Merger of structure and material in nacre and bone – materials

Progress in Materials Science 54, 1059-1100

DOI: 10.1016/j.pmatsci.2009.05.001

Citation Report

#	Article	IF	CITATIONS
3	Supramolecular Control of Stiffness and Strength in Lightweight Highâ€Performance Nacreâ€Mimetic Paper with Fireâ€Shielding Properties. Angewandte Chemie - International Edition, 2010, 49, 6448-6453.	7.2	204
4	Ductile and brittle material removal mechanisms in natural nacreâ€"A model for novel implant materials. Journal of Materials Processing Technology, 2010, 210, 1827-1837.	3.1	17
5	Toward delivery of multiple growth factors in tissue engineering. Biomaterials, 2010, 31, 6279-6308.	5.7	574
6	A novel biomimetic approach to the design of high-performance ceramic–metal composites. Journal of the Royal Society Interface, 2010, 7, 741-753.	1.5	247
7	Nacre from mollusk shells: a model for high-performance structural materials. Bioinspiration and Biomimetics, 2010, 5, 035001.	1.5	200
8	Large-Area, Lightweight and Thick Biomimetic Composites with Superior Material Properties via Fast, Economic, and Green Pathways. Nano Letters, 2010, 10, 2742-2748.	4.5	435
9	On the Mechanistic Origins of Toughness in Bone. Annual Review of Materials Research, 2010, 40, 25-53.	4.3	560
10	A Multiscale Study of High Performance Double-Walled Nanotubeâ^'Polymer Fibers. ACS Nano, 2010, 4, 6463-6476.	7.3	120
11	<i>Colloquium</i> : Failure of molecules, bones, and the Earth itself. Reviews of Modern Physics, 2010, 82, 1459-1487.	16.4	42
12	Self-assembly of organic–inorganic nanocomposites with nacre-like hierarchical structures. Soft Matter, 2011, 7, 4828.	1.2	19
13	Tablet-level origin of toughening in abalone shells and translation to synthetic composite materials. Nature Communications, 2011, 2, 173.	5.8	324
14	Nanostructure of Biogenic Calcite Crystals: A View by Small-Angle X-Ray Scattering. Crystal Growth and Design, 2011, 11, 2054-2058.	1.4	35
15	Nanoconfinement of Spider Silk Fibrils Begets Superior Strength, Extensibility, and Toughness. Nano Letters, 2011, 11, 5038-5046.	4.5	222
16	Hierarchical assembly of micro-/nano-building blocks: bio-inspired rigid structural functional materials. Chemical Society Reviews, 2011, 40, 3764.	18.7	341
17	Clay Nanopaper with Tough Cellulose Nanofiber Matrix for Fire Retardancy and Gas Barrier Functions. Biomacromolecules, 2011, 12, 633-641.	2.6	383
18	Deformation and Fracture Mechanisms of Bone and Nacre. Annual Review of Materials Research, 2011, 41, 41-73.	4.3	192
19	Structural hierarchies define toughness and defect-tolerance despite simple and mechanically inferior brittle building blocks. Scientific Reports, 2011, 1, 35.	1.6	163
20	Biomimetic design and assembly of organic–inorganic composite films with simultaneously enhanced strength and toughness. Chemical Communications, 2011, 47, 5274.	2.2	71

