The rhizosphere: a playground and battlefield for soilbo microorganisms

Plant and Soil 321, 341-361

DOI: 10.1007/s11104-008-9568-6

Citation Report

#	Article	IF	CITATIONS
1	The rhizosphere: complex by design. Plant and Soil, 2008, 312, 1-6.	1.8	86
2	Biological nitrification inhibition (BNI)-Is there potential for genetic interventions in the Triticeae?. Breeding Science, 2009, 59, 529-545.	0.9	47
3	Rhizosphere chemical dialogues: plant–microbe interactions. Current Opinion in Biotechnology, 2009, 20, 642-650.	3.3	513
4	Plant-microbe-soil interactions in the rhizosphere: an evolutionary perspective. Plant and Soil, 2009, 321, 83-115.	1.8	509
5	Acquisition of phosphorus and nitrogen in the rhizosphere and plant growth promotion by microorganisms. Plant and Soil, 2009, 321, 305-339.	1.8	1,391
6	Production of methyl sulfide and dimethyl disulfide from soil-incorporated plant materials and implications for controlling soilborne pathogens. Plant and Soil, 2009, 324, 185-197.	1.8	65
7	Comparison of rhizobacterial community composition in soil suppressive or conducive to tobacco black root rot disease. ISME Journal, 2009, 3, 1127-1138.	4.4	180
8	Production of the antifungal compound pyrrolnitrin is quorum sensingâ€regulated in members of the ⟨i⟩Burkholderia cepacia⟨ i⟩ complex. Environmental Microbiology, 2009, 11, 1422-1437.	1.8	106
9	Rhizosphere bacterial communities associated with disease suppressiveness stages of takeâ€all decline in wheat monoculture. New Phytologist, 2009, 184, 694-707.	3.5	152
10	Combination of Fluorescent Reporters for Simultaneous Monitoring of Root Colonization and Antifungal Gene Expression by a Biocontrol Pseudomonad on Cereals with Flow Cytometry. Molecular Plant-Microbe Interactions, 2010, 23, 949-961.	1.4	61
11	Abundance of Microbes Involved in Nitrogen Transformation in the Rhizosphere of Leucanthemopsis alpina (L.) Heywood Grown in Soils from Different Sites of the Damma Glacier Forefield. Microbial Ecology, 2010, 60, 762-770.	1.4	66
12	Effects of genetically modified potatoes with increased zeaxanthin content on the abundance and diversity of rhizobacteria with in vitro antagonistic activity do not exceed natural variability among cultivars. Plant and Soil, 2010, 326, 437-452.	1.8	36
13	Siderophore and chitinase producing isolates from the rhizosphere of Nicotiana glauca Graham enhance growth and induce systemic resistance in Solanum lycopersicum L Plant and Soil, 2010, 334, 189-197.	1.8	66
14	Effects of genetically modified amylopectin-accumulating potato plants on the abundance of beneficial and pathogenic microorganisms in the rhizosphere. Plant and Soil, 2010, 335, 413-422.	1.8	32
15	Plant growth-promoting bacteria in the rhizo- and endosphere of plants: Their role, colonization, mechanisms involved and prospects for utilization. Soil Biology and Biochemistry, 2010, 42, 669-678.	4.2	1,806
16	Influence of soil type and indigenous pathogenic fungi on bean hypocotyl rot caused by Rhizoctonia solani AG4 HGI in Cuba. Soil Biology and Biochemistry, 2010, 42, 797-803.	4.2	17
17	Characterization of two anti-fungal lipopeptides produced by Bacillus amyloliquefaciens SH-B10. Bioresource Technology, 2010, 101, 8822-8827.	4.8	57
18	Plant Growth Promoting Rhizobacteria as Biocontrol Agents Against Soil-Borne Plant Diseases. Microbiology Monographs, 2010, , 211-230.	0.3	37

#	Article	IF	CITATIONS
19	Benefits of Plant Growth-Promoting Rhizobacteria and Rhizobia in Agriculture. Microbiology Monographs, 2010, , 1-20.	0.3	16
20	Azalomycin F Complex Is an Antifungal Substance Produced by Streptomyces malaysiensis MJM1968 Isolated from Agricultural Soil. Journal of the Korean Society for Applied Biological Chemistry, 2010, 53, 545-552.	0.9	41
21	Biogenic volatile organic compounds and plant competition. Trends in Plant Science, 2010, 15, 126-132.	4.3	159
22	Planting density for grafted melon as an alternative to methyl bromide use in Mexico. Scientia Horticulturae, 2010, 126, 236-241.	1.7	14
23	Production of Volatile Metabolites by Grape-Associated Microorganisms. Journal of Agricultural and Food Chemistry, 2010, 58, 8344-8350.	2.4	119
24	Strigolactones: a cry for help in the rhizosphere. Botany, 2011, 89, 513-522.	0.5	78
25	PGPR Interplay with Rhizosphere Communities and Effect on Plant Growth and Health., 2011,, 97-109.		6
26	Mikrobiologie von Böden. Springer-Lehrbuch, 2011, , .	0.1	27
27	The role of the antimicrobial compound 2,4-diacetylphloroglucinol in the impact of biocontrol Pseudomonas fluorescens F113 on Azospirillum brasilense phytostimulators. Microbiology (United) Tj ETQq0 0	0 rg ß7 /Ov	verl se k 10 Tf 5
28	Potassium and sodium uptake systems in fungi. The transporter diversity of Magnaporthe oryzae. Fungal Genetics and Biology, 2011, 48, 812-822.	0.9	52
29	Mechanisms Used by Plant Growth-Promoting Bacteria., 2011, , 17-46.		134
30	Indole-3-acetic acid biosynthesis in the biocontrol strain Pseudomonas fluorescens Psd and plant growth regulation by hormone overexpression. Research in Microbiology, 2011, 162, 426-435.	1.0	55
31	Pseudomonas protegens sp. nov., widespread plant-protecting bacteria producing the biocontrol compounds 2,4-diacetylphloroglucinol and pyoluteorin. Systematic and Applied Microbiology, 2011, 34, 180-188.	1.2	304
32	Endophytic bacteria isolated from the pneumatophores of Avicennia marina. African Journal of Microbiology Research, 2011, 5, .	0.4	5
33	Silicon Suppresses Fusarium Crown and Root Rot of Tomato. Journal of Phytopathology, 2011, 159, 546-554.	0.5	59
34	Selection of antagonistic bacteria isolated from the Physalis peruviana rhizosphere against Fusarium oxysporum. Journal of Applied Microbiology, 2011, 111, 707-716.	1.4	26
35	Interaction between root rot basidiomycetes and <i>Phytophthora</i> procies on pedunculate oak. Plant Pathology, 2011, 60, 296-303.	1.2	21
36	The biocontrol bacterium <i>Pseudomonas fluorescens</i> Pf29Arp strain affects the pathogenesisâ€related gene expression of the takeâ€all fungus <i>Gaeumannomyces graminis</i> var. <i>titici</i> on wheat roots. Molecular Plant Pathology, 2011, 12, 839-854.	2.0	45

#	ARTICLE	IF	CITATIONS
37	Host plant secondary metabolite profiling shows a complex, strainâ€dependent response of maize to plant growthâ€promoting rhizobacteria of the genus <i>Azospirillum</i> . New Phytologist, 2011, 189, 494-506.	3.5	147
38	Mechanisms and recent advances in biological control mediated through the potato rhizosphere. FEMS Microbiology Ecology, 2011, 75, 351-364.	1.3	96
39	Fusarium oxysporum and its bacterial consortium promote lettuce growth and expansin A5 gene expression through microbial volatile organic compound (MVOC) emission. FEMS Microbiology Ecology, 2011, 76, 342-351.	1.3	134
40	Effects of genetically modified starch metabolism in potato plants on photosynthate fluxes into the rhizosphere and on microbial degraders of root exudates. FEMS Microbiology Ecology, 2011, 76, 564-575.	1.3	50
41	Soil Suppressiveness to Fusarium Disease Following Organic Amendments and Solarization. Plant Disease, 2011, 95, 1116-1123.	0.7	82
42	Endophytic and rhizoplane bacteria associated with Cytisus striatus growing on hexachlorocyclohexane-contaminated soil: isolation and characterisation. Plant and Soil, 2011, 340, 413-433.	1.8	69
43	Verticillium wilt of olive: a case study to implement an integrated strategy to control a soil-borne pathogen. Plant and Soil, 2011, 344, 1-50.	1.8	256
44	Belowground DNA-based techniques: untangling the network of plant root interactions. Plant and Soil, 2011, 348, 115-121.	1.8	43
45	Bacteria able to control foot and root rot and to promote growth of cucumber in salinated soils. Biology and Fertility of Soils, 2011, 47, 197-205.	2.3	159
46	Physiological parameters of plants as indicators of water quality in a constructed wetland. Environmental Science and Pollution Research, 2011, 18, 1234-1242.	2.7	12
47	Uncultured bacterial diversity in tropical maize (<i>Zea mays</i> L.) rhizosphere. Journal of Basic Microbiology, 2011, 51, 15-32.	1.8	33
48	An introduction to and a reflection on the "ecogenomics promise― Journal of Integrative Environmental Sciences, 2011, 8, 23-38.	1.0	5
49	Evidence of Differences between the Communities of Arbuscular Mycorrhizal Fungi Colonizing Galls and Roots of Prunus persica Infected by the Root-Knot Nematode Meloidogyne incognita. Applied and Environmental Microbiology, 2011, 77, 8656-8661.	1.4	25
50	Differences in Soil Properties and Bacterial Communities between the Rhizosphere and Bulk Soil and among Different Production Areas of the Medicinal Plant Fritillaria thunbergii. International Journal of Molecular Sciences, 2011, 12, 3770-3785.	1.8	74
51	Enhanced tolerance of <i>Mentha arvensis </i> against <i> Meloidogyne incognita </i> (Kofoid and White) Chitwood through mutualistic endophytes and PGPRs. Journal of Plant Interactions, 2011, 6, 247-253.	1.0	21
52	Characterization and Identification of Productivity-Associated Rhizobacteria in Wheat. Applied and Environmental Microbiology, 2012, 78, 4434-4446.	1.4	51
53	Micro-Level Management of Agricultural Inputs: Emerging Approaches. Agronomy, 2012, 2, 321-357.	1.3	16
54	Manipulation of beneficial microorganisms in crop rhizospheres. Advances in Agroecology, 2012, , 23-48.	0.3	0

#	Article	IF	Citations
55	Rhizosphere Chemistry., 2012, , 185-226.		1
56	Linking fungal communities in roots, rhizosphere, and soil to the health status of <i>Pisum sativum </i> . FEMS Microbiology Ecology, 2012, 82, 736-745.	1.3	91
57	Isolation and characterization of a new iturinic lipopeptide, mojavensin A produced by a marine-derived bacterium Bacillus mojavensis B0621A. Journal of Antibiotics, 2012, 65, 317-322.	1.0	89
58	Biological Nitrification Inhibition—A Novel Strategy to Regulate Nitrification in Agricultural Systems. Advances in Agronomy, 2012, , 249-302.	2.4	119
59	Bacterial Biosynthetic Gene Clusters Encoding the Anti-cancer Haterumalide Class of Molecules. Journal of Biological Chemistry, 2012, 287, 39125-39138.	1.6	80
60	Deciphering Rhizosphere Soil System for Strains Having Plant Growth Promoting and Bioremediation Traits. Agricultural Research, 2012, 1, 251-257.	0.9	17
61	The rhizosphere microbiome and plant health. Trends in Plant Science, 2012, 17, 478-486.	4.3	3,741
62	Potential of Rhizobia for Sustainable Production of Non-legumes. , 2012, , 659-704.		17
63	Diversity of plant growth-promoting rhizobacteria communities associated with the stages of canola growth. Applied Soil Ecology, 2012, 55, 44-52.	2.1	121
64	Communication in the Rhizosphere, a Target for Pest Management. , 2012, , 109-133.		15
65	Biochemical Processes of Rhizobacteria and their Application in Biotechnology. , 2012, , 379-396.		4
66	Microbial Population and Community Dynamics on Plant Roots and Their Feedbacks on Plant Communities. Annual Review of Microbiology, 2012, 66, 265-283.	2.9	429
67	Screening for leaf-associated endophytes in the genus Psychotria (Rubiaceae). FEMS Microbiology Ecology, 2012, 81, 364-372.	1.3	22
68	Diel cycle of methanogen <i><scp>mcrA</scp></i> transcripts in rice rhizosphere. Environmental Microbiology Reports, 2012, 4, 655-663.	1.0	13
69	Specific enumeration and analysis of the community structure of culturable pseudomonads in agricultural soils under no-till management in Argentina. Applied Soil Ecology, 2012, 61, 305-319.	2.1	22
70	Cyanobacteria-PGPR Interactions for Effective Nutrient and Pest Management Strategies in Agriculture., 2012,, 173-195.		4
71	Regulation of Antibiotics Production in Biocontrol Strains of Pseudomonas spp, 2012, , 197-225.		1
72	Effects of fluorescent Pseudomonas spp. isolated from mushroom cultures on Lecanicillium fungicola. Biological Control, 2012, 63, 210-221.	1.4	22

#	ARTICLE	IF	Citations
73	Differential Display of Abundantly Expressed Genes of Trichoderma harzianum During Colonization of Tomato-Germinating Seeds and Roots. Current Microbiology, 2012, 65, 524-533.	1.0	11
75	Mineral nutrition of plants inoculated with plant growth-promoting rhizobacteria of Pseudomonas genus. Biology Bulletin Reviews, 2012, 2, 487-499.	0.3	4
76	Ecology of Root Colonizing Massilia (Oxalobacteraceae). PLoS ONE, 2012, 7, e40117.	1.1	270
77	Soil Eukaryotic Microorganism Succession as Affected by Continuous Cropping of Peanut - Pathogenic and Beneficial Fungi were Selected. PLoS ONE, 2012, 7, e40659.	1.1	91
78	Dynamics of Seed-Borne Rice Endophytes on Early Plant Growth Stages. PLoS ONE, 2012, 7, e30438.	1.1	385
79	A 3-Year Study Reveals That Plant Growth Stage, Season and Field Site Affect Soil Fungal Communities while Cultivar and GM-Trait Have Minor Effects. PLoS ONE, 2012, 7, e33819.	1.1	64
80	Plant Beneficial Microbes and Their Application in Plant Biotechnology., 0,,.		12
81	Understanding the development of roots exposed to contaminants and the potential of plant-associated bacteria for optimization of growth. Annals of Botany, 2012, 110, 239-252.	1.4	65
82	Coadaptationary Aspects of the Underground Communication Between Plants and Other Organisms. Signaling and Communication in Plants, 2012, , 361-375.	0.5	1
83	Piriformospora indica: A Novel Plant Growth-Promoting Mycorrhizal Fungus. Agricultural Research, 2012, 1, 117-131.	0.9	188
84	Manipulation of Chemically Mediated Interactions in Agricultural Soils to Enhance the Control of Crop Pests and to Improve Crop Yield. Journal of Chemical Ecology, 2012, 38, 641-650.	0.9	57
85	Variation of secondary metabolite levels in maize seedling roots induced by inoculation with Azospirillum, Pseudomonas and Glomus consortium under field conditions. Plant and Soil, 2012, 356, 151-163.	1.8	118
86	Screening of plant growth promoting Rhizobacteria isolated from sunflower (Helianthus annuus L.). Plant and Soil, 2012, 356, 245-264.	1.8	131
87	Root responses to nutrients and soil biota: drivers of species coexistence and ecosystem productivity. Journal of Ecology, 2012, 100, 6-15.	1.9	182
88	Is diversification history of maize influencing selection of soil bacteria by roots?. Molecular Ecology, 2012, 21, 195-206.	2.0	124
89	Involvement of phenazines and lipopeptides in interactions between Pseudomonas species and Sclerotium rolfsii, causal agent of stem rot disease on groundnut. Journal of Applied Microbiology, 2012, 112, 390-403.	1.4	29
90	Out of the ground: aerial and exotic habitats of the melioidosis bacterium <i>Burkholderia pseudomallei</i> in grasses in Australia. Environmental Microbiology, 2012, 14, 2058-2070.	1.8	79
91	Impact of root exudates and plant defense signaling on bacterial communities in the rhizosphere. A review. Agronomy for Sustainable Development, 2012, 32, 227-243.	2.2	543

#	Article	IF	CITATIONS
92	Weeds influence soil bacterial and fungal communities. Plant and Soil, 2013, 373, 107-123.	1.8	13
93	Combining ecophysiological and microbial ecological approaches to study the relationship between Medicago truncatula genotypes and their associated rhizosphere bacterial communities. Plant and Soil, 2013, 365, 183-199.	1.8	22
94	Comparison of Soil Bacterial Communities of Pinus patula of Nilgiris, Western Ghats with Other Biogeographically Distant Pine Forest Clone Libraries. Microbial Ecology, 2013, 66, 132-144.	1.4	8
95	The effect of organic acids from tomato root exudates on rhizosphere colonization of Bacillus amyloliquefaciens T-5. Applied Soil Ecology, 2013, 64, 15-22.	2.1	112
97	The rhizosphere soil of diseased tomato plants as a source for novel microorganisms to control bacterial wilt. Applied Soil Ecology, 2013, 72, 79-84.	2.1	57
98	Inoculation of PAH-degrading strains of Fusarium solani and Arthrobacter oxydans in rhizospheric sand and soil microcosms: microbial interactions and PAH dissipation. Biodegradation, 2013, 24, 569-581.	1.5	41
99	Piriformospora indica. Soil Biology, 2013, , .	0.6	19
100	Root transcriptome analysis of Arabidopsis thaliana exposed to beneficial Bacillus subtilis FB17 rhizobacteria revealed genes for bacterial recruitment and plant defense independent of malate efflux. Planta, 2013, 238, 657-668.	1.6	84
101	Bacteria in Agrobiology: Disease Management. , 2013, , .		31
102	Plant Microbe Symbiosis: Fundamentals and Advances. , 2013, , .		25
103	Plant–Microbe Partnerships: Implications for Growth and Plant Health. , 2013, , 105-117.		0
104	Integrated Diseases Management in Groundnut for Sustainable Productivity., 2013,, 351-377.		3
105	Ecosystem Services and Carbon Sequestration in the Biosphere. , 2013, , .		27
106	Strain-specific variation in a soilborne phytopathogenic fungus for the expression of genes involved in pH signal transduction pathway, pathogenesis and saprophytic survival in response to environmental pH changes. Fungal Genetics and Biology, 2013, 61, 80-89.	0.9	11
107	Culture-Independent Molecular Tools for Soil and Rhizosphere Microbiology. Diversity, 2013, 5, 581-612.	0.7	88
108	Selection and evaluation of potential biocontrol rhizobacteria from a raised bog environment. Crop Protection, 2013, 52, 116-124.	1.0	17
109	Symbiotic Endophytes. Soil Biology, 2013, , .	0.6	6
110	Biological nitrogen fixation in non-legume plants. Annals of Botany, 2013, 111, 743-767.	1.4	580

#	Article	IF	CITATIONS
111	Unexpected Phytostimulatory Behavior for <i>Escherichia coli</i> and <i>Agrobacterium tumefaciens</i> Model Strains. Molecular Plant-Microbe Interactions, 2013, 26, 495-502.	1.4	20
112	Inhibitory Interactions of Rhizobacteria with the Symbiotic Fungus Piriformospora indica. Soil Biology, 2013, , 201-219.	0.6	5
113	Functional diversity and resource partitioning in fungi associated with the fine feeder roots of forest trees. Symbiosis, 2013, 61, 113-123.	1.2	12
114	Role of Bacterial Communities in the Natural Suppression of Rhizoctonia solani Bare Patch Disease of Wheat (Triticum aestivum L.). Applied and Environmental Microbiology, 2013, 79, 7428-7438.	1.4	224
115	Arbuscular mycorrhizal symbiosis influences strigolactone production under salinity and alleviates salt stress in lettuce plants. Journal of Plant Physiology, 2013, 170, 47-55.	1.6	299
116	Plant secondary metabolite profiling evidences strain-dependent effect in the Azospirillum–Oryza sativa association. Phytochemistry, 2013, 87, 65-77.	1.4	154
117	Monitoring of the relation between 2,4-diacetylphloroglucinol-producing Pseudomonas and Thielaviopsis basicola populations by real-time PCR in tobacco black root-rot suppressive and conducive soils. Soil Biology and Biochemistry, 2013, 57, 144-155.	4.2	45
118	Gut and Root Microbiota Commonalities. Applied and Environmental Microbiology, 2013, 79, 2-9.	1.4	92
119	Bioremediation of Cd and carbendazim co-contaminated soil by Cd-hyperaccumulator Sedum alfredii associated with carbendazim-degrading bacterial strains. Environmental Science and Pollution Research, 2013, 20, 380-389.	2.7	65
120	Plant–bacteria partnerships for the remediation of hydrocarbon contaminated soils. Chemosphere, 2013, 90, 1317-1332.	4.2	328
121	The congeneric strain Ralstonia pickettii QL-A6 of Ralstonia solanacearum as an effective biocontrol agent for bacterial wilt of tomato. Biological Control, 2013, 65, 278-285.	1.4	50
122	<i>Bacillus</i> and <i>Streptomyces</i> were selected as broad-spectrum antagonists against soilborne pathogens from arid areas in Egypt. FEMS Microbiology Letters, 2013, 342, 168-178.	0.7	104
123	Potential Eco-friendly Soil Microorganisms: Road Towards Green and Sustainable Agriculture. , 2013, , 249-287.		0
125	Pyrosequencing Reveals Bacterial Diversity in the Rhizosphere of Three <i>Phragmites australis</i> Ecotypes. Geomicrobiology Journal, 2013, 30, 593-599.	1.0	28
126	Use of PGPR for Controlling Soilborne Fungal Pathogens: Assessing the Factors Influencing Its Efficacy. , 2013, , 259-292.		2
127	Effect of Clay Mineralogy on Iron Bioavailability and Rhizosphere Transcription of 2,4-Diacetylphloroglucinol Biosynthetic Genes in Biocontrol <i>Pseudomonas protegens</i> Molecular Plant-Microbe Interactions, 2013, 26, 566-574.	1.4	23
128	The soil resistome: The anthropogenic, the native, and the unknown. Soil Biology and Biochemistry, 2013, 63, 18-23.	4.2	153
131	Arabinogalactan proteins in root–microbe interactions. Trends in Plant Science, 2013, 18, 440-449.	4.3	144

#	Article	IF	CITATIONS
133	Isolation of ACC deaminase producing PGPR from rice rhizosphere and evaluating their plant growth promoting activity under salt stress. Plant and Soil, 2013, 366, 93-105.	1.8	294
138	The rhizosphere microbiome: significance of plant beneficial, plant pathogenic, and human pathogenic microorganisms. FEMS Microbiology Reviews, 2013, 37, 634-663.	3.9	1,929
142	The root microbiota—a fingerprint in the soil?. Plant and Soil, 2013, 370, 671-686.	1.8	84
144	Soil Suppressiveness to Fusarium Disease: Shifts in Root Microbiome Associated with Reduction of Pathogen Root Colonization. Phytopathology, 2013, 103, 23-33.	1.1	113
145	A paradigm shift towards low-nitrifying production systems: the role of biological nitrification inhibition (BNI). Annals of Botany, 2013, 112, 297-316.	1.4	115
146	Bioactive Molecules in Soil Ecosystems: Masters of the Underground. International Journal of Molecular Sciences, 2013, 14, 8841-8868.	1.8	39
147	Application of Natural Blends of Phytochemicals Derived from the Root Exudates of Arabidopsis to the Soil Reveal That Phenolic-related Compounds Predominantly Modulate the Soil Microbiome. Journal of Biological Chemistry, 2013, 288, 4502-4512.	1.6	452
148	Intercropping System with Combined Application of <i><scp>A</scp>zospirillum</i> and <i><scp>P</scp>seudomonas fluorescens</i> Reduces Root Rot Incidence Caused by <i><scp>R</scp>hizoctonia bataticola</i> and Increases Seed Cotton Yield. Journal of Phytopathology, 2013. 161. 405-411.	0.5	38
149	Characterisation of <i>Pseudomonas chlororaphis</i> subsp. <i>aurantiaca</i> strain Pa40 with the ability to control wheat sharp eyespot disease. Annals of Applied Biology, 2013, 163, 444-453.	1.3	8
151	Induced Systemic Resistance and the Rhizosphere Microbiome. Plant Pathology Journal, 2013, 29, 136-143.	0.7	106
152	Interactions of ericoid mycorrhizal fungi and root pathogens in Rhododendron: <l>In vitro</l> tests with plantlets in sterile liquid culture. Plant Root, 2013, 7, 33-48.	0.3	19
153	Host Growth Can Cause Invasive Spread of Crops by Soilborne Pathogens. PLoS ONE, 2013, 8, e63003.	1.1	10
154	Effects of Bacillus amyloliquefaciens FZB42 on Lettuce Growth and Health under Pathogen Pressure and Its Impact on the Rhizosphere Bacterial Community. PLoS ONE, 2013, 8, e68818.	1,1	259
155	Transcriptomics of the Rice Blast Fungus Magnaporthe oryzae in Response to the Bacterial Antagonist Lysobacter enzymogenes Reveals Candidate Fungal Defense Response Genes. PLoS ONE, 2013, 8, e76487.	1.1	33
156	Water-Limiting Conditions Alter the Structure and Biofilm-Forming Ability of Bacterial Multispecies Communities in the Alfalfa Rhizosphere. PLoS ONE, 2013, 8, e79614.	1.1	55
157	The Composition of Root Exudates from Two Different Resistant Peanut Cultivars and Their Effects on the Growth of Soil-Borne Pathogen. International Journal of Biological Sciences, 2013, 9, 164-173.	2.6	120
158	Dynamic Succession of Soil Bacterial Community during Continuous Cropping of Peanut (Arachis) Tj ETQq0 0 0 r	gBT/Over	lock 10 Tf 50
159	Estimating the Delay between Host Infection and Disease (Incubation Period) and Assessing Its Significance to the Epidemiology of Plant Diseases. PLoS ONE, 2014, 9, e86568.	1.1	52

