CITATION REPORT List of articles citing

The IceCube data acquisition system: Signal capture, digitization, and timestamping

DOI: 10.1016/j.nima.2009.01.001 Nuclear Instruments and Methods in Physics Research, Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 2009, 601, 294-316.

Source: https://exaly.com/paper-pdf/46157805/citation-report.pdf

Version: 2024-04-28

This report has been generated based on the citations recorded by exaly.com for the above article. For the latest version of this publication list, visit the link given above.

The third column is the impact factor (IF) of the journal, and the fourth column is the number of citations of the article.

#	Paper	IF	Citations
290	SEARCH FOR HIGH-ENERGY MUON NEUTRINOS FROM THE NAKED-EYEIGRB 080319B WITH THE IceCube NEUTRINO TELESCOPE. <i>Astrophysical Journal</i> , 2009 , 701, 1721-1731	4.7	25
289	Extending the search for neutrino point sources with IceCube above the horizon. <i>Physical Review Letters</i> , 2009 , 103, 221102	7.4	31
288	GAMMA-RAY BURST DETECTION WITH ICECUBE. 2009 , 18, 1561-1565		
287	Prospects for dark matter detection with IceCube in the context of the CMSSM. 2009 , 2009, 034-034		21
286	Muon fluxes from dark matter annihilation. <i>Physical Review D</i> , 2009 , 80,	4.9	27
285	IceCube sensitivity for neutrino flux from Fermi blazars in quiescent states. <i>Physical Review D</i> , 2009 , 80,	4.9	20
284	NEUTRINO ASTRONOMY WITH ICECUBE. 2009 , 24, 1543-1557		9
283	FIRST NEUTRINO POINT-SOURCE RESULTS FROM THE 22 STRING ICECUBE DETECTOR. Astrophysical Journal, 2009 , 701, L47-L51	4.7	41
282	SEARCH FOR MUON NEUTRINOS FROM GAMMA-RAY BURSTS WITH THE IceCube NEUTRINO TELESCOPE. <i>Astrophysical Journal</i> , 2010 , 710, 346-359	4.7	69
281	MEASUREMENT OF THE ANISOTROPY OF COSMIC-RAY ARRIVAL DIRECTIONS WITH ICECUBE. Astrophysical Journal Letters, 2010 , 718, L194-L198	7.9	104
280	Search for relativistic magnetic monopoles with the AMANDA-II neutrino telescope. <i>European Physical Journal C</i> , 2010 , 69, 361-378	4.2	20
279	Dependability analysis of a very large volume neutrino telescope. 2010 , 95, 1164-1173		
278	Calibration and characterization of the IceCube photomultiplier tube. <i>Nuclear Instruments and Methods in Physics Research, Section A: Accelerators, Spectrometers, Detectors and Associated Equipment</i> , 2010 , 618, 139-152	1.2	179
277	The IceCube Detector: A Large Sensor Network at the South Pole. 2010 , 9, 43-47		7
276	Probing dark matter models with neutrinos from the Galactic center. <i>Physical Review D</i> , 2010 , 82,	4.9	17
275	Invited review article: IceCube: an instrument for neutrino astronomy. 2010, 81, 081101		139
274	ICECUBE NEUTRINO OBSERVATORY. 2010 , 19, 1041-1048		5

(2011-2010)

273	Search for a Lorentz-violating sidereal signal with atmospheric neutrinos in IceCube. <i>Physical Review D</i> , 2010 , 82,	4.9	65	
272	First search for extremely high energy cosmogenic neutrinos with the IceCube Neutrino Observatory. <i>Physical Review D</i> , 2010 , 82,	4.9	27	
271	Detection of supernova explosions with IceCube. 2010 , 27, 194003		1	
270	Muon fluxes and showers from dark matter annihilation in the Galactic center. <i>Physical Review D</i> , 2010 , 81,	4.9	12	
269	ICECUBE-DEEPCORE-PINGU: FUNDAMENTAL NEUTRINO AND DARK MATTER PHYSICS AT THE SOUTH POLE. 2011 , 26, 2899-2915		49	
268	Constraints on the extremely-high energy cosmic neutrino flux with the IceCube 2008-2009 data. <i>Physical Review D</i> , 2011 , 83,	4.9	64	
267	Supernova Neutrino Detection with IceCube. <i>Journal of Physics: Conference Series</i> , 2011 , 309, 012029	0.3	7	
266	Search for dark matter from the Galactic halo with the IceCube Neutrino Telescope. <i>Physical Review D</i> , 2011 , 84,	4.9	69	
265	Measurement of the atmospheric neutrino energy spectrum from 100 GeV to 400 TeV with IceCube. <i>Physical Review D</i> , 2011 , 83,	4.9	143	
264	Search for a diffuse flux of astrophysical muon neutrinos with the IceCube 40-string detector. <i>Physical Review D</i> , 2011 , 84,	4.9	85	
263	OBSERVATION OF ANISOTROPY IN THE ARRIVAL DIRECTIONS OF GALACTIC COSMIC RAYS AT MULTIPLE ANGULAR SCALES WITH IceCube. <i>Astrophysical Journal</i> , 2011 , 740, 16	4.7	91	
262	A readout system-on-chip for a cubic kilometer submarine neutrino telescope. <i>Journal of Instrumentation</i> , 2011 , 6, C12044-C12044	1	5	
261	TIME-INTEGRATED SEARCHES FOR POINT-LIKE SOURCES OF NEUTRINOS WITH THE 40-STRING IceCube DETECTOR. <i>Astrophysical Journal</i> , 2011 , 732, 18	4.7	106	
260	IceCube sensitivity for low-energy neutrinos from nearby supernovae. <i>Astronomy and Astrophysics</i> , 2011 , 535, A109	5.1	92	
259	Status of the BAIKAL neutrino experiment. 2011 , 75, 414-415		2	
258	IceCube and searches for astrophysical sources. 2011 , 212-213, 99-108		1	
257	IceCube. Nuclear Instruments and Methods in Physics Research, Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 2011 , 630, 119-124	1.2	1	
256	Acoustic resonant sensor for ultra high energy neutrino detection. 2011 , 34, 595-602			

