	2
443	Non-uniform continuous dependence on initial data of solutions to the Euler-Poincaré system. Journal of Mathematical Physics, 2019, 60, 111510.	0.5	2
444	Symmetry analysis, conserved quantities and applications to a dissipative DGH equation. Journal of Differential Equations, 2019, 266, 3189-3208.	1.1	5
445	On the integrability of Degasperis–Procesi equation: Control of the Sobolev norms and Birkhoff resonances. Journal of Differential Equations, 2019, 266, 3390-3437.	1.1	13
446	Stability of peakons for the generalized modified Camassa–Holm equation. Journal of Differential Equations, 2019, 266, 7749-7779.	1.1	31
447	On the modeling of equatorial shallow-water waves with the Coriolis effect. Physica D: Nonlinear Phenomena, 2019, 391, 87-110.	1.3	4
448	The rotational speed limit and the blow-up phenomena of the rotation 2-component Camassa–Holm system. Monatshefte Fur Mathematik, 2019, 190, 301-332.	0.5	3
449	Model Equations and Traveling Wave Solutions for Shallow-Water Waves with the Coriolis Effect. Journal of Nonlinear Science, 2019, 29, 993-1039.	1.0	50
450	The Cauchy problem for a generalized Camassa–Holm equation. Journal of Differential Equations, 2019, 266, 6739-6770.	1.1	11
451	Dynamics of conservative peakons in a system of Popowicz. Physics Letters, Section A: General, Atomic and Solid State Physics, 2019, 383, 406-413.	0.9	0
452	Blow-up phenomena and peakons for the b-family of FORQ/MCH equations. Journal of Differential Equations, 2019, 266, 6771-6787.	1.1	4
453	General Degasperis-Procesi equation and its solitary wave solutions. Chaos, Solitons and Fractals, 2019, 118, 41-46.	2.5	11

#	Article	IF	CITATIONS
454	Non-uniform dependence for a generalized Degasperis–Procesi equation. Annali Di Matematica Pura Ed Applicata, 2019, 198, 803-810.	0.5	0
455	A new kind of nonlocal symmetry for the <i>μ</i> â€Camassaâ€Holm equation with linear dispersion. Mathematical Methods in the Applied Sciences, 2019, 42, 272-286.	1.2	0
456	Infinite propagation speed of a weakly dissipative modified two-component Dullin–Gottwald–Holm system. Applied Mathematics Letters, 2019, 89, 1-7.	1.5	30
457	Global well-posedness for the two-component Camassa–Holm equation with fractional dissipation. Asian-European Journal of Mathematics, 2019, 12, 1950051.	0.2	0
458	Well-posedness of a class of solutions to an integrable two-component Camassa–Holm system. Journal of Mathematical Analysis and Applications, 2019, 470, 413-433.	0.5	1
459	On blow-up criteria for a class of nonlinear dispersive wave equations with dissipation. Monatshefte Fur Mathematik, 2019, 188, 163-181.	0.5	4
460	Persistence properties for the two-component Novikov equation in weighted <i>L</i> ^{<i>p</i>} spaces. Applicable Analysis, 2019, 98, 2105-2117.	0.6	4
461	Global weak solutions for a generalized Novikov equation. Monatshefte Fur Mathematik, 2019, 188, 387-400.	0.5	2
462	Infinite propagation speed and asymptotic behavior for a generalized fifth-order Camassa–Holm equation. Applicable Analysis, 2019, 98, 536-552.	0.6	6
463	The Cauchy problem of a weakly dissipative shallow water equation. Applicable Analysis, 2019, 98, 1387-1402.	0.6	9
464	Asymptotic Stability for Some Non positive Perturbations of the Camassa–Holm Peakon with Application to the Antipeakon–peakon Profile. International Mathematics Research Notices, 2020, 2020, 7908-7943.	0.5	1
465	On the Cauchy problem for a generalized Degasperis-Procesi equation. Applicable Analysis, 2020, 99, 1300-1315.	0.6	1
466	A note on the Cauchy problem for the periodic two-component Novikov system. Applicable Analysis, 2020, 99, 1042-1065.	0.6	6
467	Persistent Decay of Solutions to the k-abc Equation in Weighted \$\$L^p\$\$Lp Spaces. Journal of Dynamics and Differential Equations, 2020, 32, 219-232.	1.0	0
468	Comparison of nonlocal nonlinear wave equations in the long-wave limit. Applicable Analysis, 2020, 99, 2670-2679.	0.6	2
469	Well-posedness and analyticity of the Cauchy problem for the multi-component Novikov equation. Monatshefte Fur Mathematik, 2020, 191, 295-323.	0.5	1
470	Wave-breaking phenomena and persistence properties for the nonlocal rotation-Camassa–Holm equation. Annali Di Matematica Pura Ed Applicata, 2020, 199, 355-377.	0.5	7
471	Well-posedness and wave breaking for a shallow water wave model with large amplitude. Journal of Evolution Equations, 2020, 20, 141-163.	0.6	5