#	Article	IF	Citations
160	Ecological Complexity and the Success of Fungal Biological Control Agents. Advances in Agriculture, 2014, 2014, 1-11.	0.3	19
161	The impact of the pathogen Rhizoctonia solani and its beneficial counterpart Bacillus amyloliquefaciens on the indigenous lettuce microbiome. Frontiers in Microbiology, 2014, 5, 175.	1.5	141
163	The Role of Microbial Inoculants in Integrated Crop Management Systems. Potato Research, 2014, 57, 291-309.	1.2	42
164	Quantification and role of organic acids in cucumber root exudates in Trichoderma harzianum T-E5 colonization. Plant Physiology and Biochemistry, 2014, 83, 250-257.	2.8	34
166	Fungal proteins and genes associated with biocontrol mechanisms of soil-borne pathogens: a review. Fungal Biology Reviews, 2014, 28, 97-125.	1.9	93
167	Enhanced Plant Immunity Using Trichoderma. , 2014, , 495-504.		14
168	Soil Type Dependent Rhizosphere Competence and Biocontrol of Two Bacterial Inoculant Strains and Their Effects on the Rhizosphere Microbial Community of Field-Grown Lettuce. PLoS ONE, 2014, 9, e103726.	1.1	63
169	Ecological dynamics and complex interactions of Agrobacterium megaplasmids. Frontiers in Plant Science, 2014, 5, 635.	1.7	36
170	Dynamics of <i>Panax ginseng </i> Rhizospheric Soil Microbial Community and Their Metabolic Function. Evidence-based Complementary and Alternative Medicine, 2014, 2014, 1-6.	0.5	31
171	A Vavilovian approach to discovering crop-associated microbes with potential to enhance plant immunity. Frontiers in Plant Science, 2014, 5, 492.	1.7	22
172	Effects of bacterial inoculants on the indigenous microbiome and secondary metabolites of chamomile plants. Frontiers in Microbiology, 2014, 5, 64.	1.5	123
173	Biological Control of Fungal Disease by Rhizobacteria under Saline Soil Conditions. , 2014, , 161-172.		8
174	Field efficacy of nonpathogenic <i>Streptomyces</i> species against potato common scab. Journal of Applied Microbiology, 2014, 116, 123-133.	1.4	28
175	Rhizosphere ecology and phytoprotection in soils naturally suppressive to <scp>T</scp> hielaviopsis black root rot of tobacco. Environmental Microbiology, 2014, 16, 1949-1960.	1.8	38
176	Determinants of rootâ€associated fungal communities within <scp>A</scp> steraceae in a semiâ€arid grassland. Journal of Ecology, 2014, 102, 425-436.	1.9	62
177	Landscapeâ€scale Variation in Pathogenâ€suppressive Bacteria in Tropical Dry Forest Soils of Costa Rica. Biotropica, 2014, 46, 657-666.	0.8	6
178	Impact of fresh root material and mature crop residues of oilseed rape (Brassica napus) on microbial communities associated with subsequent oilseed rape. Biology and Fertility of Soils, 2014, 50, 1267-1279.	2.3	22
179	Detection and quantification of native microbial populations on soil-grown rice roots by catalyzed reporter deposition-fluorescence <i>in situ</i> hybridization. FEMS Microbiology Ecology, 2014, 87, 390-402.	1.3	66

#	Article	IF	CITATIONS
180	Agroecological Engineering to Biocontrol Soil Pests for Crop Health. Sustainable Agriculture Reviews, 2014, , 269-297.	0.6	4
181	Ecological understanding of root-infecting fungi using trait-based approaches. Trends in Plant Science, 2014, 19, 432-438.	4.3	68
182	Variation of rhizosphere bacterial community in watermelon continuous mono-cropping soil by long-term application of a novel bioorganic fertilizer. Microbiological Research, 2014, 169, 570-578.	2.5	92
183	Novel Measurement and Assessment Tools for Monitoring and Management of Land and Water Resources in Agricultural Landscapes of Central Asia. Environmental Science and Engineering, 2014, , .	0.1	12
184	De-coupling of root–microbiome associations followed by antagonist inoculation improves rhizosphere soil suppressiveness. Biology and Fertility of Soils, 2014, 50, 217-224.	2.3	66
185	Enhanced rhizosphere colonization of beneficial <i>Bacillus amyloliquefaciens</i> SQR9 by pathogen infection. FEMS Microbiology Letters, 2014, 353, 49-56.	0.7	83
186	Enzyme activity of extracellular protein induced in Trichoderma asperellum and T. longibrachiatum by substrates based on Agaricus bisporus and Phymatotrichopsis omnivora. Fungal Biology, 2014, 118, 211-221.	1.1	13
187	Rhizosphere interactions: root exudates, microbes, and microbial communities. Botany, 2014, 92, 267-275.	0.5	547
188	Community analysis of plant growth promoting rhizobacteria for apple trees. Crop Protection, 2014, 62, 1-9.	1.0	18
189	Fungal pathogen accumulation at the expense of plant-beneficial fungi as a consequence of consecutive peanut monoculturing. Soil Biology and Biochemistry, 2014, 72, 11-18.	4.2	216
190	Root Engineering. Soil Biology, 2014, , .	0.6	7
191	Rhizobacterial salicylate production provokes headaches!. Plant and Soil, 2014, 382, 1-16.	1.8	53
192	Do genetic modifications in crops affect soil fungi? a review. Biology and Fertility of Soils, 2014, 50, 433-446.	2.3	35
193	Sclerotium rolfsii dynamics in soil as affected by crop sequences. Applied Soil Ecology, 2014, 75, 95-105.	2.1	6
194	Compost: Its role, mechanism and impact on reducing soil-borne plant diseases. Waste Management, 2014, 34, 607-622.	3.7	224
195	Sensitivity to p <scp>H</scp> and ability to modify ambient p <scp>H</scp> of the takeâ€ell fungus <i><scp>G</scp>aeumannomyces graminis</i> var. <i>tritici</i> . Plant Pathology, 2014, 63, 117-128.	1.2	7
196	Functional Soil Microbiome: Belowground Solutions to an Aboveground Problem Â. Plant Physiology, 2014, 166, 689-700.	2.3	299
197	The Importance and Application of Bacterial Diversity in Sustainable Agricultural Crop Production Ecosystems. Sustainable Development and Biodiversity, 2014, , 341-367.	1.4	1

#	Article	IF	CITATIONS
198	Arbuscular Mycorrhiza in Crop Improvement under Environmental Stress., 2014,, 69-95.		52
199	Fusarium oxysporum f. sp. strigae strain Foxy 2 did not achieve biological control of Striga hermonthica parasitizing maize in Western Kenya. Biological Control, 2014, 77, 7-14.	1.4	30
200	Effects of transgenic poplars expressing increased levels of cellular cytokinin on rhizosphere microbial communities. European Journal of Soil Biology, 2014, 63, 78-82.	1.4	5
201	Control of damping-off of organic and conventional cucumber with extracts from a plant-associated bacterium rivals a seed treatment pesticide. Crop Protection, 2014, 65, 86-94.	1.0	10
202	Effect of palmitic acid on remediation of Scripus triqueter and enzymes activities of the rhizosphere soil in the simulated diesel-spiked wetland. International Biodeterioration and Biodegradation, 2014, 94, 109-114.	1.9	5
203	Isolation, characterization, and formulation of antagonistic bacteria for the management of seedlings damping-off and root rot disease of cucumber. Canadian Journal of Microbiology, 2014, 60, 25-33.	0.8	39
204	Soil sickness of peanuts is attributable to modifications in soil microbes induced by peanut root exudates rather than to direct allelopathy. Soil Biology and Biochemistry, 2014, 78, 149-159.	4.2	165
205	The Plant Microbiome. Advances in Botanical Research, 2014, , 279-309.	0.5	42
206	Defense Related Phytohormones Regulation in Arbuscular Mycorrhizal Symbioses Depends on the Partner Genotypes. Journal of Chemical Ecology, 2014, 40, 791-803.	0.9	78
207	Improved heat stress tolerance of wheat seedlings by bacterial seed treatment. Plant and Soil, 2014, 379, 337-350.	1.8	164
208	Influence of agricultural practices and seasons on the abundance and community structure of culturable pseudomonads in soils under no-till management in Argentina. Plant and Soil, 2014, 382, 117-131.	1.8	17
209	Plant metabolomics for plant chemical responses to belowground community change by climate change. Journal of Plant Biology, 2014, 57, 137-149.	0.9	16
210	Host signature effect on plant rootâ€associated microbiomes revealed through analyses of resident <i>vs</i> . active communities. Environmental Microbiology, 2014, 16, 2157-2167.	1.8	158
212	Expressed Proteins of Herbaspirillum seropedicae in Maize (DKB240) Roots-Bacteria Interaction Revealed Using Proteomics. Applied Biochemistry and Biotechnology, 2014, 174, 2267-2277.	1.4	14
213	Alternative cropping systems can have contrasting effects on various soil-borne diseases: Relevance of a systemic analysis in vegetable cropping systems. Crop Protection, 2014, 55, 7-15.	1.0	18
214	Growth stimulation of barley and biocontrol effect on plant pathogenic fungi by a Cellulosimicrobium sp. strain isolated from salt-affected rhizosphere soil in northwestern Algeria. European Journal of Soil Biology, 2014, 61, 20-26.	1.4	57
215	Isolation, screening, characterization, and selection of superior rhizobacterial strains as bioinoculants for seedling emergence and growth promotion of Mandarin orange (<i>Citrus) Tj ETQq0 0 0 rgBT</i>	Owedsock ?	10116 50 97 To
216	Quality of financial statements, information asymmetry, perceived risk and access to finance by Ugandan SMEs. International Journal of Management Practice, 2014, 7, 324.	0.1	4

#	Article	IF	CITATIONS
217	Regulators Involved in <i>Dickeya solani</i> Virulence, Genetic Conservation, and Functional Variability. Molecular Plant-Microbe Interactions, 2014, 27, 700-711.	1.4	49
218	Release from belowground enemies and shifts in root traits as interrelated drivers of alien plant invasion success: a hypothesis. Ecology and Evolution, 2015, 5, 4505-4516.	0.8	28
219	Microbiology of sugarâ€rich environments: diversity, ecology and system constraints. Environmental Microbiology, 2015, 17, 278-298.	1.8	144
220	Environmental Genomics: The Impact of Transgenic Crops on Soil Quality, Microbial Diversity and Plant-Associated Communities. , 2015, , 309-331.		1
221	Antimicrobial compounds from rhizosphere bacteria and their role in plant disease management., 2015,, 371-386.		0
222	Inoculation of tomato roots with beneficial micro-organisms as a means to control <i>Fusarium oxysporum</i> fixed in the control of the control	0.1	3
223	Insights Into <i>Triticum aestivum</i> Seedling Root Rot Caused by <i>Fusarium graminearum</i> Molecular Plant-Microbe Interactions, 2015, 28, 1288-1303.	1.4	41
224	Effects of Preconditioning Through Mycorrhizal Inoculation on the Control of Melon Root Rot and Vine Decline Caused by <i>Monosporascus cannonballus</i>). Journal of Phytopathology, 2015, 163, 898-907.	0.5	12
225	The effects of exotic weed Flaveria bidentis with different invasion stages on soil bacterial community structures. African Journal of Biotechnology, 2015, 14, 2636-2643.	0.3	9
226	Plant and pathogen nutrient acquisition strategies. Frontiers in Plant Science, 2015, 6, 750.	1.7	145
227	Microbiomes: unifying animal and plant systems through the lens of community ecology theory. Frontiers in Microbiology, 2015, 6, 869.	1.5	118
228	Fusarium Oxysporum Volatiles Enhance Plant Growth Via Affecting Auxin Transport and Signaling. Frontiers in Microbiology, 2015, 6, 1248.	1.5	96
229	Enzymes of importance to rhizosphere processes. Journal of Soil Science and Plant Nutrition, 2015, , 0-0.	1.7	45
230	Contrasting Diversity and Host Association of Ectomycorrhizal Basidiomycetes versus Root-Associated Ascomycetes in a Dipterocarp Rainforest. PLoS ONE, 2015, 10, e0125550.	1.1	31
231	Is the efficacy of biological control against plant diseases likely to be more durable than that of chemical pesticides?. Frontiers in Plant Science, 2015, 6, 566.	1.7	154
232	Current overview on the study of bacteria in the rhizosphere by modern molecular techniques: a mini‒review. Journal of Soil Science and Plant Nutrition, 2015, , 0-0.	1.7	20
233	Root Microbiome Assemblage is Modulated by Plant Host Factors. Advances in Botanical Research, 2015, 75, 57-79.	0.5	28
234	Pseudomonas Strains that Exert Biocontrol of Plant Pathogens. , 2015, , 121-172.		22

#	Article	IF	CITATIONS
235	Rhizosphere Bacteria for Crop Production and Improvement of Stress Tolerance: Mechanisms of Action, Applications, and Future Prospects. , 2015, , 1-36.		24
236	Perspectives of Rhizobial Inoculation for Sustainable Crop Production. , 2015, , 209-239.		11
237	Linking Jasmonic Acid Signaling, Root Exudates, and Rhizosphere Microbiomes. Molecular Plant-Microbe Interactions, 2015, 28, 1049-1058.	1.4	221
238	Foodâ€web composition and plant diversity control foliar nutrient content and stoichiometry. Journal of Ecology, 2015, 103, 1432-1441.	1.9	36
239	A Novel and Effective Streptomyces sp. N2 Against Various Phytopathogenic Fungi. Applied Biochemistry and Biotechnology, 2015, 177, 1338-1347.	1.4	19
240	Quantitative real-time PCR and high-resolution melting (HRM) analysis for strain-specific monitoring of fluorescent pseudomonads used as biocontrol agents against soil-borne pathogens of food crops. Trends in Food Science and Technology, 2015, 46, 277-285.	7.8	8
241	Effect of fungicide seed treatments on <i>Fusarium virguliforme</i> infection of soybean and development of sudden death syndrome. Canadian Journal of Plant Pathology, 2015, 37, 435-447.	0.8	30
242	Pseudomonas., 2015,,.		7
243	Plant identity drives the expression of biocontrol factors in a rhizosphere bacterium across a plant diversity gradient. Functional Ecology, 2015, 29, 1225-1234.	1.7	61
244	Biocontrol Mechanisms., 2015, , 123-157.		11
245	Plant-Growth-Promoting Rhizobacteria (PGPR) and Medicinal Plants. Soil Biology, 2015, , .	0.6	24
246	Alleviation of take-all in wheat by the earthworm Aporrectodea caliginosa (Savigny). Applied Soil Ecology, 2015, 90, 18-25.	2.1	8
247	Robust biological nitrogen fixation in a model grass–bacterial association. Plant Journal, 2015, 81, 907-919.	2.8	171
248	Characterisation of antagonistic <i>Bacillus</i> and <i>Pseudomonas</i> strains for biocontrol potential and suppression of dampingâ€off and root rot diseases. Annals of Applied Biology, 2015, 166, 456-471.	1.3	71
249	Beneficial Plant-Bacterial Interactions. , 2015, , .		94
250	Altered carbon delivery from roots: rapid, sustained inhibition of border cell dispersal in response to compost water extracts. Plant and Soil, 2015, 389, 145-156.	1.8	4
251	Effects of intraspecific variation in rice resistance to aboveground herbivore, brown planthopper, and rice root nematodes on plant yield, labile pools of plant, and rhizosphere soil. Biology and Fertility of Soils, 2015, 51, 417-425.	2.3	5
252	Quantification of the potential biocontrol and direct plant growth promotion abilities based on multiple biological traits distinguish different groups of Pseudomonas spp. isolates. Biological Control, 2015, 90, 173-186.	1.4	48

#	Article	IF	Citations
253	Identification of benzoic acid and 3-phenylpropanoic acid in tobacco root exudates and their role in the growth of rhizosphere microorganisms. Applied Soil Ecology, 2015, 93, 78-87.	2.1	35
254	Spatial heterogeneity of plant–soil feedback affects root interactions and interspecific competition. New Phytologist, 2015, 207, 830-840.	3.5	62
255	Rhizosphere microbial community manipulated by 2Âyears of consecutive biofertilizer application associated with banana Fusarium wilt disease suppression. Biology and Fertility of Soils, 2015, 51, 553-562.	2.3	175
256	Medicinal Plants and PGPR: A New Frontier for Phytochemicals. Soil Biology, 2015, , 287-303.	0.6	34
257	Colonization of lettuce rhizosphere and roots by tagged Streptomyces. Frontiers in Microbiology, 2015, 6, 25.	1.5	79
258	Nonribosomal Peptides, Key Biocontrol Components for Pseudomonas fluorescens In5, Isolated from a Greenlandic Suppressive Soil. MBio, 2015, 6, e00079.	1.8	104
259	Declined soil suppressiveness to Fusarium oxysporum by rhizosphere microflora of cotton in soil sickness. Biology and Fertility of Soils, 2015, 51, 935-946.	2.3	58
260	Trophic network architecture of root-associated bacterial communities determines pathogen invasion and plant health. Nature Communications, 2015, 6, 8413.	5.8	384
261	Illumina MiSeq investigations on the changes of microbial community in the Fusarium oxysporum f.sp. cubense infected soil during and after reductive soil disinfestation. Microbiological Research, 2015, 181, 33-42.	2.5	143
262	Soil labile organic carbon fractions in rhizosphere soil in citrus plantations in the Three Gorges Reservoir Area. Agroforestry Systems, 2015, 89, 1097-1105.	0.9	4
263	Differential responses of Oryza sativa secondary metabolism to biotic interactions with cooperative, commensal and phytopathogenic bacteria. Planta, 2015, 242, 1439-1452.	1.6	16
264	High resolution mass spectrometry imaging of plant tissues: towards a plant metabolite atlas. Analyst, The, 2015, 140, 7696-7709.	1.7	91
265	Organic Amendments and Soil Suppressiveness in Plant Disease Management. Soil Biology, 2015, , .	0.6	24
266	The Minimal Rhizosphere Microbiome. , 2015, , 411-417.		28
267	Principles of Plant-Microbe Interactions., 2015,,.		89
268	Use of nursery potting mixes amended with local Trichoderma strains with multiple complementary mechanisms to control soil-borne diseases. Crop Protection, 2015, 67, 269-278.	1.0	42
269	Characterization of the antifungal and plant growth-promoting effects of diffusible and volatile organic compounds produced by Pseudomonas fluorescens strains. Biological Control, 2015, 81, 83-92.	1.4	193
270	Endophytic colonization and biocontrol performance of <scp><i>P</i></scp> <i>seudomonas fluorescensâ€<scp>PICF</scp>7 in olive (<scp><i>O</i></scp><i>lea europaea</i> L.) are determined neither by pyoverdine production nor swimming motility. Environmental Microbiology, 2015, 17, 3139-3153.</i>	1.8	51

#	Article	IF	CITATIONS
271	Accounting for soil biotic effects on soil health and crop productivity in the design of crop rotations. Journal of the Science of Food and Agriculture, 2015, 95, 447-454.	1.7	150
272	Genomic comparison of chitinolytic enzyme systems from terrestrial and aquatic bacteria. Environmental Microbiology, 2016, 18, 38-49.	1.8	63
273	Belowground Influence of Rhizobium Inoculant and Water Hyacinth Composts on Yellow Bean Infested by Aphis fabae and Colletotrichum lindemuthianum under Field Conditions. Journal of Plant Studies, 2016, 5, 32.	0.3	5
274	Trichoderma: A significant fungus for agriculture and environment. African Journal of Agricultural Research Vol Pp, 2016, 11, 1952-1965.	0.2	143
275	Rhizobial Inoculation, Alone or Coinoculated with Azospirillum brasilense, Promotes Growth of Wetland Rice. Revista Brasileira De Ciencia Do Solo, 2016, 40, .	0.5	13
276	Temporal Dynamics in Rhizosphere Bacterial Communities of Three Perennial Grassland Species. Agronomy, 2016, 6, 17.	1.3	10
277	Eventos tempranos en el proceso de infección de Macrophomina phaseolina (Tassi) Goid. en raÃces de plántulas de Pinus radiat a D. Don y sus efectos en la eficiencia fotosintética como indicador de estrés biótico. Gayana - Botanica, 2016, 73, 430-437.	0.3	0
278	The importance of soybean production worldwide. , 2016, , 1-26.		61
279	A Carotenoid-Deficient Mutant in Pantoea sp. YR343, a Bacteria Isolated from the Rhizosphere of Populus deltoides, Is Defective in Root Colonization. Frontiers in Microbiology, 2016, 7, 491.	1.5	48
280	Biological Control of Lettuce Drop and Host Plant Colonization by Rhizospheric and Endophytic Streptomycetes. Frontiers in Microbiology, 2016, 7, 714.	1.5	51
281	Comparative Genomic Analysis of Bacillus amyloliquefaciens and Bacillus subtilis Reveals Evolutional Traits for Adaptation to Plant-Associated Habitats. Frontiers in Microbiology, 2016, 7, 2039.	1.5	54
283	Reducing the Use of Pesticides with Site-Specific Application: The Chemical Control of Rhizoctonia solani as a Case of Study for the Management of Soil-Borne Diseases. PLoS ONE, 2016, 11, e0163221.	1.1	25
284	Plant Pathogens Affecting the Establishment of Plant-Symbiont Interaction. Frontiers in Plant Science, 2016, 7, 15.	1.7	28
285	Rhizospheric Bacterial Community of Endemic Rhododendron arboreum Sm. Ssp. delavayi along Eastern Himalayan Slope in Tawang. Frontiers in Plant Science, 2016, 07, 1345.	1.7	14
286	Production and Application of Syringomycin E as an Organic Fungicide Seed Protectant against <i>Pythium</i> Dampingâ€off. Journal of Phytopathology, 2016, 164, 801-810.	0.5	7
287	Biosynthesis of the acetylâ€CoA carboxylaseâ€inhibiting antibiotic, andrimid in <i>Serratia</i> is regulated by Hfq and the LysRâ€type transcriptional regulator, AdmX. Environmental Microbiology, 2016, 18, 3635-3650.	1.8	39
288	Survival of $\langle i \rangle$ Phoma koolunga $\langle i \rangle$, a causal agent of ascochyta blight, on field pea stubble or as pseudosclerotia in soil. Plant Pathology, 2016, 65, 1246-1253.	1.2	8
289	The role of locally adapted mycorrhizas and rhizobacteria in plant–soil feedback systems. Functional Ecology, 2016, 30, 1086-1098.	1.7	184