255	IceCube: Physics, status, and future. <i>Nuclear Instruments and Methods in Physics Research, Section A: Accelerators, Spectrometers, Detectors and Associated Equipment</i> , 2011 , 626-627, S6-S12	1.2	8
254	High energy cosmic-ray interactions with particles from the Sun. <i>Physical Review D</i> , 2011 , 83,	4.9	10
253	First search for atmospheric and extraterrestrial neutrino-induced cascades with the IceCube detector. <i>Physical Review D</i> , 2011 , 84,	4.9	34
252	Limits on neutrino emission from gamma-ray bursts with the 40 string IceCube detector. <i>Physical Review Letters</i> , 2011 , 106, 141101	7.4	72
251	Search for ultrahigh-energy tau neutrinos with IceCube. <i>Physical Review D</i> , 2012 , 86,	4.9	18
250	The First Year IceCube-DeepCore Results. <i>Journal of Physics: Conference Series</i> , 2012 , 375, 052034	0.3	4
249	Searching for soft relativistic jets in core-collapse supernovae with the IceCube optical follow-up program. <i>Astronomy and Astrophysics</i> , 2012 , 539, A60	5.1	35
248	NEUTRINO ANALYSIS OF THE 2010 SEPTEMBER CRAB NEBULA FLARE AND TIME-INTEGRATED CONSTRAINTS ON NEUTRINO EMISSION FROM THE CRAB USING ICECUBE. <i>Astrophysical Journal</i> , 2012 , 745, 45	4.7	13
247	Results from high-energy neutrino searches from gamma-ray bursts with IceCube. <i>Journal of Physics: Conference Series</i> , 2012 , 375, 052033	0.3	1
246	SEARCHES FOR PERIODIC NEUTRINO EMISSION FROM BINARY SYSTEMS WITH 22 AND 40 STRINGS OF ICECUBE. <i>Astrophysical Journal</i> , 2012 , 748, 118	4.7	8
245	TIME-DEPENDENT SEARCHES FOR POINT SOURCES OF NEUTRINOS WITH THE 40-STRING AND 22-STRING CONFIGURATIONS OF ICECUBE. <i>Astrophysical Journal</i> , 2012 , 744, 1	4.7	35
244	Probing annihilations and decays of low-mass galactic dark matter in IceCube DeepCore array: Track events. <i>Physical Review D</i> , 2012 , 85,	4.9	5
243	Extending the IceCube DAQ system by integration of the generic high-speed sorter module TESS. 2012 ,		
242	MEASUREMENTS OF COSMIC RAYS WITH ICETOP/ICECUBE: STATUS AND RESULTS. 2012 , 27, 1230038		2
241	An absence of neutrinos associated with cosmic-ray acceleration in Fray bursts. <i>Nature</i> , 2012 , 484, 351-4	50.4	230
240	Multiyear search for dark matter annihilations in the Sun with the AMANDA-II and IceCube detectors. <i>Physical Review D</i> , 2012 , 85,	4.9	65
239	OBSERVATION OF ANISOTROPY IN THE GALACTIC COSMIC-RAY ARRIVAL DIRECTIONS AT 400 TeV WITH ICECUBE. <i>Astrophysical Journal</i> , 2012 , 746, 33	4.7	101
238	Novel technique for supernova detection with IceCube. 2012 , 35, 485-494		19

