CITATION REPORT List of articles citing

Assessment of Hydrological Drought Revisited

DOI: 10.1007/s11269-008-9305-1 Water Resources Management, 2009, 23, 881-897.

Source: https://exaly.com/paper-pdf/46199860/citation-report.pdf

Version: 2024-04-23

This report has been generated based on the citations recorded by exaly.com for the above article. For the latest version of this publication list, visit the link given above.

The third column is the impact factor (IF) of the journal, and the fourth column is the number of citations of the article.

#	Paper	IF	Citations
485	Indicators and Aspects of Hydrological Drought in Lebanon. <i>Water Resources Management</i> , 2009 , 23, 1875-1891	3.7	34
484	Drought impacts on karstic spring annual water potential. Application on Almyros (Crete) brackish spring. 2010 , 16, 229-237		37
483	Drought Analysis in the Awash River Basin, Ethiopia. <i>Water Resources Management</i> , 2010 , 24, 1441-146	50 _{3.7}	188
482	Karst Spring Discharges Analysis in Relation to Drought Periods, Using the SPI. <i>Water Resources Management</i> , 2010 , 24, 1867-1884	3.7	72
481	The Combined Effect of Vegetation and Soil Erosion in the Water Resource Management. <i>Water Resources Management</i> , 2010 , 24, 3701-3714	3.7	26
480	Integrating Hydro-Meteorological and Physiographic Factors for Assessment of Vulnerability to Drought. <i>Water Resources Management</i> , 2010 , 24, 4199-4217	3.7	56
479	Utilization of Time-Based Meteorological Droughts to Investigate Occurrence of Streamflow Droughts. <i>Water Resources Management</i> , 2010 , 24, 4287-4306	3.7	36
478	Modelling the Effects of Groundwater-Based Urban Supply in Low-Permeability Aquifers: Application to the Madrid Aquifer, Spain. <i>Water Resources Management</i> , 2010 , 24, 4613-4638	3.7	14
477	Influence of SST Forcing on Stochastic Characteristics of Simulated Precipitation and Drought. 2010 , 11, 754-769		11
476	An Application of GPCC and NCEP/NCAR Datasets for Drought Variability Analysis in Iran. <i>Water Resources Management</i> , 2011 , 25, 1075-1086	3.7	57
475	A Water Balance Derived Drought Index for Pinios River Basin, Greece. <i>Water Resources Management</i> , 2011 , 25, 1087-1101	3.7	95
474	Drought Severity Assessment Based on Bivariate Probability Analysis. <i>Water Resources Management</i> , 2011 , 25, 357-371	3.7	53
473	Determining the Ecological Flow Regime for Existing Reservoir Operation. <i>Water Resources Management</i> , 2011 , 25, 817-835	3.7	38
472	Comparability Analyses of the SPI and RDI Meteorological Drought Indices in Different Climatic Zones. <i>Water Resources Management</i> , 2011 , 25, 1737-1757	3.7	97
471	A Simple Rationally Integrated Drought Indicator for RiceWheat Productivity. <i>Water Resources Management</i> , 2011 , 25, 2425-2447	3.7	6
470	Regional Frequency Analysis of Droughts in Portugal. Water Resources Management, 2011 , 25, 3537-35	558 _{.7}	86
469	Temporal Regionalization of 7-Day Low Flows in the St. Lawrence Watershed in Quebec (Canada). Water Resources Management, 2011, 25, 3559-3574	3.7	19

468	Groundwater quality assessment in Oroposkalamos basin, Attica, Greece. 2011, 64, 973-988		63
467	Regionalization of low flows based on Canonical Correlation Analysis. 2011 , 34, 865-872		38
466	Temporal and spatial characteristics of precipitation and droughts in the upper reaches of the Yangtze river basin (China) in recent five decades. 2012 , 14, 221-235		6
465	Accurate Computation of a Streamflow Drought Index. 2012 , 17, 318-332		250
464	Do Environmental Stream Classifications Support Flow Assessments in Mediterranean Basins?. Water Resources Management, 2012 , 26, 3803-3817	3.7	8
463	An Integration of Statistics Temporal Methods to Track the Effect of Drought in a Shallow Mediterranean Lake. <i>Water Resources Management</i> , 2012 , 26, 4587-4605	3.7	37
462	Drought and climatic change impact on streamflow in small watersheds. <i>Science of the Total Environment</i> , 2012 , 440, 33-41	10.2	86
461	Prediction of hydrological drought durations based on Markov chains: case of the Canadian prairies. 2012 , 57, 705-722		30
460	Computation of Drought Index SPI with Alternative Distribution Functions. <i>Water Resources Management</i> , 2012 , 26, 2453-2473	3.7	115
459	Long karst spring discharge time series and droughts occurrence in Southern Italy. 2012 , 65, 2273-2283		59
458	Characteristics of snow cover in the Hindukush, Karakoram and Himalaya region using Landsat satellite data. 2012 , 26, 3689-3698		15
457	Investigation of spatio-temporal patterns of seasonal streamflow droughts in a semi-arid region. 2013 , 69, 1697-1720		18
456	Assessment of Trace Metals during Episodic Events using DGT Passive Sampler: A Proposal for Water Management Enhancement. <i>Water Resources Management</i> , 2013 , 27, 4163-4181	3.7	10
455	Characterisation of Drought Properties with Bivariate Copula Analysis. <i>Water Resources Management</i> , 2013 , 27, 4183-4207	3.7	54
454	Factors Influencing Markov Chains Predictability Characteristics, Utilizing SPI, RDI, EDI and SPEI Drought Indices in Different Climatic Zones. <i>Water Resources Management</i> , 2013 , 27, 3911-3928	3.7	61
453	Streamflow drought severity analysis by percent of normal index (PNI) in northwest Iran. 2013 , 112, 565	5-573	34
452	Comparison of extreme weather events and streamflow from drought indices and a hydrological model in River Malaba, Eastern Uganda. 2013 , 70, 940-951		16
451	Regionalization of Drought Characteristics Using an Entropy Approach. 2013 , 18, 870-887		33

450	A System-based Paradigm of Drought Analysis for Operational Management. <i>Water Resources Management</i> , 2013 , 27, 5281-5297	3.7	92
449	Hydrological Drought Assessment in Northwestern Iran Based on Streamflow Drought Index (SDI). Water Resources Management, 2013 , 27, 137-151	3.7	110
448	Predicting Drought Magnitudes: A Parsimonious Model for Canadian Hydrological Droughts. <i>Water Resources Management</i> , 2013 , 27, 649-664	3.7	6
447	Analysis of meteorological drought in northwest Iran using the Joint Deficit Index. 2013 , 492, 35-48		73
446	Effects of the Three Gorges Reservoir on the hydrological droughts at the downstream Yichang station during 2003\(\textstyle{0}\)011. 2013 , 27, 3981-3993		81
445	Dynamics of meteorological and hydrological droughts in the Neman river basin. 2013 , 8, 045014		32
444	A semi-empirical method for predicting hydrological drought magnitudes in the Canadian prairies. 2013 , 58, 549-569		6
443	Streamflow droughts in the Iberian Peninsula between 1945 and 2005: spatial and temporal patterns. 2013 , 17, 119-134		65
442	Monthly hydrometeorological ensemble prediction of streamflow droughts and corresponding drought indices. 2013 , 17, 395-407		49
441	Hydrological long-term dry and wet periods in the Xijiang River basin, South China. 2013 , 17, 135-148		33
440	Sensitivity of Surface Runoff to Drought and Climate Change: Application for Shared River Basins. <i>Water (Switzerland)</i> , 2014 , 6, 3033-3048	3	26
439	Development of streamflow drought severityduration requency curves using the threshold level method. 2014 , 18, 3341-3351		51
438	Karstic spring water quality: the effect of groundwater abstraction from the recharge area. 2014 , 52, 2494-2501		12
437	Impact of meteorological drought on streamflow drought in Jinghe River Basin of China. 2014 , 24, 694-	705	32
436	Combined analysis of precipitation and water deficit for drought hazard assessment. 2014 , 59, 1675-16	89	20
435	Uncertainty analysis of streamflow drought forecast using artificial neural networks and Monte-Carlo simulation. 2014 , 34, 1169-1180		94
434	Drought Monitoring Using the Multivariate Standardized Precipitation Index (MSPI). <i>Water Resources Management</i> , 2014 , 28, 1045-1060	3.7	73
433	Hydrological drought in the west of Iran and possible association with large-scale atmospheric circulation patterns. 2014 , 28, 764-773		43

(2015-2014)