#	Article	IF	CITATIONS
290	Rhizosphere Interactions: Life Below Ground., 2016,, 3-23.		6
291	Mycorrhizosphere: The Extended Rhizosphere and Its Significance. , 2016, , 97-124.		14
292	Can Bacillus Species Enhance Nutrient Availability in Agricultural Soils?., 2016,, 367-395.		34
293	Significance of Arbuscular Mycorrhizal Fungi and Rhizosphere Microflora in Plant Growth and Nutrition., 2016,, 417-452.		2
294	Unravelling Linkages between Plant Community Composition and the Pathogen-Suppressive Potential of Soils. Scientific Reports, 2016, 6, 23584.	1.6	60
295	Is plant evolutionary history impacting recruitment of diazotrophs and nifH expression in the rhizosphere?. Scientific Reports, 2016, 6, 21690.	1.6	37
296	Plant Growth-Promoting Rhizobacteria-Mediated Acquired Systemic Resistance in Plants Against Pests and Diseases., 2016,, 125-134.		5
297	Effects of first―and secondâ€generation bioenergy crops on soil processes and legacy effects on a subsequent crop. GCB Bioenergy, 2016, 8, 136-147.	2.5	39
298	Effects of spatial plant–soil feedback heterogeneity on plant performance in monocultures. Journal of Ecology, 2016, 104, 364-376.	1.9	36
299	Characterization of rhizosphere and endophytic fungal communities from roots of <i>Stipa purpurea < /i>in alpine steppe around Qinghai Lake. Canadian Journal of Microbiology, 2016, 62, 643-656.</i>	0.8	9
300	Organic Farming, Soil Health, and Food Quality: Considering Possible Links. Advances in Agronomy, 2016, 137, 319-367.	2.4	95
301	Isolation and characterization of antagonistic endophytes from Dendrobium candidum Wall ex Lindl., and the biofertilizing potential of a novel Pseudomonas saponiphila strain. Applied Soil Ecology, 2016, 101-108.	2.1	23
302	Heavy metal tolerant Pseudomonas protegens isolates from agricultural well water in northeastern Algeria with plant growth promoting, insecticidal and antifungal activities. European Journal of Soil Biology, 2016, 75, 38-46.	1.4	52
303	Pseudomonas fluorescensPICF7 displays an endophytic lifestyle in cultivated cereals and enhances yield in barley. FEMS Microbiology Ecology, 2016, 92, fiw092.	1.3	25
304	Soil suppressiveness by organic amendment to Fusarium disease in cucumber: effect on pathogen and host. Phytoparasitica, 2016, 44, 239-249.	0.6	20
305	Illumina-based analysis of the rhizosphere microbial communities associated with healthy and wilted Lanzhou lily (Lilium davidii var. unicolor) plants grown in the field. World Journal of Microbiology and Biotechnology, 2016, 32, 95.	1.7	48
306	Plant–Microbiota Interactions as a Driver of the Mineral Turnover in the Rhizosphere. Advances in Applied Microbiology, 2016, 95, 1-67.	1.3	105
307	Wheat, maize and sunflower cropping systems selectively influence bacteria community structure and diversity in their and succeeding crop's rhizosphere. Journal of Integrative Agriculture, 2016, 15, 1892-1902.	1.7	25

#	Article	IF	CITATIONS
308	New frontiers in belowground ecology for plant protection from root-feeding insects. Applied Soil Ecology, 2016, 108, 96-107.	2.1	49
309	Calling in the Dark: The Role of Volatiles for Communication in the Rhizosphere. Signaling and Communication in Plants, 2016, , 175-210.	0.5	30
310	Deciphering Chemical Language of Plant Communication. Signaling and Communication in Plants, 2016,	0.5	18
311	Isolation of plant growth promoting rhizobacteria and their impact on growth and curcumin content in Curcuma longa L Biocatalysis and Agricultural Biotechnology, 2016, 8, 1-7.	1.5	91
312	Using community analysis to explore bacterial indicators for disease suppression of tobacco bacterial wilt. Scientific Reports, 2016, 6, 36773.	1.6	95
313	Microbial Inoculants with Multifaceted Traits Suppress <i>Rhizoctonia</i> Populations and Promote Plant Growth in Cotton. Journal of Phytopathology, 2016, 164, 1030-1042.	0.5	26
314	Enhancement of Growth and Yield of <i>Glycine max </i> Plants with Inoculation of Phosphate Solubilizing Fungus <i> Aspergillus niger </i> K7 and Biochar Amendment in Soil. Communications in Soil Science and Plant Analysis, 2016, 47, 2334-2347.	0.6	20
315	Pseudomonas spp. diversity is negatively associated with suppression of the wheat take-all pathogen. Scientific Reports, 2016, 6, 29905.	1.6	46
316	Soil bacterial and fungal community dynamics in relation to Panax notoginseng death rate in a continuous cropping system. Scientific Reports, 2016, 6, 31802.	1.6	155
317	Different responses of rhizosphere and non-rhizosphere soil microbial communities to consecutive Piper nigrum L. monoculture. Scientific Reports, 2016, 6, 35825.	1.6	65
318	Distanceâ€dependent effects of pathogenic fungi on seedlings of a legume tree: impaired nodule formation and identification of antagonistic rhizosphere bacteria. Journal of Ecology, 2016, 104, 1009-1019.	1.9	12
319	Effects of root decomposition on plant–soil feedback of early―and midâ€successional plant species. New Phytologist, 2016, 212, 220-231.	3.5	47
320	Actinomycetes Bio-inoculants: A Modern Prospectus for Plant Disease Management., 2016,, 63-81.		12
321	Endophytic Actinobacteria: Nitrogen Fixation, Phytohormone Production, and Antibiosis. , 2016, , 123-145.		13
322	Beneficial Microorganisms: Current Challenge to Increase Crop Performance., 2016,, 53-70.		8
323	Nitrogen fertilization affects bacteria utilizing plant-derived carbon in the rhizosphere of beech seedlings. Plant and Soil, 2016, 407, 203-215.	1.8	29
324	Soil properties, seasonality and crop growth stage exert a stronger effect on rhizosphere prokaryotes than the fungal biocontrol agent Fusarium oxysporum f.sp. strigae. Applied Soil Ecology, 2016, 105, 126-136.	2.1	10
325	Bioformulations of Novel Indigenous Rhizobacterial Strains for Managing Soilborne Pathogens. , 2016, , 147-161.		1

#	Article	IF	CITATIONS
326	Fate of Trichoderma harzianum in the olive rhizosphere: time course of the root colonization process and interaction with the fungal pathogen Verticillium dahliae. BioControl, 2016, 61, 269-282.	0.9	56
327	Evaluation of biological control and rhizosphere competence of plant growth promoting bacteria. Applied Soil Ecology, 2016, 99, 141-149.	2.1	117
328	Rhizosphere and endorhiza of oilseed rape (Brassica napus L.) plant harbor bacteria with multifaceted beneficial effects. Biological Control, 2016, 94, 11-24.	1.4	57
329	Challenges and opportunities in harnessing soil disease suppressiveness for sustainable pasture production. Soil Biology and Biochemistry, 2016, 95, 100-111.	4.2	33
330	Where, when and how plant–soil feedback matters in a changing world. Functional Ecology, 2016, 30, 1109-1121.	1.7	378
331	From pots to plots: hierarchical traitâ€based prediction of plant performance in a mesic grassland. Journal of Ecology, 2016, 104, 206-218.	1.9	51
332	Root–Root Interactions: Towards A Rhizosphere Framework. Trends in Plant Science, 2016, 21, 209-217.	4.3	149
333	Plant root-microbe communication in shaping root microbiomes. Plant Molecular Biology, 2016, 90, 575-587.	2.0	523
334	Superoxide anion production in the interaction of wheat roots and rhizobacteria Azospirillum brasilense Sp245. Plant and Soil, 2016, 400, 55-65.	1.8	5
335	The Tunisian oasis ecosystem is a source of antagonistic Bacillus spp. producing diverse antifungal lipopeptides. Research in Microbiology, 2016, 167, 46-57.	1.0	28
336	Diversity, distribution, and antagonistic activities of rhizobacteria of Panax notoginseng. Journal of Ginseng Research, 2016, 40, 97-104.	3.0	77
337	Combined application of photo-selective mulching films and beneficial microbes affects crop yield and irrigation water productivity in intensive farming systems. Agricultural Water Management, 2017, 184, 104-113.	2.4	22
338	Effect of plant–soil feedbacks on the growth and competition of Lactuca species. Plant Ecology, 2017, 218, 359-372.	0.7	14
339	Exploiting Beneficial Traits of Plant-Associated Fluorescent Pseudomonads for Plant Health. , 2017, , 19-41.		5
340	Characterisation of above-ground endophytic and soil fungal communities associated with dieback-affected and healthy plants in five exotic invasive species. Fungal Ecology, 2017, 26, 114-124.	0.7	20
341	Nitrification potential in the rhizosphere of Australian native vegetation. Soil Research, 2017, 55, 58.	0.6	12
342	Aromatic Plant–Microbe Associations: A Sustainable Approach for Remediation of Polluted Soils. , 2017, , 85-103.		4
343	Ecological Restoration Techniques for Management of Degraded, Mined-Out Areas and the Role Played by Rhizospheric Microbial Communities. , 2017, , 437-453.		3

#	Article	IF	Citations
344	The unseen rhizosphere root–soil–microbe interactions for crop production. Current Opinion in Microbiology, 2017, 37, 8-14.	2.3	250
345	Microbial communities associated with plants: learning from nature to apply it in agriculture. Current Opinion in Microbiology, 2017, 37, 29-34.	2.3	94
346	Chryseobacterium nankingense sp. nov. WR21 effectively suppresses Ralstonia solanacearum growth via intensive root exudates competition. BioControl, 2017, 62, 567-577.	0.9	17
347	Breeding for mycorrhizal symbiosis: focus on disease resistance. Euphytica, 2017, 213, 1.	0.6	62
348	Evaluation of quorum quenching Bacillus spp. for their biocontrol traits against Pectobacterium carotovorum subsp. carotovorum causing soft rot. Biocatalysis and Agricultural Biotechnology, 2017, 9, 48-57.	1.5	31
349	Plant growth-promoting actinobacteria: a new strategy for enhancing sustainable production and protection of grain legumes. 3 Biotech, 2017, 7, 102.	1.1	148
350	Strigolactones in the Rhizosphere: Friend or Foe?. Molecular Plant-Microbe Interactions, 2017, 30, 683-690.	1.4	26
351	Identification of siderophore producing and cynogenic fluorescent Pseudomonas and a simple confrontation assay to identify potential bio-control agent for collar rot of chickpea. 3 Biotech, 2017, 7, 137.	1.1	42
352	Construction of a recombinant strain of Pseudomonas fluorescens producing both phenazine-1-carboxylic acid and cyclic lipopeptide for the biocontrol of take-all disease of wheat. European Journal of Plant Pathology, 2017, 149, 683-694.	0.8	21
353	Keystone microbial taxa regulate the invasion of a fungal pathogen in agro-ecosystems. Soil Biology and Biochemistry, 2017, 111, 10-14.	4.2	151
354	Green Technologies and Environmental Sustainability., 2017,,.		24
355	Microbial community composition is related to soil biological and chemical properties and bacterial wilt outbreak. Scientific Reports, 2017, 7, 343.	1.6	189
356	Application of biochar reduces Ralstonia solanacearum infection via effects on pathogen chemotaxis, swarming motility, and root exudate adsorption. Plant and Soil, 2017, 415, 269-281.	1.8	68
357	Response of rhizosphere microbial diversity and soil physico-chemical properties in a rotation of cucumber with <i>Volvariella volvacea</i> . Biocontrol Science and Technology, 2017, 27, 311-323.	0.5	6
358	Bacterial diversity of the rhizosphere and nearby surface soil of rice (Oryza sativa) growing in the Camargue (France). Rhizosphere, 2017, 3, 112-122.	1.4	29
359	Accuracy and bias of methods used for root length measurements in functional root research. Methods in Ecology and Evolution, 2017, 8, 1594-1606.	2.2	34
360	Plant pathogens but not antagonists change in soil fungal communities across a land abandonment gradient in a Mediterranean landscape. Acta Oecologica, 2017, 78, 1-6.	0.5	17
361	Rhizosphere microbiomes of potato cultivated in the High Andes show stable and dynamic core microbiomes with different responses to plant development. FEMS Microbiology Ecology, 2017, 93, fiw242.	1.3	114

#	Article	IF	CITATIONS
362	Identification of Root-Secreted Compounds Involved in the Communication Between Cucumber, the Beneficial <i>Bacillus amyloliquefaciens</i> , and the Soil-Borne Pathogen <i>Fusarium oxysporum</i> Molecular Plant-Microbe Interactions, 2017, 30, 53-62.	1.4	90
363	Crop Improvement., 2017,,.		3
364	Genomic-assisted characterisation of <i>Pseudomonas</i> sp. strain Pf4, a potential biocontrol agent in hydroponics. Biocontrol Science and Technology, 2017, 27, 969-991.	0.5	8
366	Effects of seven different companion plants on cucumber productivity, soil chemical characteristics and Pseudomonas community. Journal of Integrative Agriculture, 2017, 16, 2206-2214.	1.7	20
367	Bottlenecks in commercialisation and future prospects of PGPR. Applied Soil Ecology, 2017, 121, 102-117.	2.1	178
368	Properties analysis of transcription factor gene TasMYB36 from Trichoderma asperellum CBS433.97 and its heterogeneous transfomation to improve antifungal ability of Populus. Scientific Reports, 2017, 7, 12801.	1.6	7
369	Implementation of Biofortification Technology by Using PGPR for Sustainable Agricultural Production., 2017,, 63-79.		5
370	Draft Genome Sequence of a Kale (<i>Brassica oleracea</i> L.) Root Endophyte, <i>Pseudomonas</i> sp. Strain C9. Genome Announcements, 2017, 5, .	0.8	3
371	Microbial Interactions and Plant Health. , 2017, , 61-84.		1
372	Modulating rhizosphere colonisation, plant growth, soil nutrient availability and plant defense enzyme activity through Trichoderma viride-Azotobacter chroococcum biofilm inoculation in chickpea. Plant and Soil, 2017, 421, 157-174.	1.8	38
373	Induction of Systemic Resistance for Disease Suppression. , 2017, , 335-357.		3
374	Tree roots select specific bacterial communities in the subsurface critical zone. Soil Biology and Biochemistry, 2017, 115, 109-123.	4.2	14
375	Heat stress effects and management in wheat. A review. Agronomy for Sustainable Development, 2017, 37, 1.	2.2	263
376	Genomeâ€wide analysis of bacterial determinants of plant growth promotion and induced systemic resistance by <i>Pseudomonas fluorescens</i> . Environmental Microbiology, 2017, 19, 4638-4656.	1.8	51
377	Role of Pseudomonas sp. in Sustainable Agriculture and Disease Management. , 2017, , 195-215.		18
378	Effect of GFP-tagging on nitrogen fixation and plant growth promotion of an endophytic diazotrophic strain of <i> Paenibacillus polymyxa < /i > . Botany, 2017, 95, 933-942.</i>	0.5	31
379	Dual RNAâ€Seq of <i>Lysobacter capsici</i> AZ78 â€" <i>Phytophthora infestans</i> interaction shows the implementation of attack strategies by the bacterium and unsuccessful oomycete defense responses. Environmental Microbiology, 2017, 19, 4113-4125.	1.8	30
380	Bacterial communities incorporating plant-derived carbon in the soybean rhizosphere in Mollisols that differ in soil organic carbon content. Applied Soil Ecology, 2017, 119, 375-383.	2.1	18

#	Article	IF	CITATIONS
381	Rhizotrophs: Plant Growth Promotion to Bioremediation., 2017,,.		8
382	Role of Quorum Sensing Signals of Rhizobacteria for Plant Growth Promotion. , 2017, , 205-217.		8
383	Phytomicrobiome: A Reservoir for Sustainable Agriculture. , 2017, , 117-132.		4
384	Plant Growth Promotion by Endophytic Bacteria in Nonnative Crop Hosts. Sustainable Development and Biodiversity, 2017, , 11-45.	1.4	13
385	Soil Microbiome for Enhanced Crop Productivity. , 2017, , 227-247.		2
386	Rhizosphere Microbiome Metagenomics: Elucidating the Abditive Microflora. , 2017, , 11-27.		1
387	Rhizosphere Microbiome and Its Role in Plant Growth Promotion. , 2017, , 29-56.		4
388	A White Paper on Global Wheat Health Based on Scenario Development and Analysis. Phytopathology, 2017, 107, 1109-1122.	1.1	13
389	Mycorrhization affects root distribution of Lotus corniculatus and Calamagrostis epigeios in a nutrient poor heterogeneous soil in a rhizotron experiment. Rhizosphere, 2017, 4, 36-47.	1.4	1
390	Emerging Significance of Rhizospheric Probiotics and Its Impact on Plant Health: Current Perspective Towards Sustainable Agriculture., 2017,, 233-251.		6
391	Microbial Plant Probiotics: Problems in Application and Formulation., 2017,, 317-335.		16
392	Biodiversity effects on ecosystem functioning in a 15-year grassland experiment: Patterns, mechanisms, and open questions. Basic and Applied Ecology, 2017, 23, 1-73.	1.2	307
393	Mitigating dry season food insecurity in the subtropics by prospecting drought-tolerant, nitrogen-fixing weeds. Agriculture and Food Security, 2017, 6, .	1.6	7
394	Two-year field monitoring shows little evidence that transgenic potato containing ABF3 significantly alters its rhizosphere microbial community structure. Journal of Ecology and Environment, 2017, 41, .	1.6	0
395	Microscopic study on colonization and antimicrobial property of endophytic bacteria associated with ethnomedicinal plants of Meghalaya. Journal of Microscopy and Ultrastructure, 2017, 5, 132.	0.1	16
396	Plant species differ in early seedling growth and tissue nutrient responses to arbuscular and ectomycorrhizal fungi. Mycorrhiza, 2017, 27, 211-223.	1.3	31
397	Isolation of root-associated <i>Pseudomonas</i> and <i>Burkholderia</i> spp. with biocontrol and plant growth-promoting traits. Biocontrol Science and Technology, 2017, 27, 139-143.	0.5	7
398	Inducing the rhizosphere microbiome by biofertilizer application to suppress banana Fusarium wilt disease. Soil Biology and Biochemistry, 2017, 104, 39-48.	4.2	241

#	Article	IF	CITATIONS
399	Repeated Applications of a Nonpathogenic Streptomyces Strain Enhance Development of Suppressiveness to Potato Common Scab. Plant Disease, 2017, 101, 224-232.	0.7	9
400	Toward an Integrated Resource Management: Harnessing Trichoderma for Sustainable Intensification in Agriculture. , 2017, , 245-256.		0
401	Enhanced Plant Rooting and Crop System Management for Improved N Use Efficiency. Advances in Agronomy, 2017, , 205-239.	2.4	56
402	Relationships between Root Pathogen Resistance, Abundance and Expression of Pseudomonas Antimicrobial Genes, and Soil Properties in Representative Swiss Agricultural Soils. Frontiers in Plant Science, 2017, 8, 427.	1.7	37
403	Rhizosphere Microbiome Recruited from a Suppressive Compost Improves Plant Fitness and Increases Protection against Vascular Wilt Pathogens of Tomato. Frontiers in Plant Science, 2017, 8, 2022.	1.7	82
404	Epidemiology of Fusarium agave wilt in Agave tequilana Weber var. azul. Plant Protection Science, 2017, 53, 144-152.	0.7	9
405	Key Impact of an Uncommon Plasmid on Bacillus amyloliquefaciens subsp. plantarum S499 Developmental Traits and Lipopeptide Production. Frontiers in Microbiology, 2017, 8, 17.	1.5	15
406	Plant Growth Promoting Bacteria Associated with Langsdorffia hypogaea-Rhizosphere-Host Biological Interface: A Neglected Model of Bacterial Prospection. Frontiers in Microbiology, 2017, 08, 172.	1.5	32
407	Classification of Isolates from the Pseudomonas fluorescens Complex into Phylogenomic Groups Based in Group-Specific Markers. Frontiers in Microbiology, 2017, 8, 413.	1.5	51
408	Soil Acidification Aggravates the Occurrence of Bacterial Wilt in South China. Frontiers in Microbiology, 2017, 8, 703.	1.5	85
409	Bacterial Root Microbiome of Plants Growing in Oil Sands Reclamation Covers. Frontiers in Microbiology, 2017, 8, 849.	1.5	80
410	Fungal Communities in Rhizosphere Soil under Conservation Tillage Shift in Response to Plant Growth. Frontiers in Microbiology, 2017, 8, 1301.	1.5	92
411	Current Insights into the Role of Rhizosphere Bacteria in Disease Suppressive Soils. Frontiers in Microbiology, 2017, 8, 2529.	1.5	218
412	<i>Aeromonas media</i> in compost amendments contributes to suppression of <i>Pythium ultimum</i> in cress. Acta Horticulturae, 2017, , 353-360.	0.1	9
413	Efficiency of two inoculation methods of Pseudomonas putida on growth and yield of tomato plants. Journal of Soil Science and Plant Nutrition, 2017, 17, 1003-1012.	1.7	47
414	Ammonium and nitrate levels of soil inoculated with Azospirillum brasilense in maize. African Journal of Agricultural Research Vol Pp, 2017, 12, 863-870.	0.2	3
415	Rhizoctonia solani and Bacterial Inoculants Stimulate Root Exudation of Antifungal Compounds in Lettuce in a Soil-Type Specific Manner. Agronomy, 2017, 7, 44.	1.3	16
416	Root inoculation with beneficial micro-organisms as a means to control <i>Fusarium oxysporum</i> f. sp. <i>lycopersici</i> in two Greek landraces of tomato grown on perlite. Acta Horticulturae, 2017, , 277-286.	0.1	3

#	Article	IF	CITATIONS
417	Investigation of Rhizospheric Microbial Communities in Wheat, Barley, and Two Rice Varieties at the Seedling Stage. Journal of Agricultural and Food Chemistry, 2018, 66, 2645-2653.	2.4	60
418	Continuous application of different organic additives can suppress tomato disease by inducing the healthy rhizospheric microbiota through alterations to the bulk soil microflora. Plant and Soil, 2018, 423, 229-240.	1.8	71
419	Indigenous plant growth-promoting bacteria enhance plant growth, biomass, and nutrient uptake in degraded forest plants. 3 Biotech, 2018, 8, 154.	1.1	12
420	Transcriptional Changes in Mycorrhizal and Nonmycorrhizal Soybean Plants upon Infection with the Fungal Pathogen <i>Macrophomina phaseolina</i> . Molecular Plant-Microbe Interactions, 2018, 31, 842-855.	1.4	30
421	Biocontrol potential of Ralstonia sp. TCR112 and Mitsuaria sp. TWR114 against tomato bacterial wilt. Applied Soil Ecology, 2018, 128, 71-80.	2.1	18
422	A phytobeneficial strain (i) Planomicrobium (i) sp. MSSA-10 triggered oxidative stress responsive mechanisms and regulated the growth of pea plants under induced saline environment. Journal of Applied Microbiology, 2018, 124, 1566-1579.	1.4	44
423	Effect of nicotine from tobacco root exudates on chemotaxis, growth, biocontrol efficiency, and colonization by PseudomonasÂaeruginosa NXHG29. Antonie Van Leeuwenhoek, 2018, 111, 1237-1257.	0.7	16
424	Activating biochar by manipulating the bacterial and fungal microbiome through preâ€conditioning. New Phytologist, 2018, 219, 363-377.	3. 5	45
425	Plant Growth Promotion and Biocontrol Mediated by Plant-Associated Bacteria. Microorganisms for Sustainability, 2018, , 45-80.	0.4	15
426	Rizhospheric competence, plant growth promotion and biocontrol efficacy of Bacillus amyloliquefaciens subsp. plantarum strain 32a. Biological Control, 2018, 124, 61-67.	1.4	61
427	The rhizosphere microbial community response to a bio-organic fertilizer: finding the mechanisms behind the suppression of watermelon Fusarium wilt disease. Acta Physiologiae Plantarum, 2018, 40, 1.	1.0	14
428	Phenolic compounds as antioxidants and chemopreventive drugs from Streptomyces cellulosae strain TES17 isolated from rhizosphere of Camellia sinensis. BMC Complementary and Alternative Medicine, 2018, 18, 82.	3.7	45
429	Antimicrobial activity in culturable gut microbial communities of springtails. Journal of Applied Microbiology, 2018, 125, 740-752.	1.4	14
430	From Mycorrhizosphere to Rhizosphere Microbiome: The Paradigm Shift. Soil Biology, 2018, , 487-500.	0.6	10
431	Effect of compost tea containing phosphogypsum on potato plant growth and protection against Fusarium solani infection. Environmental Science and Pollution Research, 2018, 25, 18921-18937.	2.7	19
432	Unfolding the Role of Rhizomicrobiome Toward Sustainable Agriculture. Soil Biology, 2018, , 341-365.	0.6	4
433	Root Exudates Dominate the Colonization of Pathogen and Plant Growth-Promoting Rhizobacteria. Soil Biology, 2018, , 167-180.	0.6	12
434	Effect of fairy ring bacteria on the growth of Tricholoma matsutake in vitro culture. Mycorrhiza, 2018, 28, 411-419.	1.3	16