237	The design and performance of IceCube DeepCore. 2012 , 35, 615-624	158
236	High-energy neutrino astrophysics: Status and perspectives. 2012 , 67, 651-704	54
235	First observation of PeV-energy neutrinos with IceCube. <i>Physical Review Letters</i> , 2013 , 111, 021103	470
234	Extending the IceCube DAQ System by Integration of the Generic High-Speed Sorter Module TESS. 2013 , 60, 3742-3745	
233	Multi-GHz Synchronous Waveform Acquisition With Real-Time Pattern-Matching Trigger Generation. 2013 , 60, 3785-3792	4
232	An improved method for measuring muon energy using the truncated mean of dE/dx. <i>Nuclear Instruments and Methods in Physics Research, Section A: Accelerators, Spectrometers, Detectors and Associated Equipment</i> , 2013 , 703, 190-198	28
231	Measurement of atmospheric neutrino oscillations with IceCube. <i>Physical Review Letters</i> , 2013 , 111, 081 8 0	1 41
230	The IceCube neutrino observatory: Status and initial results. 2013 , 51, 238-241	3
229	Cosmic-ray physics with IceCube. 2013 , 51, 242-246	1
228	Identify signatures of underground muons from atmospheric charm: Simulation study. 2013 , 41, 38-44	
228	Identify signatures of underground muons from atmospheric charm: Simulation study. 2013 , 41, 38-44 Measurement of South Pole ice transparency with the IceCube LED calibration system. <i>Nuclear Instruments and Methods in Physics Research, Section A: Accelerators, Spectrometers, Detectors and Associated Equipment</i> , 2013 , 711, 73-89	101
	Measurement of South Pole ice transparency with the IceCube LED calibration system. <i>Nuclear Instruments and Methods in Physics Research, Section A: Accelerators, Spectrometers, Detectors and</i> 1.2	
227	Measurement of South Pole ice transparency with the IceCube LED calibration system. <i>Nuclear Instruments and Methods in Physics Research, Section A: Accelerators, Spectrometers, Detectors and Associated Equipment</i> , 2013 , 711, 73-89 A packet-based precise timing and synchronous DAQ network for the LHAASO project. <i>Nuclear Instruments and Methods in Physics Research, Section A: Accelerators, Spectrometers, Detectors and</i> 1.2	16
227	Measurement of South Pole ice transparency with the IceCube LED calibration system. Nuclear Instruments and Methods in Physics Research, Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 2013, 711, 73-89 A packet-based precise timing and synchronous DAQ network for the LHAASO project. Nuclear Instruments and Methods in Physics Research, Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 2013, 732, 488-492 Anisotropy of TeV and PeV cosmic rays with IceCube and IceTop. Nuclear Instruments and Methods in Physics Research, Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 1.2	16 2
227 226 225	Measurement of South Pole ice transparency with the IceCube LED calibration system. <i>Nuclear Instruments and Methods in Physics Research, Section A: Accelerators, Spectrometers, Detectors and Associated Equipment,</i> 2013 , 711, 73-89 A packet-based precise timing and synchronous DAQ network for the LHAASO project. <i>Nuclear Instruments and Methods in Physics Research, Section A: Accelerators, Spectrometers, Detectors and Associated Equipment,</i> 2013 , 732, 488-492 Anisotropy of TeV and PeV cosmic rays with IceCube and IceTop. <i>Nuclear Instruments and Methods in Physics Research, Section A: Accelerators, Spectrometers, Detectors and Associated Equipment,</i> 2013 , 725, 85-88 Search for dark matter annihilations in the sun with the 79-string IceCube detector. <i>Physical Review</i>	16 2
227 226 225	Measurement of South Pole ice transparency with the IceCube LED calibration system. Nuclear Instruments and Methods in Physics Research, Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 2013, 711, 73-89 A packet-based precise timing and synchronous DAQ network for the LHAASO project. Nuclear Instruments and Methods in Physics Research, Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 2013, 732, 488-492 Anisotropy of TeV and PeV cosmic rays with IceCube and IceTop. Nuclear Instruments and Methods in Physics Research, Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 2013, 725, 85-88 Search for dark matter annihilations in the sun with the 79-string IceCube detector. Physical Review Letters, 2013, 110, 131302	16 2 197 2
227 226 225 224 223	Measurement of South Pole ice transparency with the IceCube LED calibration system. Nuclear Instruments and Methods in Physics Research, Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 2013, 711, 73-89 A packet-based precise timing and synchronous DAQ network for the LHAASO project. Nuclear Instruments and Methods in Physics Research, Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 2013, 732, 488-492 Anisotropy of TeV and PeV cosmic rays with IceCube and IceTop. Nuclear Instruments and Methods in Physics Research, Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 2013, 725, 85-88 Search for dark matter annihilations in the sun with the 79-string IceCube detector. Physical Review Letters, 2013, 110, 131302 Ultra-high energy neutrinos with IceCube. 2013, 235-236, 352-357	16 2 197 2

219	Search for Galactic PeV gamma rays with the IceCube Neutrino Observatory. <i>Physical Review D</i> , 2013 , 87,	4.9	26
218	Measurement of the atmospheric 目 flux in IceCube. <i>Physical Review Letters</i> , 2013 , 110, 151105	7.4	58
217	IceTop: The surface component of IceCube. <i>Nuclear Instruments and Methods in Physics Research, Section A: Accelerators, Spectrometers, Detectors and Associated Equipment,</i> 2013 , 700, 188-220	1.2	103
216	Measurement of Neutrino Oscillations with Neutrino Telescopes. 2013 , 2013, 1-16		7
215	Lateral distribution of muons in IceCube cosmic ray events. <i>Physical Review D</i> , 2013 , 87,	4.9	17
214	Measurement of the cosmic ray energy spectrum with IceTop-73. <i>Physical Review D</i> , 2013 , 88,	4.9	100
213	IceCube search for dark matter annihilation in nearby galaxies and galaxy clusters. <i>Physical Review D</i> , 2013 , 88,	4.9	42
212	Probing the origin of cosmic rays with extremely high energy neutrinos using the IceCube Observatory. <i>Physical Review D</i> , 2013 , 88,	4.9	40
211	Search for relativistic magnetic monopoles with IceCube. <i>Physical Review D</i> , 2013 , 87,	4.9	14
210	SEARCH FOR TIME-INDEPENDENT NEUTRINO EMISSION FROM ASTROPHYSICAL SOURCES WITH 3 yr OF IceCube DATA. <i>Astrophysical Journal</i> , 2013 , 779, 132	4.7	66
209	OBSERVATION OF COSMIC-RAY ANISOTROPY WITH THE ICETOP AIR SHOWER ARRAY. <i>Astrophysical Journal</i> , 2013 , 765, 55	4.7	74
208	South Pole glacial climate reconstruction from multi-borehole laser particulate stratigraphy. 2013 , 59, 1117-1128		16
207	SEARCHES FOR HIGH-ENERGY NEUTRINO EMISSION IN THE GALAXY WITH THE COMBINED ICECUBE-AMANDA DETECTOR. <i>Astrophysical Journal</i> , 2013 , 763, 33	4.7	8
206	IceCube Enhanced Hot Water Drill functional description. 2014 , 55, 105-114		28
205	The Track Engine - an FPGA implementation of a track-finding algorithm for the Icecube Neutrino Telescope. 2014 ,		
204	Observation of the cosmic-ray shadow of the Moon with IceCube. <i>Physical Review D</i> , 2014 , 89,	4.9	23
203	First data from DM-Ice17. Physical Review D, 2014 , 90,	4.9	38
202	Search for neutrino-induced particle showers with IceCube-40. <i>Physical Review D</i> , 2014 , 89,	4.9	19