432	Modeling of hydrological drought durations and magnitudes: Experiences on Canadian streamflows. 2014 , 1, 92-106	14	
431	Toward Mapping Gridded Drought Indices to Evaluate Local Drought in a Rapidly Changing Global Environment. <i>Water Resources Management</i> , 2014 , 28, 3859-3869	12	
430	Comparison of Meteorological, Hydrological and Agricultural Drought Responses to Climate Change and Uncertainty Assessment. <i>Water Resources Management</i> , 2014 , 28, 5039-5054	60	
429	A Simplified Model for Predicting Drought Magnitudes: a Case of Streamflow Droughts in Canadian Prairies. <i>Water Resources Management</i> , 2014 , 28, 1597-1611	8	
428	Study of Drought in Seven Algerian Plains. 2014 , 39, 339-359	23	
427	Potential Effects of Forest Fires on Streamflow in the Enipeas River Basin, Thessaly, Greece. 2014 , 1, 73-85	21	
426	Effect of the Length of the Streamflow Record on Truncation Level for Assessment of Streamflow Drought Characteristics. 2014 , 19, 1361-1373	7	
425	Drought risk modelling for thermoelectric power plants siting using an excess over threshold approach. 2014 , 5, 25	1	
424	How climate seasonality modifies drought duration and deficit. 2014 , 119, 4640-4656	111	
423	Assessing droughts using meteorological drought indices in Victoria, Australia. 2015 , 46, 463-476	25	
422	SDI and Markov Chains for Regional Drought Characteristics. <i>Sustainability</i> , 2015 , 7, 10789-10808 3.6	13	
421	Changes and Relationships of Climatic and Hydrological Droughts in the Jialing River Basin, China. 2015 , 10, e0141648	16	
420	A Regional Land Use Drought Index for Florida. 2015 , 7, 17149-17167	14	
419	The Drought Characteristics Using the First-Order Homogeneous Markov Chain of Monthly Rainfall Data in Peninsular Malaysia. <i>Water Resources Management</i> , 2015 , 29, 1523-1539	31	
418	Uncertainties in assessing hydrological drought using streamflow drought index for the upper Yangtze River basin. <i>Stochastic Environmental Research and Risk Assessment</i> , 2015 , 29, 1235-1247	54	
4 ¹ 7	Evaluation of Markov Chain Based Drought Forecasts in an Andean Regulated River Basin Using the Skill Scores RPS and GMSS. <i>Water Resources Management</i> , 2015 , 29, 1949-1963	20	
416	Basinwide Comparison of RDI and SPI Within an IWRM Framework. <i>Water Resources Management</i> , 2015 , 29, 2011-2026	27	
415	Comparison of Empirical Copula-Based Joint Deficit Index (JDI) and Multivariate Standardized Precipitation Index (MSPI) for Drought Monitoring in Iran. <i>Water Resources Management</i> , 2015 , 29, 2027-2044	26	

414	Extreme streamflow drought in the Karkheh river basin (Iran): probabilistic and regional analyses. 2015 , 76, 327-346		19
413	Risk assessment of maize drought hazard in the middle region of farming-pastoral ecotone in Northern China. 2015 , 76, 1515-1534		13
412	Hydrological drought explained. 2015 , 2, 359-392		513
411	Effects of large-scale climate patterns and human activities on hydrological drought: a case study in the Luanhe River basin, China. 2015 , 76, 1687-1710		31
410	Markov Chains of Different Orders for Streamflow Drought Analysis. <i>Water Resources Management</i> , 2015 , 29, 3441-3457	3.7	12
409	Development of a new composite drought index for multivariate drought assessment. 2015 , 527, 30-37		64
408	Hydrological drought early warning based on rainfall threshold. 2015 , 79, 815-832		7
407	Drought and Pluvial Dipole Events within the Great Plains of the United States. 2015 , 54, 1886-1898		28
406	Drought analysis in Antakya-KahramanmaralGraben, Turkey. 2015 , 7, 741-754		27
405	Comprehensive evaluation of the changing drought characteristics in Bundelkhand region of Central India. <i>Meteorology and Atmospheric Physics</i> , 2015 , 127, 163-182	2	23
404	Hydrologic Drought Atlas for Texas. 2015 , 20, 05014023		22
403	Hydrological Modeling for Drought Assessment. 2015 , 263-282		6
402	DrinC: a software for drought analysis based on drought indices. 2015 , 8, 697-709		145
401	Hydroclimatological influences on recently increased droughts in China's largest freshwater lake. 2016 , 20, 93-107		35
400	Reservoir storage and hydrologic responses to droughts in the ParanlRiver basin, south-eastern Brazil. 2016 , 20, 4673-4688		44
399	Robust Response of Streamflow Drought to Different Timescales of Meteorological Drought in Xiangjiang River Basin of China. <i>Advances in Meteorology</i> , 2016 , 2016, 1-8	1.7	12
398	Probabilistic Forecasting of Drought Events Using Markov Chain- and Bayesian Network-Based Models: A Case Study of an Andean Regulated River Basin. <i>Water (Switzerland)</i> , 2016 , 8, 37	3	25
397	GRACE-Derived Terrestrial Water Storage Changes in the Inter-Basin Region and Its Possible Influencing Factors: A Case Study of the Sichuan Basin, China. 2016 , 8, 444		14

(2016-2016)

396	Assessment of groundwater quality and hydrochemical characteristics in Farashband plain, Iran. Arabian Journal of Geosciences, 2016 , 9, 1	7
395	Multi-time-scale analysis of hydrological drought forecasting using support vector regression (SVR) and artificial neural networks (ANN). <i>Arabian Journal of Geosciences</i> , 2016 , 9, 1	37
394	Assessment of Summer Drought in 2015 Using Different Indices in the Catchment of Blanice River. 2016 , 162, 45-55	6
393	Drought Forecasting Using Neural Networks, Wavelet Neural Networks, and Stochastic Models: Case of the Algerois Basin in North Algeria. <i>Water Resources Management</i> , 2016 , 30, 2445-2464	58
392	GRACE-Based Hydrological Drought Evaluation of the Yangtze River Basin, China. 2016 , 17, 811-828	63
391	On the potentials of multiple climate variables in assessing the spatio-temporal characteristics of hydrological droughts over the Volta Basin. <i>Science of the Total Environment</i> , 2016 , 557-558, 819-37	50
390	Integrated assessment for hydrometeorological drought based on Markov chain model. 2016 , 84, 1137-1160	3
389	Impacts of Multi-year Droughts and Upstream Human-Induced Activities on the Development of a Semi-arid Transboundary Basin. <i>Water Resources Management</i> , 2016 , 30, 5131-5143	15
388	Comparison of two hydrological drought indices. 2016 , 8, 626-628	24
387	A probabilistic prediction network for hydrological drought identification and environmental flow assessment. 2016 , 52, 6243-6262	37
386	Physio-climatic controls on vulnerability of watersheds to climate and land use change across the U. S 2016 , 52, 8775-8793	16
385	Quantitative drought monitoring in a typical cold river basin over Tibetan Plateau: An integration of meteorological, agricultural and hydrological droughts. 2016 , 543, 782-795	12
384	Impact of basin-wide dry climate conditions and non-climatic drivers: an isolation approach. 2016 , 7, 498-513	1
383	Preparing stream flow drought severityduration frequency curves using threshold level method. Arabian Journal of Geosciences, 2016, 9, 1	4
382	Meteorological drought in Bangladesh: assessing, analysing and hazard mapping using SPI, GIS and monthly rainfall data. 2016 , 75, 1	52
381	Spatio-temporal variation of hydrological drought under climate change during the period 1960 0 013 in the Hexi Corridor, China. 2016 , 8, 157-171	21
380	Hydrological response characteristics of Mediterranean catchments at different time scales: a meta-analysis. 2016 , 61, 2520-2539	56
379	Hydrological Drought Class Transition Using SPI and SRI Time Series by Loglinear Regression. <i>Water Resources Management</i> , 2016 , 30, 669-684	30