#	Article	IF	CITATIONS
435	Isolation, characterization and comparative analysis of plant-associated bacteria for suppression of soil-borne diseases of field-grown groundnut in Vietnam. Biological Control, 2018, 121, 256-262.	1.4	19
436	Immobilization and deactivation of pathogenic enzymes and toxic metabolites by biochar: A possible mechanism involved in soilborne disease suppression. Soil Biology and Biochemistry, 2018, 121, 59-66.	4.2	59
437	Simultaneous measurement of bacterial abundance and composition in response to biochar in soybean field soil using 16S rRNA gene sequencing. Land Degradation and Development, 2018, 29, 2172-2182.	1.8	29
438	Intensify production, transform biomass to energy and novel goods and protect soils in Europe—A vision how to mobilize marginal lands. Science of the Total Environment, 2018, 616-617, 1101-1123.	3.9	93
439	Is women empowerment a zero sum game? Unintended consequences of microfinance for women's empowerment in Ghana. International Journal of Entrepreneurial Behaviour and Research, 2018, 24, 273-289.	2.3	30
440	Benefits of flavonoids and straw mulch application on soil microbial activity in pea rhizosphere. International Journal of Environmental Science and Technology, 2018, 15, 755-764.	1.8	8
441	Rhizosphere Microenvironments of Eight Common Deciduous Fruit Trees Were Shaped by Microbes in Northern China. Frontiers in Microbiology, 2018, 9, 3147.	1.5	30
442	In vitro study of biocontrol potential of rhizospheric Pseudomonas aeruginosa against Fusarium oxysporum f. sp.Âcucumerinum. Egyptian Journal of Biological Pest Control, 2018, 28, .	0.8	43
443	Long-term combined application of manure and chemical fertilizer sustained higher nutrient status and rhizospheric bacterial diversity in reddish paddy soil of Central South China. Scientific Reports, 2018, 8, 16554.	1.6	70
444	Microbial Consortia: Promising Probiotics as Plant Biostimulants for Sustainable Agriculture. Frontiers in Plant Science, 2018, 9, 1801.	1.7	204
445	Effects of Short- and Long-Term Variation in Resource Conditions on Soil Fungal Communities and Plant Responses to Soil Biota. Frontiers in Plant Science, 2018, 9, 1605.	1.7	13
446	Effects of Heavy Metals on Phyllosphere and Rhizosphere Microbial Community of Bothriochloa ischaemum. Applied Sciences (Switzerland), 2018, 8, 1419.	1.3	14
447	Utility of Arbuscular Mycorrhizal Fungi for Improved Production and Disease Mitigation in Organic and Hydroponic Greenhouse Crops. Journal of Horticulture, 2018, 05, .	0.3	19
448	Plant Phenotypic Traits Eventually Shape Its Microbiota: A Common Garden Test. Frontiers in Microbiology, 2018, 9, 2479.	1.5	68
449	Beneficial Soil Microbiome for Sustainable Agriculture Production. Sustainable Agriculture Reviews, 2018, , 443-481.	0.6	27
450	Soil acidification amendments change the rhizosphere bacterial community of tobacco in a bacterial wilt affected field. Applied Microbiology and Biotechnology, 2018, 102, 9781-9791.	1.7	83
451	Modulation of Tomato Response to Rhizoctonia solani by Trichoderma harzianum and Its Secondary Metabolite Harzianic Acid. Frontiers in Microbiology, 2018, 9, 1966.	1.5	126
452	Comparative microscopic observations of arbuscular mycorrhizal fungi after colonization of five Tunisian olive cultivars. African Journal of Agricultural Research Vol Pp, 2018, 13, 1095-1100.	0.2	0

#	Article	IF	Citations
453	Halotolerant bacteria belonging to operational group <i>Bacillus amyloliquefaciens</i> in biocontrol of the rice brown stripe pathogen <i>Acidovorax oryzae</i> Journal of Applied Microbiology, 2018, 125, 1852-1867.	1.4	26
454	Pathogenic <i>Streptomyces</i> spp. Abundance Affected by Potato Cultivars. Phytopathology, 2018, 108, 1046-1055.	1.1	6
455	Fungal community composition and diversity vary with soil depth and landscape position in a no-till wheat-based cropping system. FEMS Microbiology Ecology, 2018, 94, .	1.3	48
456	Crop rotational diversity increases disease suppressive capacity of soil microbiomes. Ecosphere, 2018, 9, e02235.	1.0	134
457	Effect of phenolic acids from banana root exudates on root colonization and pathogen suppressive properties of Bacillus amyloliquefaciens NJN-6. Biological Control, 2018, 125, 131-137.	1.4	25
458	Rhizosphere microbial communities of canola and wheat at six paired field sites. Applied Soil Ecology, 2018, 130, 185-193.	2.1	19
459	Exploring the resilience of wheat crops grown in short rotations through minimising the build-up of an important soil-borne fungal pathogen. Scientific Reports, 2018, 8, 9550.	1.6	12
460	Effect of combined application of biofumigant, Trichoderma harzianum and Pseudomonas fluorescens on Rhizoctonia solani f.sp. sasakii. Indian Phytopathology, 2018, 71, 257-263.	0.7	8
461	Synergistic and antagonistic effects of mixing monospecific soils on plant-soil feedbacks. Plant and Soil, 2018, 429, 271-279.	1.8	4
462	Thermal disturbance of fertile soils to search for new biological control options in strawberry crops affected by yield decline. Biological Control, 2018, 126, 65-73.	1.4	4
463	1-Aminocyclopropane-1-carboxylate deaminase producers associated to maize and other Poaceae species. Microbiome, 2018, 6, 114.	4.9	55
464	The Sesamum indicum Rhizosphere Associated Bacterium: A Source of Antifungal Compound. Current Topics in Medicinal Chemistry, 2018, 18, 88-97.	1.0	2
465	Comparative Microbiome Analysis of a Fusarium Wilt Suppressive Soil and a Fusarium Wilt Conducive Soil From the Ch¢teaurenard Region. Frontiers in Microbiology, 2018, 9, 568.	1.5	113
466	Trichoderma Biofertilizer Links to Altered Soil Chemistry, Altered Microbial Communities, and Improved Grassland Biomass. Frontiers in Microbiology, 2018, 9, 848.	1.5	89
467	Rhizosphere Protists Change Metabolite Profiles in Zea mays. Frontiers in Microbiology, 2018, 9, 857.	1.5	20
468	Comparative Metatranscriptomics of Wheat Rhizosphere Microbiomes in Disease Suppressive and Non-suppressive Soils for Rhizoctonia solani AG8. Frontiers in Microbiology, 2018, 9, 859.	1.5	66
469	Evaluation of ACC deaminase producing Pseudomonas fluorescens strains for their effects on seed germination and early growth of wheat under salt stress. Australian Journal of Crop Science, 2018, 12, 413-421.	0.1	27
470	Barcoded Pyrosequencing Reveals a Shift in the Bacterial Community in the Rhizosphere and Rhizoplane of Rehmannia glutinosa under Consecutive Monoculture. International Journal of Molecular Sciences, 2018, 19, 850.	1.8	47

#	Article	IF	CITATIONS
471	Breeding for soil-borne pathogen resistance impacts active rhizosphere microbiome of common bean. ISME Journal, 2018, 12, 3038-3042.	4.4	92
472	Analysis of the genome sequence of plant beneficial strain Pseudomonas sp. RU47. Journal of Biotechnology, 2018, 281, 183-192.	1.9	15
473	The rhizosphere microbiome: Significance in rhizoremediation of polyaromatic hydrocarbon contaminated soil. Journal of Environmental Management, 2018, 217, 858-870.	3.8	86
474	Effect of land use and soil organic matter quality on the structure and function of microbial communities in pastoral soils: Implications for disease suppression. PLoS ONE, 2018, 13, e0196581.	1.1	34
475	Impact of domestication on the evolution of rhizomicrobiome of rice in response to the presence of Magnaporthe oryzae. Plant Physiology and Biochemistry, 2018, 132, 156-165.	2.8	23
476	Plant host habitat and root exudates shape fungal diversity. Mycorrhiza, 2018, 28, 451-463.	1.3	63
477	Trichoderma improves the growth of Leymus chinensis. Biology and Fertility of Soils, 2018, 54, 685-696.	2.3	32
478	Deciphering the Rhizosphere and Geocaulosphere Microbiomes of Potato Following Inoculation with the Biocontrol Agent <i>Pseudomonas fluorescens</i> Strain LBUM223. Phytobiomes Journal, 2018, 2, 92-99.	1.4	27
479	Manipulation of the rhizosphere microbial community through application of a new bio-organic fertilizer improves watermelon quality and health. PLoS ONE, 2018, 13, e0192967.	1.1	49
480	Genomic insights into the broad antifungal activity, plant-probiotic properties, and their regulation, in Pseudomonas donghuensis strain SVBP6. PLoS ONE, 2018, 13, e0194088.	1.1	42
481	Lipopeptide biodiversity in antifungal Bacillus strains isolated from Algeria. Archives of Microbiology, 2018, 200, 1205-1216.	1.0	15
482	Root-associated bacteria influencing mycelial growth of Tricholoma matsutake (pine mushroom). Journal of Microbiology, 2018, 56, 399-407.	1.3	30
483	Relative importance of competition and plant–soil feedback, their synergy, context dependency and implications for coexistence. Ecology Letters, 2018, 21, 1268-1281.	3.0	197
484	Plant growth-promoting rhizobacteria associated with avocado display antagonistic activity against Phytophthora cinnamomi through volatile emissions. PLoS ONE, 2018, 13, e0194665.	1.1	83
485	Metabolic Responses of Plants Upon Different Plant–Pathogen Interactions. , 2018, , 195-214.		4
486	Applying predictive models to decipher rhizobacterial modifications in common reed die-back affected populations. Science of the Total Environment, 2018, 642, 708-722.	3.9	14
487	Water-Extractable Organic Carbon and Nitrogen Affected by Crop Rotation and Fertilizer Management. SSSA Special Publication Series, 0, , 119-135.	0.2	6
488	Genome Sequence and Antifungal Activity of Two Niche-Sharing Pseudomonas protegens Related Strains Isolated from Hydroponics. Microbial Ecology, 2019, 77, 1025-1035.	1.4	2

#	Article	IF	CITATIONS
489	Linking ecology and plant pathology to unravel the importance of soil-borne fungal pathogens in species-rich grasslands. European Journal of Plant Pathology, 2019, 154, 141-156.	0.8	42
490	Soil-plant compartments affect fungal microbiome diversity and composition in grapevine. Fungal Ecology, 2019, 41, 234-244.	0.7	85
491	Common and unique rhizosphere microbial communities of wheat and canola in a semiarid Mediterranean environment. Applied Soil Ecology, 2019, 144, 170-181.	2.1	41
492	Plant-Microbiome Interactions in Agroecosystem: An Application. , 2019, , 251-291.		3
493	Role of Endophytes in Plant Health and Abiotic Stress Management. , 2019, , 119-144.		42
494	Metagenomic Approach in Relation to Microbe–Microbe and Plant–Microbiome Interactions. , 2019, , 507-534.		4
495	Microbes: An Important Resource for Sustainable Agriculture. , 2019, , 53-77.		2
496	Applications of the Soil, Plant and Rumen Microbiomes in Pastoral Agriculture. Frontiers in Nutrition, 2019, 6, 107.	1.6	30
497	Metagenomics as a Tool to Explore New Insights from Plant-Microbe Interface., 2019, , 271-289.		4
498	Management of Soil-Borne Diseases of Grain Legumes Through Broad-Spectrum Actinomycetes Having Plant Growth-Promoting and Biocontrol Traits. , 2019, , 129-144.		6
499	Following legume establishment, microbial and chemical associations facilitate improved productivity in degraded grasslands. Plant and Soil, 2019, 443, 273-292.	1.8	14
500	Rhizospheric bacteria from pristine grassland have beneficial traits for plant growth promotion in maize (<i>Zea mays</i> L.). Cogent Biology, 2019, 5, 1630972.	1.7	7
501	Continuous Monoculture Shapes Root and Rhizosphere Fungal Communities of Corn and Soybean in Soybean Cyst Nematode-Infested Soil. Phytobiomes Journal, 2019, 3, 300-314.	1.4	10
502	Influence of Xenobiotics on the Mycorrhizosphere. , 2019, , 111-137.		3
503	Re-addressing the biosafety issues of plant growth promoting rhizobacteria. Science of the Total Environment, 2019, 690, 841-852.	3.9	94
504	Reduction of initial occurrence of rice blast (Pyricularia oryzae) inocula on seeds by microbial and hot water seed treatments. Australian Journal of Crop Science, 2019, 13, 309-314.	0.1	2
505	Pharmaceutical exposure changed antibiotic resistance genes and bacterial communities in soil-surface- and overhead-irrigated greenhouse lettuce. Environment International, 2019, 131, 105031.	4.8	48
506	Properties of bacterial community in the rhizosphere soils of Achyranthes bidentata tolerant to consecutive monoculture. Plant Growth Regulation, 2019, 89, 167-178.	1.8	17

#	ARTICLE	IF	CITATIONS
507	Consortium of Plant Growth-Promoting Rhizobacteria Strains Suppresses Sweet Pepper Disease by Altering the Rhizosphere Microbiota. Frontiers in Microbiology, 2019, 10, 1668.	1.5	98
508	Deciphering Microbiome Related to Rusty Roots of Panax ginseng and Evaluation of Antagonists Against Pathogenic Ilyonectria. Frontiers in Microbiology, 2019, 10, 1350.	1.5	34
510	Compatibility Potential of Brassica Species and Mustard Seed Meal with Pseudomonas fluorescens for Biological Control of Soilborne Plant Diseases. , 2019, , 217-231.		1
511	Plant Growth-Promoting Rhizobacteria as Biological Tools for Nutrient Management and Soil Sustainability., 2019,, 95-110.		4
513	The Role of Plant Litter in Driving Plant-Soil Feedbacks. Frontiers in Environmental Science, 2019, 7, .	1.5	79
514	Growth promotion and biocontrol activity of Nocardiopsis dassonvillei strain YM12: anÂisolate from coastal agricultural land of Khambhat. Vegetos, 2019, 32, 571-582.	0.8	12
515	Prolonged exposure to manure from livestockâ€administered antibiotics decreases ecosystem carbonâ€use efficiency and alters nitrogen cycling. Ecology Letters, 2019, 22, 2067-2076.	3.0	30
516	Bacterial communities in the rhizosphere, phyllosphere and endosphere of tomato plants. PLoS ONE, 2019, 14, e0223847.	1.1	143
517	Structure and variation of root-associated microbiomes of potato grown in alfisol. World Journal of Microbiology and Biotechnology, 2019, 35, 181.	1.7	19
518	Harnessing the soil microbial wealth for enhancement of plant secondary metabolites in medicinal and aromatic plants., 2019,, 179-190.		1
519	Integrated management of diseases and pests on ornamental geophytes: challenges and progress. Acta Horticulturae, 2019, , 13-32.	0.1	2
520	Soil sterilization leads to re-colonization of a healthier rhizosphere microbiome. Rhizosphere, 2019, 12, 100176.	1.4	37
521	Trichoderma harzianum Rifai: A Beneficial Fungus for Growth and Development of Abroma augusta L. Seedlings with Other Microbial Bio-Inoculants. , 2019, , .		1
522	Grazing Affects the Ecological Stoichiometry of the Plant–Soil–Microbe System on the Hulunber Steppe, China. Sustainability, 2019, 11, 5226.	1.6	9
523	Novel antimicrobial and antioxidative activity by endophytic Penicillium roqueforti and Trichoderma reesei isolated from Solanum surattense. Acta Physiologiae Plantarum, 2019, 41, 1.	1.0	21
524	Applying the Aboveground-Belowground Interaction Concept in Agriculture: Spatio-Temporal Scales Matter. Frontiers in Ecology and Evolution, 2019, 7, .	1.1	20
525	Biocontrol and plant growth promoting potential of phylogenetically new Streptomyces sp. MR14 of rhizospheric origin. AMB Express, 2019, 9, 125.	1.4	50
526	Comparative diversity of microbiomes and Resistomes in beef feedlots, downstream environments and urban sewage influent. BMC Microbiology, 2019, 19, 197.	1.3	34

#	Article	IF	CITATIONS
527	Antagonistic activity and mechanism of an isolated Streptomyces corchorusii stain AUH-1 against phytopathogenic fungi. World Journal of Microbiology and Biotechnology, 2019, 35, 145.	1.7	32
528	Rhizosphere-enriched microbes as a pool to design synthetic communities for reproducible beneficial outputs. FEMS Microbiology Ecology, 2019, 95, .	1.3	50
530	Resistance Breeding of Common Bean Shapes the Physiology of the Rhizosphere Microbiome. Frontiers in Microbiology, 2019, 10, 2252.	1.5	41
531	Tobacco Growth Promotion by the Entomopathogenic Fungus, <i>Isaria javanica</i> pf185. Mycobiology, 2019, 47, 126-133.	0.6	7
532	Bacterial communities associated to Chilean altiplanic native plants from the Andean grasslands soils. Scientific Reports, 2019, 9, 1042.	1.6	32
533	Impacts of long-term plant residue management on soil organic matter quality, Pseudomonas community structure and disease suppressiveness. Soil Biology and Biochemistry, 2019, 135, 396-406.	4.2	22
534	Endophytic ability of the insecticidal bacterium Brevibacillus laterosporus in Brassica. PLoS ONE, 2019, 14, e0216341.	1.1	6
535	Microbial Nanobionics. Nanotechnology in the Life Sciences, 2019, , .	0.4	7
536	The Structure of Bacterial and Fungal Communities in the Rhizosphere and Root-Free Loci of Gray Forest Soil. Eurasian Soil Science, 2019, 52, 319-332.	0.5	29
537	Sensing Soil Microbes and Interactions: How Can Nanomaterials Help?. Nanotechnology in the Life Sciences, 2019, , 213-236.	0.4	8
538	Volatiles of pathogenic and non-pathogenic soil-borne fungi affect plant development and resistance to insects. Oecologia, 2019, 190, 589-604.	0.9	43
539	Identification and Determination of Characteristics of Endophytes from Rice Plants. Reference Series in Phytochemistry, 2019, , 215-247.	0.2	0
540	Crop Diseases and Mycotoxin Accumulation in Temperate Agroforestry Systems. Sustainability, 2019, 11, 2925.	1.6	26
541	Effect of Organic Inputs and Solarization for the Suppression of Rhizoctonia solani in Woody Ornamental Plant Production. Plants, 2019, 8, 138.	1.6	6
542	Plant Growth and Health Promoting Plant-Microbe Interactions. , 2019, , 253-260.		1
543	Mineral nutrient management for onion bulb crops – a review. Journal of Horticultural Science and Biotechnology, 2019, 94, 703-717.	0.9	16
544	A genomic island in a plant beneficial rhizobacterium encodes novel antimicrobial fatty acids and a selfâ€protection shield to enhance its competition. Environmental Microbiology, 2019, 21, 3455-3471.	1.8	21
545	Plant Health Under Biotic Stress. , 2019, , .		33

#	Article	IF	CITATIONS
546	Leaf and Root Endospheres Harbor Lower Fungal Diversity and Less Complex Fungal Co-occurrence Patterns Than Rhizosphere. Frontiers in Microbiology, 2019, 10, 1015.	1.5	60
547	Microbiota Associated with Sclerotia of Soilborne Fungal Pathogens – A Novel Source of Biocontrol Agents Producing Bioactive Volatiles. Phytobiomes Journal, 2019, 3, 125-136.	1.4	41
548	Diversity of anammox bacteria and abundance of functional genes for nitrogen cycling in the rhizosphere of submerged macrophytes in a freshwater lake in summer. Journal of Soils and Sediments, 2019, 19, 3648-3656.	1.5	17
549	Endophytic Bacteria: Prospects and Applications for the Plant Disease Management., 2019, , 1-50.		14
550	Microbial "gardening―by a seaweed holobiont: Surface metabolites attract protective and deter pathogenic epibacterial settlement. Journal of Ecology, 2019, 107, 2255-2265.	1.9	98
551	Development of multiplex PCR assay for simultaneous detection of five cucumber pathogens based on comparative genomics. Australasian Plant Pathology, 2019, 48, 369-372.	0.5	7
552	Functional and Genetic Diversity of Bacteria Associated with the Surfaces of Agronomic Plants. Plants, 2019, 8, 91.	1.6	9
553	Co-occurrence analysis reveal that biotic and abiotic factors influence soil fungistasis against Fusarium graminearum. FEMS Microbiology Ecology, 2019, 95, .	1.3	15
554	Metabolites of Plant Growth-Promoting Rhizobacteria for the Management of Soilborne Pathogenic Fungi in Crops., 2019,, 293-315.		8
555	Non-mycorrhizal Fungal Spectrum of Root Communities. , 2019, , 77-85.		2
556	Relationships between fungal community composition in decomposing leaf litter and homeâ€field advantage effects. Functional Ecology, 2019, 33, 1524-1535.	1.7	47
557	Fitness Features Involved in the Biocontrol Interaction of Pseudomonas chlororaphis With Host Plants: The Case Study of PcPCL1606. Frontiers in Microbiology, 2019, 10, 719.	1.5	55
558	Microbiome of Rhizospheric Soil and Vermicompost and Their Applications in Soil Fertility, Pest and Pathogen Management for Sustainable Agriculture., 2019,, 189-210.		6
559	Antifungal and plant growth promotion activity of volatile organic compounds produced by <i>Bacillus amyloliquefaciens</i> . MicrobiologyOpen, 2019, 8, e00813.	1.2	115
560	Biological Control Agents Against Fusarium Wilt of Banana. Frontiers in Microbiology, 2019, 10, 616.	1.5	179
561	The peculiar physiological responses of Rhizoctonia solani under the antagonistic interaction coupled by a novel antifungalmycin N2 from Streptomyces sp. N2. Archives of Microbiology, 2019, 201, 787-794.	1.0	6
562	Changes in the soil microbial community are associated with the occurrence of Panax quinquefolius L. root rot diseases. Plant and Soil, 2019, 438, 143-156.	1.8	39
563	Disease Incidence in Sugar Beet Fields Is Correlated with Microbial Diversity and Distinct Biological Markers. Phytobiomes Journal, 2019, 3, 22-30.	1.4	47

#	Article	IF	CITATIONS
564	Efficacy of arbuscular mycorrhizal fungi and endophytic strain Epicoccum nigrum ASU11 as biocontrol agents against blackleg disease of potato caused by bacterial strain Pectobacterium carotovora subsp. atrosepticum PHY7. Biological Control, 2019, 134, 103-113.	1.4	59
565	Temporal dynamics of bacterial and fungal communities during the infection of Brassica rapa roots by the protist Plasmodiophora brassicae. PLoS ONE, 2019, 14, e0204195.	1.1	45
566	Highly connected taxa located in the microbial network are prevalent in the rhizosphere soil of healthy plant. Biology and Fertility of Soils, 2019, 55, 299-312.	2.3	57
567	Lime and ammonium carbonate fumigation coupled with bioâ€organic fertilizer application steered banana rhizosphere to assemble a unique microbiome against Panama disease. Microbial Biotechnology, 2019, 12, 515-527.	2.0	23
568	Rotations with Indian Mustard and Wild Rocket Suppressed Cucumber Fusarium Wilt Disease and Changed Rhizosphere Bacterial Communities. Microorganisms, 2019, 7, 57.	1.6	22
569	Soil Fertility Management for Sustainable Development. , 2019, , .		16
570	Organic Soil Amendments: Potential Tool for Soil and Plant Health Management., 2019, , 1-35.		9
571	Plant Health Under Biotic Stress. , 2019, , .		28
572	Spatial and temporal dynamics of blue agave (Agave tequilana Weber var. azul) wilt in Jalisco Mexico. Journal of Phytopathology, 2019, 167, 299-311.	0.5	2
573	Isolation and Characterization of Antagonistic Bacteria <i> Paenibacillus jamilae</i> HS-26 and Their Effects on Plant Growth. BioMed Research International, 2019, 2019, 1-13.	0.9	41
574	Assessing the resilience of biodiversity-driven functions in agroecosystems under environmental change. Advances in Ecological Research, 2019, , 59-123.	1.4	32
575	Changes in rhizosphere bacterial communities during remediation of heavy metal-accumulating plants around the Xikuangshan mine in southern China. Scientific Reports, 2019, 9, 1947.	1.6	59
576	Actinobacteria Structure in Autogenic, Hydrogenic and Lithogenic Cultivated and Non-Cultivated Soils: A Culture-Independent Approach. Agronomy, 2019, 9, 598.	1.3	17
577	Rhizosphere microbiome and plant probiotics. , 2019, , 273-281.		3
578	The change of microbial communities in rhizomicrobiome due to the land management. IOP Conference Series: Earth and Environmental Science, 2019, 393, 012043.	0.2	0
579	Secreted metabolite-mediated interactions between rhizosphere bacteria and Trichoderma biocontrol agents. PLoS ONE, 2019, 14, e0227228.	1.1	22
580	Annual replication is essential in evaluating the response of the soil microbiome to the genetic modification of maize in different biogeographical regions. PLoS ONE, 2019, 14, e0222737.	1.1	8
581	Phage combination therapies for bacterial wilt disease in tomato. Nature Biotechnology, 2019, 37, 1513-1520.	9.4	164