(2015-2014)

201	Energy reconstruction methods in the IceCube neutrino telescope. <i>Journal of Instrumentation</i> , 2014 , 9, P03009-P03009	1	118
200	Multimessenger search for sources of gravitational waves and high-energy neutrinos: Initial results for LIGO-Virgo and IceCube. <i>Physical Review D</i> , 2014 , 90,	4.9	25
199	Cosmic ray spectrum, composition, and anisotropy measured with IceCube. <i>Nuclear Instruments and Methods in Physics Research, Section A: Accelerators, Spectrometers, Detectors and Associated Equipment</i> , 2014 , 742, 35-41	1.2	4
198	Improvement in fast particle track reconstruction with robust statistics. <i>Nuclear Instruments and Methods in Physics Research, Section A: Accelerators, Spectrometers, Detectors and Associated Equipment</i> , 2014 , 736, 143-149	1.2	20
197	SEARCHES FOR EXTENDED AND POINT-LIKE NEUTRINO SOURCES WITH FOUR YEARS OF ICECUBE DATA. <i>Astrophysical Journal</i> , 2014 , 796, 109	4.7	122
196	Observation of high-energy astrophysical neutrinos in three years of IceCube data. <i>Physical Review Letters</i> , 2014 , 113, 101101	7.4	683
195	Recent Highlights from IceCube. 2014 , 44, 540-549		1
194	The latest IceCube results. <i>Nuclear Instruments and Methods in Physics Research, Section A:</i> Accelerators, Spectrometers, Detectors and Associated Equipment, 2014 , 766, 43-47	1.2	1
193	Measurements of the cosmic ray spectrum and average mass with IceCube. 2014 , 53, 1470-1475		2
192	IceCube. 2014 , 64, 101-123		25
191	Cosmic neutrino pevatrons: A brand new pathway to astronomy, astrophysics, and particle physics. 2014 , 1-2, 1-30		111
190	Multi-channel data acquisition system with absolute time synchronization. <i>Nuclear Instruments and Methods in Physics Research, Section A: Accelerators, Spectrometers, Detectors and Associated Equipment</i> , 2014 , 763, 150-154	1.2	15
189	Neutrino Astronomy With IceCube at the South Pole. 2014 , 48, 35-39		О
188	The SST fully-synchronous multi-GHz analog waveform recorder with Nyquist-rate bandwidth and flexible trigger capabilities. 2014 ,		1
187	Determining neutrino oscillation parameters from atmospheric muon neutrino disappearance with three years of IceCube DeepCore data. <i>Physical Review D</i> , 2015 , 91,	4.9	63
186	Measurement of the Atmospheric ☐ Spectrum with IceCube. <i>Physical Review D</i> , 2015 , 91,	4.9	39
185	Evidence for Astrophysical Muon Neutrinos from the Northern Sky with IceCube. <i>Physical Review Letters</i> , 2015 , 115, 081102	7.4	204
184	Probing Extraterrestrial Neutrino Fluxes and Atmospheric Charm with Contained Neutrino Events above 1 TeV in IceCube. 2015 , 61, 633-640		

183	Neutrinos: the Messengers of the Invisible World. Journal of Physics: Conference Series, 2015, 593, 0120	02.3	
182	Search for dark matter annihilation in the Galactic Center with IceCube-79. <i>European Physical Journal C</i> , 2015 , 75, 1	4.2	37
181	Results from atmospheric neutrino oscillations with IceCube DeepCore. 2015 ,		
180	A data transmission method for particle physics experiments based on Ethernet physical layer. 2015 , 39, 116102		
179	Status of High-Energy Neutrino Astronomy. <i>Journal of Physics: Conference Series</i> , 2015 , 632, 012039	0.3	21
178	IceCube searches for neutrino emission from galactic and extragalactic sources. 2015, 90, 03003		1
177	Measurement of Atmospheric Neutrino Oscillations with Very Large Volume Neutrino Telescopes. 2015 , 2015, 1-24		6
176	First detection of high-energy astrophysical neutrinos with IceCube. 2015 ,		
175	Development of a general analysis and unfolding scheme and its application to measure the energy spectrum of atmospheric neutrinos with IceCube: IceCube Collaboration. <i>European Physical Journal C</i> , 2015 , 75, 116	4.2	29
174	Searches for small-scale anisotropies from neutrino point sources with three years of IceCube data. 2015 , 66, 39-52		32
173	Measurement of the Diffuse Neutrino Flux by a Global Fit to Multiple IceCube Results. 2015 , 61, 435-44	2	1
172	Flavor Ratio of Astrophysical Neutrinos above 35 TeV in IceCube. <i>Physical Review Letters</i> , 2015 , 114, 17	1 1 042	130
171	Atmospheric and astrophysical neutrinos above 1 TeV interacting in IceCube. <i>Physical Review D</i> , 2015 , 91,	4.9	179
170	SEARCHES FOR TIME-DEPENDENT NEUTRINO SOURCES WITH ICECUBE DATA FROM 2008 TO 2012. <i>Astrophysical Journal</i> , 2015 , 807, 46	4.7	47
169	Measuring the Cosmic Ray Energy Spectrum and Composition with IceCube. 2015 , 61, 443-449		
168	A COMBINED MAXIMUM-LIKELIHOOD ANALYSIS OF THE HIGH-ENERGY ASTROPHYSICAL NEUTRINO FLUX MEASURED WITH ICECUBE. <i>Astrophysical Journal</i> , 2015 , 809, 98	4.7	280
167	Detecting extra-galactic supernova neutrinos in the Antarctic ice. 2015 , 62, 54-65		18
166	Measuring the optical properties of IceCube drill holes. 2016 , 116, 06011		4