378	Drought Forecasting using Markov Chain Model and Artificial Neural Networks. <i>Water Resources Management</i> , 2016 , 30, 2245-2259	3.7	43
377	Drought indicators-based integrated assessment of drought vulnerability: a case study of Bundelkhand droughts in central India. 2016 , 81, 1627-1652		47
376	Assessment of seasonal characteristics of streamflow droughts under semiarid conditions. 2016 , 82, 1541-1564		9
375	Spatial characteristics and temporal trends of meteorological and hydrological droughts in northwestern Iran. 2016 , 80, 191-210		29
374	Regional Hydrological Drought Monitoring Using Principal Components Analysis. 2016 , 142, 04015029		12
373	Recent changes of precipitation in Gansu, Northwest China: An index-based analysis. 2017 , 129, 397-412		17
372	Temporal Hydrologic Alterations Coupled with Climate Variability and Drought for Transboundary River Basins. <i>Water Resources Management</i> , 2017 , 31, 1489-1502	3.7	11
371	Relating Hydrological and Meteorological Drought Indices in Order to Identify Causes of low Flows in the Catchment of Blanice River. 2017 , 4, 149-161		2
370	Development of Drought Indices for Semi-Arid Region Using Drought Indices Calculator (DrinC) \(\textstyle{\textstyle{\textstyle{1}}}\) Case Study from Madurai District, a Semi-Arid Region in India. Water Resources Management, 2017 , 31, 3593-3605	3.7	30
369	Climate change, water supply and environmental problems of headwaters: The paradigmatic case of the Tiber, Savio and Marecchia rivers (Central Italy). <i>Science of the Total Environment</i> , 2017 , 598, 733-7	48 ²	19
368	Drought Risk Assessment and Management. <i>Water Resources Management</i> , 2017 , 31, 3083-3095	3.7	36
367	Robust Method to Quantify the Risk of Shortage for Water Supply Systems. 2017 , 22, 04017021		5
366	Non Stationary Analysis of Extreme Events. <i>Water Resources Management</i> , 2017 , 31, 3097-3110	3.7	17
365	Analysis of meteorological and hydrological droughts in the Niger-South Basin, Nigeria. 2017 , 155, 225-23	33	39
364	Evaluating the Characteristics of Multiyear Extreme Droughts in Semi-Arid Regions. 2017 , 4, 683-696		1
363	Livelihood vulnerability to drought: A case of rural Iran. 2017 , 21, 223-230		61
362	Evaluating the uncertainty and reliability of standardized indices. 2017, 48, 701-713		6
361	Hydrological drought assessment in Aksu River basin. 2017 , 11, 1		1

360	Modeling Summer Month Hydrological Drought Probabilities in the United States Using Antecedent Flow Conditions. 2017 , 53, 1133-1146		7	
359	Reduction of Sugarcane Water Footprint by Controlled Drainage, in Khuzestan, Iran. 2017 , 66, 884-895		4	
358	Comparing Threshold Level Methods in Development of Stream Flow Drought Severity-Duration-Frequency Curves. <i>Water Resources Management</i> , 2017 , 31, 4045-4061	3.7	11	
357	An Assessment of Climate Change Impacts on Future Water Availability and Droughts in the Kentucky River Basin. 2017 , 4, 477-507		24	
356	Integrated meteorological and hydrological drought model: A management tool for proactive water resources planning of semi-arid regions. 2017 , 107, 336-353		36	
355	Identification and Analysis of Drought Propagation of Groundwater During Past and Future Periods. <i>Water Resources Management</i> , 2017 , 31, 109-125	3.7	13	
354	Hydrological Drought in the Anthropocene: Impacts of Local Water Extraction and Reservoir Regulation in the U.S 2017 , 122, 11,313-11,328		35	
353	Evaluating the Effects of Government Policy and Drought from 1984 to 2009 on Rangeland in the Three Rivers Source Region of the Qinghai-Tibet Plateau. <i>Sustainability</i> , 2017 , 9, 1033	3.6	5	
352	Blended Drought Index: Integrated Drought Hazard Assessment in the Cuvelai-Basin. 2017, 5, 51		10	
351	Study on the Variation of Terrestrial Water Storage and the Identification of Its Relationship with Hydrological Cycle Factors in the Tarim River Basin, China. <i>Advances in Meteorology</i> , 2017 , 2017, 1-11	1.7	2	
350	The Gaussian copula model for the joint deficit index for droughts. 2018 , 561, 987-999		27	
349	Relating the dynamics of climatological and hydrological droughts in semiarid Botswana. 2018 , 105, 12-	24	11	
348	Streamflow and Hydrological Drought Trend Analysis and Forecasting in Cyprus. <i>Water Resources Management</i> , 2018 , 32, 1759-1776	3.7	49	
347	Comprehensive drought characteristics analysis based on a nonlinear multivariate drought index. 2018 , 557, 651-667		49	
346	Analysis of Impacts of Climate Change and Human Activities on Hydrological Drought: a Case Study in the Wei River Basin, China. <i>Water Resources Management</i> , 2018 , 32, 1421-1438	3.7	30	
345	Seasonal Drought Prediction: Advances, Challenges, and Future Prospects. 2018 , 56, 108-141		187	
344	Spatiotemporal drought assessment of a semi-arid part of middle Tapi River Basin, India. 2018 , 28, 414-	426	16	
343	Water system characteristics of Karst river basins in South China and their driving mechanisms of hydrological drought. 2018 , 92, 1155-1178		5	

342	Introduction of new datasets of drought indices based on multivariate methods in semi-arid regions. 2018 , 49, 266-280		9
341	Temporal patial evolution of the hydrologic drought characteristics of the karst drainage basins in South China. 2018 , 64, 22-30		9
340	Stream flow variability and drought severity in the Songhua River Basin, Northeast China. <i>Stochastic Environmental Research and Risk Assessment</i> , 2018 , 32, 1225-1242	3.5	11
339	Spatiotemporal variation of hydrological drought based on the Optimal Standardized Streamflow Index in Luanhe River basin, China. 2018 , 91, 155-178		8
338	Integrated Methodological Framework for Assessing the Risk of Failure in Water Supply Incorporating Drought Forecasts. Case Study: Andean Regulated River Basin. <i>Water Resources Management</i> , 2018 , 32, 1209-1223	3.7	3
337	Analysis of hydrological drought characteristics using copula function approach. 2018 , 16, 153-161		6
336	Spatio-temporal assessment of streamflow droughts over Southern South America: 1961\(\textbf{Q}\) 006. 2018 , 133, 1021-1033		5
335	Drought Propagation Patterns under Naturalized Condition Using Daily Hydrometeorological Data. <i>Advances in Meteorology</i> , 2018 , 2018, 1-14	1.7	6
334	Urban drought. 2018 , 45, 00095		3
333	Hydrological drought associations with extreme phases of the North Atlantic and Arctic Oscillations over Turkey and northern Iran. 2018 , 38, 4459-4475		14
332	The Construction and Comparison of Regional Drought Severity-Duration-Frequency Curves in Two Colombian River BasinsBtudy of the Sumapaz and Lebrija Basins. <i>Water (Switzerland)</i> , 2018 , 10, 1453	3	4
331	Drought Vulnerability Indices in Mexico. Water (Switzerland), 2018, 10, 1671	3	9
330	Spatial and temporal analysis of drought based on a combined index using copula. 2018, 77, 1		14
329	Monitoring of meteorological and hydrological droughts in the Vistula basin (Poland). 2018 , 190, 691		35
328	Characterizing and understanding the variability of streamflow drought indicators within the USA. 2018 , 63, 1791-1803		3
327	Estimation of River Management Flow Considering Stream Water Deficit Characteristics. <i>Water</i> (Switzerland), 2018 , 10, 1521	3	5
326	Improvement of SVR-Based Drought Forecasting Models using Wavelet Pre-Processing Technique. 2018 , 65, 07007		5
325	Hybrid Fuzzy P robabilistic Analysis and Classification of the Hydrological Drought. 2018 , 2, 643		3

324	Variations in Moisture Supply from the Mediterranean Sea during Meteorological Drought Episodes over Central Europe. 2018 , 9, 278		11
323	Drought Analysis in Europe and in the Mediterranean Basin Using the Standardized Precipitation Index. <i>Water (Switzerland)</i> , 2018 , 10, 1043	3	49
322	Bivariate frequency analysis of low flow using copula functions (case study: Dez River Basin, Iran). 2018 , 77, 1		8
321	Multivariate design of socioeconomic drought and impact of water reservoirs. 2018 , 566, 192-204		45
320	Evaluation of Freshwater Flow From Rivers to the Sea in CMIP5 Simulations: Insights From the Congo River Basin. 2018 , 123, 10,278		8
319	Identification of Hydrological Drought in Eastern China Using a Time-Dependent Drought Index. Water (Switzerland), 2018 , 10, 315	3	4
318	Investigating lisklbf groundwater drought occurrences by using reliability analysis. 2018, 94, 170-184		15
317	Parametric Assessment of Pre-Monsoon Agricultural Water Scarcity in Bangladesh. <i>Sustainability</i> , 2018 , 10, 819	3.6	16
316	Assessment of Groundwater Drought in the Mangyeong River Basin, Korea. Sustainability, 2018, 10, 831	3.6	10
315	Forecasting Quarterly Inflow to Reservoirs Combining a Copula-Based Bayesian Network Method with Drought Forecasting. <i>Water (Switzerland)</i> , 2018 , 10, 233	3	11
314	Analysis of long term drought severity characteristics and trends across semiarid Botswana using two drought indices. 2018 , 213, 492-508		50
313	Assessment of Probabilistic Multi-Index Drought Using a Dynamic Naive Bayesian Classifier. <i>Water Resources Management</i> , 2018 , 32, 4359-4374	3.7	6
312	Adaptation of Standardised Precipitation Index for understanding watertable fluctuations and groundwater resilience in hard-rock areas of India. 2018 , 77, 1		9
311	A copula-based joint meteorological Bydrological drought index in a humid region (Kasilian basin, North Iran). <i>Arabian Journal of Geosciences</i> , 2018 , 11, 1	1.8	7
310	Assessing the drought mitigation ability of the reservoir in the downstream of the Yellow River. <i>Science of the Total Environment</i> , 2019 , 646, 1327-1335	10.2	20
309	Review: The projected hydrologic cycle under the scenario of 936 ppm CO2 in 2100. 2019 , 27, 31-53		4
308	Analysis of precipitation time series and regional drought assessment based on the standardized precipitation index in the Oum Er-Rbia basin (Morocco). <i>Arabian Journal of Geosciences</i> , 2019 , 12, 1	1.8	4
307	A 40-Year Analysis of the Hydrological Drought Index for the Tigris Basin, Turkey. <i>Water</i> (Switzerland), 2019 , 11, 657	3	14