#	Article	IF	CITATIONS
582	Deciphering differences in the chemical and microbial characteristics of healthy and Fusarium wilt-infected watermelon rhizosphere soils. Applied Microbiology and Biotechnology, 2019, 103, 1497-1509.	1.7	34
583	Rhizosphere fungal community structure succession of Xinjiang continuously cropped cotton. Fungal Biology, 2019, 123, 42-50.	1.1	7
584	Mechanistic understanding and future prospect of microbe-enhanced phytoremediation of polycyclic aromatic hydrocarbons in soil. Environmental Technology and Innovation, 2019, 13, 318-330.	3.0	63
585	Rhizobia protect their legume hosts against soil-borne microbial antagonists in a host-genotype-dependent manner. Rhizosphere, 2019, 9, 47-55.	1.4	24
586	A suite of complementary biocontrol traits allows a native consortium of rootâ€associated bacteria to protect their host plant from a fungal suddenâ€wilt disease. Molecular Ecology, 2019, 28, 1154-1169.	2.0	55
587	Analysis of the community composition and bacterial diversity of the rhizosphere microbiome across different plant taxa. MicrobiologyOpen, 2019, 8, e00762.	1.2	41
588	Trichoderma-Inoculation and Mowing Synergistically Altered Soil Available Nutrients, Rhizosphere Chemical Compounds and Soil Microbial Community, Potentially Driving Alfalfa Growth. Frontiers in Microbiology, 2018, 9, 3241.	1.5	32
589	Identification and Determination of Characteristics of Endophytes from Rice Plants. Reference Series in Phytochemistry, 2019, , 1-34.	0.2	0
590	Brassicaceous seed meal, root removal, and chemical fumigation vary in their effects on soil quality parameters and Pratylenchus penetrans in a replanted floricane raspberry production system. Applied Soil Ecology, 2019, 133, 44-51.	2.1	10
591	Metabolomics approaches for the discrimination of disease suppressive soils for Rhizoctonia solani AG8 in cereal crops using 1H NMR and LC-MS. Science of the Total Environment, 2019, 651, 1627-1638.	3.9	37
592	Evaluating anaerobic soil disinfestation and other biological soil management strategies for open-field tomato production in Florida. Renewable Agriculture and Food Systems, 2020, 35, 274-285.	0.8	15
593	Biocontrol of Root Diseases and Growth Promotion of the Tuberous Plant Aconitum carmichaelii Induced by Actinomycetes Are Related to Shifts in the Rhizosphere Microbiota. Microbial Ecology, 2020, 79, 134-147.	1.4	30
594	Soil properties and microbial communities are the main contributors to aboveground vegetative biomass in reseeded grassland after long-term growth. Journal of Soils and Sediments, 2020, 20, 824-835.	1.5	6
595	Biocontrol activities of rhizobacteria associated with apple, apricot and kiwi rhizosphere against bacterial canker caused by Clavibacter michiganensis. Indian Phytopathology, 2020, 73, 45-56.	0.7	5
596	Scanning electron microscopy reveals deleterious effects of Moringa oleifera seed exuded proteins on root-knot nematode Meloidogyne incognita eggs. International Journal of Biological Macromolecules, 2020, 154, 1237-1244.	3.6	15
597	Induction of Systemic Resistance in Chickpea (Cicer arietinum L.) Against Fusarium oxysporum f. sp. ciceris by Antagonistic Rhizobacteria in Assistance with Native Mesorhizobium. Current Microbiology, 2020, 77, 85-98.	1.0	14
598	Long-term organic fertilization improves the productivity of kiwifruit (Actinidia chinensis Planch.) through increasing rhizosphere microbial diversity and network complexity. Applied Soil Ecology, 2020, 147, 103426.	2.1	56
599	Rhizosphere bacteria assembly derived from fumigation and organic amendment triggers the direct and indirect suppression of tomato bacterial wilt disease. Applied Soil Ecology, 2020, 147, 103364.	2.1	34

#	Article	IF	CITATIONS
600	Crop-dependent root-microbe-soil interactions induce contrasting natural attenuation of organochlorine lindane in soils. Environmental Pollution, 2020, 257, 113580.	3.7	13
601	Long-Term Greenhouse Cucumber Production Alters Soil Bacterial Community Structure. Journal of Soil Science and Plant Nutrition, 2020, 20, 306-321.	1.7	33
602	Rhizosphere and litter feedbacks to rangeâ€expanding plant species and related natives. Journal of Ecology, 2020, 108, 353-365.	1.9	16
603	Drivers of the composition of active rhizosphere bacterial communities in temperate grasslands. ISME Journal, 2020, 14, 463-475.	4.4	141
604	Soil biodiversity and biogeochemical function in managed ecosystems. Soil Research, 2020, 58, 1.	0.6	28
605	Effects of commercial microbial biostimulants on soil and root microbial communities and sugarcane yield. Biology and Fertility of Soils, 2020, 56, 565-580.	2.3	20
606	Fungal Communities of the Canola Rhizosphere: Keystone Species and Substantial Between-Year Variation of the Rhizosphere Microbiome. Microbial Ecology, 2020, 80, 762-777.	1.4	33
607	Peanut plant growth was altered by monocropping-associated microbial enrichment of rhizosphere microbiome. Plant and Soil, 2020, 446, 655-669.	1.8	20
608	Antifungal Action of Antifungalmycin N2 Against Rhizoctonia solani by Disrupting Cell Membrane and Inhibiting Succinate Dehydrogenase. Current Microbiology, 2020, 77, 254-260.	1.0	8
609	Relationships between yield, rotation length, and abundance of Olpidium brassicae and Pyrenochaeta sp. in the rhizosphere of oilseed rape. Applied Soil Ecology, 2020, 147, 103433.	2.1	3
610	Can dynamic network modelling be used to identify adaptive microbiomes?. Functional Ecology, 2020, 34, 2065-2074.	1.7	6
611	Plant pathological condition is associated with fungal community succession triggered by root exudates in the plant-soil system. Soil Biology and Biochemistry, 2020, 151, 108046.	4.2	33
612	Rhizosphere fungi actively assimilating plant-derived carbon in a grassland soil. Fungal Ecology, 2020, 48, 100988.	0.7	21
613	Faunal input at host plants: Can camel thorn trees use nutrients imported by resident sociable weavers?. Ecology and Evolution, 2020, 10, 11643-11656.	0.8	9
614	Development of a TaqMan-based real-time PCR assay for detection and quantification of Pythium aphanidermatum in plant and soil samples. New Zealand Journal of Crop and Horticultural Science, 2020, 48, 244-256.	0.7	0
615	Serratia., 2020,, 27-36.		3
616	Antagonistic Activity of Chilean Strains of Pseudomonas protegens Against Fungi Causing Crown and Root Rot of Wheat (Triticum aestivum L.). Frontiers in Plant Science, 2020, 11, 951.	1.7	12
617	Biotechnological applications of seed microbiomes for sustainable agriculture and environment., 2020, , 127-143.		5

#	Article	IF	Citations
618	Effects of biocontrol bacteria and earthworms on Aphanomyces euteiches root-rot and growth of peas (Pisum sativum) studied in a pot experiment. Acta Agriculturae Scandinavica - Section B Soil and Plant Science, 2020, 70, 427-436.	0.3	1
619	Plant Microbiomes: Understanding the Aboveground Benefits. , 2020, , 51-80.		2
620	Structural variability and niche differentiation of the rhizosphere and endosphere fungal microbiome of Casuarina equisetifolia at different ages. Brazilian Journal of Microbiology, 2020, 51, 1873-1884.	0.8	7
621	Tiny microbes, big yields: Microorganisms for enhancing food crop production for sustainable development. , 2020, , 1-15.		58
622	Significance of Plant Growth Promoting Rhizobacteria in Grain Legumes: Growth Promotion and Crop Production. Plants, 2020, 9, 1596.	1.6	86
623	Diversity of Soil Bacterial Community Is Influenced by Spatial Location and Time but Not Potato Cultivar. Phytobiomes Journal, 2020, 4, 225-238.	1.4	10
625	Soil microbiota influences clubroot disease by modulating <i>Plasmodiophora brassicae</i> and <i>Brassica napus</i> transcriptomes. Microbial Biotechnology, 2020, 13, 1648-1672.	2.0	22
626	Trichoderma. , 2020, , 571-591.		2
627	pH effect on strain-specific transcriptomes of the take-all fungus. PLoS ONE, 2020, 15, e0236429.	1.1	2
628	Plant growth promoting Pseudomonas aeruginosa from Valeriana wallichii displays antagonistic potential against three phytopathogenic fungi. Molecular Biology Reports, 2020, 47, 6015-6026.	1.0	43
629	More than words: the chemistry behind the interactions in the plant holobiont. Environmental Microbiology, 2020, 22, 4532-4544.	1.8	33
630	Microbiome Management by Biological and Chemical Treatments in Maize Is Linked to Plant Health. Microorganisms, 2020, 8, 1506.	1.6	17
631	Bioinformatic Mapping of Opine-Like Zincophore Biosynthesis in Bacteria. MSystems, 2020, 5, .	1.7	26
632	Bio-organic fertilizers stimulate indigenous soil Pseudomonas populations to enhance plant disease suppression. Microbiome, 2020, 8, 137.	4.9	181
633	Augmenting the Sustainability of Vegetable Cropping Systems by Configuring Rootstock-Dependent Rhizomicrobiomes that Support Plant Protection. Agronomy, 2020, 10, 1185.	1.3	9
634	Microbe-Plant Growing Media Interactions Modulate the Effectiveness of Bacterial Amendments on Lettuce Performance Inside a Plant Factory with Artificial Lighting. Agronomy, 2020, 10, 1456.	1.3	22
635	Improvement of a dry formulation of Pseudomonas protegens SN15-2 against Ralstonia solanacearum by combination of hyperosmotic cultivation with fluidized-bed drying. BioControl, 2020, 65, 751-761.	0.9	4
637	Relationships between yield of winter wheat and bacterial and protozoan fatty acids affected by different green manure amendments. Soil Science and Plant Nutrition, 2020, 66, 553-559.	0.8	1

#	Article	IF	CITATIONS
638	Biofumigation to protect oilseed crops: focus on management of soilborne fungi of sunflower. OCL - Oilseeds and Fats, Crops and Lipids, 2020, 27, 59.	0.6	3
639	Long Term Comparison of Talc- and Peat-Based Phytobeneficial Pseudomonas fluorescens and Pseudomonas synxantha Bioformulations for Promoting Plant Growth. Frontiers in Sustainable Food Systems, 2020, 4, .	1.8	12
640	The Role of DNA in the Extracellular Environment: A Focus on NETs, RETs and Biofilms. Frontiers in Plant Science, 2020, 11, 589837.	1.7	19
641	Soybean Nodule-Associated Non-Rhizobial Bacteria Inhibit Plant Pathogens and Induce Growth Promotion in Tomato. Plants, 2020, 9, 1494.	1.6	15
642	Volatile-Mediated Inhibitory Activity of Rhizobacteria as a Result of Multiple Factors Interaction: The Case of Lysobacter capsici AZ78. Microorganisms, 2020, 8, 1761.	1.6	9
643	The Cellular Response to Lanthanum Is Substrate Specific and Reveals a Novel Route for Glycerol Metabolism in Pseudomonas putida KT2440. MBio, 2020, 11 , .	1.8	17
644	A Framework for the Selection of Plant Growth-Promoting Rhizobacteria Based on Bacterial Competence Mechanisms. Applied and Environmental Microbiology, 2020, 86, .	1.4	38
645	Dynamics Relationship of Phyllosphere and Rhizosphere Bacterial Communities During the Development of Bothriochloa ischaemum in Copper Tailings. Frontiers in Microbiology, 2020, 11, 869.	1.5	5
646	Long-term fertilization rather than plant species shapes rhizosphere and bulk soil prokaryotic communities in agroecosystems. Applied Soil Ecology, 2020, 154, 103641.	2.1	69
647	Impact of Various Grass Species on Soil Bacteriobiome. Diversity, 2020, 12, 212.	0.7	10
648	Soil Health and Sustainable Agriculture. Sustainability, 2020, 12, 4859.	1.6	181
649	Enhancing Agrichemical Delivery and Seedling Development with Biodegradable, Tunable, Biopolymer-Based Nanofiber Seed Coatings. ACS Sustainable Chemistry and Engineering, 2020, 8, 9537-9548.	3.2	59
650	Metabolomics, an Essential Tool in Exploring and Harnessing Microbial Chemical Ecology. Phytobiomes Journal, 2020, 4, 195-210.	1.4	16
651	Trichoderma. Rhizosphere Biology, 2020, , .	0.4	12
652	Nano-enabled improvements of growth and nutritional quality in food plants driven by rhizosphere processes. Environment International, 2020, 142, 105831.	4.8	106
653	<i>In vitro</i> and <i>in planta</i> antagonistic effects of plant growth-promoting rhizobacteria consortium against soilborne plant pathogens of <i>Solanum tuberosum</i> and <i>Solanum lycopersicum</i> FEMS Microbiology Letters, 2020, 367, .	0.7	14
654	Rhizosphere fungal communities of wild and cultivated soybeans grown in three different soil suspensions. Applied Soil Ecology, 2020, 153, 103586.	2.1	7
655	Plant Microbiomes for Sustainable Agriculture. Sustainable Development and Biodiversity, 2020, , .	1.4	134

#	Article	IF	CITATIONS
656	Interruption of Aspergillus niger spore germination by the bacterially produced secondary metabolite collimomycin. Environmental Microbiology Reports, 2020, 12, 306-313.	1.0	6
657	Effects of Different Fertilizers on Rhizosphere Bacterial Communities of Winter Wheat in the North China Plain. Agronomy, 2020, 10, 93.	1.3	24
658	Cannabis Microbiome and the Role of Endophytes in Modulating the Production of Secondary Metabolites: An Overview. Microorganisms, 2020, 8, 355.	1.6	63
659	Evidence of Biocontrol Activity of Bioinoculants Against a Human Pathogen, Listeria monocytogenes. Frontiers in Microbiology, 2020, $11,350$.	1.5	13
660	Community context for mechanisms of disease dilution: insights from linking epidemiology and plant–soil feedback theory. Annals of the New York Academy of Sciences, 2020, 1469, 65-85.	1.8	16
661	Do soilâ€borne fungal pathogens mediate plant diversity–productivity relationships? Evidence and future opportunities. Journal of Ecology, 2020, 108, 1810-1821.	1.9	49
662	Fungal diversity and community composition of wheat rhizosphere and non-rhizosphere soils from three different agricultural production regions of South Africa. Applied Soil Ecology, 2020, 151, 103543.	2.1	32
663	Versatile Piriformospora indica and Its Potential Applications in Horticultural Crops. Horticultural Plant Journal, 2020, 6, 111-121.	2.3	34
664	Plant-Growth-Promoting Bacteria (PGPB) against Insects and Other Agricultural Pests. Agronomy, 2020, 10, 861.	1.3	45
665	Toward an enhanced understanding of plant growth promoting microbes for sustainable agriculture. , 2020, , 87-112.		7
666	Deciphering the relative importance of soil and plant traits on the development of rhizosphere microbial communities. Soil Biology and Biochemistry, 2020, 148, 107909.	4.2	56
667	Siderophore-Mediated Interactions Determine the Disease Suppressiveness of Microbial Consortia. MSystems, 2020, 5, .	1.7	37
668	Crop Yield, Ferritin and Fe(II) boosted by Azospirillum brasilense (HM053) in Corn. Agronomy, 2020, 10, 394.	1.3	15
669	Pseudomonas fulva HARBPS9.1: candidate anti-Fusarium agent in South Africa. European Journal of Plant Pathology, 2020, 157, 767-781.	0.8	9
670	Enantioselective effects of imazethapyr on Arabidopsis thaliana root exudates and rhizosphere microbes. Science of the Total Environment, 2020, 716, 137121.	3.9	37
671	Metabolomics and microbial biocontrol agents. , 2020, , 181-229.		3
672	Analysis of bacterial and fungal communities in continuous-cropping ramie (Boehmeria nivea L. Gaud) fields in different areas in China. Scientific Reports, 2020, 10, 3264.	1.6	22
673	Rhizospheric soil fungal community patterns of <i>Duchesnea indica</i> in response to altitude gradient in Yunnan, southwest China. Canadian Journal of Microbiology, 2020, 66, 359-367.	0.8	8

#	ARTICLE	IF	CITATIONS
674	The soil fungal community of native woodland in Andean Patagonian forest: A case study considering experimental forest management and seasonal effects. Forest Ecology and Management, 2020, 461, 117955.	1.4	16
675	The effect of plant compartments on the Broussonetia papyrifera-associated fungal and bacterial communities. Applied Microbiology and Biotechnology, 2020, 104, 3627-3641.	1.7	16
676	Resident and phytometer plants host comparable rhizosphere fungal communities in managed grassland ecosystems. Scientific Reports, 2020, 10, 919.	1.6	16
677	The effective antagonistic potential of plant growth-promoting rhizobacteria against Alternaria solani-causing early blight disease in tomato plant. Scientia Horticulturae, 2020, 266, 109289.	1.7	79
678	Modulation of the Root Microbiome by Plant Molecules: The Basis for Targeted Disease Suppression and Plant Growth Promotion. Frontiers in Plant Science, 2019, 10, 1741.	1.7	354
679	Taxonomic Characterization, and Secondary Metabolite Analysis of Streptomyces triticiradicis sp. nov.: A Novel Actinomycete with Antifungal Activity. Microorganisms, 2020, 8, 77.	1.6	20
680	Growth promotion of apple plants is the net effect of binucleate Rhizoctonia sp. as rhizosphere-colonizing fungus. Rhizosphere, 2020, 13, 100185.	1.4	6
681	Trade-off between potential phytopathogenic and non-phytopathogenic fungi in the peanut monoculture cultivation system. Applied Soil Ecology, 2020, 148, 103508.	2.1	11
682	Rhizosphere Microbiome Assembly and Its Impact on Plant Growth. Journal of Agricultural and Food Chemistry, 2020, 68, 5024-5038.	2.4	238
683	Microbial community overlap between the phyllosphere and rhizosphere of three plants from Yongxing Island, South China Sea. MicrobiologyOpen, 2020, 9, e1048.	1.2	18
684	Evaluation of the biocontrol potential of Bacillus sp. WB against Fusarium oxysporum f. sp. niveum. Biological Control, 2020, 147, 104288.	1.4	32
685	Co-occurrence of rhizobacteria with nitrogen fixation and/or 1-aminocyclopropane-1-carboxylate deamination abilities in the maize rhizosphere. FEMS Microbiology Ecology, 2020, 96, .	1.3	9
686	Biofertilizer application triggered microbial assembly in microaggregates associated with tomato bacterial wilt suppression. Biology and Fertility of Soils, 2020, 56, 551-563.	2.3	17
687	Induced defense responses against Rhizoctonia solani in rice seedling by a novel antifungalmycin N2 from Streptomyces sp. N2. Australasian Plant Pathology, 2020, 49, 267-276.	0.5	4
688	Using molecular techniques applied to beneficial microorganisms as biotechnological tools for controlling agricultural plant pathogens and pest., 2020,, 333-349.		12
689	Impacts of Soil Microbiome Variations on Root Colonization by Fungi and Bacteria and on the Metabolome of <i>Populus tremula</i> Å— <i>alba</i> Phytobiomes Journal, 2020, 4, 142-155.	1.4	24
690	Comparative Analysis of Rhizosphere Microbiomes of Southern Highbush Blueberry (Vaccinium) Tj ETQq0 0 0 rgB Frontiers in Microbiology, 2020, 11, 370.	3T /Overloc 1.5	ck 10 Tf 50 10 22
691	Effects of plastic mulch and nitrogen fertilizer on the soil microbial community, enzymatic activity and yield performance in a dryland maize cropping system. European Journal of Soil Science, 2021, 72, 400-412.	1.8	67

#	Article	IF	Citations
692	Characterization of <i>Pseudomonas protegens</i> SN15-2 microcapsule encapsulated with oxidized alginate and starch. International Journal of Polymeric Materials and Polymeric Biomaterials, 2021, 70, 684-692.	1.8	6
693	Heat stress in cultivated plants: nature, impact, mechanisms, and mitigation strategies—a review. Plant Biosystems, 2021, 155, 211-234.	0.8	123
694	Volatiles from the fungus Fusarium oxysporum affect interactions of Brassica rapa plants with root herbivores. Ecological Entomology, 2021, 46, 240-248.	1.1	4
695	Complete genome sequence of the biocontrol agent Serratia marcescens strain N4–5 uncovers an assembly artefact. Brazilian Journal of Microbiology, 2021, 52, 245-250.	0.8	3
696	Early succession of bacterial communities associated as biofilm-like structures in the rhizosphere of alfalfa. Applied Soil Ecology, 2021, 157, 103755.	2.1	7
697	Facets of rhizospheric microflora in biocontrol of phytopathogen Macrophomina phaseolina in oil crop soybean. Archives of Microbiology, 2021, 203, 405-412.	1.0	11
698	Mechanisms of the phytomicrobiome for enhancing soil fertility and health., 2021, , 1-14.		5
699	Nitrogen-fixing trees in mixed forest systems regulate the ecology of fungal community and phosphorus cycling. Science of the Total Environment, 2021, 758, 143711.	3.9	21
700	Current Trends in Microbial Biotechnology for Agricultural Sustainability: Conclusion and Future Challenges. Environmental and Microbial Biotechnology, 2021, , 555-572.	0.4	44
701	Population dynamics of <i>Rhizoctonia</i> , <i>Oculimacula</i> , and <i>Microdochium</i> species in soil, roots, and stems of English wheat crops. Plant Pathology, 2021, 70, 862-874.	1.2	5
702	Microbial diversity and community structure changes in the rhizosphere soils of <i>Atractylodes lancea</i> from different planting years. Plant Signaling and Behavior, 2021, 16, 1854507.	1.2	14
703	Differential effects of the rhizobacterium Pseudomonas simiae on above―and belowground chewing insect herbivores. Journal of Applied Entomology, 2021, 145, 250-260.	0.8	7
704	Hormones as goâ€betweens in plant microbiome assembly. Plant Journal, 2021, 105, 518-541.	2.8	115
705	Identification and verification of rhizosphere indicator microorganisms in tobacco root rot. Agronomy Journal, 2021, 113, 1480-1491.	0.9	6
706	The rhizosphere microbiome: functions, dynamics, and role in plant protection. Tropical Plant Pathology, 2021, 46, 13-25.	0.8	34
708	Rhizosphere plant-microbe interactions under water stress. Advances in Applied Microbiology, 2021, 115, 65-113.	1.3	27
710	Friends in low places: Soil derived microbial inoculants for biostimulation and biocontrol in crop production., 2021,, 15-31.		5
711	Identification of microbial signatures linked to oilseed rape yield decline at the landscape scale. Microbiome, 2021, 9, 19.	4.9	31

#	Article	IF	CITATIONS
712	Microbial consortia: approaches in crop production and yield enhancement., 2021,, 293-303.		2
713	Multiplication Arbuscular Mycorrhizal Fungi in Corn (Zea mays L.) with Pots Culture at Greenhouse. E3S Web of Conferences, 2021, 226, 00044.	0.2	2
714	Fungal root endophytes influence plants in a speciesâ€specific manner that depends on plant's growth stage. Journal of Ecology, 2021, 109, 1618-1632.	1.9	11
715	Root rot alters the root-associated microbiome of field pea in commercial crop production systems. Plant and Soil, 2021, 460, 593-607.	1.8	10
716	In Vivo Endophytic, Rhizospheric and Epiphytic Colonization of Vitis vinifera by the Plant-Growth Promoting and Antifungal Strain Pseudomonas protegens MP12. Microorganisms, 2021, 9, 234.	1.6	11
717	Rhizoengineering: A Strategy to Enhance Soil and Crop Productivity. Rhizosphere Biology, 2021, , 235-262.	0.4	1
718	Genomics and functional traits required for the successful use of biofertilizers., 2021,, 45-56.		0
719	Microbiome establishment, adaptation, and contributions to anaerobic stress tolerance and nutrient acquisition in rice., 2021,, 369-379.		0
720	Ecology and performance of rhizosphere and endosphere microbiomes., 2021,, 125-136.		0
721	Rhizosphere, Rhizosphere Biology, and Rhizospheric Engineering. , 2021, , 577-624.		13
722	Pathobiome and microbial communities associated with forest tree root diseases., 2021,, 277-292.		6
723	Multifunctionality and microbial communities in agricultural soils regulate the dynamics of a soil-borne pathogen. Plant and Soil, 2021, 461, 309-322.	1.8	16
724	Biological control of soilborne plant pathogens and nematodes. , 2021, , 633-654.		7
725	Biostimulants: Promising probiotics for plant health. , 2021, , 469-481.		0
726			