165 Constraints on atmospheric charmed-meson production from IceCube. **2016**, 130, 05015

164	Multi-messenger astronomy: gravitational waves, neutrinos, photons, and cosmic rays. <i>Journal of</i>	0.3	12
104	Physics: Conference Series, 2016 , 718, 022004	0.5	12
163	Very high-energy gamma-ray follow-up program using neutrino triggers from IceCube. <i>Journal of Instrumentation</i> , 2016 , 11, P11009-P11009	1	15
162	OBSERVATION AND CHARACTERIZATION OF A COSMIC MUON NEUTRINO FLUX FROM THE NORTHERN HEMISPHERE USING SIX YEARS OF ICECUBE DATA. <i>Astrophysical Journal</i> , 2016 , 833, 3	4.7	249
161	SEARCH FOR SOURCES OF HIGH-ENERGY NEUTRONS WITH FOUR YEARS OF DATA FROM THE ICETOP DETECTOR. <i>Astrophysical Journal</i> , 2016 , 830, 129	4.7	5
160	IRIO technology: Developing applications for advanced DAQ systems using FPGAs. 2016,		3
159	Constraints on Ultrahigh-Energy Cosmic-Ray Sources from a Search for Neutrinos above 10[PeV with IceCube. <i>Physical Review Letters</i> , 2016 , 117, 241101	7.4	87
158	Neutrino oscillation studies with IceCube-DeepCore. 2016 , 908, 161-177		9
157	Exploring the Universe with Very High Energy Neutrinos. 2016 , 273-275, 125-134		1
156	Searches for Sterile Neutrinos with the IceCube Detector. <i>Physical Review Letters</i> , 2016 , 117, 071801	7.4	122
155	Search for astrophysical tau neutrinos in three years of IceCube data. <i>Physical Review D</i> , 2016 , 93,	4.9	34
154	Characteristics of Cherenkov radiation in naturally occurring ice. <i>Physical Review D</i> , 2016 , 93,	4.9	
153	High-energy neutrino follow-up search of gravitational wave event GW150914 with ANTARES and IceCube. <i>Physical Review D</i> , 2016 , 93,	4.9	80
152	Measurement of muon annual modulation and muon-induced phosphorescence in NaI(Tl) crystals with DM-Ice17. <i>Physical Review D</i> , 2016 , 93,	4.9	8
151	AN ALL-SKY SEARCH FOR THREE FLAVORS OF NEUTRINOS FROM GAMMA-RAY BURSTS WITH THE ICECUBE NEUTRINO OBSERVATORY. <i>Astrophysical Journal</i> , 2016 , 824, 115	4.7	75
150	LOWERING ICECUBE'S ENERGY THRESHOLD FOR POINT SOURCE SEARCHES IN THE SOUTHERN SKY. <i>Astrophysical Journal Letters</i> , 2016 , 824, L28	7.9	27
149	Neutrino Physics and Astrophysics with IceCube. 2016 , 279-281, 23-30		
148	Analog data acquisition and processing FPGA-based solutions integrated in areaDetector using FlexRIO technology. 2016 ,		1

147	The optical module of Baikal-GVD. 2016 , 13, 737-746		2
146	Searches for relativistic magnetic monopoles in IceCube. <i>European Physical Journal C</i> , 2016 , 76, 1	4.2	20
145	THE SEARCH FOR TRANSIENT ASTROPHYSICAL NEUTRINO EMISSION WITH ICECUBE-DEEPCORE. <i>Astrophysical Journal</i> , 2016 , 816, 75	4.7	4
144	Search for correlations between the arrival directions of IceCube neutrino events and ultrahigh-energy cosmic rays detected by the Pierre Auger Observatory and the Telescope Array. 2016 , 2016, 037-037		21
143	All-sky Search for Time-integrated Neutrino Emission from Astrophysical Sources with 7 yr of IceCube Data. <i>Astrophysical Journal</i> , 2017 , 835, 151	4.7	139
142	THE CONTRIBUTION OFFERMI-2LAC BLAZARS TO DIFFUSE TEV B EV NEUTRINO FLUX. <i>Astrophysical Journal</i> , 2017 , 835, 45	4.7	129
141	PINGU: a vision for neutrino and particle physics at the South Pole. 2017 , 44, 054006		31
140	The IceCube realtime alert system. 2017 , 92, 30-41		76
139	The IceCube Neutrino Observatory: instrumentation and online systems. <i>Journal of Instrumentation</i> , 2017 , 12, P03012-P03012	1	203
138	Search for Astrophysical Sources of Neutrinos Using Cascade Events in IceCube. <i>Astrophysical Journal</i> , 2017 , 846, 136	4.7	14
137	Search for sterile neutrino mixing using three years of IceCube DeepCore data. <i>Physical Review D</i> , 2017 , 95,	4.9	55
136	Search for high-energy neutrinos from gravitational wave event GW151226 and candidate LVT151012 with ANTARES and IceCube. <i>Physical Review D</i> , 2017 , 96,	4.9	32
135	The H.E.S.S. multi-messenger program: Searches for TeV gamma-ray emission associated with high-energy neutrinos. 2017 ,		1
134	Search for annihilating dark matter in the Sun with 3 years of IceCube data. <i>European Physical Journal C</i> , 2017 , 77, 1	4.2	76
133	Measurement of the energy spectrum with IceCube-79: IceCube Collaboration. <i>European Physical Journal C</i> , 2017 , 77, 692	4.2	17
132	Constraints on Galactic Neutrino Emission with Seven Years of IceCube Data. <i>Astrophysical Journal</i> , 2017 , 849, 67	4.7	63
131	Extending the Search for Muon Neutrinos Coincident with Gamma-Ray Bursts in IceCube Data. <i>Astrophysical Journal</i> , 2017 , 843, 112	4.7	77
130	First search for dark matter annihilations in the Earth with the IceCube detector. <i>European Physical Journal C</i> , 2017 , 77, 1	4.2	10