#	Article	IF	CITATIONS
472	The Inverse Spectral Problem for Periodic Conservative Multi-peakon Solutions of the Camassa–Holm Equation. International Mathematics Research Notices, 2020, 2020, 5126-5151.	0.5	10
473	Curvature Blow-up for the Higher-Order Camassa–Holm Equations. Journal of Dynamics and Differential Equations, 2020, 32, 1901-1939.	1.0	8
474	A Nash–Moser approach for the Euler–Arnold equations. Monatshefte Fur Mathematik, 2020, 192, 333-353.	0.5	0
475	Blow-up phenomena, ill-posedness and peakon solutions for the periodic Euler-Poincaré equations. Journal of Differential Equations, 2020, 268, 1307-1325.	1.1	4
476	Camassa–Holm Cuspons, Solitons and Their Interactions via the Dressing Method. Journal of Nonlinear Science, 2020, 30, 225-260.	1.0	6
477	On the Modelling of Shallow-Water Waves with the Coriolis Effect. Journal of Nonlinear Science, 2020, 30, 93-135.	1.0	10
478	Continuity for a generalized cross-coupled Camassa–Holm system with waltzing peakons and higher-order nonlinearities. Nonlinear Analysis: Real World Applications, 2020, 51, 102970.	0.9	3
479	On the persistence and blow up for the generalized two-component Dullin–Gottwald–Holm system. Monatshefte Fur Mathematik, 2020, 191, 377-394.	0.5	1
480	Wave breaking and solitary wave solutions for a generalized Novikov equation. Applied Mathematics Letters, 2020, 100, 106014.	1.5	3
481	The periodic Cauchy problem for a two-component non-isospectral cubic Camassa-Holm system. Journal of Differential Equations, 2020, 268, 1270-1305.	1.1	4
482	Well-posedness of the EPDiff equation with a pseudo-differential inertia operator. Journal of Differential Equations, 2020, 269, 288-325.	1.1	4
483	A finite difference scheme for smooth solutions of the general Degasperis–Procesi equation. Numerical Methods for Partial Differential Equations, 2020, 36, 887-905.	2.0	2
484	Non-uniform continuity of the solution map to the rotation-two-component Camassa-Holm system. Journal of Differential Equations, 2020, 268, 4423-4463.	1.1	3
485	On the Cauchy problem and peakons of a two-component Novikov system. Science China Mathematics, 2020, 63, 1965-1996.	0.8	9
486	On the Cauchy problem for the new integrable two-component Novikov equation. Annali Di Matematica Pura Ed Applicata, 2020, 199, 1091-1122.	0.5	1
487	A rigorous derivation of the extended KdV equation. Journal of Physics: Conference Series, 2020, 1564, 012006.	0.3	2
488	Liouville correspondences between multicomponent integrable hierarchies. Theoretical and Mathematical Physics(Russian Federation), 2020, 204, 843-874.	0.3	2
489	Integrability, existence of global solutions, and wave breaking criteria for a generalization of the Camassa–Holm equation. Studies in Applied Mathematics, 2020, 145, 537-562.	1.1	15

#	Article	IF	CITATIONS
490	Reducible KAM Tori for the Degasperis–Procesi Equation. Communications in Mathematical Physics, 2020, 377, 1681-1759.	1.0	20
491	Bifurcations and exact solutions of an asymptotic rotation-Camassa–Holm equation. Nonlinear Dynamics, 2020, 101, 2423-2439.	2.7	6
492	Non-uniform Dependence for the Novikov Equation in Besov Spaces. Journal of Mathematical Fluid Mechanics, 2020, 22, 1.	0.4	12
493	Spectral stability of smooth solitary waves for the Degasperis-Procesi equation. Journal Des Mathematiques Pures Et Appliquees, 2020, 142, 298-314.	0.8	13
494	The existence of global weak solutions for a generalized Camassa–Holm equation. Applicable Analysis, 2020, , 1-14.	0.6	0
495	Asymptotic behavior of rapidly oscillating solutions of the modified Camassa—Holm equation. Theoretical and Mathematical Physics(Russian Federation), 2020, 203, 469-482.	0.3	2
496	Local and global pathwise solutions for a stochastically perturbed nonlinear dispersive PDE. Stochastic Processes and Their Applications, 2020, 130, 6319-6363.	0.4	3
497	Nonlocal Symmetries of the Camassa-Holm Type Equations. Chinese Annals of Mathematics Series B, 2020, 41, 407-418.	0.2	1
498	On the orbital stability of the Degasperis-Procesi antipeakon-peakon profile. Journal of Differential Equations, 2020, 269, 4799-4852.	1.1	6
499	Multisoliton solutions of the Degasperis–Procesi equation and its shortwave limit: Darboux transformation approach. Theoretical and Mathematical Physics(Russian Federation), 2020, 203, 608-620.	0.3	12
500	On the Cauchy problem of a new integrable two-component Novikov equation. Monatshefte Fur Mathematik, 2020, 193, 361-381.	0.5	3
501	Asymptotic stability of peakons for the Novikov equation. Journal of Differential Equations, 2020, 269, 7750-7791.	1.1	8
502	Exponential decay and symmetry of solitary waves to Degasperis-Procesi equation. Journal of Differential Equations, 2020, 269, 7730-7749.	1.1	11
503	On the singularity formation for a class of periodic higher-order Camassa–Holm equations. Journal of Differential Equations, 2020, 269, 7825-7861.	1.1	3
504	On the Cauchy problem for a modified Camassa–Holm equation. Monatshefte Fur Mathematik, 2020, 193, 857-877.	0.5	4
505	A nonlocal shallow-water model with the weak Coriolis and equatorial undercurrent effects. Journal of Differential Equations, 2020, 269, 6794-6829.	1.1	7
506	Wave-breaking phenomena for a weakly dissipative shallow water equation. Zeitschrift Fur Angewandte Mathematik Und Physik, 2020, 71, 1.	0.7	5
507	Modeling shallow water waves. Nonlinearity, 2020, 33, R1-R57.	0.6	25