#	ARTICLE	IF	CITATIONS
21	Construction and nanomechanical properties of the exoskeleton of the barnacle, Amphibalanus reticulatus. Journal of Structural Biology, 2011, 176, 360-369.	1.3	17
22	Mineral bridges in nacre. Journal of Structural Biology, 2011, 176, 330-339.	1.3	155
23	The Frontier of Inorganic Synthesis and Preparative Chemistry (I)â€"Biomimetic Synthesis. , 2011, , 525-553.		3
24	Flaw-tolerance in silk fibrils explains strength, extensibility and toughness of spider silk. Nature Precedings, 2011, , .	0.1	0
25	Nanoconfinement of spider silk fibrils begets superior strength, extensibility and toughness. Nature Precedings, 0 , , .	0.1	1
26	Gastropod nacre: Structure, properties and growth â€" Biological, chemical and physical basics. Biophysical Chemistry, 2011, 153, 126-153.	1.5	94
27	Dynamic Failure of a Lamina Meshwork in Cell Nuclei under Extreme Mechanical Deformation. BioNanoScience, 2011, 1, 14-23.	1.5	4
28	Structure, Scaling, and Performance of Natural Micro- and Nanocomposites. BioNanoScience, 2011, 1, 53-61.	1.5	23
29	In-situ AFM Experiments with Discontinuous DIC Applied to Damage Identification in Biomaterials. Experimental Mechanics, 2011, 51, 591-607.	1.1	21
30	Biomineralsâ€"hierarchical nanocomposites: the example of bone. Wiley Interdisciplinary Reviews: Nanomedicine and Nanobiotechnology, 2011, 3, 47-69.	3.3	168
31	Artful interfaces within biological materials. Materials Today, 2011, 14, 70-78.	8.3	204
32	From Biomimetic Concept to Engineering Reality $\hat{a} \in \text{``A Case Study on the Design of Ceramic}$ Reinforcement. Advanced Engineering Materials, 2011, 13, 351-355.	1.6	2
33	Biomimetic Pathways for Nanostructured Poly(KAMPS)/aragonite Composites that Mimic Seashell Nacre. Advanced Engineering Materials, 2011, 13, B415.	1.6	11
34	Bioinspired Design Criteria for Damageâ€Resistant Materials with Periodically Varying Microstructure. Advanced Functional Materials, 2011, 21, 3634-3641.	7.8	162
35	Ultrahigh Strength and Stiffness in Crossâ€Linked Hierarchical Carbon Nanotube Bundles. Advanced Materials, 2011, 23, 2855-2860.	11,1	213
38	Genetic Engineering of Biomimetic Nanocomposites: Diblock Proteins, Graphene, and Nanofibrillated Cellulose. Angewandte Chemie - International Edition, 2011, 50, 8688-8691.	7.2	142
39	Structure and Mechanical Properties of a Pteropod Shell Consisting of Interlocked Helical Aragonite Nanofibers. Angewandte Chemie - International Edition, 2011, 50, 10361-10365.	7.2	43
40	Growth of nacre in abalone: Seasonal and feeding effects. Materials Science and Engineering C, 2011, 31, 238-245.	3.8	25

3

#	ARTICLE	IF	CITATIONS
41	Strategies and challenges for the mechanical modeling of biological and bio-inspired materials. Materials Science and Engineering C, 2011, 31, 1209-1220.	3.8	21
42	Mechanical adaptation of biological materials — The examples of bone and wood. Materials Science and Engineering C, 2011, 31, 1164-1173.	3.8	97
43	Triangular core as a universal strategy for stiff nanostructures in biology and biologically inspired materials. Materials Science and Engineering C, 2011, 31, 775-780.	3.8	14
44	Reprint of: Growth of nacre in abalone: Seasonal and feeding effects. Materials Science and Engineering C, 2011, 31, 716-723.	3.8	8
45	Bio-inspired design of multiscale structures for function integration. Nano Today, 2011, 6, 155-175.	6.2	655
46	Biological materials: A materials science approach. Journal of the Mechanical Behavior of Biomedical Materials, 2011, 4, 626-657.	1.5	151
47	Dimensional analysis and parametric studies for designing artificial nacre. Journal of the Mechanical Behavior of Biomedical Materials, 2011, 4, 190-211.	1.5	58
48	A novel biomimetic material duplicating the structure and mechanics of natural nacre. Journal of Materials Research, 2011, 26, 1203-1215.	1.2	96
49	Biologically inspired crack delocalization in a high strain-rate environment. Journal of the Royal Society Interface, 2012, 9, 665-676.	1.5	35
50	Unlocking Nature: Case Studies. Springer Series in Materials Science, 2012, , 299-356.	0.4	0
51	Biological materials: Functional adaptations and bioinspired designs. Progress in Materials Science, 2012, 57, 1492-1704.	16.0	582
52	Bioinspired approaches for optimizing the strength and toughness of graphene-based polymer nanocomposites. Journal of Materials Chemistry, 2012, 22, 16182.	6.7	45
53	Atomic structure and ultrastructure of the Murex troscheli shell. Journal of Structural Biology, 2012, 180, 539-545.	1.3	15
54	A review of experimental techniques to produce a nacre-like structure. Bioinspiration and Biomimetics, 2012, 7, 031001.	1.5	143
55	Inhomogeneity of Nacre Lamellae on the Nanometer Length Scale. Crystal Growth and Design, 2012, 12, 4574-4579.	1.4	63
56	Micromechanical models to guide the development of synthetic †brick and mortar†composites. Journal of the Mechanics and Physics of Solids, 2012, 60, 1545-1560.	2.3	182
57	Discontinuous crack-bridging model for fracture toughness analysis of nacre. Journal of the Mechanics and Physics of Solids, 2012, 60, 1400-1419.	2.3	233
58	Evaluation of Cu-Cr3C2 composite with interpenetrating network. Materials Science & Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2012, 552, 24-30.	2.6	22