#	Article	IF	CITATIONS
730	Identification of antagonistic bacteria against peanut stem rot disease (Sclerotium rolfsii Sacc.) on the peatland of Kuala Pesisir-Nagan Raya, Indonesia. IOP Conference Series: Earth and Environmental Science, 0, 637, 012063.	0.2	0
731	Potentilla anserina L. developmental changes affect the rhizosphere prokaryotic community. Scientific Reports, 2021, 11, 2838.	1.6	4
732	Colonization of Naive Roots from <i>Populus tremula</i> \tilde{A} — <i>alba</i> Involves Successive Waves of Fungi and Bacteria with Different Trophic Abilities. Applied and Environmental Microbiology, 2021, 87, .	1.4	13
733	Inconsistent effects of agricultural practices on soil fungal communities across 12 <scp>European</scp> longâ€ŧerm experiments. European Journal of Soil Science, 2021, 72, 1902-1923.	1.8	26
734	Mucilaginibacter mali sp. nov., isolated from rhizosphere soil of apple orchard. International Journal of Systematic and Evolutionary Microbiology, 2021, 71, .	0.8	7
735	Micronutrients and Soil Microorganisms in the Suppression of Potato Common Scab. Agronomy, 2021, 11, 383.	1.3	12
736	Inactivated pathogenic mycelia as a biocontrol agent against Fusarium wilt and its effects on continuously cropped watermelon. Biocontrol Science and Technology, 2021, 31, 817-833.	0.5	0
737	Balance between geographic, soil, and host tree parameters to shape soil microbiomes associated to clonal oak varies across soil zones along a European North–South transect. Environmental Microbiology, 2021, 23, 2274-2292.	1.8	3
738	Grazing Affects Bacterial and Fungal Diversities and Communities in the Rhizosphere and Endosphere Compartments of Leymus chinensis through Regulating Nutrient and Ion Distribution. Microorganisms, 2021, 9, 476.	1.6	15
739	Phytotoxins from Dactylonectria torresensis involved in replant disease of fruit trees. Rhizosphere, 2021, 17, 100300.	1.4	4
740	Rhizobacteria Associated with a Native Solanaceae Promote Plant Growth and Decrease the Effects of Fusariumoxysporum in Tomato. Agronomy, 2021, 11, 579.	1.3	9
741	Optimizing the growth of forage and grain legumes on low pH soils through the application of superior <i>Rhizobium leguminosarum</i> biovar <i>viciae</i> strains. Grass and Forage Science, 2021, 76, 44-56.	1.2	7
742	Disease-Suppressive Soilsâ€"Beyond Food Production: a Critical Review. Journal of Soil Science and Plant Nutrition, 2021, 21, 1437-1465.	1.7	64
743	The influence of competing root symbionts on belowâ€ground plant resource allocation. Ecology and Evolution, 2021, 11, 2997-3003.	0.8	5
745	The Himalayan Onion (Allium wallichii Kunth) Harbors Unique Spatially Organized Bacterial Communities. Microbial Ecology, 2021, 82, 909-918.	1.4	8
747	Polydimethylsiloxane-polymethacrylate block copolymers containing quaternary ammonium salts against Fusarium oxysporum f. sp. cubense race 4 in soil: Antifungal activities and pot experiments. Reactive and Functional Polymers, 2021, 160, 104848.	2.0	7
748	Host–microbial systems as glass cannons: Explaining microbiome stability in corals exposed to extrinsic perturbations. Journal of Animal Ecology, 2021, 90, 1044-1057.	1.3	8
749	Harnessing Chemical Ecology for Environment-Friendly Crop Protection. Phytopathology, 2021, 111, 1697-1710.	1.1	11

#	Article	IF	CITATIONS
750	Multifaceted intervention of <i>Bacillus</i> spp. against salinity stress and Fusarium wilt in tomato. Journal of Applied Microbiology, 2021, 131, 2387-2401.	1.4	15
752	<i>Bacillus</i> promotes invasiveness of exotic <i>Flaveria bidentis</i> by increasing its nitrogen and phosphorus uptake. Journal of Plant Ecology, 2022, 15, 596-609.	1.2	8
753	Metatranscriptomic Comparison of Endophytic and Pathogenic <i>Fusarium</i> li>â€"Arabidopsis Interactions Reveals Plant Transcriptional Plasticity. Molecular Plant-Microbe Interactions, 2021, 34, 1071-1083.	1.4	25
754	Comparative metagenomic analysis of rice soil samples revealed the diverse microbial population and biocontrol organisms against plant pathogenic fungus Magnaporthe oryzae. 3 Biotech, 2021, 11, 245.	1.1	5
755	How does organic farming shape the soil- and plant-associated microbiota?. Symbiosis, 2021, 84, 391-398.	1.2	8
756	Plant growth-promoting rhizobacteria associated to candelilla rhizosphere (Euphorbia) Tj ETQq1 1 0.784314 rgB7 Agrobotanici Cluj-Napoca, 2021, 49, 12294.	「/Overloc 0.5	k 10 Tf 50 54 4
757	Bioprospecting of Beneficial Bacteria Traits Associated With Tomato Root in Greenhouse Environment Reveals That Sampling Sites Impact More Than the Root Compartment. Frontiers in Plant Science, 2021, 12, 637582.	1.7	15
758	Seed Priming and Its Role in Mitigating Heat Stress Responses in Crop Plants. Journal of Soil Science and Plant Nutrition, 2021, 21, 1718-1734.	1.7	9
759	Early detection of the Root-knot Nematode Meloidogyne hapla through developing a robust qPCR approach compliant with the MIQE guidelines. Plant Disease, 2021, , PDIS11202408RE.	0.7	1
760	Production of Vegetable Crops by Using Arbuscular Mycorrhizae. , 0, , .		0
761	Synergistic effect of organic and inorganic fertilization on the soil inoculum density of the soilborne pathogens Verticillium dahliae and Phytophthora spp. under open-field conditions. Chemical and Biological Technologies in Agriculture, 2021, 8, .	1.9	6
762	Shifts in the rhizobiome during consecutive <i>inÂplanta</i> enrichment for phosphateâ€solubilizing bacteria differentially affect maize P status. Microbial Biotechnology, 2021, 14, 1594-1612.	2.0	21
763	Study of the Effect of the Earthworm (Aporrectodea molleri) Cutaneous Excreta on Bacterial Growth. International Journal of Ecology, 2021, 2021, 1-7.	0.3	2
764	Trichoderma spp. in the management of stresses in plants and rural prosperity. Indian Phytopathology, 2021, 74, 453-467.	0.7	4
765	De novo genome assembly and analysis unveil biosynthetic and metabolic potentials of Pseudomonas fragi A13BB. BMC Genomic Data, 2021, 22, 15.	0.7	3
766	Effects of Seed-Coating Preparations of Living Streptomyces globisporus on Plant Growth Promotion and Disease Control against Verticillium Wilt in Cotton. Sustainability, 2021, 13, 6001.	1.6	4
767	Ecological Role of Volatile Organic Compounds Emitted by Pantoea agglomerans as Interspecies and Interkingdom Signals. Microorganisms, 2021, 9, 1186.	1.6	7
768	Belowground fungal volatiles perception in okra (Abelmoschus esculentus) facilitates plant growth under biotic stress. Microbiological Research, 2021, 246, 126721.	2.5	12

#	Article	IF	Citations
769	Impact of cropping systems on the functional diversity of rhizosphere microbial communities associated with maize plant: a shotgun approach. Archives of Microbiology, 2021, 203, 3605-3613.	1.0	4
770	Rhizospheric Communication through Mobile Genetic Element Transfers for the Regulation of Microbe–Plant Interactions. Biology, 2021, 10, 477.	1.3	7
771	Outbreaks of Root Rot Disease in Different Aged American Ginseng Plants Are Associated With Field Microbial Dynamics. Frontiers in Microbiology, 2021, 12, 676880.	1.5	19
772	Impact of Plant Growth-Promoting Rhizobacteria Inoculation and Grafting on Tolerance of Tomato to Combined Water and Nutrient Stress Assessed via Metabolomics Analysis. Frontiers in Plant Science, 2021, 12, 670236.	1.7	26
773	Effect of co-application of Trichoderma spp. with organic composts on plant growth enhancement, soil enzymes and fungal community in soil. Archives of Microbiology, 2021, 203, 4281-4291.	1.0	21
774	The Rhizobacterium Pseudomonas alcaligenes AVO110 Induces the Expression of Biofilm-Related Genes in Response to Rosellinia necatrix Exudates. Microorganisms, 2021, 9, 1388.	1.6	4
775	The response of soil microbial communities to the infection of kauri (<i>Agathis australis</i>) seedlings with <i>Phytophthora agathidicida</i> . Forest Pathology, 2021, 51, e12708.	0.5	0
776	Control of Streptomyces alfalfae XY25T Over Clubroot Disease and Its Effect on Rhizosphere Microbial Community in Chinese Cabbage Field Trials. Frontiers in Microbiology, 2021, 12, 641556.	1.5	11
777	Impacts of cover crops and nitrogen fertilization on agricultural soil fungal and bacterial communities. Plant and Soil, 2021, 466, 139-150.	1.8	13
778	Plant–Microbiome Crosstalk: Dawning from Composition and Assembly of Microbial Community to Improvement of Disease Resilience in Plants. International Journal of Molecular Sciences, 2021, 22, 6852.	1.8	44
779	Soil and plant health in relation to dynamic sustainment of Eh and pH homeostasis: A review. Plant and Soil, 2021, 466, 391-447.	1.8	22
780	Organic Fertilization and Tree Orchards. Agriculture (Switzerland), 2021, 11, 692.	1.4	15
781	Antifungal potential against Sclerotinia sclerotiorum (Lib.) de Bary and plant growth promoting abilities of Bacillus isolates from canola (Brassica napus L.) roots. Microbiological Research, 2021, 248, 126754.	2.5	21
782	Organic Amendments Alter Soil Hydrology and Belowground Microbiome of Tomato (Solanum) Tj ETQq1 1 0.784	1314 rgBT 1.6	/Oyerlock 10
783	Function is a better predictor of plant rhizosphere community membership than <scp>16S</scp> phylogeny. Environmental Microbiology, 2021, 23, 6089-6103.	1.8	3
784	Microbiological Control: A New Age of Maize Production. , 0, , .		2
785	Bioformulations with Beneficial Microbial Consortia, a Bioactive Compound and Plant Biopolymers Modulate Sweet Basil Productivity, Photosynthetic Activity and Metabolites. Pathogens, 2021, 10, 870.	1.2	22
786	Bacillus firmus I-1582 promotes plant growth and impairs infection and development of the cyst nematode Heterodera schachtii over two generations. Scientific Reports, 2021, 11, 14114.	1.6	11

#	Article	IF	Citations
787	A review on the role of plant in pharmaceuticals and personal care products (PPCPs) removal in constructed wetlands. Science of the Total Environment, 2021, 780, 146637.	3.9	65
788	Overview of Approaches to Improve Rhizoremediation of Petroleum Hydrocarbon-Contaminated Soils. Applied Microbiology, 2021, 1, 329-351.	0.7	25
789	Intercropping improves heavy metal phytoremediation efficiency through changing properties of rhizosphere soil in bamboo plantation. Journal of Hazardous Materials, 2021, 416, 125898.	6.5	60
790	Spatial analysis of the root system coupled to microbial community inoculation shed light on rhizosphere bacterial community assembly. Biology and Fertility of Soils, 2021, 57, 973-989.	2.3	12
791	The Perception of Rhizosphere Bacterial Communication Signals Leads to Transcriptome Reprogramming in Lysobacter capsici AZ78, a Plant Beneficial Bacterium. Frontiers in Microbiology, 2021, 12, 725403.	1.5	3
792	Impact of Soil Disinfestation on Fungal and Bacterial Communities in Soil With Cucumber Cultivation. Frontiers in Microbiology, 2021, 12, 685111.	1.5	2
793	Identification of Burkholderia and Penicillium isolates from kauri (Agathis australis) soils that inhibit the mycelial growth of Phytophthora agathidicida. New Zealand Plant Protection, 2021, 74, 42-54.	0.3	2
794	Genome-Based Characterization of Plant-Associated Rhodococcus qingshengii RL1 Reveals Stress Tolerance and Plant–Microbe Interaction Traits. Frontiers in Microbiology, 2021, 12, 708605.	1.5	6
795	<i>Burkholderia (i) in the genomic era: from taxonomy to the discovery of new antimicrobial secondary metabolites. Critical Reviews in Microbiology, 2022, 48, 121-160.</i>	2.7	17
796	Benzoic Acid and Its Hydroxylated Derivatives Suppress Early Blight of Tomato (Alternaria solani) via the Induction of Salicylic Acid Biosynthesis and Enzymatic and Nonenzymatic Antioxidant Defense Machinery. Journal of Fungi (Basel, Switzerland), 2021, 7, 663.	1.5	33
797	Phosphorus availability increases pathobiome abundance and invasion of rhizosphere microbial networks by <i>Ralstonia</i> . Environmental Microbiology, 2021, 23, 5992-6003.	1.8	28
798	The fungal community outperforms the bacterial community in predicting plant health status. Applied Microbiology and Biotechnology, 2021, 105, 6499-6513.	1.7	18
799	Microbiomeâ€mediated response to pulse fire disturbance outweighs the effects of fire legacy on plant performance. New Phytologist, 2022, 233, 2071-2082.	3.5	6
800	Microbial Spectra, Physiological Response and Bioremediation Potential of Phragmites australis for Agricultural Production. Frontiers in Sustainable Food Systems, 2021, 5, .	1.8	4
801	How do water, compaction and heat stresses affect soybean root elongation? A review. Rhizosphere, 2021, 19, 100403.	1.4	8
802	Benzoic acid plays a part in rhizosphere microbial composition of peach seedlings grown in replanted soil. Rhizosphere, 2021, 19, 100364.	1.4	8
803	Response of Sediment Microbial Communities to the Rural Wastewater in the Pond-Ditch Circulation System. Frontiers in Environmental Science, $2021, 9, \ldots$	1.5	1
804	Soil potentials to resist continuous cropping obstacle: Three field cases. Environmental Research, 2021, 200, 111319.	3.7	71

#	Article	IF	CITATIONS
805	Factors associated with suppression of Fusarium basal rot of onion in New Zealand soils: literature review and greenhouse experiments. New Zealand Journal of Crop and Horticultural Science, 2023, 51, 137-155.	0.7	2
806	Diversity of the Bacterial Microbiome Associated With the Endosphere and Rhizosphere of Different Cassava (Manihot esculenta Crantz) Genotypes. Frontiers in Microbiology, 2021, 12, 729022.	1.5	7
807	Effects of organic acids on the chemotaxis profiles and biocontrol traits of antagonistic bacterial endophytes against root-rot disease in Panax notoginseng. Antonie Van Leeuwenhoek, 2021, 114, 1771-1789.	0.7	4
808	Detection and Regulation of Antagonistic Properties of the Soil Actinomycete Streptomyces sp. 89. Biology Bulletin, 2021, 48, 626-634.	0.1	3
809	Elucidating key plant growth–promoting (PGPR) traits in <i>Burkholderia</i> sp. Nafp2/4â€1b (=SARCCâ€3049) using gnotobiotic assays and wholeâ€genomeâ€sequence analysis. Letters in Applied Microbiology, 2021, 73, 658-671.	1.0	6
810	Plants use rhizosphere metabolites to regulate soil microbial diversity. Land Degradation and Development, 2021, 32, 5267-5280.	1.8	30
811	Factors influencing suppressiveness of soils to powdery scab of potato. Australasian Plant Pathology, 2021, 50, 715-728.	0.5	3
812	Indicative bacterial communities and taxa of disease-suppressing and growth-promoting composts and their associations to the rhizoplane. FEMS Microbiology Ecology, 2021, 97, .	1.3	4
813	Root bacteriome of a pioneer grass Miscanthus condensatus along restored vegetation on recent Miyake-jima volcanic deposits. Rhizosphere, 2021, 19, 100422.	1.4	2
814	Characterization of tetracycline-resistant microbiome in soil-plant systems by combination of H218O-based DNA-Stable isotope probing and metagenomics. Journal of Hazardous Materials, 2021, 420, 126440.	6. 5	10
815	The changes in macronutrients and microbial community structure during the co-composting of white wine distillers' grains and potassium silicate. Journal of Cleaner Production, 2021, 319, 128681.	4.6	9
816	Soil bacterial community in potato tuberosphere following repeated applications of a common scab suppressive antagonist. Applied Soil Ecology, 2021, 167, 104096.	2.1	12
817	Function diversity of soil fungal community has little exclusive effects on the response of aboveground plant production to experimental warming in alpine grasslands. Applied Soil Ecology, 2021, 168, 104153.	2.1	27
818	Serendipita indica: Harnessing its versatile potential for food and nutritional security. Physiological and Molecular Plant Pathology, 2021, 116, 101708.	1.3	3
819	Effectively controlling Fusarium root rot disease of Angelica sinensis and enhancing soil fertility with a novel attapulgite-coated biocontrol agent. Applied Soil Ecology, 2021, 168, 104121.	2.1	16
820	Phytoremediation of cadmium-contaminated sediment using Hydrilla verticillata and Elodea canadensis harbor two same keystone rhizobacteria Pedosphaeraceae and Parasegetibacter. Chemosphere, 2022, 286, 131648.	4.2	22
821	Antimicrobial activity screening of rhizosphere soil bacteria from tomato and genome-based analysis of their antimicrobial biosynthetic potential. BMC Genomics, 2021, 22, 29.	1.2	36
822	PGPM as a potential bioinoculant for enhancing crop productivity under sustainable agriculture., 2021,, 221-237.		6

#	Article	IF	CITATIONS
823	Global Scenario of Soil Microbiome Research: Current Trends and Future Prospects. Sustainable Development and Biodiversity, 2021, , 573-603.	1.4	1
824	Comparison and interpretation of characteristics of Rhizosphere microbiomes of three blueberry varieties. BMC Microbiology, 2021, 21, 30.	1.3	12
825	Variation of rhizosphere microbial community in continuous mono-maize seed production. Scientific Reports, 2021, 11, 1544.	1.6	34
827	Soil-plant-microbial interactions for soil fertility management and sustainable agriculture. , 2021, , 341-362.		1
828	Rhizosphere Manipulations for Sustainable Plant Growth Promotion., 2021,, 61-77.		1
829	Rhizospheric Microbes and Their Mechanism. , 2021, , 79-93.		6
830	Exogenous Inoculation of Microorganisms Effect on Root Exudates and Rhizosphere Microorganism of Tobaccos. Advances in Microbiology, 2021, 11, 510-528.	0.3	5
831	Differences in Soil Microbial Community Composition Between Suppressive and Root Rot-Conducive in Tobacco Fields. Current Microbiology, 2021, 78, 624-633.	1.0	20
834	Role of Jasmonates in Beneficial Microbe–Root Interactions. Methods in Molecular Biology, 2020, 2085, 43-67.	0.4	9
835	Rhizosphere: A Home for Human Pathogens. , 2019, , 113-127.		1
836	Plant Growth-Promoting Rhizobacteria (PGPR) as Protagonists of Ever-Sustained Agriculture: An Introduction. Sustainable Development and Biodiversity, 2019, , 1-10.	1.4	5
837	Diversity, Plant Growth Promoting Attributes, and Agricultural Applications of Rhizospheric Microbes. Sustainable Development and Biodiversity, 2020, , 1-52.	1.4	33
838	Global Scenario of Plant–Microbiome for Sustainable Agriculture: Current Advancements and Future Challenges. Sustainable Development and Biodiversity, 2020, , 425-443.	1.4	9
839	Biocontrol of Bacteria and Fungi. , 2020, , 181-230.		5
840	Biological Control Based on Microbial Consortia– From Theory to Commercial Products. Progress in Biological Control, 2020, , 183-202.	0.5	7
842	Root and Stem Rots. , 2014, , 217-243.		1
843	Fungal Genes and Metabolites Associated with the Biocontrol of Soil-borne Plant Pathogenic Fungi., 2016, , 1-72.		4
844	Combining Biocontrol Agents and Organics Amendments to Manage Soil-Borne Phytopathogens. Soil Biology, 2015, , 457-478.	0.6	17

#	Article	IF	Citations
845	Fungal Genes and Metabolites Associated with the Biocontrol of Soil-borne Plant Pathogenic Fungi. , $2017, 33-104$.		13
846	Enzyme Activities in the Rhizosphere of Plants. Soil Biology, 2010, , 149-166.	0.6	18
847	Biocontrol., 2013,, 469-497.		11
848	Fighting Plant Diseases Through the Application of Bacillus and Pseudomonas Strains. Soil Biology, 2013, , 165-193.	0.6	14
849	The Role of Roots in Plant Defense Responses to Aboveground Herbivores. Soil Biology, 2014, , 369-384.	0.6	2
850	Beneficial Effects and Molecular Diversity of Endophytic Bacteria in Legume and Nonlegumes. , 2016, , 245-256.		4
851	Ecology and Human Pathogenicity of Plant-Associated Bacteria. , 2011, , 175-189.		12
852	Symbiotic Plant–Microbe Interactions: Stress Protection, Plant Growth Promotion, and Biocontrol by Stenotrophomonas. Cellular Origin and Life in Extreme Habitats, 2010, , 445-460.	0.3	42
853	Soil-Borne Pathogens and Their Interactions with the Soil Environment. , 2010, , 197-271.		20
854	Pseudomonas and other Microbes in Disease-Suppressive Soils. Sustainable Agriculture Reviews, 2012, , 93-140.	0.6	26
855	Ecosystem Carbon and Soil Biodiversity. , 2013, , 131-153.		2
856	Microorganisms and Biotic Interactions. , 2015, , 395-444.		30
857	Microbial Consortial Products for Sustainable Agriculture: Commercialization and Regulatory Issues in India., 2016,, 107-132.		25
858	Role of Serratia sp. as Biocontrol Agent and Plant Growth Stimulator, with Prospects of Biotic Stress Management in Plant. Microorganisms for Sustainability, 2019, , 169-200.	0.4	5
859	Rhizosphere as Hotspot for Plant-Soil-Microbe Interaction. , 2020, , 17-43.		26
860	Soil: Microbial Cell Factory for Assortment with Beneficial Role in Agriculture. , 2019, , 63-92.		2
861	Mechanisms of Plant Growth Promotion and Functional Annotation in Mitigation of Abiotic Stress. Microorganisms for Sustainability, 2020, , 105-150.	0.4	1
862	Trichoderma–Fusarium Interactions: A Biocontrol Strategy to Manage Wilt. Rhizosphere Biology, 2020, , 167-185.	0.4	4

#	Article	IF	CITATIONS
863	Rhizosphere Microbiome and Soil-Borne Diseases. Rhizosphere Biology, 2021, , 155-168.	0.4	4
864	Rhizosphere Biology: A Key to Agricultural Sustainability. Environmental and Microbial Biotechnology, 2021, , 161-182.	0.4	8
865	The Rhizosphere Microbiome and Its Role in Plant Growth in Stressed Conditions. Microorganisms for Sustainability, 2020, , 503-529.	0.4	3
866	Plant Growth-Promoting Rhizobacteria (PGPRs): A Fruitful Resource. , 2019, , 83-127.		4
867	Antagonist capacity of bacteria isolated from cape gooseberry cultures (Physalis peruviana L.) for biological control of Fusarium oxysporum. Tropical Plant Pathology, 2020, 45, 1-12.	0.8	8
868	Biocontrol potential index of pseudomonads, instead of their direct-growth promotion traits, is a predictor of seed inoculation effect on crop productivity under field conditions. Biological Control, 2020, 143, 104209.	1.4	16
869	Interactions between plants and soil shaping the root microbiome under abiotic stress. Biochemical Journal, 2019, 476, 2705-2724.	1.7	198
871	<i>Fusarium</i> wilt: a threat to banana cultivation and its management CAB Reviews: Perspectives in Agriculture, Veterinary Science, Nutrition and Natural Resources, 0, , 1-24.	0.6	13
872	Biological control of bacterial wilt of tomato caused by <i>Ralstonia solanacearum</i> using <i>Pseudomonas</i> species isolated from the rhizosphere of tomato plants. Archives of Phytopathology and Plant Protection, 2020, 53, 1-16.	0.6	40
873	Regulators Involved in i>Dickeya solani i>Virulence, Genetic Conservation and Functional Variability. Molecular Plant-Microbe Interactions, 2015, 2015, 5-16.	1.4	1
877	Phoma diseases: Epidemiology and control. Plant Pathology, 2020, 69, 1203-1217.	1.2	39
878	Soil inoculation of Trichoderma asperellum M45a regulates rhizosphere microbes and triggers watermelon resistance to Fusarium wilt. AMB Express, 2020, 10, 189.	1.4	29
879	Wars between microbes on roots and fruits. F1000Research, 2017, 6, 343.	0.8	45
880	Soil Nitrogen Availability and Plant Genotype Modify the Nutrition Strategies of M. truncatula and the Associated Rhizosphere Microbial Communities. PLoS ONE, 2012, 7, e47096.	1.1	42
881	Comparative Genome Analysis of Enterobacter cloacae. PLoS ONE, 2013, 8, e74487.	1.1	72
882	Understanding the Long-Lasting Attraction of Malaria Mosquitoes to Odor Baits. PLoS ONE, 2015, 10, e0121533.	1.1	17
883	Pectin Enhances Bio-Control Efficacy by Inducing Colonization and Secretion of Secondary Metabolites by Bacillus amyloliquefaciens SQY 162 in the Rhizosphere of Tobacco. PLoS ONE, 2015, 10, e0127418.	1.1	24
884	Genomic and Genetic Diversity within the Pseudomonas fluorescens Complex. PLoS ONE, 2016, 11, e0150183.	1.1	171