306	Spatial Drought Characterization for Seyhan River Basin in the Mediterranean Region of Turkey. <i>Water (Switzerland)</i> , 2019 , 11, 1331	3	26
305	Characterizing meteorological droughts in data scare regions using remote sensing estimates of precipitation. 2019 , 221-246		3
304	Hydrogeologic Behavior of a Complex and Mature Karst Aquifer System under Drought Condition. 2019 , 6, 643-671		4
303	Development of Threshold Levels and a Climate-Sensitivity Model of the Hydrological Regime of the High-Altitude Catchment of the Western Himalayas, Pakistan. <i>Water (Switzerland)</i> , 2019 , 11, 1454	3	9
302	Streamflow Drought Interpreted Using SWAT Model Simulations of Past and Future Hydrologic Scenarios: Application to Neches and Trinity River Basins, Texas. 2019 , 24, 05019024		4
301	Identifying a transition climate zone in an arid river basin using the evaporative stress index. 2019 , 19, 2281-2294		2
300	Quantile Regression Based Methods for Investigating Rainfall Trends Associated with Flooding and Drought Conditions. <i>Water Resources Management</i> , 2019 , 33, 4249-4264	3.7	7
299	Environmental Study of Water Reservoirs for the Watershed Management in Pakistan. <i>Earth Systems and Environment</i> , 2019 , 3, 613-623	7.5	4
298	Hydrological Drought Forecasting Incorporating Climatic and Human-Induced Indices. 2019 , 34, 1365-1	376	3
297	Reservoir Operations to Mitigate Drought Effects With a Hedging Policy Triggered by the Drought Prevention Limiting Water Level. 2019 , 55, 904-922		42
296	Application of Heuristic Approaches for Prediction of Hydrological Drought Using Multi-scalar Streamflow Drought Index. <i>Water Resources Management</i> , 2019 , 33, 3985-4006	3.7	48
295	The Quantification of Rainfall Variability Based on The Standardized Precipitation Index. 2019 , 1244, 012020		
294	Spatial pattern of drought disaster area and types of agriculture plant in Lebak Regency, Banten Province. 2019 , 311, 012022		
293	Climate change-induced drought evolution over the past 50 years in the southern Chinese Loess Plateau. 2019 , 122, 104519		23
292	Impact of dam development and climate change on hydroecological conditions and natural hazard risk in the Mekong River Basin. 2019 , 579, 124177		17
291	Appraising regional multi-category and multi-scalar drought monitoring using standardized moisture anomaly index (SZI): A water-energy balance approach. 2019 , 579, 124139		15
2 90	Analysis of Drought from Humid, Semi-Arid and Arid Regions of India Using DrinC Model with Different Drought Indices. <i>Water Resources Management</i> , 2019 , 33, 1521-1540	3.7	17
289	From meteorological droughts to hydrological droughts: a case study of the Weihe River Basin, China. <i>Arabian Journal of Geosciences</i> , 2019 , 12, 1	1.8	5

Data Processing for Assessment of Meteorological and Hydrological Drought. 2019, 145-160 288 1 Information Technology in Disaster Risk Reduction. 2019, 287 Hydrologic Trends in the Upper Nueces River Basin of TexasImplications for Water Resource 286 2.8 2 Management and Ecological Health. *Hydrology*, **2019**, 6, 20 Drought variability at various timescales over Yunnan Province, China: 1961\(\mathbb{Q}\)015. 2019, 138, 743-757 285 21 Using the Markov Chain to Analyze Precipitation and Groundwater Drought Characteristics and 284 3.6 15 Linkage with Atmospheric Circulation. Sustainability, 2019, 11, 1817 Utilizing combined deviations of precipitation and GRACE-based terrestrial water storage as a 283 25 metric for drought characterization: A case study over major Indian river basins. 2019, 572, 294-307 Revisiting hydrological drought propagation and recovery considering water quantity and quality. 282 22 2019, 33, 1492-1505 Bivariate Design of Hydrological Droughts and Their Alterations under a Changing Environment. 281 7 2019, 24, 04019015 Evolutional characteristics of hydro-meteorological drought studied using standardized indices and 280 5 wavelet analysis. **2019**, 5, 455-469 Hydrological and agricultural droughts assessment in a semi-arid basin: Inspecting the 279 17 teleconnections of climate indices on a catchment scale. 2019, 217, 413-425 Identification of critical watershed using hydrological model and drought indices: a case study of 278 1 upper Girna, Maharashtra, India. 2019, 1-12 Impacts of climate change on hydrological droughts at basin scale: A case study of the Weihe River 277 14 Basin, China. **2019**, 513, 37-46 276 Application of hydroclimatic drought indicators in the transboundary Prut River basin. 2019, 137, 3103-3121 14 Characterising droughts in Central America with uncertain hydro-meteorological data. 2019, 137, 2125-2138 17 275 A new global database of meteorological drought events from 1951 to 2016. 2019, 22, 100593 98 274 Application of TRMM Precipitation Data to Evaluate Drought and Its Effects on Water Resources 2.6 273 4 Instability. Applied Sciences (Switzerland), 2019, 9, 5377 Drought monitoring, mitigation, and adaptation. 2019, 457-474 272 2 Research Trends of Hydrological Drought: A Systematic Review. Water (Switzerland), 2019, 11, 2252 16 271

270	Evaluation of reanalysis data in the study of meteorological and hydrological droughts in the Magdalena-Cauca river basin, Colombia. 2019 , 86, 268-277		O
269	Coupling fuzzyBVR and boostingBVR models with wavelet decomposition for meteorological drought prediction. 2019 , 78, 1		10
268	The course of hydrological drought in the river Drawa catchment (Northern Poland) as characterized by the standardized runoff index. 2019 ,		1
267	Long-term probability of drought characteristics based on Monte Carlo simulation approach. 2019 , 39, 544-557		2
266	Analysis of streamflow droughts using fixed and variable thresholds. 2019 , 33, 414-431		11
265	A framework for quantifying the impacts of climate change and human activities on hydrological drought in a semiarid basin of Northern China. 2019 , 33, 1075-1088		34
264	Modeling of Daily Rainfall Extremes, Using a Semi-Parametric Pareto Tail Approach. <i>Water Resources Management</i> , 2019 , 33, 493-508	3.7	4
263	Relationship Between Hydrologic and Metrological Droughts Using the Streamflow Drought Indices and Standardized Precipitation Indices in the Dez Watershed of Iran. 2019 , 17, 1171-1181		6
262	Drought characterisation based on an agriculture-oriented standardised precipitation index. 2019 , 135, 1435-1447		51
261	A Non-stationary Standardized Streamflow Index for hydrological drought using climate and human-induced indices as covariates. <i>Science of the Total Environment</i> , 2020 , 699, 134278	10.2	21
260	Investigating relationship between drought severity in Botswana and ENSO. 2020, 100, 255-278		5
259	Determination of drought intensity in Seyhan and Ceyhan River Basins, Turkey, by hydrological drought analysis. 2020 , 139, 95-107		15
258	Frequency change of future extreme summer meteorological and hydrological droughts over North America. 2020 , 584, 124316		25
257	Critical drought severity/intensity-duration-frequency curves based on precipitation deficit. 2020 , 584, 124312		20
256	Observed trends and relationships between ENSO and standardized hydrometeorological drought indices in central Chile. 2020 , 34, 159-174		6
255	Investigation of streamflow as a seasonal hydrological drought indicator for a tropical region. 2020 , 20, 609-620		2
254	Natural and anthropogenic influences on the recent droughts in Yellow River Basin, China. <i>Science of the Total Environment</i> , 2020 , 704, 135428	10.2	49
253	Climatic Causes of Maize Production Loss under Global Warming in Northeast China. <i>Sustainability</i> , 2020 , 12, 7829	3.6	1