#	ARTICLE	IF	Citations
59	Molecular origin of the sawtooth behavior and the toughness of nacre. Materials Science and Engineering C, 2012, 32, 1542-1547.	3.8	17
61	Strength improvement to composite T-joints under bending through bio-inspired design. Composites Part A: Applied Science and Manufacturing, 2012, 43, 1971-1980.	3.8	50
62	Identification of Deformation Mechanism in Abalone Shells Through AFM and Digital Image Correlation. Procedia IUTAM, 2012, 4, 27-39.	1.2	6
63	CHAPTER 5. Nacre from Mollusk Shells: Inspiration for High-performance Nanocomposites. RSC Green Chemistry, 2012, , 113-149.	0.0	6
64	The micromechanics of biological and biomimetic staggered composites. Journal of Bionic Engineering, 2012, 9, 446-456.	2.7	25
66	Supramolecular ionic strength-modulating microstructures and properties of nacre-like biomimetic nanocomposites containing high loading clay. RSC Advances, 2012, 2, 6295.	1.7	21
67	Micrororobotics., 2012,, 1436-1436.		0
68	Layered nanocomposites inspired by the structure and mechanical properties of nacre. Chemical Society Reviews, 2012, 41, 1111-1129.	18.7	454
69	Constructing sacrificial bonds and hidden lengths for ductile graphene/polyurethane elastomers with improved strength and toughness. Journal of Materials Chemistry, 2012, 22, 12479.	6.7	151
70	Optimal Length Scales Emerging from Shear Load Transfer in Natural Materials: Application to Carbon-Based Nanocomposite Design. ACS Nano, 2012, 6, 2333-2344.	7.3	186
71	Multiscale Experimental Mechanics of Hierarchical Carbonâ€Based Materials. Advanced Materials, 2012, 24, 2805-2823.	11.1	52
72	Towards Highâ€Performance Bioinspired Composites. Advanced Materials, 2012, 24, 5024-5044.	11.1	332
73	Bio-inspired tapered fibers for composites with superior toughness. Composites Science and Technology, 2012, 72, 1012-1019.	3.8	21
74	Fabrication and characterization of biocompatible nacre-like structures from α-zirconium hydrogen phosphate hydrate and chitosan. Journal of Colloid and Interface Science, 2012, 367, 74-82.	5.0	13
75	Genetic engineering in biomimetic composites. Trends in Biotechnology, 2012, 30, 191-197.	4.9	26
76	Bioinspired Layered Composites Based on Flattened Doubleâ€Walled Carbon Nanotubes. Advanced Materials, 2012, 24, 1838-1843.	11.1	137
77	Deoxyguanosine Phosphate Mediated Sacrificial Bonds Promote Synergistic Mechanical Properties in Nacre-Mimetic Nanocomposites. Biomacromolecules, 2013, 14, 2531-2535.	2.6	22
78	Hybrid Nanocomposites of Gold Singleâ€Crystal Platelets and Amyloid Fibrils with Tunable Fluorescence, Conductivity, and Sensing Properties. Advanced Materials, 2013, 25, 3694-3700.	11.1	111