#	Article	IF	CITATIONS
508	Cusped solitary wave with algebraic decay governed by the equation for surface waves of moderate amplitude. Journal of Nonlinear Mathematical Physics, 2020, 27, 219.	0.8	2
509	Well-posedness of a highly nonlinear shallow water equation on the circle. Nonlinear Analysis: Theory, Methods & Applications, 2020, 197, 111849.	0.6	7
510	Non-uniform dependence on initial data for the Camassa-Holm equation in Besov spaces. Journal of Differential Equations, 2020, 269, 8686-8700.	1.1	38
511	The dependence on initial data of stochastic Camassa–Holm equation. Applied Mathematics Letters, 2020, 107, 106472.	1.5	5
512	A LIPSCHITZ METRIC FOR THE CAMASSA–HOLM EQUATION. Forum of Mathematics, Sigma, 2020, 8, .	0.3	0
513	Interplay of the pseudo-Raman term and trapping potentials in the nonlinear SchrĶdinger equation. Communications in Nonlinear Science and Numerical Simulation, 2020, 85, 105220.	1.7	1
514	On the initial value problem for the two-coupled Camassa–Holm system in Besov spaces. Monatshefte Fur Mathematik, 2020, 193, 479-505.	0.5	1
515	An optimized compact reconstruction weighted essentially non-oscillatory scheme for Degasperis-Procesi equation. Numerical Heat Transfer, Part B: Fundamentals, 2020, 77, 328-347.	0.6	1
516	Blow-up phenomena and local well-posedness for a generalized Camassa–Holm equation in the critical Besov space. Monatshefte Fur Mathematik, 2020, 191, 801-829.	0.5	2
517	Asymptotics of Regular Solutions to the Camassa–Holm Problem. Computational Mathematics and Mathematical Physics, 2020, 60, 258-271.	0.2	2
518	A Riemann–Hilbert approach to the modified Camassa–Holm equation with nonzero boundary conditions. Journal of Mathematical Physics, 2020, 61, 031504.	0.5	8
519	Collision of solitons in non-integrable versions of the Degasperis-Procesi model. Chaos, Solitons and Fractals, 2020, 136, 109802.	2.5	2
520	Wave breaking for periodic solutions of a nonlinear shallow water equation. Applicable Analysis, 2022, 101, 519-526.	0.6	1
521	Qualitative analysis for the new shallow-water model with cubic nonlinearity. Journal of Differential Equations, 2020, 269, 5228-5279.	1.1	10
522	Well-posedness and continuity properties of the new shallow-water model with cubic nonlinearity. Annali Di Matematica Pura Ed Applicata, 2021, 200, 1-34.	0.5	1
523	An efficient computational technique for time-fractional modified Degasperis-Procesi equation arising in propagation of nonlinear dispersive waves. Journal of Ocean Engineering and Science, 2021, 6, 30-39.	1.7	30
524	On the Dynamics of Zero-Speed Solutions for Camassa–Holm-Type Equations. International Mathematics Research Notices, 2021, 2021, 6543-6585.	0.5	8
525	Non-uniform continuity on initial data for a Camassa-Holm-type equation in Besov space. Journal of Mathematical Analysis and Applications, 2021, 494, 124621.	0.5	2

#	Article	IF	CITATIONS
526	Construction of peakon-antipeakon solutions and ill-posedness for the b-family of equations. Journal of Differential Equations, 2021, 272, 544-559.	1.1	6
527	Nonexistence of the periodic peaked traveling wave solutions for rotation-Camassa–Holm equation. Nonlinear Analysis: Real World Applications, 2021, 59, 103244.	0.9	4
528	Blow-up analysis and spatial asymptotic profiles of solutions to a modified two-component hyperelastic rod system. Analysis and Mathematical Physics, 2021, 11, 1.	0.6	0
529	Global-in-time solvability and blow-up for a non-isospectral two-component cubic Camassa-Holm system in a critical Besov space. Journal of Differential Equations, 2021, 274, 414-460.	1.1	1
530	Blow-up scenario for a generalized Camassa–Holm equation with both quadratic and cubic nonlinearity. Applicable Analysis, 2021, 100, 1180-1197.	0.6	0
531	The Cauchy problem for generalized fractional Camassa–Holm equation in Besov space. Monatshefte Fur Mathematik, 2021, 195, 451-475.	0.5	1
532	Persistence property and analyticity for a shallow-water model with the coriolis effect in weighted spaces. Monatshefte Fur Mathematik, 2021, 194, 835-855.	0.5	0
533	Nonuniform dependence of the Râ€bâ€family system in Besov spaces. ZAMM Zeitschrift Fur Angewandte Mathematik Und Mechanik, 2021, 101, e202000329.	0.9	4
534	Blow-up criteria for modified two-component generalization of hyper-elastic rod equation. Applicable Analysis, 0, , 1-18.	0.6	0
535	On the Green-Naghdi equations with surface tension in the Camassa-Holm scale. Annali Dell'Universita Di Ferrara, 2021, 67, 83-110.	0.7	2
536	A semi-discrete scheme derived from variational principles for global conservative solutions of a Camassa–Holm system. Nonlinearity, 2021, 34, 2220-2274.	0.6	4
537	New wave-breaking criteria for the Fornberg-Whitham equation. Journal of Differential Equations, 2021, 280, 571-589.	1.1	13
538	Orbital stability of periodic peakons for a generalized Camassa–Holm equation. Applicable Analysis, 0, , 1-15.	0.6	1
539	Symmetries and integrability of the modified Camassa–Holm equation with an arbitrary parameter. Pramana - Journal of Physics, 2021, 95, 1.	0.9	0
540	Cuspon-type Waves and Their Properties. Nonlinear Phenomena in Complex Systems, 2021, 24, 145-155.	0.1	0
541	Liouville correspondences for integrable hierarchies. , 2021, , 102-134.		0
542	New blow-up criterion for the Degasperis–Procesi equation with weak dissipation. Analysis and Mathematical Physics, 2021, 11, 1.	0.6	1
543	On the Cauchy problem for a Camassa-Holm type equation with cubic and quartic nonlinearities. Monatshefte Fur Mathematik, 2022, 198, 289-310.	0.5	1