252	Space and time variability of meteorological drought in Syria. 2020 , 68, 1877-1898		14
251	Multivariate drought risk analysis based on copula functions: a case study. 2020 , 20, 2375-2388		3
250	Ultra-high resolution regional climate projections for assessing changes in hydrological extremes and underlying uncertainties. 2020 , 55, 2031-2051		11
249	A novel generalized combinative procedure for Multi-Scalar standardized drought Indices-The long average weighted joint aggregative criterion. 2020 , 72, 1-23		4
248	Assessment of meteorological and hydrological drought; a case study in Kirindi Oya river basin in Sri Lanka. 2020 , 10, 429		O
247	Comparative evaluation of impacts of climate change and droughts on river flow vulnerability in Iran. 2020 , 13, 265-274		12
246	Water scarcity in the Yellow River Basin under future climate change and human activities. <i>Science of the Total Environment</i> , 2020 , 749, 141446	10.2	29
245	Spatiotemporal analysis of seasonal SPEI in Peninsular Malaysia. 2020 , 476, 012113		3
244	Probabilistic Projections of Hydrological Droughts Through Convection-Permitting Climate Simulations and Multimodel Hydrological Predictions. 2020 , 125, e2020JD032914		5
243	Uncertainties in runoff projection and hydrological drought assessment over Gharesu basin under CMIP5 RCP scenarios. 2020 , 11, 145-163		5
242	A New Method for Joint Frequency Analysis of Modified Precipitation Anomaly Percentage and Streamflow Drought Index Based on the Conditional Density of Copula Functions. <i>Water Resources Management</i> , 2020 , 34, 4217-4231	3.7	15
241	Spatiotemporal analysis of meteorological drought over Kucuk Menderes River Basin in the Aegean Region of Turkey. 2020 , 142, 1515-1530		16
240	Prognostic and diagnostic assessment of hydrological drought using water and energy budget-based indices. 2020 , 591, 125549		4
239	Drought Characteristics Derived Based on the Standardized Streamflow Index: A Large Sample Comparison for Parametric and Nonparametric Methods. 2020 , 56, e2019WR026315		13
238	Three-dimensional risk analysis of hydro-meteorological drought using multivariate nonlinear index. 2020 , 142, 1311-1327		4
237	New Standardized Base Flow Index for Identification of Hydrologic Drought in the Red River of the North Basin. 2020 , 21, 05020011		2
236	Merge L-Moment Method, Regional Frequency Analysis and SDI for Monitoring and Zoning Map of Short-Term and Long-Term Hydrologic Droughts in the Khuzestan Province of Iran. 2020 , 1		3
235	Spatiotemporal characteristics of extreme droughts and their association with sea surface temperature over the Cauvery River basin, India. 2020 , 104, 2239-2259		3

234	Hydroclimatic aggregate drought index (HADI): a new approach for identification and categorization of drought in cold climate regions. <i>Stochastic Environmental Research and Risk Assessment</i> , 2020 , 34, 1847-1870	3.5	4
233	Long-Term Variability in Potential Evapotranspiration, Water Availability and Drought under Climate Change Scenarios in the Awash River Basin, Ethiopia. 2020 , 11, 883		11
232	Assessment of hydrological drought based on nonstationary runoff data. 2020 , 51, 894-910		5
231	Trends in Long-Term Drought Changes in the Mekong River Delta of Vietnam. 2020 , 12, 2974		5
230	Multivariate Assessment of Low-Flow Hazards via Copulas: The Case Study of the Bruh Basin (Turkey). <i>Water (Switzerland)</i> , 2020 , 12, 2848	3	О
229	Investigating the impacts of climate change and human activities on hydrological drought using non-stationary approaches. 2020 , 588, 125052		30
228	Large-Scale Climate Variability Patterns and Drought: A Case of Study in South America. <i>Water Resources Management</i> , 2020 , 34, 2061-2079	3.7	11
227	100 years of data is not enough to establish reliable drought thresholds. 2020 , 7, 100052		9
226	An Index-Flood Statistical Model for Hydrological Drought Assessment. <i>Water (Switzerland)</i> , 2020 , 12, 1213	3	5
225	Exploring Abrupt Alternations Between Wet and Dry Conditions on the Basis of Historical Observations and Convection-Permitting Climate Model Simulations. 2020 , 125, e2019JD031982		12
224	Hydrological drought risk recurrence under climate change in the karst area of Northwestern Algeria. 2020 , 11, 164-188		17
223	Hydrological drought indexing approach in response to climate and anthropogenic activities. 2020 , 141, 1401-1413		5
222	Evaluating Impacts of Irrigation and Drought on River, Groundwater and a Terminal Wetland in the Zayanderud Basin, Iran. <i>Water (Switzerland)</i> , 2020 , 12, 1302	3	5
221	Meteorological Drought, Hydrological Drought, and NDVI in the Heihe River Basin, Northwest China: Evolution and Propagation. <i>Advances in Meteorology</i> , 2020 , 2020, 1-26	1.7	5
220	Quantifying the Individual Contributions of Climate Change, Dam Construction, and Land Use/Land Cover Change to Hydrological Drought in a Marshy River. <i>Sustainability</i> , 2020 , 12, 3777	3.6	9
219	Natural Risk Management and Engineering. 2020,		О
218	Characteristics of hydrological extremes in Kulfo River of Southern Ethiopian Rift Valley Basin. 2020 , 2, 1		6
217	Unsustainability Syndrome E rom Meteorological to Agricultural Drought in Arid and Semi-Arid Regions. <i>Water (Switzerland)</i> , 2020 , 12, 838	3	23

Quantifying the Central European Droughts in 2018 and 2019 With GRACE Follow-On. **2020**, 47, e2020GL0872859

215	Meeting agricultural and environmental water demand in endorheic irrigated river basins: A simulation-optimization approach applied to the Urmia Lake basin in Iran. 2020 , 241, 106353		16
214	Spatial Temporal Evolution of Drought Characteristics Over Hungary Between 1961 and 2010. 2020 , 177, 3961-3978		23
213	Comprehensive evaluation of hydrological drought and its relationships with meteorological drought in the Yellow River basin, China. 2020 , 584, 124751		39
212	Drought impacts on water quality and potential implications for agricultural production in the Maipo River Basin, Central Chile. 2020 , 65, 1005-1021		18
211	Hydrological drought analyzing and monitoring by using Streamflow Drought Index (SDI) (case study: Lorestan, Iran). <i>Arabian Journal of Geosciences</i> , 2020 , 13, 1	1.8	11
210	Hydrological drought evolution with a nonlinear joint index in regions with significant changes in underlying surface. 2020 , 585, 124794		3
209	Sustainable Water Resources Management in an Arid Area Using a Coupled Optimization-Simulation Modeling. <i>Water (Switzerland)</i> , 2020 , 12, 885	3	8
208	Drought characterization using the Combined Terrestrial Evapotranspiration Index over the Indus, Ganga and Brahmaputra river basins. 2020 , 1-25		6
207	Impacts of Drought on Maize and Soybean Production in Northeast China During the Past Five Decades. 2020 , 17,		30
206	Geospatial drought severity analysis based on PERSIANN-CDR-estimated rainfall data for Odisha state in India (1983-2018). <i>Science of the Total Environment</i> , 2021 , 750, 141258	10.2	18
205	Hydrological Drought Investigation Using Streamflow Drought Index. 2021 , 63-88		5
204	The contributions of climate change and production area expansion to drought risk for maize in China over the last four decades. 2021 , 41, E2851		3
203	Identifying future climate change and drought detection using CanESM2 in the upper Siem Reap River, Cambodia. 2021 , 94, 101182		1
202	Exploring the urban water-energy-food nexus under environmental hazards within the Nile. <i>Stochastic Environmental Research and Risk Assessment</i> , 2021 , 35, 21-41	3.5	9
2 01	Groundwater Characterization and Quality Assessment in Nubian Sandstone Aquifer, Kharga Oasis, Egypt. 2021 , 177-199		1
200	Trend analysis of hydrological and water quality variables to detect anthropogenic effects and climate variability on a river basin scale: A case study of Iran. 2021 , 34, 11-23		5
199	Multivariate Standardized Drought Indices to Identify Drought Events: Application in the Maipo River Basin. 2021 , 141-160		