#	Article	IF	CITATIONS
79	Utilization of chitosan biopolymer to enhance fly ash-based geopolymer. Journal of Materials Science, 2013, 48, 7986-7993.	1.7	42
80	pHâ€Based Regulation of Hydrogel Mechanical Properties Through Musselâ€Inspired Chemistry and Processing. Advanced Functional Materials, 2013, 23, 1111-1119.	7.8	214
81	On the interaction between different size effects in fibre reinforced PMMA: Towards composites with optimised fracture behaviour. Computational Materials Science, 2013, 80, 35-42.	1.4	9
82	Synthetic staggered architecture composites. Materials & Design, 2013, 46, 802-808.	5.1	19
83	High-performance mesoporous LiFePO4 from Baker's yeast. Colloids and Surfaces B: Biointerfaces, 2013, 103, 114-120.	2.5	21
84	Platelets self-assemble into porous nacre during freeze casting. Journal of the Mechanical Behavior of Biomedical Materials, 2013, 19, 87-93.	1.5	111
85	High-Strength Nanocellulose–Talc Hybrid Barrier Films. ACS Applied Materials & Diterfaces, 2013, 5, 13412-13418.	4.0	94
86	High Mechanical Performance of Layered Graphene Oxide/Poly(vinyl alcohol) Nanocomposite Films. Small, 2013, 9, 2466-2472.	5.2	122
87	The weak interfaces within tough natural composites: Experiments on three types of nacre. Journal of the Mechanical Behavior of Biomedical Materials, 2013, 19, 50-60.	1.5	82
88	Multiscale hierarchical assembly strategy and mechanical prowess in conch shells (Busycon carica). Journal of Structural Biology, 2013, 184, 409-416.	1.3	39
89	Hydration and Dynamic State of Nanoconfined Polymer Layers Govern Toughness in Nacreâ€mimetic Nanocomposites. Advanced Materials, 2013, 25, 5055-5059.	11.1	57
90	Understanding the relationship of performance with nanofiller content in the biomimetic layered nanocomposites. Nanoscale, 2013, 5, 6356.	2.8	97
91	In situ elastic modulus measurements of ultrathin protein-rich organic layers in biosilica: towards deeper understanding of superior resistance to fracture of biocomposites. RSC Advances, 2013, 3, 5798.	1.7	30
92	Unfastening pearl nacre nanostructures under shear. CrystEngComm, 2013, 15, 6896.	1.3	2
93	Mechanical properties of selected nanostructured materials and complex bio-nano, hybrid and hierarchical systems. International Materials Reviews, 2013, 58, 167-202.	9.4	18
94	Bioinspired colloidal materials with special optical, mechanical, and cell-mimetic functions. Journal of Materials Chemistry B, 2013, 1, 251-264.	2.9	32
95	Ultratough Artificial Nacre Based on Conjugated Crossâ€linked Graphene Oxide. Angewandte Chemie - International Edition, 2013, 52, 3750-3755.	7.2	278
96	Mechanical properties and structure of the biological multilayered material system, Atractosteus spatula scales. Acta Biomaterialia, 2013, 9, 5289-5296.	4.1	46

#	Article	IF	Citations
97	Strombus gigas inspired biomimetic ceramic composites via SHELL—Sequential Hierarchical Engineered Layer Lamination. Ceramics International, 2013, 39, 1315-1325.	2.3	32
98	Bio-inspired laminate design exhibiting pseudo-ductile (graceful) failure during flexural loading. Composites Part A: Applied Science and Manufacturing, 2013, 54, 107-116.	3.8	40
99	Bio-mimetic mechanisms of natural hierarchical materials: A review. Journal of the Mechanical Behavior of Biomedical Materials, 2013, 19, 3-33.	1.5	155
100	Materials by designâ€"A perspective from atoms to structures. MRS Bulletin, 2013, 38, 169-176.	1.7	30
101	Mechanical properties of hierarchical lattices. Mechanics of Materials, 2013, 62, 32-43.	1.7	80
102	Mechanical behavior of microstructure engineered multi-length-scale titanium over a wide range of strain rates. Acta Materialia, 2013, 61, 3781-3798.	3.8	39
104	Fracture mechanics of hydroxyapatite single crystals under geometric confinement. Journal of the Mechanical Behavior of Biomedical Materials, 2013, 20, 184-191.	1.5	31
105	Understanding the Control of Mineralization by Polyelectrolyte Additives: Simulation of Preferential Binding to Calcite Surfaces. Journal of Physical Chemistry C, 2013, 117, 6904-6913.	1.5	57
106	Transition to Reinforced State by Percolating Domains of Intercalated Brush-Modified Cellulose Nanocrystals and Poly(butadiene) in Cross-Linked Composites Based on Thiol–ene Click Chemistry. Biomacromolecules, 2013, 14, 1547-1554.	2.6	96
107	Amorphous Calcium Carbonate Stabilized by a Flexible Biomimetic Polymer Inspired by Marine Mussels. Crystal Growth and Design, 2013, 13, 1937-1942.	1.4	31
108	Toughness Governs the Rupture of the Interfacial H-Bond Assemblies at a Critical Length Scale in Hybrid Materials. Langmuir, 2013, 29, 8154-8163.	1.6	49
109	The quest for stiff, strong and tough hybrid materials: an exhaustive exploration. Journal of the Royal Society Interface, 2013, 10, 20130711.	1.5	42
110	Production of mixed carbonate phases using ammonium carbonate-metal acetate reactions. Bioinspired, Biomimetic and Nanobiomaterials, 2013, 2, 59-64.	0.7	2
111	Effect of Crystallite Orientation on Nanomechanical Properties of a Nanostructured Poly(KAMPS)/Aragonite Composite. Conference Proceedings of the Society for Experimental Mechanics, 2013, , 1-6.	0.3	0
112	Failure of Graphdiyne: Structurally Directed Delocalized Crack Propagation. Journal of Applied Mechanics, Transactions ASME, 2013, 80, .	1.1	14
113	Tough and stiff composites with simple building blocks. Journal of Materials Research, 2013, 28, 1295-1303.	1.2	31
114	Variable stiffness biological and bio-inspired materials. Journal of Intelligent Material Systems and Structures, 2013, 24, 529-540.	1.4	34
115	Biomimetic Hard Materials. , 2013, , 59-79.		10