		CITATION REPO	RT	
#	Article	IF		CITATIONS
544	Stability of Solitary Waves for the Modified Camassa-Holm Equation. Annals of PDE, 2021, 7, 1.	0.	.8	6
545	Persistence of periodic traveling waves and Abelian integrals. Journal of Differential Equations, 20 293, 48-69.)21, 1.	1	0
546	Stability of smooth periodic travelling waves in the Camassa–Holm equation. Studies in Applie Mathematics, 2022, 148, 27-61.	d 1.	1	9
547	Stability analysis and novel solutions to the generalized Degasperis Procesi equation: An applicat to plasma physics. PLoS ONE, 2021, 16, e0254816.	ion 1.	1	2
548	Singularity formation for the Serre-Green-Naghdi equations and applications to abcd-Boussinesq systems. Monatshefte Fur Mathematik, 2022, 198, 503-516.	0.	.5	4
549	On the Solutions of the b-Family of Novikov Equation. Symmetry, 2021, 13, 1765.	1.	1	1
550	Globally conservative solutions for the modified Camassa–Holm (MOCH) equation. Journal of Mathematical Physics, 2021, 62, .	0.	.5	2
551	The Cauchy problem for fractional Camassa–Holm equation in Besov space. Nonlinear Analysis World Applications, 2021, 61, 103348.	: Real O.	.9	1
552	Wave-breaking and moderate deviations of the stochastic Camassa–Holm equation with pure noise. Physica D: Nonlinear Phenomena, 2021, 424, 132944.	jump 1.	3	5
553	On a two dimensional nonlocal shallow-water model. Advances in Mathematics, 2021, 392, 1080	021. o.	.5	3
554	Local well-posedness in the critical Besov space and blow-up for an n-component Camassa–Ho system. Journal of Mathematical Analysis and Applications, 2021, 504, 125423.	lm o.	.5	1
555	Orbital stability of solitary waves and a Liouville-type property to the cubic Camassa–Holm-typ equation. Physica D: Nonlinear Phenomena, 2021, 428, 133024.	e 1.	3	5
556	Non-uniform dependence for higher dimensional Camassa–Holm equations in Besov spaces. N Analysis: Real World Applications, 2022, 63, 103420.	onlinear 0.	.9	3
557	On the modeling of shallow-water waves moving over a shear flow. Applied Mathematics Letters, 2022, 124, 107607.	1.	5	2
558	The two-component Novikov-type systems with peaked solutions and \$ H^1 \$-conservation law. Communications on Pure and Applied Analysis, 2021, 20, 2857.	0.	.4	3
559	Growth of Perturbations to the Peaked Periodic Waves in the CamassaHolm Equation. SIAM Jou on Mathematical Analysis, 2021, 53, 3016-3039.	irnal O.	.9	14
560	Asymptotic Stability of Singular Solution for Camassa-Holm Equation. Journal of Applied Mathem and Physics, 2021, 09, 1505-1514.	natics 0.	.2	1
562	Exact Travelling Periodic Water Waves in Two-Dimensional Irrotational Flows. Lecture Notes in Mathematics, 2016, , 1-82.	0.	.1	3

#	Article	IF	CITATIONS
563	Orbital Bifurcations and Shoaling of Cnoidal Waves. Journal of Mathematical Fluid Mechanics, 2020, 22, 1.	0.4	3
564	On weak solutions to a generalized Camassa–Holm equation with solitary wave. Boundary Value Problems, 2020, 2020, .	0.3	3
565	Single peaked traveling wave solutions to a generalized μ-Novikov Equation. Advances in Nonlinear Analysis, 2020, 10, 66-75.	1.3	9
566	A Theoretical Study of an Extended KDV Equation. WSEAS Transactions on Fluid Mechanics, 2020, 15, 110-110.	0.5	3
567	Liouville Correspondences between Integrable Hierarchies. Symmetry, Integrability and Geometry: Methods and Applications (SIGMA), 0, , .	0.5	4
568	Ghostpeakons and Characteristic Curves for the Camassa-Holm, Degasperis-Procesi and Novikov Equations. Symmetry, Integrability and Geometry: Methods and Applications (SIGMA), 0, , .	0.5	2
569	Clobal weak solutions to the generalized Proudman-Johnson equation. Communications on Pure and Applied Analysis, 2012, 11, 1387-1396.	0.4	4
570	The geometry of a vorticity model equation. Communications on Pure and Applied Analysis, 2012, 11, 1407-1419.	0.4	30
571	Integrating factors and conservation laws for some Camassa-Holm type equations. Communications on Pure and Applied Analysis, 2012, 11, 1421-1430.	0.4	2
572	A selection of nonlinear problems in water waves, analysed by perturbation-parameter techniques. Communications on Pure and Applied Analysis, 2012, 11, 1497-1522.	0.4	5
573	Eigenvalues, bifurcation and one-sign solutions for the periodic \$p\$-Laplacian. Communications on Pure and Applied Analysis, 2013, 12, 2839-2872.	0.4	11
574	Some remarks for a modified periodic Camassa-Holm system. Discrete and Continuous Dynamical Systems, 2011, 30, 1161-1180.	0.5	10
575	Global conservative solutions to the Camassa-Holm equation for initial data with nonvanishing asymptotics. Discrete and Continuous Dynamical Systems, 2012, 32, 4209-4227.	0.5	18
576	Well-posedness for a modified two-component Camassa-Holm system in critical spaces. Discrete and Continuous Dynamical Systems, 2013, 33, 1699-1712.	0.5	11
577	Smoothness of the flow map for low-regularity solutions of the Camassa-Holm equations. Discrete and Continuous Dynamical Systems, 2013, 33, 2791-2808.	0.5	4
578	Lipschitz metric for the Camassa–Holm equation on the line. Discrete and Continuous Dynamical Systems, 2013, 33, 2809-2827.	0.5	26
579	One-dimensional weakly nonlinear model equations for Rossby waves. Discrete and Continuous Dynamical Systems, 2014, 34, 3025-3034.	0.5	12
580	The Cauchy problem for a generalized \$b\$-equation with higher-order nonlinearities in critical Besov spaces and weighted \$L^p\$ spaces. Discrete and Continuous Dynamical Systems, 2014, 34, 4967-4986.	0.5	8