129	Astrophysical neutrinos: IceCube highlights. 2017 , 291-293, 167-174		3
128	Atmospheric muon and electron neutrino energy spectrum measured by first year of IceCube-86 detector. <i>Journal of Physics: Conference Series</i> , 2017 , 888, 012112	0.3	
127	The Latest IceCube Results and the Implications. 2017,		
126	Luminescence of water or ice as a new detection method for magnetic monopoles. 2017 , 164, 07019		1
125	Exploring the supersymmetric U(1)BIII (1)R model with dark matter, muon gI, and Z? mass limits. <i>Physical Review D</i> , 2018 , 97,	4.9	4
124	Measurement of Atmospheric Neutrino Oscillations at 6-56 GeV with IceCube DeepCore. <i>Physical Review Letters</i> , 2018 , 120, 071801	7.4	54
123	. 2018 , 65, 781-787		5
122	Search for nonstandard neutrino interactions with IceCube DeepCore. <i>Physical Review D</i> , 2018 , 97,	4.9	15
121	Astrophysical neutrinos and cosmic rays observed by IceCube. 2018 , 62, 2902-2930		11
120	A Data Acquisition System in Intelligent Environmental Monitoring Device for Industrial Field. 2018 , 170, 032045		1
119	Graph Neural Networks for IceCube Signal Classification. 2018,		20
118	Opening a new window onto the universe with IceCube. 2018 , 102, 73-88		51
117	Science with e-ASTROGAM: A space mission for MeV©eV gamma-ray astrophysics. 2018, 19, 1-106		101
116	The prototype design of integrated base for PMT with pulse digitalization and readout electronics. <i>Journal of Instrumentation</i> , 2018 , 13, T06007-T06007	1	4
115	Neutrino interferometry for high-precision tests of Lorentz symmetry with IceCube. 2018 , 14, 961-966		37
114	Search for Neutrino Bursts from Collapsing Stars by Means of the LVD and BUST Detectors. 2018 , 81, 120-127		
113	Improved Detection of Supernovae with the IceCube Observatory. <i>Journal of Physics: Conference Series</i> , 2018 , 1029, 012001	0.3	10
112	Search for transient optical counterparts to high-energy IceCube neutrinos with Pan-STARRS1. <i>Astronomy and Astrophysics</i> , 2019 , 626, A117	5.1	6

High-energy neutrino interaction physics with IceCube. **2019**, 208, 09001

110	Cosmic ray spectrum and composition from PeV to EeV using 3 years of data from IceTop and IceCube. <i>Physical Review D</i> , 2019 , 100,	4.9	23
109	Search for Sources of Astrophysical Neutrinos Using Seven Years of IceCube Cascade Events. <i>Astrophysical Journal</i> , 2019 , 886, 12	4.7	27
108	Muon Measurements with IceTop. 2019 , 208, 03003		6
107	Measurement of atmospheric tau neutrino appearance with IceCube DeepCore. <i>Physical Review D</i> , 2019 , 99,	4.9	23
106	Monitoring and Multi-Messenger Astronomy with IceCube. 2019 , 7, 40		1
105	Measurements using the inelasticity distribution of multi-TeV neutrino interactions in IceCube. <i>Physical Review D</i> , 2019 , 99,	4.9	25
104	IceCube: Opening a new window on the universe from the South Pole. 2019 , 28, 1930007		1
103	Development of the Front-End Electronics for the New Optical Module D -Egg[f or IceCube-Gen2. 2019 ,		
102	DAQBroker - A general purpose instrument monitoring framework. 2019 , 214, 01010		
101	The next generation PanDA Pilot for and beyond the ATLAS experiment. 2019, 214, 03054		4
100	Status and prospects for the IceCube Neutrino Observatory. <i>Nuclear Instruments and Methods in Physics Research, Section A: Accelerators, Spectrometers, Detectors and Associated Equipment</i> , 2020 , 952, 161650	1.2	4
99	The construction of sports culture industry growth forecast model based on big data. 2020 , 24, 5-17		12
98	Neutrinos below 100 TeV from the southern sky employing refined veto techniques to IceCube data. 2020 , 116, 102392		2
97	Searching for eV-scale sterile neutrinos with eight years of atmospheric neutrinos at the IceCube Neutrino Telescope. <i>Physical Review D</i> , 2020 , 102,	4.9	14
96	Theia: an advanced optical neutrino detector. European Physical Journal C, 2020, 80, 1	4.2	29
95	Design and performance of the first IceAct demonstrator at the South Pole. <i>Journal of Instrumentation</i> , 2020 , 15, T02002-T02002	1	1
94	Pulse shape particle identification by a single large hemispherical photomultiplier tube. <i>Journal of Instrumentation</i> , 2020 , 15, T05002-T05002	1	O

(2021-2020)