#	Article	IF	CITATIONS
116	Origin of flaw-tolerance in nacre. Scientific Reports, 2013, 3, 1693.	1.6	81
118	Cell Geometry Guides the Dynamic Targeting of Apoplastic GPI-Linked Lipid Transfer Protein to Cell Wall Elements and Cell Borders in Arabidopsis thaliana. PLoS ONE, 2013, 8, e81215.	1.1	29
119	Biomimetic materials for controlling bone cell responses. Frontiers in Bioscience - Scholar, 2013, S5, 369-395.	0.8	12
120	Biomimetic Materials., 2014,, 235-246.		1
121	Simultaneously Boosting Toughness and Tensile Strength for Polyamide 6/montmorillonite Nanocomposite by a Pressure-Induced Flow Field. Journal of Macromolecular Science - Physics, 2014, 53, 1601-1608.	0.4	5
122	Molecular Engineering of Fracture Energy Dissipating Sacrificial Bonds Into Cellulose Nanocrystal Nanocomposites. Angewandte Chemie - International Edition, 2014, 53, 5049-5053.	7.2	49
123	Multiscale structural gradients enhance the biomechanical functionality of the spider fang. Nature Communications, 2014, 5, 3894.	5.8	76
124	25th Anniversary Article: Artificial Carbonate Nanocrystals and Layered Structural Nanocomposites Inspired by Nacre: Synthesis, Fabrication and Applications. Advanced Materials, 2014, 26, 163-188.	11.1	226
125	Design and characterization of a biomimetic composite inspired to human bone. Fatigue and Fracture of Engineering Materials and Structures, 2014, 37, 772-781.	1.7	33
127	Formation of Nanoparticles and Nanostructuresâ€"An Industrial Perspective on CaCO ₃ , Cement, and Polymers. Angewandte Chemie - International Edition, 2014, 53, 12380-12396.	7.2	78
128	Tunable band gaps in bio-inspired periodic composites with nacre-like microstructure. Journal of Applied Physics, 2014, 116, .	1.1	37
129	Finite-Element Modelling of the Impact Behaviour of Aluminium Nacre-Like Composite. Applied Mechanics and Materials, 0, 566, 457-462.	0.2	3
130	Tailoring the Mechanical Properties of Carbon Nanotube Fibers. , 2014, , 61-85.		3
131	Effect of a single soft interlayer on the crack driving force. Engineering Fracture Mechanics, 2014, 130, 21-41.	2.0	50
132	Organic interlamellar layers, mesolayers and mineral nanobridges: Contribution to strength in abalone (Haliotis rufescence) nacre. Acta Biomaterialia, 2014, 10, 2056-2064.	4.1	59
133	Numerical investigation of the impact behaviour of bioinspired nacre-like aluminium composite plates. Composites Science and Technology, 2014, 96, 13-22.	3.8	113
134	Coupled continuum and discrete analysis of random heterogeneous materials: Elasticity and fracture. Journal of the Mechanics and Physics of Solids, 2014, 63, 481-490.	2.3	58
135	Modeling and additive manufacturing of bio-inspired composites with tunable fracture mechanical properties. Soft Matter, 2014, 10, 4436.	1.2	111