#	Article	IF	CITATIONS
581	Local Well-posedness and Persistence Property for the Generalized Novikov Equation. Discrete and Continuous Dynamical Systems, 2013, 34, 803-820.	0.5	7
582	On the initial value problem for higher dimensional Camassa-Holm equations. Discrete and Continuous Dynamical Systems, 2015, 35, 1327-1358.	0.5	10
583	A note on the Cauchy problem of a modified Camassa-Holm equation with cubic nonlinearity. Discrete and Continuous Dynamical Systems, 2015, 35, 2011-2039.	0.5	1
584	Blow-up for the two-component CamassaHolm system. Discrete and Continuous Dynamical Systems, 2015, 35, 2041-2051.	0.5	20
585	Asymptotics in shallow water waves. Discrete and Continuous Dynamical Systems, 2015, 35, 3103-3131.	0.5	8
586	On the Cauchy problem for a four-component Camassa-Holm type system. Discrete and Continuous Dynamical Systems, 2015, 35, 5153-5169.	0.5	4
587	On the Cauchy problem for a generalized Camassa-Holm equation. Discrete and Continuous Dynamical Systems, 2015, 35, 871-889.	0.5	6
588	On the blow-up of solutions to the periodic modified integrable CamassaHolm equation. Discrete and Continuous Dynamical Systems, 2015, 36, 2347-2364.	0.5	4
589	Persistence properties and unique continuation for a dispersionless two-component Camassa-Holm system with peakon and weak kink solutions. Discrete and Continuous Dynamical Systems, 2015, 36, 2613-2625.	0.5	4
590	On the Cauchy problem of a three-component CamassaHolm equations. Discrete and Continuous Dynamical Systems, 2015, 36, 2827-2854.	0.5	6
591	A note on the convergence of the solutions of the Camassa-Holm equation to the entropy ones of a scalar conservation law. Discrete and Continuous Dynamical Systems, 2015, 36, 2981-2990.	0.5	15
592	Local well-posedness in the critical Besov space and persistence properties for a three-component Camassa-Holm system with N-peakon solutions. Discrete and Continuous Dynamical Systems, 2016, 36, 5047-5066.	0.5	1
593	Existence and uniqueness of global weak solutions of the Camassa-Holm equation with a forcing. Discrete and Continuous Dynamical Systems, 2016, 36, 5201-5221.	0.5	6
594	The Camassa-Holm equation as the long-wave limit of the improved Boussinesq equation and of a class of nonlocal wave equations. Discrete and Continuous Dynamical Systems, 2016, 36, 6101-6116.	0.5	3
595	Analyticity, Gevrey regularity and unique continuation for an integrable multi-component peakon system with an arbitrary polynomial function. Discrete and Continuous Dynamical Systems, 2016, 36, 6975-7000.	0.5	6
596	Blow-up of solutions to the periodic modified Camassa-Holm equation with varying linear dispersion. Discrete and Continuous Dynamical Systems, 2016, 36, 7235-7256.	0.5	1
597	Blow-up of solutions to the periodic generalized modified Camassa-Holm equation with varying linear dispersion. Discrete and Continuous Dynamical Systems, 2017, 37, 645-661.	0.5	2
598	A note on the convergence of the solution of the high order Camassa-Holm equation to the entropy ones of a scalar conservation law. Discrete and Continuous Dynamical Systems, 2017, 37, 1247-1282.	0.5	6

#	Article	IF	CITATIONS
599	On an \$N\$-Component Camassa-Holm equation with peakons. Discrete and Continuous Dynamical Systems, 2017, 37, 1575-1601.	0.5	3
600	Conserved quantities, global existence and blow-up for a generalized CH equation. Discrete and Continuous Dynamical Systems, 2017, 37, 1733-1748.	0.5	7
601	The Cauchy problem and blow-up phenomena for a new integrable two-component peakon system with cubic nonlinearities. Discrete and Continuous Dynamical Systems, 2017, 37, 3301-3325.	0.5	1
602	The Cauchy problem for a generalized Novikov equation. Discrete and Continuous Dynamical Systems, 2017, 37, 3503-3519.	0.5	8
603	Blow-up phenomena and travelling wave solutions to the periodic integrable dispersive Hunter-Saxton equation. Discrete and Continuous Dynamical Systems, 2017, 37, 6471-6485.	0.5	9
604	Symmetry analysis, persistence properties and unique continuation for the cross-coupled Camassa-Holm system. Discrete and Continuous Dynamical Systems, 2018, 38, 329-341.	0.5	2
605	On a new two-component \$b\$-family peakon system with cubic nonlinearity. Discrete and Continuous Dynamical Systems, 2018, 38, 5415-5442.	0.5	6
606	Stability of multi antipeakon-peakons profile. Discrete and Continuous Dynamical Systems - Series B, 2009, 12, 561-577.	0.5	15
607	Generalised Fourier transform and perturbations to soliton equations. Discrete and Continuous Dynamical Systems - Series B, 2009, 12, 579-595.	0.5	6
608	Infinite propagation speed for a two component Camassa-Holm equation. Discrete and Continuous Dynamical Systems - Series B, 2009, 12, 597-606.	0.5	57
609	Global existence and blow-up phenomena for a weakly dissipative Degasperis-Procesi equation. Discrete and Continuous Dynamical Systems - Series B, 2009, 12, 633-645.	0.5	19
610	On the HunterSaxton system. Discrete and Continuous Dynamical Systems - Series B, 2009, 12, 647-656.	0.5	41
611	Blow up and propagation speed of solutions to the DGH equation. Discrete and Continuous Dynamical Systems - Series B, 2009, 12, 657-670.	0.5	28
612	Shallow water asymptotic models for the propagation of internal waves. Discrete and Continuous Dynamical Systems - Series S, 2014, 7, 239-269.	0.6	8
613	Global existence and propagation speed for a Degasperis-Procesi equation with both dissipation and dispersion. Electronic Research Archive, 2020, 28, 15-25.	0.4	4
614	Euler equations on a semi-direct product of the diffeomorphisms group by itself. Journal of Geometric Mechanics, 2011, 3, 313-322.	0.5	11
615	On a three-Component Camassa-Holm equation with peakons. Kinetic and Related Models, 2014, 7, 305-339.	0.5	1
616	Orbital stability of periodic peakons for the generalized modified Camassa-Holm equation. Discrete and Continuous Dynamical Systems - Series S, 2021, 14, 4409.	0.6	6