198 Evaluation of drought features in the Dakbla watershed, Central Highlands of Vietnam. **2021**, 15, 77-83

197	Spatiotemporal Variation of the Meteorological and Groundwater Droughts in Central Taiwan. 2021 , 3,		3
196	Comparison of Projection in Meteorological and Hydrological Droughts in the Cheongmicheon Watershed for RCP4.5 and SSP2-4.5. <i>Sustainability</i> , 2021 , 13, 2066	3.6	9
195	Spatial analysis of drought severity and magnitude using the standardized precipitation index and streamflow drought index over the Upper Indus Basin, Pakistan. 2021 , 23, 15314-15340		8
194	Spatiotemporal meteorological drought assessment in a humid Mediterranean region: case study of the Oued Sebaou basin (northern central Algeria). 2021 , 108, 689-709		7
193	The Greater Mekong's Climate-Water-Energy Nexus: How ENSO-Triggered Regional Droughts Affect Power Supply and CO2 Emissions. 2021 , 9, e2020EF001814		16
192	Climate Change Effects on Temperate Grassland and Its Implication for Forage Production: A Case Study from Northern Germany. 2021 , 11, 232		6
191	Characteristics and Controlling Factors of the Drought Runoff Coefficient. <i>Water (Switzerland)</i> , 2021 , 13, 1259	3	
190	Drought trend analysis in a semi-arid area of Iraq based on Normalized Difference Vegetation Index, Normalized Difference Water Index and Standardized Precipitation Index. 2021 , 13, 413-430		5
189	Drought propagation and construction of a comprehensive drought index based on the Soil and Water Assessment Tool (SWAT) and empirical Kendall distribution function (<i>_{C?}): a case study for the Jinta River basin in</i>		4
188	Signatures of human intervention for not? Downstream intensification of hydrological drought along a large Central Asian river: the individual roles of climate variability and land use change. 2021 , 25, 1943-1967		4
187	Meteorological and Hydrological Drought Assessment for Dong Nai River Basin, Vietnam under Climate Change. 2021 , 26, 1788		1
186	Hydrological drought class early warning using support vector machines and rough sets. 2021 , 80, 1		3
185	Manavgat By-Kuraklik Analizi.		
184	Identification of Extreme Weather Events Using Meteorological and Hydrological Indicators in the Laborec River Catchment, Slovakia. <i>Water (Switzerland)</i> , 2021 , 13, 1413	3	9
183	Reservoir Sizing at Draft Level of 75% of Mean Annual Flow Using Drought Magnitude Based Method on Canadian Rivers. <i>Hydrology</i> , 2021 , 8, 79	2.8	2
182	Evaluation of time scale of meteorological, hydrological and agricultural drought indices. 2021 , 109, 89-109		2
181	An overview of monitoring methods for assessing the performance of nature-based solutions against natural hazards. 2021 , 217, 103603		17

180	Evaluation of drought indices correlation for drought frequency analysis of the Mosul dam watershed. 2021 , 779, 012077		1
179	F ř t ň a Deresi Alt Havzas-Akm Verilerine Dayal-1965-2015 Y ll ar-Aras-Nemli ve Kurak Dliemlerin Analizi. 2021 , 11, 277-288		
178	Development of Multi-Hazard Risk Assessment Model for Agricultural Water Supply and Distribution Systems Using Bayesian Network. <i>Water Resources Management</i> , 2021 , 35, 3139-3159	3.7	1
177	A multifractal cross-correlation investigation into sensitivity and dependence of meteorological and hydrological droughts on precipitation and temperature. 1		5
176	ពីdices e Metodologias de Monitoramento de Secas: Uma Revisចិ.		3
175	Detecting and attributing drought-induced changes in catchment hydrological behaviours in a southeastern Australia catchment using a data assimilation method. 2021 , 35, e14289		O
174	Use of sustainability index and cellular automata-Markov model to determine and predict long-term spatio-temporal variation of drought in China. 2021 , 598, 126248		3
173	Streamflow drought: implication of drought definitions and its application for drought forecasting. 2021 , 25, 3991-4023		8
172	Fuzzy linear regression analysis for groundwater response to meteorological drought in the aquifer system of Xanthi plain, NE Greece. 2021 , 23, 1112-1129		4
171	Geographically Weighted Regression Hybridized with Kriging Model for Delineation of Drought-Prone Areas. 2021 , 26, 803-821		2
170	Comprehensive Evaluation of Machine Learning Techniques for Hydrological Drought Forecasting. 2021 , 147,		5
169	Prediction of Drought Severity Using Model-Based Clustering. 2021 , 2021, 1-10		6
168	A hydrological perspective on drought risk-assessment in the Yellow River Basin under future anthropogenic activities. 2021 , 289, 112429		10
167	The Impact of Climate Change on Hydro-Meteorological Droughts Using Copula Functions. <i>Water Resources Management</i> , 2021 , 35, 3969	3.7	2
166	The Analysis of Long-Term Trends in the Meteorological and Hydrological Drought Occurrences Using Non-Parametric MethodsDase Study of the Catchment of the Upper NoteTriver (Central Poland). 2021 , 12, 1098		4
165	Characterization and Quantification of Meteorological Drought in the Oued El-Abid Watershed, Central High Atlas, Morocco (1980-2019). 2021 , 5, 45-55		2
164	Reviewing the Potential of Sentinel-2 in Assessing the Drought. 2021 , 13, 3355		11
163	Spatiotemporal Analysis of Meteorological and Hydrological Droughts and Their Propagations. Water (Switzerland), 2021, 13, 2237	3	5

162	Multi-scale approach for different type of drought in temperate climatic conditions. 1	3
161	Assessing hydrologic drought risk using multi-dimensional copulas: case study in Karkheh River basin. 2021 , 80, 1	
160	An index-based approach for assessment of upstream-downstream flow regime alteration. 2021 , 600, 126697	0
159	Vulnerability of community to climate stress: An indicator-based investigation of Upper Gana watershed in Omo Gibe basin in Ethiopia. 2021 , 63, 102426	3
158	Study on the driven mechanism of hydrologic drought based on the lithology-combined structure of the Karst drainage basin in South China.	1
157	Analysis of drought patterns in the Tano river basin of Ghana. 2021 , 13, e00883	1
156	Assessment of drought in SPI series using continuous wavelet analysis for Gediz Basin, Turkey. 2021 , 260, 105687	6
155	Climate change and water abstraction impacts on the long-term variability of water levels in Lake Bracciano (Central Italy): A Random Forest approach. 2021 , 37, 100880	2
154	Development of flow-duration-frequency curves for episodic low streamflow. 2021 , 156, 104021	1
153	Appraising standardized moisture anomaly index (SZI) in drought projection across China under CMIP6 forcing scenarios. 2021 , 37, 100898	2
152	Climate change impacts and uncertainty on spatiotemporal variations of drought indices for an irrigated catchment. 2021 , 601, 126814	5
151	Use of a multiscalar GRACE-based standardized terrestrial water storage index for assessing global hydrological droughts. 2021 , 603, 126871	3
150	Hydrological drought forecasting using multi-scalar streamflow drought index, stochastic models and machine learning approaches, in northern Iran. <i>Stochastic Environmental Research and Risk</i> 3.5 Assessment, 2021 , 35, 1615	13
149	A Contemporary Review on Drought Modeling Using Machine Learning Approaches. 2021 , 128, 447-487	5
148	Spatio-Temporal Distribution of Hydrological and Meteorological Droughts in the South Morava Basin. 2020 , 225-242	1
147	Drought as a Catalyst for Change: A Case Study of the Steenkoppies Dolomitic Aquifer. 2013 , 251-268	1
146	Coincidence probability analysis of hydrologic low-flow under the changing environment in the Wei River Basin. 2020 , 103, 1711-1726	2
145	A comparative assessment of projected meteorological and hydrological droughts: Elucidating the role of temperature. 2017 , 553, 785-797	52

144	Handbook of Drought Indicators and Indices*. 2017 , 155-208	16
143	Assessment of annual hydrological drought based on fuzzy estimators. 2016 , 1047-1051	2
142	Probability of hydrologic drought duration and intensity of Xijiang River. 2013, 25, 576-582	1
141	Evaluation of Water Cycle Components with Standardized Indices Under Climate Change in the Pampanga, Solo and Chao Phraya Basins. 2016 , 11, 1091-1102	3
140	Trend Analysis of Hydrological Drought for Selected Rivers in Iraq. 2020, 27, 51-57	2
139	Application of Earth Observation Data and Standardized Precipitation Index Based Approach for Meteorological Drought Monitoring, Assessment and Prediction Over Kutch, Gujarat, India. 2016 , 3, 24-37	3
138	Recent aridity trends and future projections in the Nemunas River basin. 2018, 75, 143-154	11
137	Characterisation of hydrological droughts in centralnorth Argentina and their atmospheric and oceanic drivers. 2020 , 80, 1-18	1
136	Comparison of Meteorological Drought and Hydrological Drought Index. 2015 , 48, 69-78	11
135	Drought analysis of Cheongmicheon watershed using meteorological, agricultural and hydrological drought indices. 2016 , 49, 509-518	4
134	Impact of Meteorological Drought on Streamflows in the Lobo River Catchment at Nibéhibé, Côte d l voire. 2020 , 12, 495-511	5
133	Analysis of groundwater drought using a variant of the Standardised Precipitation Index.	12
132	Hydroclimatological influences at multi-spatial scales on recently increased droughts in China's largest freshwater lake.	1
131	Long-range hydrometeorological ensemble predictions of drought parameters.	4
130	Streamflow droughts in the Iberian Peninsula between 1945 and 2005: spatial and temporal patterns.	4
129	Ensemble seasonal forecast of extreme water inflow into a large reservoir. 369, 115-120	4
128	Hydrometeorological Drought hazard and vulnerability assessment for Northern Bulgaria. 2020 , 24, 112-123	3
127	Statistical Analysis of Changes in Reservoir Storage According to Standard Precipitation Evapotranspiration Index (SPEI) and Dam Water Release. 2018 , 18, 409-415	1