#	Article	IF	Citations
136	Synergistic Toughening of Bioinspired Poly(vinyl alcohol)–Clay–Nanofibrillar Cellulose Artificial Nacre. ACS Nano, 2014, 8, 2739-2745.	7.3	282
137	High yield synthesis of single-layer graphene microsheets with dimensional control. Carbon, 2014, 68, 167-174.	5.4	16
138	Crustaceanâ€Derived Biomimetic Components and Nanostructured Composites. Small, 2014, 10, 3207-3232.	5. 2	80
139	Thermoresponsive Nanocellulose Hydrogels with Tunable Mechanical Properties. ACS Macro Letters, 2014, 3, 266-270.	2.3	163
140	Biotechnology of Silk. Biologically-inspired Systems, 2014, , .	0.4	29
141	Overcoming the brittleness of glass through bio-inspiration and micro-architecture. Nature Communications, 2014, 5, 3166.	5.8	276
142	Mechanics of collagen–hydroxyapatite model nanocomposites. Mechanics Research Communications, 2014, 58, 17-23.	1.0	40
143	Key Factors Limiting Carbon Nanotube Yarn Strength: Exploring Processing-Structure-Property Relationships. ACS Nano, 2014, 8, 11454-11466.	7.3	68
144	Flaw tolerance promoted by dissipative deformation mechanisms between material building blocks. Philosophical Magazine Letters, 2014, 94, 592-600.	0.5	0
145	Nanostructure of Biogenic Calcite and Its Modification under Annealing: Study by High-Resolution X-ray Diffraction and Nanoindentation. Crystal Growth and Design, 2014, 14, 5275-5282.	1.4	14
146	Optimal characteristic nanosizes of mineral bridges in mollusk nacre. RSC Advances, 2014, 4, 32451-32456.	1.7	21
147	Strain rate hardening: A hidden but critical mechanism for biological composites?. Acta Biomaterialia, 2014, 10, 5064-5073.	4.1	45
149	In-situ nanomechanical studies of deformation and damage mechanisms in nanocomposites monitored using scanning electron microscopy. Materials Letters, 2014, 131, 313-316.	1.3	24
150	Crack Propagation in Cortical Bone: A Numerical Study. , 2014, 3, 1524-1529.		26
151	Large-scale self-assembled zirconium phosphate smectic layers via a simple spray-coating process. Nature Communications, 2014, 5, 3589.	5.8	97
152	Crack propagation in bone on the scale of mineralized collagen fibrils: role of polymers with sacrificial bonds and hidden length. Bone, 2014, 68, 20-31.	1.4	24
153	Smart Composite Nanosheets with Adaptive Optical Properties. ACS Applied Materials & Samp; Interfaces, 2014, 6, 13339-13343.	4.0	28
154	Designing nacre-like materials for simultaneous stiffness, strength and toughness: Optimum materials, composition, microstructure and size. Journal of the Mechanics and Physics of Solids, 2014, 73, 22-37.	2.3	130

#	Article	IF	Citations
155	Bioinspired Design and Assembly of Layered Double Hydroxide/Poly(vinyl alcohol) Film with High Mechanical Performance. ACS Applied Materials & Samp; Interfaces, 2014, 6, 15154-15161.	4.0	64
156	Air-gap-enhanced pearlescent effect in periodic stratified bilayers of Perna viridis shell. Journal of Materials Science, 2014, 49, 6282-6289.	1.7	6
157	Bioinspired Layered Materials with Superior Mechanical Performance. Accounts of Chemical Research, 2014, 47, 1256-1266.	7.6	276
158	Marine organisms for bone repair and regeneration. , 2014, , 294-318.		6
159	Structural and microstructural studies of montmorillonite-based multilayer nanocomposites. Journal of Colloid and Interface Science, 2014, 417, 152-158.	5.0	4
160	Molecular engineering of avidin and hydrophobin for functional self-assembling interfaces. Colloids and Surfaces B: Biointerfaces, 2014, 120, 102-109.	2.5	9
161	Characterization of paddlefish (Polyodon spathula) rostrum stellate bones. Bioinspired, Biomimetic and Nanobiomaterials, 2014, 3, 63-68.	0.7	7
162	Stiffness Enhancement in Nacre-Inspired Nanocomposites due to Nanoconfinement. Scientific Reports, 2015, 5, 16452.	1.6	36
163	Hybrid Supramolecular and Colloidal Hydrogels that Bridge Multiple Length Scales. Angewandte Chemie, 2015, 127, 5473-5478.	1.6	12
164	A laser-engraved glass duplicating the structure, mechanics and performance of natural nacre. Bioinspiration and Biomimetics, 2015, 10, 026005.	1.5	83
165	Mechanical, Thermal, and Microstructural Analysis of Polyvinyl Alcohol/Montmorillonite Nanocomposites. Journal of Nanomaterials, 2015, 2015, 1-9.	1.5	16
166	A biopolymer-like metal enabled hybrid material with exceptional mechanical prowess. Scientific Reports, 2015, 5, 8357.	1.6	23
167	Introducing ductility in hybrid carbon fibre/self-reinforced composites through control of the damage mechanisms. Composite Structures, 2015, 131, 259-265.	3.1	57
168	Composite materiomics. , 2015, , 903-944.		2
171	Architectured materials in engineering and biology: fabrication, structure, mechanics and performance. International Materials Reviews, 2015, 60, 413-430.	9.4	132
172	Synergistic Toughening of Graphene Oxide–Molybdenum Disulfide–Thermoplastic Polyurethane Ternary Artificial Nacre. ACS Nano, 2015, 9, 708-714.	7.3	188
173	On the relationship between the dynamic behavior and nanoscale staggered structure of the bone. Journal of the Mechanics and Physics of Solids, 2015, 78, 17-31.	2.3	27
174	Statistical shear lag model – Unraveling the size effect in hierarchical composites. Acta Biomaterialia, 2015, 18, 206-212.	4.1	39