#	ARTICLE	IF	CITATIONS
617	Wave-breaking phenomena and persistence property for a weakly dissipative shallow water equation. Monatshefte Fur Mathematik, 2022, 199, 167-202.	0.5	1
618	Non-uniform Dependence on Initial Data for the Generalized Camassa–Holm–Novikov Equation in Besov Space. Journal of Mathematical Fluid Mechanics, 2021, 23, 1.	0.4	5
619	An explicit solution with correctors for variable depth KdV and Camassa–Holm-like equations. Journal of Engineering Mathematics, 2021, 131, 1.	0.6	1
621	Geometric Aspects of the Periodic μ-Degasperis-Procesi Equation. Progress in Nonlinear Differential Equations and Their Application, 2011, , 193-209.	0.4	6
622	Solitons and the Inverse Scattering Transform. , 2012, , 425-533.		0
623	On the integrability of KdV hierarchy with self-consistent sources. Communications on Pure and Applied Analysis, 2012, 11, 1439-1452.	0.4	1
624	The 2-component dispersionless Burgers equation arising in the modelling of blood flow. Communications on Pure and Applied Analysis, 2012, 11, 1563-1576.	0.4	0
625	On the higher-order b-family equation and Euler equations on the circle. Discrete and Continuous Dynamical Systems, 2014, 34, 3013-3024.	O.5	0
626	A conservative discontinuous Galerkin method for the Degasperis-Procesi equation. Methods and Applications of Analysis, 2014, 21, 67-90.	0.1	8
628	An Exact Solution of Modified KdV (mKdV) Equation as a Reduction of Self-Dual Yang-Mills Theory. The Bulletin of Society for Mathematical Services and Standards, 0, 12, 1-3.	0.0	0
629	Blow-Up Phenomena and Global Existence to a Weakly Dissipative Shallow Water Equation. The Bulletin of Society for Mathematical Services and Standards, 0, 12, 10-20.	0.0	0
630	Unidirectional wave motion in a nonlocally and nonlinearly elastic medium: the KdV, BBM, and CH equations. Proceedings of the Estonian Academy of Sciences, 2015, 64, 256.	0.9	3
631	Solitons for an one-dimensional model of water waves. Applied Mathematical Sciences, 0, 9, 1373-1391.	0.0	0
632	Global estimates and blow-up criteria for the generalized Hunter-Saxton system. Discrete and Continuous Dynamical Systems - Series B, 2015, 20, 641-673.	O.5	0
633	Camassa–Holm Equations. , 2015, , 176-178.		0
634	ANALYTIC SOLUTIONS OF THE CAUCHY PROBLEM FOR THE GENERALIZED TWO-COMPONENT HUNTER-SAXTON SYSTEM. Honam Mathematical Journal, 2015, 37, 99-112.	0.1	0
635	Well-posedness and blow-up scenario for a new integrable four-component system with peakon solutions. Discrete and Continuous Dynamical Systems, 2015, 36, 2171-2191.	0.5	0
636	Local well-posedness and blow-up phenomena for a generalized Camassa-Holm equation with peakon solutions. Discrete and Continuous Dynamical Systems, 2015, 36, 2781-2801.	0.5	1

#	Article	IF	CITATIONS
637	SOLITARY WAVE SOLUTIONS FOR A CLASS OF DISPERSIVE EQUATIONS. International Journal of Pure and Applied Mathematics, 2015, 105, .	0.2	0
638	Asymptotic Methods for Weakly Nonlinear and Other Water Waves. Lecture Notes in Mathematics, 2016, , 121-196.	0.1	4
640	Well-posedness and blow-up phenomena for a generalized Camassa-Holm equation. Discrete and Continuous Dynamical Systems, 2016, 36, 5493-5508.	0.5	0
641	Wave breaking and persistent decay of solution to a shallow water wave equation. Discrete and Continuous Dynamical Systems - Series S, 2016, 9, 2149-2165.	0.6	2
642	On the Cauchy problem of the modified Hunter-Saxton equation. Discrete and Continuous Dynamical Systems - Series S, 2016, 9, 2047-2072.	0.6	0
643	Optimal Distributed Control Problem for the <i>b</i> -Equation. Journal of Applied Mathematics and Physics, 2017, 05, 1269-1300.	0.2	0
644	On the Conservative Finite Difference Scheme for the Generalized Novikov Equation. Journal of Applied Mathematics and Physics, 2017, 05, 1776-1790.	0.2	1
645	Weighted essentially non-oscillatory schemes for Degasperis–Procesi equation with discontinuous solutions. Annals of Mathematical Sciences and Applications, 2017, 2, 319-340.	0.2	4
646	On the decoupling of the improved Boussinesq equation into two uncoupled Camassa-Holm equations. Discrete and Continuous Dynamical Systems, 2017, 37, 3111-3122.	0.5	0
647	The global conservative solutions for the generalized camassa-holm equation. Electronic Research Archive, 2019, 27, 37-67.	0.4	1
650	Well-posedness of a kind of the free surface equation of shallow water waves. Rocky Mountain Journal of Mathematics, 2020, 50, .	0.2	0
651	Stability of singular waves for Dullin–Gottwald–Holm equation. Nonlinear Analysis: Real World Applications, 2022, 64, 103425.	0.9	1
652	Asymptotic stability of the Degasperis–Procesi antipeakon–peakon profile. Nonlinear Analysis: Real World Applications, 2022, 64, 103428.	0.9	2
655	Local-in-Space Blow-up for a Weakly Dissipative Generalized Two-Component Camassa–Holm System. Journal of Mathematical Fluid Mechanics, 2022, 24, 1.	0.4	0
656	Numerical study of the Serre-Green-Naghdi equations and a fully dispersive counterpart. Discrete and Continuous Dynamical Systems - Series B, 2021, .	0.5	3
657	On the Geophysical Green-Naghdi System. Journal of Nonlinear Science, 2022, 32, 1.	1.0	1
658	ON STUDY OF CENERALIZED FORM OF CAMASSAHOLM EQUATION AND DEGASPERIS-PROCESI EQUATIONS BY REDUCED DIFFERENTIAL TRANSFORM ALGORITHM. Advances in Mathematics: Scientific Journal (discontinued), 2020, 9, 10103-10116.	0.2	0
659	Study of the generalization of regularized long-wave equation. Nonlinear Dynamics, 2022, 107, 2745-2752.	2.7	18