#	Article	IF	CITATIONS
885	Changes in bulk soil affect the disease-suppressive rhizosphere microbiome against Fusarium wilt disease. Frontiers of Agricultural Science and Engineering, 2020, 7, 307.	0.9	11
886	Effect of growing season upon microbial status of peppermint (Mentha x piperita L.) rhizosphere. Acta Fytotechnica Et Zootechnica, 2015, 18, 99-102.	0.1	1
887	ISOLATION AND IDENTIFICATION OF RHIZOBACTERIA FROM MAIZE (ZEA MAYS L.) IN LUVISOLS AND DOCUMENTATION THEIR PLANT GROWTH PROMOTING TRAITS. Journal of Microbiology, Biotechnology and Food Sciences, 2020, 10, 505-510.	0.4	5
888	Impact of agro-farming activities on microbial diversity of acidic red soils in a Camellia Oleifera Forest. Revista Brasileira De Ciencia Do Solo, 0, 43, .	0.5	13
889	Bioprospecção de isolados de Bacillus spp. como potenciais promotores de crescimento de Eucalyptus urograndis. Revista Arvore, 2013, 37, 933-943.	0.5	7
890	Screening and Identification of Harmful and Beneficial Microorganisms Associated with Replanting Disease in Rhizosphere Soil of Pseudostellariae heterophylla. International Journal of Agriculture and Biology, 2015, 17, 458-466.	0.2	16
891	Analysis of the Bacterial and Fungal Community Profiles in Bulk Soil and Rhizospheres of Three Mungbean [<i>Vigna radiata</i> (L.) R. Wilczek] Genotypes through PCR-DGGE. International Letters of Natural Sciences, 0, 77, 1-26.	1.0	3
892	Genomic Research Favoring Higher Soybean Production. Current Genomics, 2020, 21, 481-490.	0.7	7
893	In vitro and in vivo effects of Pseudomonas spp. and Bacillus sp. on Fusarium acuminatum, Botrytis cinerea and Aspergillus niger infecting Cucumber. Pesticidi I Fitomedicina = Pesticides and Phytomedicine, 2015, 30, 169-178.	0.1	4
894	A bioassay to compare the disease suppressive capacity of pasture soils. New Zealand Plant Protection, 0, 68, 151-159.	0.3	3
895	Land use effect on nitrogen and phosphorus fluxes into and from soil. Eurasian Journal of Forest Science, 2017, 5, 8-12.	0.7	7
896	In vitro antagonistic activity of Bacillus subtilis strains isolated from soils of the Yucatan Peninsula against Macrophomina phaseolina and Meloidogyne incognita. Phyton, 2014, 83, 45-47.	0.4	2
897	Pathogen Infection and Host-Resistance Interactively Affect Root-Associated Fungal Communities in Watermelon. Frontiers in Microbiology, 2020, 11, 605622.	1.5	12
898	Biocontrol Traits Correlate With Resistance to Predation by Protists in Soil Pseudomonads. Frontiers in Microbiology, 2020, 11, 614194.	1.5	24
899	Tillage Practice Impacts on the Carbon Sequestration Potential of Topsoil Microbial Communities in an Agricultural Field. Agronomy, 2021, 11, 60.	1.3	9
900	Soil Microbiome Manipulation Gives New Insights in Plant Disease-Suppressive Soils from the Perspective of a Circular Economy: A Critical Review. Sustainability, 2021, 13, 10.	1.6	7
901	Antagonistic Effects of Rhizobacteria Against Coffee Wilt Disease Caused by Gibberella xylarioides. Asian Journal of Plant Pathology, 2013, 7, 109-122.	0.3	58
902	Occurrence of Arbuscular Mycorrhizal Fungi and Fusarium in TC Banana Rhizosphere Inoculated with Microbiological Products in Different Soils in Kenya. International Journal of Soil Science, 2015, 10, 45-62.	0.7	9

#	Article	IF	Citations
903	Potential of Chitinolytic Bacillus amyloliquefaciens SAHA 12.07 and Serratia marcescens KAHN 15.12 as Biocontrol Agents of Ganoderma boninense. Research Journal of Microbiology, 2015, 10, 452-465.	0.2	13
904	Role of Plant Growth Promoting Bacteria (PGPB) for Bioremediation of Heavy Metals. Advances in Environmental Engineering and Green Technologies Book Series, 2018, , 104-125.	0.3	6
905	The rhizobiome of herbaceous plants in Clovelly and Sterkspruit soils of the Stevenson–Hamilton supersite. Koedoe, 2020, 62, .	0.3	3
906	Effects of Tobacco Pathogens and Their Antagonistic Bacteria on Tobacco Root Exudates. Open Journal of Applied Sciences, 2018, 08, 518-531.	0.2	5
907	Microbeâ€"Chloroacetanilide Herbicide Interaction across Soil Type. Open Journal of Soil Science, 2015, 05, 87-99.	0.3	1
909	Growth promotion and yield enhancement of barley cultivars using ACC deaminase producing Pseudomonas fluorescens strains under salt stress. Spanish Journal of Agricultural Research, 2019, 17, e0801.	0.3	12
910	Investigations of the capacity and strength of seed germination in Allium victorialis L Acta Societatis Botanicorum Poloniae, 2014, 83, 219-228.	0.8	5
911	Bacillus cereus X5 suppresses root-knot nematode of tomato by colonizing in roots and soil. African Journal of Microbiology Research, 2012, 6, .	0.4	4
912	Inoculation of maize with <i>Azospirillum brasilense</i> i>in the seed furrow. Revista Ciencia Agronomica, 2016, 47, .	0.1	13
913	Habitational abiotic environmental factors alter Arbuscular mycorrhizal composition, species richness and diversity index in Abroma augusta L. (Malvaceae) rhizosphere. Plant Pathology & Quarantine, 2015, 5, 98-120.	0.1	2
914	The Role of Microbial Enzyme Systems in Plant Growth Promotion. Climate Change and Environmental Sustainability, 2017, 5, 122.	0.3	14
915	Analyzing pathogen suppressiveness in bioassays with natural soils using integrative maximum likelihood methods in R. PeerJ, 2016, 4, e2615.	0.9	4
916	Bacterial core community in soybean rhizosphere. Korean Journal of Microbiology, 2015, 51, 347-354.	0.2	9
917	Changes in Rhizosphere Concentration of Mineral Elements as Affected by Differences in Root Uptake and Plant Growth of Five Cowpea Genotypes Grown in Mixed Culture and at Different Densities with Sorghum. American Journal of Experimental Agriculture, 2014, 4, 193-214.	0.2	3
918	Biocontrol activity of siderophore producing Bacillus subtilis CTS-G24 against wilt and dry root rot causing fungi in chickpea. IOSR Journal of Agriculture and Veterinary Science, 2014, 7, 63-68.	0.1	20
919	Disease Management. , 2021, , 597-669.		1
920	Microbial consortia for industrial waste bioremediation: an insight to related patents. International Journal of Environmental Analytical Chemistry, 2023, 103, 8441-8453.	1.8	1
921	Plant Growth-Promoting Rhizobacteria as a Green Alternative for Sustainable Agriculture. Sustainability, 2021, 13, 10986.	1.6	76

#	Article	IF	Citations
922	Rhizosphere bacterial community structure of three minor grain crops: A caseâ€study from paired field sites in northern China. Land Degradation and Development, 2022, 33, 104-116.	1.8	9
923	Efecto del vermicompost y quitina sobre el control de <i>Meloidogyne incognita</i> en tomate a nivel de invernadero. AgronomÃa Costarricense, 0, , .	0.2	5
924	Physiko-Chemie und Mikrobiologie der RhizosphÃ r e. Springer-Lehrbuch, 2011, , 431-454.	0.1	0
925	Rhizosphere Microorganisms. , 2012, , 105-121.		O
926	Wilting of Bell Pepper (Capsicum annuum L.) Causal Organism Isolation and a Successful Control Approach. Asian Journal of Plant Pathology, 2011, 5, 155-162.	0.3	2
927	Studies on Rhizosphere Microflora of Ocimum Sanctum L, Adhatoda Vasica Nees and Aloe Vera L. Indian Journal of Applied Research, 2011, 4, 537-540.	0.0	0
928	Infection Mechanism of Pathogenic Exduate by Soil-Borne Fungal Pathogens: A Review. Han'guk T'oyang Piryo Hakhoe Chi Han'guk T'oyang Piryo Hakhoe, 2012, 45, 622-627.	0.1	0
929	Biological Control: PGPR and Arbuscular Mycorrhizal Fungi Working Together. , 2014, , 39-53.		2
930	Isolation and Identification of Rhizospheric Bacteria in Acrisols of Maize (Zea Mays L.) in the Eastern of South Vietnam. American Journal of Life Sciences, 2014, 2, 82.	0.3	7
931	Regulators Involved in <i>Dickeya solani</i> Virulence, Genetic Conservation and Functional Variability. Molecular Plant-Microbe Interactions, 0, , MPMI-99-99-0003.	1.4	0
932	Regulators Involved in <i>Dickeya solani</i> Virulence, Genetic Conservation and Functional Variability. Molecular Plant-Microbe Interactions, 0, , MPMI-99-99-0004.	1.4	0
934	Regulators Involved in <i>Dickeya solani</i> Virulence, Genetic Conservation and Functional Variability. Molecular Plant-Microbe Interactions, 2015, 2015, 57-68.	1.4	1
937	Chapter 4 Phosphorus Use Efficiency in Crop Plants. , 2017, , 143-176.		0
938	Agroecological Engineering in Rhizosphere Biocontrol Plants and Formation of Soil Health. MikrobiolohichnyA-Zhurnal, 2017, 79, 88-109.	0.2	3
940	Studies on Quantitative Analysis of Rhizosphere and Non-Rhizosphere Mycoflora at Different Stages of Plant Growth in Different Varieties of Pigeon Pea [Cajanus cajan (L.) Millsp.]. International Journal of Pure & Applied Bioscience, 2018, 6, 357-363.	0.1	0
943	Impact Assessment of Microbial Formulations in Agricultural Soil. , 2019, , 471-495.		2
944	Dynamics of Plant Microbiome and Its Effect on the Plant Traits. , 2019, , 273-304.		2
945	Hsp90: A Target for Susceptibilities and Substitutions in Biotechnological and Medicinal Application. Heat Shock Proteins, 2019, , 387-410.	0.2	0

#	Article	IF	CITATIONS
946	Fertilizer Nitrogen as a Significant Driver of Rhizosphere Microbiome in Rice Paddies., 2019, , 359-377.		0
948	Biocidal Mechanisms in Biological Control of Fusarium Wilt in Chickpea (Cicer arietinum L.) by Antagonistic Rhizobacteria: A Current Perspective in Soil Borne Fungal Pest Management. International Journal of Current Microbiology and Applied Sciences, 2019, 8, 1494-1510.	0.0	4
949	Using Bacteria-Derived Volatile Organic Compounds (VOCs) for Industrial Processes. , 2020, , 305-316.		2
951	Rhizosphere Microbiome: The Emerging Barrier in Plant-Pathogen Interactions. Frontiers in Microbiology, 2021, 12, 772420.	1.5	36
952	Impact of bacterial volatiles on phytopathogenic fungi: an <i>in vitro</i> study on microbial competition and interaction. Journal of Experimental Botany, 2022, 73, 596-614.	2.4	8
953	Use of Acyl-Homoserine Lactones Leads to Improved Growth of Ginseng Seedlings and Shifts in Soil Microbiome Structure. Agronomy, 2021, 11, 2177.	1.3	5
954	Biosynthesis and beneficial effects of microbial gibberellins on crops for sustainable agriculture. Journal of Applied Microbiology, 2022, 132, 1597-1615.	1.4	29
955	Role of Metagenomics in Plant Disease Management. Environmental and Microbial Biotechnology, 2021, , 203-220.	0.4	0
956	Beneficial Root Microbiota: Transmogrifiers of Secondary Metabolism in Plants., 2021, , 343-365.		1
958	Three dimensional plant growth promoting activity of Trichoderma asperellum in maize (Zea mays L.) against Fusarium moniliforme. Archives of Phytopathology and Plant Protection, 2021, 54, 764-781.	0.6	1
959	Role of Plant Growth Promoting Bacteria (PGPB) for Bioremediation of Heavy Metals., 2022,, 663-680.		1
960	Microbial consortia for augmentation of plant growth–revisiting the promising approach towards sustainable agriculture., 2022,, 231-256.		4
961	Role of microorganism as new generation plant bio-stimulants: An assessment. , 2022, , 1-16.		1
963	Trichoderma: A Globally Dominant Commercial Biofungicide. Soil Biology, 2020, , 195-208.	0.6	6
965	Friends and Foes: Phyto-Microbial Interactions in Molecular Perspective. Environmental and Microbial Biotechnology, 2020, , 81-98.	0.4	2
967	Which Biocontrol Strategies Best Fit with Other IPM System Components?. Progress in Biological Control, 2020, , 231-256.	0.5	0
968	Isolation and Characterisation of Biosurfactant-producing Pseudomonas specie from Soil. UMYU Journal of Microbiology Research, 2020, 4, 1-6.	0.1	1
969	Antifungal Activity Evaluation of Trichoderma Species Against Fusarium Wilt and Alternaria Leaf Blight of Sesame (Sesame indicum L.) Under in vitro Conditions. Asian Journal of Biological Sciences, 2020, 13, 139-151.	0.2	0

#	Article	IF	Citations
970	Oral Toxicity of Pseudomonas protegens against Muscoid Flies. Toxins, 2021, 13, 772.	1.5	5
972	Effects of growth promoting microorganisms on tomato seedlings growing in different media conditions. PLoS ONE, 2021, 16, e0259380.	1.1	2
973	Shallot Basal Bulb Rot Management through Integration of Trichoderma asperellum, Composted Plant Residues and Natural Mulch. Journal of Pure and Applied Microbiology, 2020, 14, 1779-1788.	0.3	1
979	Biotic Stress Management by Microbial Interactions in Soils. , 2021, , 315-329.		0
980	Fungal association in hotspot of rhizosphere. , 2022, , 97-116.		0
981	Microbial biofilms in plant disease management. , 2022, , 239-259.		1
982	Changes in microbial metabolic C- and N- limitations in the rhizosphere and bulk soils along afforestation chronosequence in desertified ecosystems. Journal of Environmental Management, 2022, 303, 114215.	3.8	13
983	Deciphering the Fusarium-wilt control effect and succession driver of microbial communities managed under low-temperature conditions. Applied Soil Ecology, 2022, 171, 104334.	2.1	8
985	Soil-root interface influences the assembly of the endophytic bacterial community in rice plants. Biology and Fertility of Soils, 2022, 58, 35-48.	2.3	12
986	Fusarium Oxysporum f. sp. Cannabis Isolated from Cannabis Sativa L.: In Vitro and In Planta Biocontrol by a Plant Growth Promoting-Bacteria Consortium. Plants, 2021, 10, 2436.	1.6	4
987	Phoma Diseases: Identification, Epidemiology, and Strategies for Management., 2022, , 121-134.		0
988	Plant neighbours can make or break the disease transmission chain of a fungal root pathogen. New Phytologist, 2022, 233, 1303-1316.	3.5	11
989	Potential Efficacy of Biofilm-Forming Biosurfactant Bacillus firmus HussainT-Lab.66 Against Rhizoctonia solani and Mass Spectrometry Analysis of its Metabolites. International Journal of Peptide Research and Therapeutics, 2022, 28, 1.	0.9	10
990	Phoma on Medicinal and Aromatic Plants. , 2022, , 37-55.		0
991	Root traits and soil microâ€organisms as drivers of plant–soil feedbacks within the subâ€arctic tundra meadow. Journal of Ecology, 2022, 110, 466-478.	1.9	8
992	Soil Dissolved Organic Matters Mediate Specific Bacterial Taxa to Improve Nitrification Rates after Wheat Planting. SSRN Electronic Journal, 0, , .	0.4	0
994	Microbial inoculation to improve plant performance in mineâ€waste substrates: A test using pigeon pea (<i>Cajanus cajan</i>). Land Degradation and Development, 2022, 33, 497-511.	1.8	15
995	Cover Crop Species Composition Alters the Soil Bacterial Community in a Continuous Pepper Cropping System. Frontiers in Microbiology, 2021, 12, 789034.	1.5	6

#	Article	IF	CITATIONS
996	Bacteria isolated from cultivated soil after liming promote seed germination and seedling growth of crop plants. Current Research in Biotechnology, 2022, 4, 21-31.	1.9	3
997	Pseudomonas sp. TCd-1 significantly alters the rhizosphere bacterial community of rice in Cd contaminated paddy field. Chemosphere, 2022, 290, 133257.	4.2	15
998	Effects of Allelochemicals, Soil Enzyme Activities, and Environmental Factors on Rhizosphere Soil Microbial Community of Stellera chamaejasme L. along a Growth-Coverage Gradient. Microorganisms, 2022, 10, 158.	1.6	12
999	Diversity and structure of the microbial community in rhizosphere soil of <i>Fritillaria ussuriensis</i> at different health levels. Peerl, 2022, 10, e12778.	0.9	18
1000	Nematodes as Ghosts of Land Use Past: Elucidating the Roles of Soil Nematode Community Studies as Indicators of Soil Health and Land Management Practices. Applied Biochemistry and Biotechnology, 2022, 194, 2357-2417.	1.4	14
1001	Rhizosphere impacts bacterial community structure in the tea (Camellia sinensis (L.) O . Kuntze .) estates of Darjeeling, India. Environmental Microbiology, 2021, , .	1.8	3
1002	Sources of terrestrial nitrogen and phosphorus mobilization in South and South East Asian coastal ecosystems. Watershed Ecology and the Environment, 2022, 4, 12-31.	0.6	3
1005	Early Effects of Fertilizer and Herbicide Reduction on Root-Associated Biota in Oil Palm Plantations. Agronomy, 2022, 12, 199.	1.3	4
1006	Label-Free Multiphoton Imaging of Microbes in Root, Mineral, and Soil Matrices with Time-Gated Coherent Raman and Fluorescence Lifetime Imaging. Environmental Science & Envir	4.6	14
1007	Field Site-Specific Effects of an Azospirillum Seed Inoculant on Key Microbial Functional Groups in the Rhizosphere. Frontiers in Microbiology, 2021, 12, 760512.	1.5	8
1008	Significance of the Diversification of Wheat Species for the Assembly and Functioning of the Root-Associated Microbiome. Frontiers in Microbiology, 2021, 12, 782135.	1.5	7
1009	Variation in Bacterial Community Structure in Rhizosphere and Bulk Soils of Different Halophytes in the Yellow River Delta. Frontiers in Ecology and Evolution, 2022, 9, .	1.1	13
1011	Trichoderma: Potential bio-resource for the management of tomato root rot diseases in Africa. Microbiological Research, 2022, 257, 126978.	2.5	21
1012	Unlocking the strength of plant growth promoting <i>Pseudomonas</i> in improving crop productivity in normal and challenging environments: a review. Journal of Plant Interactions, 2022, 17, 220-238.	1.0	47
1013	Degradation of soil arbuscular mycorrhizal fungal diversity and functionality accompanied by the aggravation of pepper <i>Phytophthora</i> blight in a facility shed in Southwest China. Land Degradation and Development, 2022, 33, 1337-1346.	1.8	5
1014	Acidic amelioration of soil amendments improves soil health by impacting rhizosphere microbial assemblies. Soil Biology and Biochemistry, 2022, 167, 108599.	4.2	26
1015	Plastic mulch film residues in agriculture: impact on soil suppressiveness, plant growth, and microbial communities. FEMS Microbiology Ecology, 2022, 98, .	1.3	18
1016	Rhizosphere bacteriome structure and functions. Nature Communications, 2022, 13, 836.	5.8	280

#	Article	IF	CITATIONS
1017	Characterization of the Non-rhizobial Bacterial Community in the Nodule-Associated Soils of Akebono Soybeans and Isolation of Antibiotic ProducingÂAmycolatopsisÂspp Indian Journal of Microbiology, 2022, 62, 242-248.	1.5	1
1018	Soil Application of Plant Growth Promoting Fungi for Sustainable Agriculture in the New Decade. Advances in Science, Technology and Innovation, 2022, , 321-330.	0.2	2
1019	Spring barley performance benefits from simultaneous shallow straw incorporation and top dressing as revealed by rhizotrons with resealable sampling ports. Biology and Fertility of Soils, 2022, 58, 375-388.	2.3	3
1020	Pseudomonas spp. Producing Antimicrobial Compounds Regulate Fungal Communities Inhabiting Wheat Crown in Southern Chile. Agronomy, 2022, 12, 710.	1.3	2
1021	Pangenome Analysis of the Soilborne Fungal Phytopathogen Rhizoctonia solani and Development of a Comprehensive Web Resource: RsolaniDB. Frontiers in Microbiology, 2022, 13, 839524.	1.5	14
1022	Rhizosphere Microbial Community Diversity and Function Analysis of Cut Chrysanthemum During Continuous Monocropping. Frontiers in Microbiology, 2022, 13, 801546.	1.5	11
1023	Integrated Soil Health Management for Plant Health and One Health: Lessons From Histories of Soil-borne Disease Management in California Strawberries and Arthropod Pest Management. Frontiers in Sustainable Food Systems, 2022, 6, .	1.8	5
1024	Mineral and Organic Fertilizers Distinctly Affect Fungal Communities in the Crop Rhizosphere. Journal of Fungi (Basel, Switzerland), 2022, 8, 251.	1.5	30
1025	Soil microbial communities following 20Âyears of fertilization and crop rotation practices in the Czech Republic. Environmental Microbiomes, 2022, 17, 13.	2.2	7
1026	Effects of Plastic Shed Cultivation System on the Properties of Red Paddy Soil and Its Management by Reductive Soil Disinfestation. Horticulturae, 2022, 8, 279.	1.2	5
1027	Altered diversity and functioning of soil and root-associated microbiomes by an invasive native plant. Plant and Soil, 2022, 473, 235-249.	1.8	20
1028	Control Strategies of Clubroot Disease Caused by Plasmodiophora brassicae. Microorganisms, 2022, 10, 620.	1.6	15
1029	The Proportion of Soil-Borne Fungal Pathogens Increases with Elevated Organic Carbon in Agricultural Soils. MSystems, 2022, 7, e0133721.	1.7	12
1030	Effects of soil conditioning, root and shoot litter addition interact to determine the intensity of plant–soil feedback. Oikos, 2022, 2022, .	1.2	8
1031	Predicting the impact of environmental factors on citrus canker through multiple regression. PLoS ONE, 2022, 17, e0260746.	1.1	6
1032	Dysbiosis in the Rhizosphere Microbiome of Standing Dead Korean Fir (Abies koreana). Plants, 2022, 11, 990.	1.6	6
1033	Soil dissolved organic matters mediate bacterial taxa to enhance nitrification rates under wheat cultivation. Science of the Total Environment, 2022, 828, 154418.	3.9	14
1034	Microbial Diversity Characteristics of Areca Palm Rhizosphere Soil at Different Growth Stages. Plants, 2021, 10, 2706.	1.6	3