#	Article	IF	Citations
175	Quantitative 3D Xâ€ray Imaging of Densification, Delamination and Fracture in a Microâ€Composite under Compression. Advanced Engineering Materials, 2015, 17, 545-553.	1.6	19
176	Microstructurally inhomogeneous composites: Is a homogeneous reinforcement distribution optimal?. Progress in Materials Science, 2015, 71, 93-168.	16.0	580
178	Nanoasperity: Structure Origin of Nacre-Inspired Nanocomposites. ACS Nano, 2015, 9, 2167-2172.	7.3	68
179	Nacre-mimetics with synthetic nanoclays up to ultrahigh aspect ratios. Nature Communications, 2015, 6, 5967.	5.8	252
180	Bioinspired highly electrically conductive graphene–epoxy layered composites. RSC Advances, 2015, 5, 22283-22288.	1.7	28
181	Bio-inspired composite films with integrative properties based on the self-assembly of gellan gum–graphene oxide crosslinked nanohybrid building blocks. Carbon, 2015, 91, 445-457.	5.4	43
182	Ultrastrong composites from dopamine modified-polymer-infiltrated colloidal crystals. Materials Horizons, 2015, 2, 434-441.	6.4	7
183	Molecular-Level Engineering of Adhesion in Carbon Nanomaterial Interfaces. Nano Letters, 2015, 15, 4504-4516.	4.5	25
184	Influence of interfacial geometry on the energy absorption capacity and load sharing mechanisms of nacreous composite shells. Composite Structures, 2015, 132, 299-309.	3.1	39
185	Optimization design of strong and tough nacreous nanocomposites through tuning characteristic lengths. Journal of the Mechanics and Physics of Solids, 2015, 81, 41-57.	2.3	54
186	Tension-induced tunable corrugation in two-phase soft composites: Mechanisms and implications. Extreme Mechanics Letters, 2015, 4, 26-37.	2.0	6
187	Morphogenesis and mechanostabilization of complex natural and 3D printed shapes. Science Advances, 2015, 1, e1400052.	4.7	48
188	Local buckling analysis of biological nanocomposites based on a beam-spring model. Theoretical and Applied Mechanics Letters, 2015, 5, 146-150.	1.3	2
189	Binary Synergy Strengthening and Toughening of Bio-Inspired Nacre-like Graphene Oxide/Sodium Alginate Composite Paper. ACS Nano, 2015, 9, 8165-8175.	7. 3	152
190	Developing strength and toughness in bio-inspired silicon carbide hybrid materials containing a compliant phase. Acta Materialia, 2015, 98, 141-151.	3.8	106
191	Biomimetic staggered composites with highly enhanced energy dissipation: Modeling, 3D printing, and testing. Journal of the Mechanics and Physics of Solids, 2015, 83, 285-300.	2.3	106
192	The role of mechanics in biological and bio-inspired systems. Nature Communications, 2015, 6, 7418.	5. 8	170
193	A General Route to Robust Nacre-Like Graphene Oxide Films. ACS Applied Materials & Samp; Interfaces, 2015, 7, 15010-15016.	4.0	48