#	Article	IF	CITATIONS
660	Traveling Wave Solutions of a Generalized Burgers-\$\$alpha eta \$\$ Equation. Qualitative Theory of Dynamical Systems, 2022, 21, 1.	0.8	2
661	Orbital Stability of Peakons for the Modified Camassa—Holm Equation. Acta Mathematica Sinica, English Series, 2022, 38, 148-160.	0.2	1
662	Global conservative solution for a dissipative Camassa-Holm type equation with cubic and quartic nonlinearities. Applicable Analysis, 0, , 1-15.	0.6	0
663	B-Class Solitary Waves and Their Persistence Under Kuramoto–Sivashinsky Perturbation. Differential Equations and Dynamical Systems, 0, , 1.	0.5	0
664	Persistence properties of a Camassa–Holm type equation with (<i>n</i> + 1) -order non-linearities. Journal of Mathematical Physics, 2022, 63, .	0.5	3
665	New perturbed conformable Boussinesq-like equation: Soliton and other solutions. Results in Physics, 2022, 33, 105200.	2.0	42
666	Stumpons are non-conservative traveling waves of the Camassa–Holm equation. Physica D: Nonlinear Phenomena, 2022, 433, 133196.	1.3	1
667	Stability of smooth multi-solitons for the Camassa–Holm equation. Calculus of Variations and Partial Differential Equations, 2022, 61, .	0.9	4
668	Stability of Smooth Solitary Waves in the \$B\$-CamassaHolm Equation. SSRN Electronic Journal, 0, , .	0.4	0
669	Nonlinear dispersion in wave-current interactions. Journal of Geometric Mechanics, 2022, 14, 597-633.	0.5	1
670	Global Dissipative Solution for an Extended Dullin–Gottwald–Holm Equation. Journal of Mathematics, 2022, 2022, 1-21.	0.5	0
671	The Shallow-Water Models with Cubic Nonlinearity. Journal of Mathematical Fluid Mechanics, 2022, 24, 1.	0.4	10
672	Stability of Periodic Peakons for a Nonlinear Quartic \$\$mu \$\$-Camassa–Holm Equation. Journal of Dynamics and Differential Equations, 2024, 36, 703-725.	1.0	1
673	High Order Finite Difference WENO Methods with Unequal-Sized Sub-Stencils for the Degasperis-Procesi Type Equations. Communications in Computational Physics, 2022, 31, 913-946.	0.7	3
674	Blow-up criteria for a two-component nonlinear dispersive wave system. Journal of Functional Analysis, 2022, 282, 109454.	0.7	2
675	Negative Order KdV Equation with No Solitary Traveling Waves. Mathematics, 2022, 10, 48.	1.1	1
676	The Initial-Value Problem to the Modified Two-Component EulerPoincaré Equations. SIAM Journal on Mathematical Analysis, 2022, 54, 2006-2039.	0.9	1
677	Local and global analyticity for the <i>μ</i> -Novikov equation. Applicable Analysis, 0, , 1-24.	0.6	О

#	ARTICLE	IF	CITATIONS
678	Extended shallow water wave equations. Wave Motion, 2022, 112, 102934.	1.0	7
679	Orbital Stability of the sum of Smooth solitons in the Degasperis-Procesi Equation. Journal Des Mathematiques Pures Et Appliquees, 2022, , .	0.8	Ο
680	Instability and Nonuniqueness for the b-Novikov Equation. Journal of Nonlinear Science, 2022, 32, .	1.0	1
681	Stability in the energy space of the sum of \$ N \$ solitary waves for an equation modelling shallow water waves of moderate amplitude. Discrete and Continuous Dynamical Systems - Series B, 2023, 28, 920.	0.5	1
682	On the Cauchy Problem for a Two-component Peakon System With Cubic Nonlinearity. Journal of Dynamics and Differential Equations, 0, , .	1.0	0
683	Existence of the Periodic Peaked Solitary-Wave Solutions to the Camassa–Holm–Kadomtsev–Petviashvili Equation. Journal of Nonlinear Mathematical Physics, 0, , .	0.8	0
684	The Camassa-Holm approximation to the double dispersion equation for arbitrarily long times. Monatshefte Fur Mathematik, 0, , .	0.5	0
685	Singularities in finite time of a 3-component Camassa–Holm equations. Applied Mathematics Letters, 2022, 134, 108314.	1.5	4
686	A view of the peakon world through the lens of approximation theory. Physica D: Nonlinear Phenomena, 2022, 440, 133446.	1.3	5
687	Wave Breaking for a Nonlinear Shallow Water Equation. Journal of Mathematical Fluid Mechanics, 2022, 24, .	0.4	1
689	Optimal system, similarity solution and Painlevé test on generalized modified Camassa-Holm equation. Indian Journal of Pure and Applied Mathematics, 0, , .	0.3	0
690	Stability of periodic peaked solitary waves for a cubic Camassa–Holm-type equation. Journal of Evolution Equations, 2022, 22, .	0.6	1
691	Uniqueness and generic regularity of global weak conservative solutions to the Constantin-Lannes equation. Applicable Analysis, 0, , 1-23.	0.6	0
692	Stability of Peakons and Periodic Peakons for the mCH–Novikov–CH Equation. Symmetry, 2022, 14, 1702.	1.1	0
693	Similarity reductions of peakon equations: the \$\$b\$\$-family. Theoretical and Mathematical Physics(Russian Federation), 2022, 212, 1149-1167.	0.3	3
694	Spectral Instability of Peakons in the \$b\$-Family of the CamassaHolm Equations. SIAM Journal on Mathematical Analysis, 2022, 54, 4572-4590.	0.9	7
695	Numerical study of high order nonlinear dispersive PDEs using different RBF approaches. Applied Numerical Mathematics, 2022, 182, 356-369.	1.2	3
696	Stability of smooth solitary waves in the <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" display="inline" id="d1e147" altimg="si679.svg"><mml:mi>b</mml:mi>-Camassa–Holm equation. Physica D: Nonlinear Phenomena. 2022. 440. 133477.</mml:math 	1.3	4