93	In-situ calibration of the single-photoelectron charge response of the IceCube photomultiplier tubes. <i>Journal of Instrumentation</i> , 2020 , 15, P06032-P06032	1	5
92	Combined sensitivity to the neutrino mass ordering with JUNO, the IceCube Upgrade, and PINGU. <i>Physical Review D</i> , 2020 , 101,	4.9	10
91	Cosmic ray spectrum from 250 TeV to 10 PeV using IceTop. <i>Physical Review D</i> , 2020 , 102,	4.9	2
90	The use of Cherenkov light in the detection of high-energy cosmic rays and neutrinos: The Pierre Auger and IceCube Observatories. <i>Nuclear Instruments and Methods in Physics Research, Section A: Accelerators, Spectrometers, Detectors and Associated Equipment</i> , 2020 , 970, 163678	1.2	
89	A Search for IceCube Events in the Direction of ANITA Neutrino Candidates. <i>Astrophysical Journal</i> , 2020 , 892, 53	4.7	14
88	Search for PeV Gamma-Ray Emission from the Southern Hemisphere with 5 Yr of Data from the IceCube Observatory. <i>Astrophysical Journal</i> , 2020 , 891, 9	4.7	4
87	Identifying Galactic sources of high-energy neutrinos. Astrophysics and Space Science, 2020, 365, 1	1.6	2
86	Time-Integrated Neutrino Source Searches with 10[Years of IceCube Data. <i>Physical Review Letters</i> , 2020 , 124, 051103	7.4	78
85	Testing the Neutrino Mass Ordering with Four Years of IceCube/DeepCore Data. <i>Journal of Physics:</i> Conference Series, 2020 , 1342, 012030	0.3	
84	Detection of a particle shower at the Glashow resonance with IceCube. <i>Nature</i> , 2021 , 591, 220-224	50.4	20
83	Follow-up of Astrophysical Transients in Real Time with the IceCube Neutrino Observatory. <i>Astrophysical Journal</i> , 2021 , 910, 4	4.7	2
82	A Search for Time-dependent Astrophysical Neutrino Emission with IceCube Data from 2012 to		
	2017. Astrophysical Journal, 2021 , 911, 67	4.7	2
81	The Automatic Learning for the Rapid Classification of Events (ALERCE) Alert Broker. <i>Astronomical Journal</i> , 2021 , 161, 242	4.9	16
81	The Automatic Learning for the Rapid Classification of Events (ALeRCE) Alert Broker. <i>Astronomical</i>		
	The Automatic Learning for the Rapid Classification of Events (ALeRCE) Alert Broker. <i>Astronomical Journal</i> , 2021 , 161, 242 Search for GeV neutrino emission during intense gamma-ray solar flares with the IceCube Neutrino	4.9	16
80	The Automatic Learning for the Rapid Classification of Events (ALERCE) Alert Broker. <i>Astronomical Journal</i> , 2021 , 161, 242 Search for GeV neutrino emission during intense gamma-ray solar flares with the IceCube Neutrino Observatory. <i>Physical Review D</i> , 2021 , 103,	4·9 4·9	16
8o 79	The Automatic Learning for the Rapid Classification of Events (ALeRCE) Alert Broker. <i>Astronomical Journal</i> , 2021 , 161, 242 Search for GeV neutrino emission during intense gamma-ray solar flares with the IceCube Neutrino Observatory. <i>Physical Review D</i> , 2021 , 103, Multi-messenger astronomy with INTEGRAL. <i>New Astronomy Reviews</i> , 2021 , 92, 101595 IceCube high-energy starting event sample: Description and flux characterization with 7.5 years of	4.9 4.9 7.9	16 3 4

75	Searching for light long-lived neutralinos at Super-Kamiokande. <i>Physical Review D</i> , 2021 , 104,	4.9	1
74	Neutrino Detectors under Water and Ice. <i>Landolt-B</i> IInstein - Group I Elementary Particles, Nuclei and Atoms, 2011 , 89-114		1
73	Multiwavelength follow-up of a rare IceCube neutrino multiplet. <i>Astronomy and Astrophysics</i> , 2017 , 607, A115	5.1	23
72	Constraints on millicharged particles from cosmic-ray production. <i>Physical Review D</i> , 2020 , 102,	4.9	16
71	eV-Scale Sterile Neutrino Search Using Eight Years of Atmospheric Muon Neutrino Data from the IceCube Neutrino Observatory. <i>Physical Review Letters</i> , 2020 , 125, 141801	7.4	16
70	Development of an analysis to probe the neutrino mass ordering with atmospheric neutrinos using three years of IceCube DeepCore data. <i>European Physical Journal C</i> , 2020 , 80, 1	4.2	8
69	A Search for Neutrino Point-source Populations in 7 yr of IceCube Data with Neutrino-count Statistics. <i>Astrophysical Journal</i> , 2020 , 893, 102	4.7	3
68	IceCube Search for High-energy Neutrino Emission from TeV Pulsar Wind Nebulae. <i>Astrophysical Journal</i> , 2020 , 898, 117	4.7	10
67	Development of a Low-Cost Data Acquisition System for Biodigester. <i>Journal of Sustainable Bioenergy Systems</i> , 2017 , 07, 117-137	0.9	1
66	Report from the Multi-Messenger Working Group at UHECR-2014 Conference. 2016 ,		2
65	Search for Multi-flare Neutrino Emissions in 10 yr of IceCube Data from a Catalog of Sources. <i>Astrophysical Journal Letters</i> , 2021 , 920, L45	7.9	3
64	BAIKAL neutrino experiment. <i>Uspekhi Fizicheskikh Nauk</i> , 2011 , 181, 984	0.5	2
63	Introduction. Springer Theses, 2015 , 1-9	0.1	
62	Systematics for Atmospheric Neutrinos in IceCube. 2016 ,		
61	Diffuse Neutrino Fluxes and GZK Neutrinos with IceCube. 2017 ,		
60	Gravitational Physics: From Quantum to Waves. 2018 , 357-488		
59	Cherenkov detectors. 2020 , 437-476		
58	Introduction. 2020, 1-2		