#	Article	IF	CITATIONS
1035	Colloidal Silver Hydrogen Peroxide: New Generation Molecule for Management of Phytopathogens. Horticulturae, 2021, 7, 573.	1.2	4
1036	Impacts of soilâ€borne disease on plant yield and farm profit in dairying soils. , 2022, 1, 16-29.		8
1037	Ecological Dynamics and Microbial Treatments against Oomycete Plant Pathogens. Plants, 2021, 10, 2697.	1.6	2
1038	Associations of Pantoea with Rice Plants: As Friends or Foes?. Agriculture (Switzerland), 2021, 11, 1278.	1.4	14
1039	Antagonistic activity and characterization of indigenous soil isolates of bacteria and fungi against onion wilt incited by Fusarium sp Archives of Microbiology, 2022, 204, 68.	1.0	2
1040	Enhancing Agrichemical Delivery and Plant Development with Biopolymer-Based Stimuli Responsive Core–Shell Nanostructures. ACS Nano, 2022, 16, 6034-6048.	7.3	35
1041	The negative effects of soil microorganisms on plant growth only extend to the first weeks. Journal of Plant Ecology, 2022, 15, 854-863.	1.2	3
1089	Trophic interactions between predatory protists and pathogen-suppressive bacteria impact plant health. ISME Journal, 2022, 16, 1932-1943.	4.4	57
1090	Deciphering soil microbiota using metagenomic approach for sustainable agriculture: an overview., 2022,, 439-454.		1
1092	Insights into the microbiome assembly during different growth stages and storage of strawberry plants. Environmental Microbiomes, 2022, 17, 21.	2.2	18
1093	Uniting RNAi Technology and Conservation Biocontrol to Promote Global Food Security and Agrobiodiversity. Frontiers in Bioengineering and Biotechnology, 2022, 10, 871651.	2.0	7
1094	Deterministic Process Dominated Belowground Community Assembly When Suffering Tomato Bacterial Wilt Disease. Agronomy, 2022, 12, 1024.	1.3	6
1095	Response of soil fungal species, phylogenetic and functional diversity to diurnal asymmetric warming in an alpine agricultural ecosystem. Agriculture, Ecosystems and Environment, 2022, 335, 107993.	2.5	20
1096	Bioâ€organic soil amendment promotes the suppression of <i>Ralstonia solanacearum</i> by inducing changes in the functionality and composition of rhizosphere bacterial communities. New Phytologist, 2022, 235, 1558-1574.	3.5	57
1101	Rhizosphere microbiome of forest trees is connected to their resistance to soil-borne pathogens. Plant and Soil, 2022, 479, 143-158.	1.8	7
1102	Effect of Bacterial Wilt on Fungal Community Composition in Rhizosphere Soil of Tobaccos in Tropical Yunnan. Plant Pathology Journal, 2022, 38, 203-211.	0.7	8
1103	Bacillus amyloliquefaciens strain enhances rhizospheric microbial growth and reduces root and stem rot in a degraded agricultural system. Rhizosphere, 2022, 22, 100544.	1.4	8
1105	Combining biogeographical approaches to advance invasion ecology and methodology. Journal of Ecology, 2022, 110, 2033-2045.	1.9	5

#	Article	IF	CITATIONS
1106	Transfer of Nitrogen and Phosphorus From Cattle Manure to Soil and Oats Under Simulative Cattle Manure Deposition. Frontiers in Microbiology, 0, 13, .	1.5	2
1107	Bio-efficacy of Geobacillus thermodenitrificans PS41 against larvicidal, fungicidal, and plant growth–promoting activities. Environmental Science and Pollution Research, 2023, 30, 42596-42607.	2.7	4
1108	Microbial Consortia: An Engineering Tool to Suppress Clubroot of Chinese Cabbage by Changing the Rhizosphere Bacterial Community Composition. Biology, 2022, 11, 918.	1.3	7
1109	Integrated organic and inorganic fertilization and reduced irrigation altered prokaryotic microbial community and diversity in different compartments of wheat root zone contributing to improved nitrogen uptake and wheat yield. Science of the Total Environment, 2022, 842, 156952.	3.9	15
1110	Water Deficit History Selects Plant Beneficial Soil Bacteria Differently Under Conventional and Organic Farming. Frontiers in Microbiology, 0, 13 , .	1.5	6
1111	Plant–microbe interactions in the rhizosphere via a circular metabolic economy. Plant Cell, 2022, 34, 3168-3182.	3.1	37
1112	Microbial consortium., 2022,, 23-46.		1
1113	Small <scp>RNAs</scp> in the Antarctic bacterium <i>Pseudomonas extremaustralis</i> responsive to oxygen availability and oxidative stress. Environmental Microbiology Reports, 2022, 14, 604-615.	1.0	2
1114	Advances and Perspectives in the Use of Biocontrol Agents against Fungal Plant Diseases. Horticulturae, 2022, 8, 577.	1.2	58
1115	Metabolic signatures of rhizobacteriaâ€induced plant growth promotion. Plant, Cell and Environment, 2022, 45, 3086-3099.	2.8	6
1116	Controlled natural selection of soil microbiome through plant-soil feedback confers resistance to a foliar pathogen. Plant and Soil, 2023, 485, 181-195.	1.8	4
1117	High Variability of Fungal Communities Associated with the Functional Tissues and Rhizosphere Soil of Picea abies in the Southern Baltics. Forests, 2022, 13, 1103.	0.9	9
1118	An Nuclear Magnetic Resonance Fingerprint Matching Approach for the Identification and Structural Re-Evaluation of Pseudomonas Lipopeptides. Microbiology Spectrum, 2022, 10, .	1.2	9
1119	Design, Synthesis, and Antifungal Activities of Hymexazol Glycosides Based on a Biomimetic Strategy. Journal of Agricultural and Food Chemistry, 2022, 70, 9520-9535.	2.4	8
1121	Etiology, Epidemiology, and Management of Sugar Beet Diseases. , 2022, , 505-540.		2
1122	Effect of organic fertilizers based on chicken manure on oat productivity and microbiological indicators of the soil. Sibirskii Vestnik Sel'skokhoziaistvennoi Nauki, 2022, 52, 5-16.	0.1	0
1123	Great gerbil burrowing-induced microbial diversity shapes the rhizosphere soil microenvironments of Haloxylon ammodendron in temperate deserts. Frontiers in Microbiology, 0, 13, .	1.5	0
1124	Effect of Plant Growth Promoting Microorganisms on Pepper Plants Infected with Tomato Brown Rugose Fruit Virus. Diversity, 2022, 14, 635.	0.7	2

#	Article	IF	CITATIONS
1125	Soil and Soilless Tomato Cultivation Promote Different Microbial Communities That Provide New Models for Future Crop Interventions. International Journal of Molecular Sciences, 2022, 23, 8820.	1.8	10
1126	Succession of soil microbial community in a developing mid-channel bar: The role of environmental disturbance and plant community. Frontiers in Microbiology, 0, 13, .	1.5	3
1127	Bacteriophage cocktails as antibacterial agents in crop protection. Environmental Sustainability, 2022, 5, 305-311.	1.4	4
1128	Soil Microbes: Role in Agriculture Sustainability. , 2022, , 77-89.		O
1130	Diversified crop rotation improves continuous monocropping eggplant production by altering the soil microbial community and biochemical properties. Plant and Soil, 2022, 480, 603-624.	1.8	7
1131	Differential effects of nitrogen addition on the organic carbon fractions of rhizosphere and bulk soil based on a pot experiment. Journal of Soils and Sediments, 2023, 23, 103-117.	1.5	6
1132	The role of the biogas slurry microbial communities in suppressing fusarium wilt of cucumber. Waste Management, 2022, 151, 142-153.	3.7	5
1133	Control of Phytophthora and Rhizoctonia Root Rot on Red Maple Using Fungicides and Biofungicides. Hortscience: A Publication of the American Society for Hortcultural Science, 2022, 57, 1306-1312.	0.5	1
1134	Bacillus tequilensis PKDN31 and Bacillus licheniformis PKDL10 –As double headed swords to combat Fusarium oxysporum f. sp. lycopersici induced tomato wilt. Microbial Pathogenesis, 2022, 172, 105784.	1.3	9
1135	Organic Management Strategies for Nematode Control in Florida Plasticulture. Sustainability in Plant and Crop Protection, 2022, , 293-325.	0.2	0
1136	Bacterial Dynamics and Functions Driven by Biomass Wastes to Promote Rural Toilet Blackwater Absorption and Recycling in an Ectopic Fermentation System. SSRN Electronic Journal, 0, , .	0.4	0
1137	Assessment Of Phosphate Solubilization, Indole Acetic Acid and Ammonia Production By Bacteria And Fungi Isolated From The Rhizosphere Of Guinea Corn (Sorghum bicolor). UMYU Journal of Microbiology Research, 2022, 7, 47-55.	0.1	0
1138	Global magnitude of rhizosphere effects on soil microbial communities and carbon cycling in natural terrestrial ecosystems. Science of the Total Environment, 2023, 856, 158961.	3.9	21
1140	Factors associated with soils suppressive to black scurf of potato caused by Rhizoctonia solani. New Zealand Plant Protection, 0, 75, 31-49.	0.3	2
1141	Long-Term Fertilization Strategy Impacts Rhizoctonia solani–Microbe Interactions in Soil and Rhizosphere and Defense Responses in Lettuce. Microorganisms, 2022, 10, 1717.	1.6	5
1142	Soil conditions on bacterial wilt disease affect bacterial and fungal assemblage in the rhizosphere. AMB Express, 2022, 12, .	1.4	4
1143	Aspects of the rhizospheric microbiota and their interactions with the soil ecosystem. Vavilovskii Zhurnal Genetiki I Selektsii, 2022, 26, 442-448.	0.4	0
1144	New opportunities in plant microbiome engineering for increasing agricultural sustainability under stressful conditions. Frontiers in Plant Science, 0, 13 , .	1.7	56

#	Article	IF	CITATIONS
1146	Fungivorous nematode Aphelenchus avenae and collembola Hypogastrura perplexa alleviate damping-off disease caused by Pythium ultimum in tomato. Plant and Soil, 2023, 482, 175-189.	1.8	3
1147	An Insight into the Endophytic Bacterial Community of Tomato after Spray Application of Propiconazole and Bacillus subtilis Strain NBRI-W9. Microbiology Spectrum, 2022, 10, .	1.2	7
1148	New insights into engineered plant-microbe interactions for pesticide removal. Chemosphere, 2022, 309, 136635.	4.2	11
1149	In silico discovery of biomarkers for the accurate and sensitive detection of Fusarium solani. Frontiers in Bioinformatics, 0, 2, .	1.0	0
1150	Functional interplay between antagonistic bacteria and Rhizoctonia solani in the tomato plant rhizosphere. Frontiers in Microbiology, 0, 13 , .	1.5	24
1151	Microbial community structure and niche differentiation under different health statuses of Pinus bungeana in the Xiong'an New Area in China. Frontiers in Microbiology, $0,13,.$	1.5	4
1152	Phytomicrobiome communications: Novel implications for stress resistance in plants. Frontiers in Microbiology, $0,13,.$	1.5	9
1153	Versatile Roles of Microbes and Small RNAs in Rice and Planthopper Interactions. Plant Pathology Journal, 2022, 38, 432-448.	0.7	0
1154	Arbuscular Mycorrhiza and Nitrification: Disentangling Processes and Players by Using Synthetic Nitrification Inhibitors. Applied and Environmental Microbiology, 2022, 88, .	1.4	13
1155	Analysis of the Bacterial and Fungal Community Profiles in Bulk Soil and Rhizospheres of Three Mungbean [<i>Vigna radiata</i> (L.) R. Wilczek] Genotypes through PCR-DGGE. International Letters of Natural Sciences, 0, 77, 1-26.	1.0	0
1156	Rhizosphere Microbes and Wheat Health Management. Microorganisms for Sustainability, 2022, , 223-242.	0.4	1
1157	Interactions of Rhizobia with Nonleguminous Plants: A Molecular Ecology Perspective for Enhanced Plant Growth. Microorganisms for Sustainability, 2022, , 23-64.	0.4	1
1158	Exploration of Plant Growth-Promoting Rhizobacteria (PGPR) for Improving Productivity and Soil Fertility Under Sustainable Agricultural Practices. Rhizosphere Biology, 2022, , 245-269.	0.4	2
1159	From Rhizosphere to Endosphere: Bacterial-Plant Symbiosis and Its Impact on Sustainable Agriculture. Rhizosphere Biology, 2022, , 89-103.	0.4	1
1160	The Potential of Rhizobacteria for Plant Growth and Stress Adaptation. Rhizosphere Biology, 2022, , 205-224.	0.4	0
1161	Pea Breeding for Resistance to Rhizospheric Pathogens. Plants, 2022, 11, 2664.	1.6	6
1162	Biological Control of Melon Continuous Cropping Obstacles: Weakening the Negative Effects of the Vicious Cycle in Continuous Cropping Soil. Microbiology Spectrum, 2022, 10, .	1.2	9
1164	Maize-soybean relay strip intercropping reshapes the rhizosphere bacterial community and recruits beneficial bacteria to suppress Fusarium root rot of soybean. Frontiers in Microbiology, 0, 13, .	1.5	10

#	Article	IF	CITATIONS
1165	Changes in soil fungal communities after onset of wheat yellow mosaic virus disease. Frontiers in Bioengineering and Biotechnology, 0, 10 , .	2.0	4
1166	Diversity analysis of leaf endophytic fungi and rhizosphere soil fungi of Korean Epimedium at different growth stages. Environmental Microbiomes, 2022, 17, .	2.2	3
1167	Bioprospecting Soil Bacteria from Arid Zones to Increase Plant Tolerance to Drought: Growth and Biochemical Status of Maize Inoculated with Plant Growth-Promoting Bacteria Isolated from Sal Island, Cape Verde. Plants, 2022, 11, 2912.	1.6	5
1168	Rhizosphere bacterial communities of three minor grain crops exhibit distinct environmental adaptations and assembly processes. European Journal of Soil Science, 2022, 73, .	1.8	2
1169	Rhizospheric microbial community in plant species from the Phaseolus genus. Applied Soil Ecology, 2023, 182, 104731.	2.1	3
1170	Development specifies, diversifies and empowers root immunity. EMBO Reports, 2022, 23, .	2.0	4
1171	Antifungal Activity of Verticillin D Isolated from Clonostachys rosea EC28 against Alternaria burnsii and Sclerotium rolfsii. Journal of Advances in Microbiology, 0, , 93-106.	0.2	0
1172	Bacterial Microbiota and Soil Fertility of Crocus sativus L. Rhizosphere in the Presence and Absence of Fusarium spp Land, 2022, 11, 2048.	1.2	2
1173	Analysis and Interpretation of metagenomics data: an approach. Biological Procedures Online, 2022, 24, .	1.4	16
1174	Underexplored Microbial Species in the Pipeline for the Development of Biopesticides., 2022,, 202-225.		0
1175	Efficacy of Achromobacter Spp. Isolated from Rhizosphere of Soybean Against Macrophomina phaseolina. International Journal of Advanced Research in Science, Communication and Technology, 0, , 813-816.	0.0	0
1176	Antagonist activities of native rhizosphere micro-flora against groundnut stem rot pathogen, Sclerotium rolfsii Sacc Egyptian Journal of Biological Pest Control, 2022, 32, .	0.8	1
1177	Isolation and Characterization of Novel Biological Control Agent Clostridium beijerinckii against Meloidogyne incognita. Biology, 2022, 11, 1724.	1.3	2
1178	Bacillus subtilis and Bacillus licheniformis promote tomato growth. Brazilian Journal of Microbiology, 2023, 54, 397-406.	0.8	3
1179	Honeybees affect floral microbiome composition in a central food source for wild pollinators in boreal ecosystems. Oecologia, 2023, 201, 59-72.	0.9	5
1180	Varieties of Lettuce Forming Distinct Microbial Communities Inhabiting Roots and Rhizospheres with Various Responses to Osmotic Stress. Horticulturae, 2022, 8, 1174.	1.2	3
1181	Brassica seed meal fumigation restores beneficial bacterial communities by enriching taxa with high resistance and resilience. Plant and Soil, 2023, 485, 589-613.	1.8	1
1182	Soil amendments and suppression of Phytophthora root rot in avocado (Persea americana). Australasian Plant Pathology, 2023, 52, 1-11.	0.5	3

#	Article	IF	CITATIONS
1183	Shaping effects of rice, wheat, maize, and soybean seedlings on their rhizosphere microbial community. Environmental Science and Pollution Research, 2023, 30, 35972-35984.	2.7	1
1184	Reducing plant pathogens could increase crop yields after plastic film mulching. Science of the Total Environment, 2023, 861, 160615.	3.9	4
1185	Tare Soil Alters the Composition of the Developing Potato Rhizosphere Microbiome. Phytobiomes Journal, 2023, 7, 91-99.	1.4	2
1186	Interplay between rhizospheric Pseudomonas chlororaphis strains lays the basis for beneficial bacterial consortia. Frontiers in Plant Science, 0, 13, .	1.7	2
1187	Bacterial Community Structure and Function Shift in Rhizosphere Soil of Tobacco Plants Infected by Meloidogyne incognita. Plant Pathology Journal, 2022, 38, 583-592.	0.7	1
1188	Influence of Bacteria of the Genus Pseudomonas on Leguminous Plants and Their Joint Application for Bioremediation of Oil Contaminated Soils. Plants, 2022, 11, 3396.	1.6	2
1189	Genetic Determinants of Antagonistic Interactions and the Response of New Endophytic Strain Serratia quinivorans KP32 to Fungal Phytopathogens. International Journal of Molecular Sciences, 2022, 23, 15561.	1.8	3
1190	Harnessing the Rhizosphere Soil Microbiome of Organically Amended Soil for Plant Productivity. Agronomy, 2022, 12, 3179.	1.3	6
1191	Microbial Community Dynamics Due to Land Use Change: Some Circumstances in the Tropical Rain Forest of Indonesia. Climate Change Management, 2023, , 51-69.	0.6	0
1192	Treatment with organic manure inoculated with a biocontrol agent induces soil bacterial communities to inhibit tomato Fusarium wilt disease. Frontiers in Microbiology, 0, 13 , .	1.5	3
1193	Plant Beneficial Bacteria and Their Potential Applications in Vertical Farming Systems. Plants, 2023, 12, 400.	1.6	14
1194	Unearthing the Modern Trends and Concepts of Rhizosphere Microbiome in Relation to Plant Productivity. Microorganisms for Sustainability, 2023, , 19-54.	0.4	0
1195	Facilitating effects of the reductive soil disinfestation process combined with Paenibacillus sp. amendment on soil health and physiological properties of Momordica charantia. Frontiers in Plant Science, 0, 13, .	1.7	2
1196	Bacterial dynamics and functions driven by biomass wastes to promote rural toilet blackwater absorption and recycling in an ectopic fermentation system. Chemosphere, 2023, 316, 137804.	4.2	2
1197	Root exudation processes induce the utilization of microbial-derived components by rhizoplane microbiota under conservation agriculture. Soil Biology and Biochemistry, 2023, 178, 108956.	4.2	5
1198	Cardiolipin synthesis in Pseudomonas fluorescens UM270 plays a relevant role in stimulating plant growth under salt stress. Microbiological Research, 2023, 268, 127295.	2.5	2
1199	Disease-induced assemblage of the rhizosphere fungal community in successive plantings of wheat. Phytobiomes Journal, 0, , .	1.4	2
1200	Relationship between mineral nutrition, plant diseases, and pests., 2023,, 445-476.		1

#	Article	IF	CITATIONS
1201	Role of beneficial microbes in biotic and abiotic stress., 2023,, 243-259.		0
1202	Combined metagenomic and metabolomic analyses reveal that <i>Bt</i> rice planting alters soil C-N metabolism. ISME Communications, 2023, 3, .	1.7	6
1203	Major Soilborne Pathogens of Field Processing Tomatoes and Management Strategies. Microorganisms, 2023, $11,263$.	1.6	15
1204	Rhizosphere Mycobiome: Roles, Diversity, and Dynamics. , 2023, , 47-61.		0
1205	Mycorrhizae Enhance Soybean Plant Growth and Aluminum Stress Tolerance by Shaping the Microbiome Assembly in an Acidic Soil. Microbiology Spectrum, 2023, 11, .	1.2	4
1206	Seed treatment with plant-defense elicitors decreases the abundance of ammonia oxidizers associated with winter wheat roots. Soil Biology and Biochemistry, 2023, 180, 109016.	4.2	1
1207	Seasonal variations in the composition and diversity of rhizosphere soil microbiome of bamboo plants as infected by soil-borne pathogen and screening of associated antagonistic strains. Industrial Crops and Products, 2023, 197, 116641.	2.5	4
1208	Structural characteristics and diversity of the rhizosphere bacterial communities of wild Fritillaria przewalskii Maxim. in the northeastern Tibetan Plateau. Frontiers in Microbiology, 0, 14, .	1.5	1
1209	Root Metabolism and Effects of Root Exudates on the Growth of Ralstonia solanacearum and Fusarium moniliforme Were Significantly Different between the Two Genotypes of Peanuts. Genes, 2023, 14, 528.	1.0	3
1210	Potassium Phosphonate Induces Resistance in Sweet Chestnut against Ink Disease Caused by Phytophthora Species. Pathogens, 2023, 12, 365.	1.2	2
1211	Sour Orange Microbiome Is Affected by Infections of Plenodomus tracheiphilus Causal Agent of Citrus Mal Secco Disease. Agronomy, 2023, 13, 654.	1.3	2
1212	Emerging trends in plant metabolomics and hormonomics to study abiotic stress tolerance associated with rhizospheric probiotics. , 2023, , 283-306.		3
1213	Rhizosphere Microbial Community and Metabolites of Susceptible and Resistant Tobacco Cultivars to Bacterial Wilt. Journal of Microbiology, 2023, 61, 389-402.	1.3	4
1215	The Hydroponic Rockwool Root Microbiome: Under Control or Underutilised?. Microorganisms, 2023, 11, 835.	1.6	3
1217	Mind the blind spot: lessons from fungal community sequencing in a plant–soil feedback experiment. CABI Agriculture and Bioscience, 2023, 4, .	1.1	0
1218	Health Management of Rhizospheric Microbiome. , 2023, , 179-224.		O
1220	Different Response Mechanisms of Rhizosphere Microbial Communities in Two Species of Amorphophallus to Pectobacterium carotovorum subsp. carotovorum Infection. Plant Pathology Journal, 2023, 39, 207-219.	0.7	0
1221	Ginger rhizome priming with lipopeptide-producing endophytic Bacillus species to control ginger soft-rot disease caused by Pythium myriotylum. Acta Physiologiae Plantarum, 2023, 45, .	1.0	0

#	Article	IF	Citations
1222	Plant Mycobiome in Sustainable Agriculture. , 2023, , 121-136.		0
1223	Plant Genotype Shapes the Soil Nematode Community in the Rhizosphere of Tomatoes with Different Resistance to Meloidognye incognita. Plants, 2023, 12, 1528.	1.6	2
1225	A Look at Plant-Growth-Promoting Bacteria. Plants, 2023, 12, 1668.	1.6	19
1226	Yield and Nutraceutical Value of Lettuce and Basil Improved by a Microbial Inoculum in Greenhouse Experiments. Plants, 2023, 12, 1700.	1.6	2
1227	Plant–soil feedback regulates the trade-off between phosphorus acquisition pathways in ⟨i⟩Pinus elliottii⟨/i⟩. Tree Physiology, 2023, 43, 1092-1103.	1.4	0
1249	The possibility of using Serratia isolates for the production of biopreparations in the protection of plants against diseases and pests. Archives of Microbiology, 2023, 205, .	1.0	0
1276	Biological control of soil-borne pathogens in arid lands: a review. Journal of Plant Diseases and Protection, 2024, 131, 293-313.	1.6	0
1277	Role of Nonpathogenic Strains in Rhizosphere. , 2023, , 113-128.		0
1282	The role of Streptomyces species in controlling plant diseases: a comprehensive review. Australasian Plant Pathology, 0, , .	0.5	0
1297	Technological intervention in rhizosphere of tomato plants: a case study. , 2024, , 91-121.		0
1298	Influence of endophytes on plant growth and abiotic stress. , 2024, , 159-174.		0
1299	Endophytic Bacteria Bacillus spp. in the Formation of Adaptive Potential of Plants. Russian Journal of Plant Physiology, 2023, 70, .	0.5	0
1306	Soil Microbiota and Mechanisms of Plant Parasitic Nematode Suppression. Sustainability in Plant and Crop Protection, 2024, , 49-87.	0.2	0
1314	Plant growth-promoting bacteria: sustainable use in abiotic stress management., 2024,, 125-143.		0
1317	Understanding the changes and roles of rhizosphere microbial communities under plant stress., 2024, , 389-405.		0