#	Article	IF	CITATIONS
697	On the Cauchy problem for a class of cubic quasilinear shallow-water equations. Journal of Differential Equations, 2022, 336, 589-627.	1.1	3
698	Long-Time Asymptotics for the Modified Camassa–Holm Equation with Nonzero Boundary Conditions. Journal of Mathematical Physics, Analysis, Geometry, 2022, 18, 224-252.	0.1	0
699	A comparison of solutions of two convolution-type unidirectional wave equations. Applicable Analysis, 0, , 1-10.	0.6	0
700	Similarity reductions of peakon equations: integrable cubic equations. Journal of Physics A: Mathematical and Theoretical, 2022, 55, 424002.	0.7	1
701	A shallow water modeling with the Coriolis effect coupled with the surface tension. Monatshefte Fur Mathematik, 2023, 201, 975-1002.	0.5	1
702	Global Well-Posedness of a Two–Component b–Family Equations in \$\$H^{s-1,p}({mathbb {R}})imes H^{s,p}({mathbb {R}})\$\$. Journal of Mathematical Fluid Mechanics, 2022, 24, .	0.4	3
703	A note on wave-breaking criteria for the Fornberg-Whitham equation. Monatshefte Fur Mathematik, 0, , .	0.5	0
704	A Riemann–Hilbert approach to the modified Camassa–Holm equation with step-like boundary conditions. Monatshefte Fur Mathematik, 0, , .	0.5	0
705	Stability of periodic peakons for a generalized- <i>μ</i> Camassa–Holm equation with quartic nonlinearities. Applicable Analysis, 0, , 1-14.	0.6	0
706	Reciprocal transformations of generalized negative flows in integrable hierarchies. Journal of Physics A: Mathematical and Theoretical, 2022, 55, 435201.	0.7	1
707	Wave-breaking phenomena and persistence properties for a nonlinear dissipative Camassa–Holm equation. Applicable Analysis, 0, , 1-23.	0.6	1
708	Nonlinear Water Waves and Nonlinear Evolution Equations with Applications. , 2022, , 1-45.		0
709	The well-posedness, ill-posedness and non-uniform dependence on initial data for the Fornberg–Whitham equation in Besov spaces. Nonlinear Analysis: Real World Applications, 2023, 70, 103791.	0.9	1
710	Global attractor for the viscous modified two-component Camassa–Holm equation. Nonlinear Analysis: Real World Applications, 2023, 70, 103792.	0.9	0
711	Orbital Stability of Peakons and Multi-peakons for a Generalized Cubic–Quintic Camassa–Holm Type Equation. Journal of Nonlinear Mathematical Physics, 0, , .	0.8	0
712	Wave breaking to a shallow water wave equation involving the Fornberg-Whitham model. Journal of Differential Equations, 2023, 344, 509-521.	1.1	5
713	Non-uniform dependence on initial data for the CH equation on the line. , 2009, 22, .		47
714	Wave Breaking for the Constantin–Lannes Equation Revisited. Journal of Mathematical Fluid Mechanics, 2023, 25, .	0.4	1

IF ARTICLE CITATIONS Blow-up of solutions to a periodic nonlinear dispersive rod equation., 2010, 15, 267-283. 715 5 The stability of the b-family of peakon equations. Nonlinearity, 2023, 36, 1192-1217. Noise effects in some stochastic evolution equations: Global existence and dependence on initial data. 717 0.7 5 Annales De L'institut Henri Poincare (B) Probability and Statistics, 2023, 59, . On wave-breaking for the two-component Fornberg–Whitham system. Journal of Differential 1.1 Equations, 2023, 350, 41-51. Multiwave, rogue wave, periodic wave, periodic cross-lump wave, periodic cross-kink wave, lump soliton, breather lump, homoclinic breather, periodic cross-kink, M-shaped rational solutions and 719 1.0 7 their interactions for the Degasperis–Procesi equation. International Journal of Modern Physics B, 2023, 37, Blow-up data for a two-component Camassa-Holm system with high order nonlinearity. Journal of Differential Equations, 2023, 358, 256-294. 1.1 Ill-posedness for a two-component Novikov system in Besov space. Journal of Mathematical Analysis 721 0.5 0 and Applications, 2023, 525, 127171. Notes on wave-breaking phenomena for a Fornberg-Whitham-type equation. Journal of Differential Equations, 2023, 362, 250-265. 1.1 723 Nonexistence of single peaked solution for a fifth-order Camassa-Holm equation., 2022, , . 0 Orbital stability of periodic peakons for a new higher-order <i>μ</i>-Camassaâ€"Holm equation. Journal 724 of Mathematical Physics, 2023, 64, . Expressions and Evolution of Traveling wave Solutions in a Generalized Two-Component Rotation 725 0.8 0 b-Family System. Qualitative Theory of Dynamical Systems, 2023, 22, . Orbital stability of two-component peakons. Science China Mathematics, 0, , . On the classical solutions for the high order Camassa-Holm type equations. Journal of Mathematical 727 0.5 0 Analysis and Applications, 2023, 526, 127338. A Highly Nonlinear Shallow-Water Model Arising from the Full Water Waves with the Coriolis Effect. 0.4 Journal of Mathematical Fluid Mechanics, 2023, 25, . Shallow Water Models and Their Analytical Properties. CMS/CAIMS Books in Mathematics, 2024, , 765 0.4 0 79-267.

CITATION REPORT