126	Over a century evidence of historical and recent dryness/wetness in sub-humid areas: A Uganda, East African case. 2021 , 28,		2
125	Hydrological drought analysis of Mediterranean basins, Turkey. <i>Arabian Journal of Geosciences</i> , 2021 , 14, 1	1.8	3
124	Local urban risk assessment of dry and hot hazards for planning mitigation measures. 2021 , 34, 100371		1
123	Long-term meteorological and hydrological dryness and wetness conditions in the Zhujiang River Basin, South China.		
122	Development of streamflow drought severity- and magnitude-duration-frequency curves using the threshold level method.		1
121	References. 2014 , 265-290		
120	Development of Regression Equation for Drought Occurrence Using Standard Score Method: Focused on Asia. 2019 , 19, 519-527		1
119	Seasonal Hydrological Drought Indicator for Tropical Drought Identification. 2020 , 11, 99-105		
118	Adana ilinde TOPSIS ylītemi ile kurakl k analizi. 2020 , 33, 101-106		0
117	Hydrological drought in the Bohemian Forest region. 2020 , 125, 271-290		
116	An Indirect Approach Based on Long Short-Term Memory Networks to Estimate Groundwater Table Depth Anomalies Across Europe With an Application for Drought Analysis. 2021 , 3,		0
115	Spatiotemporal Characteristics and Trends of Meteorological Droughts in the Wadi Mina Basin, Northwest Algeria. <i>Water (Switzerland)</i> , 2021 , 13, 3103	3	3
114	Drought analyses of Eastern Mediterranean, Seyhan, Ceyhan, and Asi Basins by using aggregate drought index (ADI). 1		4
113	Insights into hydrological drought characteristics using GNSS-inferred large-scale terrestrial water		3
	storage deficits. 2021 , 117294		
112	Assessment and attribution of China droughts using an integrated drought index derived from GRACE and GRACE-FO data. 2021 , 127170		4
112	Assessment and attribution of Chinal droughts using an integrated drought index derived from		1
	Assessment and attribution of Chinal droughts using an integrated drought index derived from GRACE and GRACE-FO data. 2021 , 127170		

108	A new framework to substantiate the prevalence of drought intensities. 1		4
107	Twenty-first century drought analysis across China under climate change. 1		3
106	STUDY OF WATER AVAILABILITY DEFICITS AND DROUGHT INDICES FOR THE ZONE OF INSUFFICIENT WATER AVAILABILITY IN UKRAINE. 2021 , 34-46		1
105	Hydrological Drought Assessment Based on the Standardized Streamflow Index: A Case Study of the Three Cape Provinces of South Africa. <i>Water (Switzerland)</i> , 2021 , 13, 3498	3	1
104	Compatibility of Drought Magnitude Based Method with SPA for Assessing Reservoir Volume: Analysis Using Canadian River Flows. 2022 , 14, 1-20		О
103	Akm̃ Kuraklk̃ °ndeksi Ylīteminin Farkl̃Zaman lakleri °līh Hidrolojik Olarak Delīrlendirilmesi: Arsuz Ovas-Enek Ellas.–25-36		1
102	Assessing the Probability of Drought Severity in a Homogeneous Region. 2022, 2022, 1-8		2
101	Assessing agricultural and hydrological drought vulnerability in a savanna ecological zone of Sub-Saharan Africa. 2022 , 111, 2431		O
100	Impact of drought on cereal crop yields in the Savanna Region of Nigeria. 1-21		О
99	Patterns of Past and Future Droughts in Permanent Lowland Rivers. Water (Switzerland), 2022, 14, 71	3	2
98	Evaluation of Drought, Wet Events, and Climate Variability Impacts on Maize Crop Yields in East Africa During 1981 1017. 2022, 16, 41		0
97	Establishing a statistical relation between meteorological and hydrological drought indices.		O
96	Yell ī mak havzasādaki hidrolojik kurakl k larā Mann-Kendall ve Yenilikll ē n ylītemi ile trend analizi.		2
95	Combined use of Sentinel-2 and Landsat-8 to monitor water surface area and evaluated drought risk severity using Google Earth Engine. 1		3
94	Catchment memory explains hydrological drought forecast performance 2022 , 12, 2689		3
93	Impact of Climate Change on Hydrometeorology and Droughts in the Bilate Watershed, Ethiopia. <i>Water (Switzerland)</i> , 2022 , 14, 729	3	1
92	Droughts in SB Paulo: challenges and lessons for a water-adaptive society. 1-13		0
91	The Benefit of Continuous Hydrological Modelling for Drought Hazard Assessment in Small and Coastal Ungauged Basins: A Case Study in Southern Italy. 2022 , 10, 34		3

90	A comprehensive assessment of remote sensing and traditional based drought monitoring indices at global and regional scale. <i>Geomatics, Natural Hazards and Risk</i> , 2022 , 13, 762-799	3.6	5
89	Spatial and Temporal Global Patterns of Drought Propagation. 2022 , 10,		1
88	Data availability and sector-specific frameworks restrict drought impact quantification in the Intermountain West.		
87	Assessing Socioeconomic Drought Based on a Standardized Supply and Demand Water Index. Water Resources Management, 1	3.7	1
86	PCABased composite drought index for drought assessment in Marathwada region of Maharashtra state, India. 1		1
85	Impact of Climate Change on the Hydrology of the Upper Awash River Basin, Ethiopia. <i>Hydrology</i> , 2022 , 9, 3	2.8	4
84	Drought Characterisation and Impact Assessment on Basin Hydrology A Geospatial Approach. Water Science and Technology Library, 2022, 531-566	0.3	
83	An Investigation of Meteorological Drought Studies on a Global Scale Using a Bibliometric Analysis. Journal of Innovative Science and Engineering (JISE),	0.2	
82	Hydrological and Meteorological Drought Forecasting for the Yesilirmak River Basin, Turkey.		
81	Hydrological Drought Analysis for Bolu City with Streamflow Drought Index. 2021 , 5, 115-123		1
80	A New Non-stationary Hydrological Drought Index Encompassing Climate Indices and Modified Reservoir Index as Covariates. <i>Water Resources Management</i> , 1	3.7	0
79	Drought occurrences and impacts on the upper Grande river basin, Brazil. <i>Meteorology and Atmospheric Physics</i> , 2022 , 134,	2	О
78	Meteorological and agricultural drought monitoring in Southwest of Iran using a remote sensing-based combined drought index. Stochastic Environmental Research and Risk Assessment,	3.5	0
77	Comparative Multi-Criteria Assessment of Hydrological Vulnerability ase Study: Drainage Basins in the Northeast Region of Romania. <i>Water (Switzerland)</i> , 2022 , 14, 1302	3	1
76	Effect of selecting the superior probability distribution in modifying streamflow drought index (SDI). <i>Arabian Journal of Geosciences</i> , 2022 , 15, 1	1.8	
75	Analysis of hydrological drought for selection of recreation places at eastern Slovakia. 2022,		
74	Spatio-Temporal Analysis of Meteorological Drought Using IMD 0.25° Gridded Dataset for Marathwada Region. <i>Lecture Notes in Civil Engineering</i> , 2022 , 233-246	0.3	
73	Hydrological Drought Analysis using Streamflow Drought Index (SDI) in Ethiopia. <i>Advances in Meteorology</i> , 2022 , 2022, 1-19	1.7	2