(2020-2020)

57	Non-electronic detectors. 2020 , 157-170
56	Transition radiation detectors. 2020 , 477-498
55	Signal formation by moving charges. 2020 , 127-156
54	Semiconductor detectors. 2020 , 255-372
53	Interactions of particles with matter. 2020 , 23-88
52	Particle identification. 2020 , 543-580
51	Trigger and data acquisition systems. 2020 , 795-814
50	Scintillation detectors. 2020 , 499-542
49	Particle Detectors. 2020,
48	Movement of charge carriers in electric and magnetic fields. 2020 , 89-126
47	Photodetectors. 2020 , 405-436
46	Calorimeters. 2020 , 581-654
45	Signal processing, readout and noise. 2020 , 711-794
44	Track reconstruction and momentum measurement. 2020 , 373-404
43	Detectors for cosmic particles, neutrinos and exotic matter. 2020 , 655-710
42	Gas-filled detectors. 2020 , 171-254
41	Supernova Remnants and Cosmic Rays: Non-thermal Radiation. <i>Astronomy and Astrophysics Library</i> , 0.2
40	Neutrino Detectors Under Water and Ice. 2020 , 785-822

39 Overview, history and concepts. **2020**, 3-22

38	Sensitivity of multi-PMT optical modules in Antarctic ice to supernova neutrinos of MeV energy. European Physical Journal C, 2021 , 81, 1	4.2	
37	Trigger time acquisition system for ground based air shower experiments. <i>Nuclear Instruments and Methods in Physics Research, Section A: Accelerators, Spectrometers, Detectors and Associated Equipment</i> , 2022 , 1028, 166363	1.2	
36	Search for High-energy Neutrinos from Ultraluminous Infrared Galaxies with IceCube. <i>Astrophysical Journal</i> , 2022 , 926, 59	4.7	O
35	Improved Characterization of the Astrophysical MuonBeutrino Flux with 9.5 Years of IceCube Data. <i>Astrophysical Journal</i> , 2022 , 928, 50	4.7	2
34	Cascade appearance signatures of sterile neutrinos at 1000 TeV. <i>Physical Review D</i> , 2022 , 105,	4.9	O
33	A Short Review on the Latest Neutrinos Mass and Number Constraints from Cosmological Observables. <i>Universe</i> , 2022 , 8, 284	2.5	О
32	Dimuons in neutrino telescopes: New predictions and first search in IceCube. <i>Physical Review D</i> , 2022 , 105,	4.9	O
31	Strong Constraints on Neutrino Nonstandard Interactions from TeV-Scale Disappearance at IceCube. <i>Physical Review Letters</i> , 2022 , 129,	7.4	О
30	Density of GeV muons in air showers measured with IceTop. 2022 , 106,		1
29	Concept and deisgn of a next-generation optical sensor for IceCube-Gen2. 2022,		
28	Low energy event reconstruction in IceCube DeepCore. 2022 , 82,		O
27	Search for Gravitational-Neutrino Correlations on Ground-Based Detectors. 2022 , 8, 446		О
26	Neutral-current supernova neutrino-nucleus scattering off I127 and Cs133. 2022 , 106,		O
25	Synthesis and Spectroscopic Characterization of Nicotinaldehyde Based Derivatives: SC-XRD, Linear and Non-Linear Optical Studies. 2022 , 134236		О
24	Search for Unstable Sterile Neutrinos with the IceCube Neutrino Observatory. 2022 , 129,		О
23	Diffusion effects in drift chambers. 2020 , 823-824		О
22	Laplace transform. 2020 , 845-848		O

(2023-2020)

21	Ionisation statistics in drift chambers. 2020 , 825-826	О
20	Fitting of track models. 2020 , 837-840	Ο
19	Copyright Page. 2020 , iv-iv	0
18	Physical noise sources. 2020 , 849-854	O
17	Position resolution of structured electrodes. 2020 , 827-836	0
16	LPM effect. 2020 , 841-844	O
15	Dosimetry and radioactive sources. 2020 , 815-818	0
14	Preface. 2020 , v-vi	O
13	Abbreviations. 2020 , 911-914	0
12	Weighting potential of segmented electrodes. 2020 , 819-822	O
11	Searching for High-energy Neutrino Emission from Galaxy Clusters with IceCube. 2022, 938, L11	0
10	Tau neutrinos in the next decade: from GeV to EeV. 2022 , 49, 110501	O
9	Graph Neural Networks for low-energy event classification & amp; reconstruction in IceCube. 2022 , 17, P11003	0
8	Strong lensing of high-energy neutrinos. 2023 , 107,	O
7	KM3NeT upper bounds of detection rates of solar neutrinos from annihilations of dark matter at the solar core. 2022 , 37,	0
6	Searches for Neutrinos from Large High Altitude Air Shower Observatory Ultra-high-energy Ray Sources Using the IceCube Neutrino Observatory. 2023 , 945, L8	O
5	Nova neutrinos in the multi-messengerlera. 2023 , 2023, 015	1
4	Limits on Neutrino Emission from GRB 221009A from MeV to PeV Using the IceCube Neutrino Observatory. 2023 , 946, L26	O

A Search for Coincident Neutrino Emission from Fast Radio Bursts with Seven Years of IceCube Cascade Events. 2023, 946, 80

D-Egg: a dual PMT optical module for IceCube. 2023, 18, P04014

Ο

Ο

Inference of protoneutron star properties in core-collapse supernovae from a gravitational-wave detector network. **2023**, 107,

О