72	A hybrid drought Index for assessing agricultural drought in arid and semi-arid coastal areas of Southern Iran. <i>International Journal of Environmental Science and Technology</i> , 1	3.3	0
71	Tree-based ensemble model prediction for hydrological drought in a tropical river basin of India. International Journal of Environmental Science and Technology,	3.3	Ο
70	A global drought dataset of standardized moisture anomaly index incorporating snow dynamics (SZI<sub>snow</sub>) and its application in identifying large-scale drought events. <i>Earth System Science Data</i> , 2022 , 14, 2259-2278	10.5	0
69	Assessment of Drought Conditions Over Different Climate Zones of Kazakhstan Using Standardised Precipitation Evapotranspiration Index. <i>Earth Systems and Environment</i> , 1	7.5	1
68	Drought propagation under global warming: Characteristics, approaches, processes, and controlling factors <i>Science of the Total Environment</i> , 2022 , 156021	10.2	1
67	Farkl≃klim De īi kli⊡Senaryolar∓th Doti Karadeniz Blīgesindeki Meteorolojik Kurakl¥lar ñ Eīlim Analizi. <i>Journal of the Institute of Science and Technology</i> , 843-856	Ο	
66	Shifting of Meteorological to Hydrological Drought Risk at Regional Scale. <i>Applied Sciences</i> (Switzerland), 2022 , 12, 5560	2.6	1
65	Modified Hydrological Drought Risk Assessment Based on Spatial and Temporal Approaches. <i>Sustainability</i> , 2022 , 14, 6337	3.6	O
64	Projecting the impact of human activities and climate change on water resources in the transboundary Sre Pok River Basin. <i>Climatic Change</i> , 2022 , 172,	4.5	0
63	Space-time variations of hydrological drought severities and trends in the semi-arid Euphrates Basin, Turkey. <i>Stochastic Environmental Research and Risk Assessment</i> ,	3.5	O
62	Proportional odds model for identifying spatial inter-seasonal propagation of meteorological drought. <i>Geomatics, Natural Hazards and Risk</i> , 2022 , 13, 1614-1639	3.6	1
61	Integrated assessment of drought vulnerability for water resources management of Bina basin in Central India. 2022 , 194,		
60	The Effect of Meteorological and Hydrological Drought on Groundwater Storage Under Climate Change Scenarios.		О
59	Identifying Thresholds, Regime Shifts, and Early Warning Signals Using Long-Term Streamflow Data in the Transboundary Rio Grande R io Bravo Basin. 2022 , 14, 2555		
58	Assessment of Catchment Behavior of the Wadi Louza in NW-Algeria Under Hydrological Drought Conditions.		
57	Lake Level Evolution of the Largest Freshwater Lake on the Mediterranean Islands through Drought Analysis and Machine Learning. 2022 , 14, 10447		
56	A Novel Approach to Identify the Characteristics of Drought under Future Climate Change Scenario.		О
55	Establishing effective warning storage to derive optimal reservoir operation policy based on the drought condition. 2022 , 274, 107948		O

54	A global perspective on propagation from meteorological drought to hydrological drought during 1902 0 014. 2022 , 280, 106441	1
53	Estimation of Reservoir Volumes at Drafts of 40% - 90%: Drought Magnitude Method Applied on Monthly River Flows from Canadian Prairies. 2022 , 14, 571-591	O
52	Assessment of Hydrological Drought Using the Standardized Streamflow Index (SSFI): A Case Study of the Tien Yen River Basin of Quang Ninh Province, Vietnam. 2022 , 10, 309-326	0
51	Copula based multivariate analysis of hydro-meteorological drought.	O
50	Uncertainty Analysis of Hydrological Drought Due to Record Length, Time Scale, and Probability Distribution Functions Using Monte Carlo Simulation Method. 2022 , 13, 1390	0
49	Changes in the Stability Landscape of a River Basin by Anthropogenic Droughts. 2022 , 14, 2835	O
48	Integrated Drought Index based on Vine Copula Modelling.	0
47	Drought characterization over Indian sub-continent using GRACE-based indices. 2022 , 12,	1
46	OneMap Drought Monitoring Analysis Based on Statistical Models. 2022 , 12, 9669	0
45	Assessment of hydrological drought return periods with bivariate copulas in the Tigris river basin, Turkey. 2022 , 134,	2
44	Tīkiyede Yaptan Kuraklk Analiz althalar Derine Bir Derleme.	0
43	Hydrological Drought Evaluation on Streamflow Drought Index (SDI) in Upstream and Downstream Area of Lampao Reservoir, Northeast of Thailand. 2023 , 63-72	1
42	Investigating the effects of climate change on future hydrological drought in mountainous basins using SWAT model based on CMIP5 model.	O
41	An optimized hydrological drought index integrating GNSS displacement and satellite gravimetry data. 2022 , 614, 128647	O
40	Drought Analysis with Two Different Indices in Ye îl r mak Basin.	0
39	Hydrological Drought Forecasting Using a Deep Transformer Model. 2022 , 14, 3611	1
38	Enhanced Prediction and Determination of Hydrological Drought at Ungauged River Intake Stations under Changing Climate. 2022 , 12, 11379	0
37	A Modified Two-Parameter Monthly Water Balance Model for Runoff Simulation to Assess Hydrological Drought. 2022 , 14, 3715	1

36	Characterizing the climate-phenology-hydrology associations in a subtropical forested watershed, central Taiwan. 2022 , 145, 109650	0
35	Hydrological Drought Response to Meteorological Drought Propagation and Basin Characteristics (Case Study: Northwest of Algeria). 2022 , 47, 708-717	O
34	Streamflow of the Betwa River under the Combined Effect of LU-LC and Climate Change. 2022, 12, 2005	O
33	The dynamic change of propagation from meteorological drought to hydrological drought at the basin scale: A case study from the Weihe River Basin, China. 10,	O
32	Hydrological and Meteorological Drought Monitoring and Trend Analysis in Abbay River Basin, Ethiopia. 2022 , 2022, 1-18	О
31	Data Stream Approach for Exploration of Droughts and Floods Driving Forces in the Dongting Lake Wetland. 2022 , 14, 16778	O
30	Comparison of LSTM network, neural network and support vector regression coupled with wavelet decomposition for drought forecasting in the western area of the DPRK.	O
29	A Bayesian network approach for understanding the role of large-scale and local hydro-meteorological variables as drivers of basin-scale rainfall and streamflow.	O
28	Assessment of drought characteristics and its impacts on net primary productivity (NPP) in southeastern Tunisia. 2023 , 16,	1
27	Review of In-Situ and Remote Sensing-Based Indices and Their Applicability for Integrated Drought Monitoring in South Africa. 2023 , 15, 240	O
26	Long Term Meteorological Drought Forecasting for North-western Region of Bangladesh Using Wavelet Artificial Neural Network.	0
25	Water Scarcity Risk Index: A Tool for Strategic Drought Risk Management. 2023 , 15, 255	O
24	Prediction of Streamflow Drought Index for Short-Term Hydrological Drought in the Semi-Arid Yesilirmak Basin Using Wavelet Transform and Artificial Intelligence Techniques. 2023 , 15, 1109	2
23	Hydrological extremes and climatic controls on streamflow in Jhelum basin, NW Himalaya.	1
22	Multivariate framework for integrated drought vulnerability assessment [An application to India. 2023 , 85, 103515	0
21	Synthetic Drought Hydrograph. 2023 , 10, 10	O
20	Investigating the relationship between meteorological, hydrological and groundwater resource droughts under the influence of upstream dam reservoir effects.	O
19	Projected Water Scarcity and Hydrological Extremes in the Yellow River Basin in the 21st Century under SSP-RCP Scenarios. 2023 , 15, 446	O

18	Hydrological Drought Severity in Different Return Periods in Rivers of Ardabil Province, Iran. 2023 , 15, 1993	O
17	Assessing Spatial Variability and Trends of Droughts in Eastern Algeria Using SPI, RDI, PDSI, and MedPDSIA Novel Drought Index Using the FAO56 Evapotranspiration Method. 2023 , 15, 626	1
16	Drought mitigation through a hedging-based model of reservoir-farm systems considering climate and streamflow variations. 2023 , 152, 723-737	0
15	Future changes in water resources, floods and droughts under the joint impact of climate and land-use changes in the Chao Phraya basin, Thailand. 2023 , 620, 129454	O
14	Improving drought modeling based on new heuristic machine learning methods. 2023, 102168	О
13	Multivariate index for monitoring drought (case study, Northeastern of Iraq). 2023 , 116, 3817-3837	O
12	Joint Modelling of Drought Severity and Duration using Copula Theory: A Case Study of Ghana. 2023 , 27, 1850-1865	О
11	Probabilistic assessment of drought stress vulnerability in grasslands of Xinjiang, China. 14,	O
10	An Investigation of Hydrological Drought Characteristics in K žlr mak Basin, Tīkiye: Impacts and Trends. 2023 , 12, 126-139	О
9	Comparative Analysis of Drought Indices in Hydrological Monitoring in Cear s Semi-Arid Basins, Brazil. 2023 , 15, 1259	O
8	Investigation of the Relationship between Groundwater Variations and Drought Using SPI and GRI Indices in Lordegan Plain. 2021 , 12, 65-74	0
7	UAK °L° EVRES° °IN H°DROLOJ°K KURAKLIK ANAL°Z°. 2023 , 11, 1-21	O
6	Evaluating the duration, severity, and peak of hydrological drought using copula.	О
5	Drought Monitoring and Forecasting across Turkey: A Contemporary Review. 2023 , 15, 6080	O
4	The Development of a Hydrological Drought Index for Lithuania. 2023, 15, 1512	О
3	Bivariate socioeconomic drought assessment based on a hybrid framework and impact of human activities. 2023 , 137150	O
2	Characterization and assessment of hydrological droughts using GloFAS streamflow data for the Narmada River Basin, India.	О
1	Prediction of Hydrological Drought in Semi-arid Regions Using a Novel Hybrid Model.	O