#	Article	IF	CITATIONS
194	A bio-inspired nacre-like layered hybrid structure of calcium carbonate under the control of carboxyl graphene. CrystEngComm, 2015, 17, 520-525.	1.3	46
195	Bioinspired Hybrid Materials from Sprayâ€Formed Ceramic Templates. Advanced Materials, 2015, 27, 3073-3078.	11.1	64
196	Hybrid Supramolecular and Colloidal Hydrogels that Bridge Multiple Length Scales. Angewandte Chemie - International Edition, 2015, 54, 5383-5388.	7.2	78
197	The role of organic proteins on the crack growth resistance of human enamel. Acta Biomaterialia, 2015, 19, 33-45.	4.1	58
198	The status, challenges, and future of additive manufacturing in engineering. CAD Computer Aided Design, 2015, 69, 65-89.	1.4	1,725
199	Biocomposites with tunable properties from poly(lactic acid)-based copolymers and carboxymethyl cellulose via ionic assembly. Carbohydrate Polymers, 2015, 128, 122-129.	5.1	19
200	A numerical study of bioinspired nacre-like composite plates under blast loading. Composite Structures, 2015, 126, 329-336.	3.1	54
201	Hierarchical Structure and Mechanical Improvement of an n-HA/GCO–PU Composite Scaffold for Bone Regeneration. ACS Applied Materials & Samp; Interfaces, 2015, 7, 22618-22629.	4.0	93
202	A comprehensive multiscale moisture transport analysis: From porous reference silicates to cement-based materials. European Physical Journal: Special Topics, 2015, 224, 1749-1768.	1.2	8
203	Effects of Gamma Irradiation on Clay Membrane with Poly(vinyl alcohol) for Fire Retardancy. Industrial & Department of the Retardancy of the Retardance of t	1.8	8
204	Synergistic strengthening effect of graphene-carbon nanotube hybrid structure in aluminum matrix composites. Carbon, 2015, 95, 419-427.	5.4	154
205	Highâ€Performance TiO ₂ Nanoparticle/DOPAâ€Polymer Composites. Macromolecular Rapid Communications, 2015, 36, 1129-1137.	2.0	14
206	Silk–Its Mysteries, How It Is Made, and How It Is Used. ACS Biomaterials Science and Engineering, 2015, 1, 864-876.	2.6	85
207	Nacre-nanomimetics: Strong, Stiff, and Plastic. ACS Applied Materials & Samp; Interfaces, 2015, 7, 26783-26791.	4.0	28
208	Modelling evidence of stress concentration mitigation at the micro-scale in polymer composites by the addition of carbon nanotubes. Carbon, 2015, 82, 184-194.	5.4	80
209	Enhanced Plastic Deformations of Nanofibrillated Cellulose Film by Adsorbed Moisture and Protein-Mediated Interactions. Biomacromolecules, 2015, 16, 311-318.	2.6	28
210	Toughening mechanisms in bioinspired multilayered materials. Journal of the Royal Society Interface, 2015, 12, 20140855.	1.5	119
211	Bioinspired structural materials. Nature Materials, 2015, 14, 23-36.	13.3	3,284

#	Article	IF	CITATIONS
212	Biotechnologies and Biomimetics for Civil Engineering., 2015, , .		21
213	Effect of plasticizers on the barrier and mechanical properties of biomimetic composites of chitosan and clay. Carbohydrate Polymers, 2015, 115, 356-363.	5.1	37
214	Elastic Modulus of Mechanical Model for Mineralized Collagen Fibrils. Journal of Hard Tissue Biology, 2016, 25, 75-80.	0.2	3
215	Bioinspired Design of Building Materials for Blast and Ballistic Protection. Advances in Civil Engineering, 2016, 2016, 1-6.	0.4	8
216	Nanostructured materials as substrates for the adhesion, growth, and osteogenic differentiation of bone cells., 2016,, 103-153.		5
217	Micrometerâ€Thick Graphene Oxide–Layered Double Hydroxide Nacreâ€Inspired Coatings and Their Properties. Small, 2016, 12, 745-755.	5.2	41
218	Ultrarobust Transparent Cellulose Nanocrystalâ€Graphene Membranes with High Electrical Conductivity. Advanced Materials, 2016, 28, 1501-1509.	11.1	280
219	Interface failure modes explain non-monotonic size-dependent mechanical properties in bioinspired nanolaminates. Scientific Reports, 2016, 6, 23724.	1.6	29
220	Microcontact Printing., 2016, , 2157-2167.		0
221	Mechanical Properties of Nanostructures. , 2016, , 1937-1946.		0
222	MEMS on Flexible Substrates. , 2016, , 2010-2019.		0
223	Magnetron Sputtering. , 2016, , 1903-1903.		0
224	Micro-/Nanostructured Icephobic Materials. , 2016, , 2125-2128.		0
225	Modulating Elastic Band Gap Structure in Layered Soft Composites Using Sacrificial Interfaces. Journal of Applied Mechanics, Transactions ASME, 2016, 83, .	1.1	17
226	Preparation and Perfomance of an Aging-Resistant Nanocomposite Film of Binary Natural Polymer–Graphene Oxide. ACS Omega, 2016, 1, 1173-1181.	1.6	11
227	Microbial Fuel Cell. , 2016, , 2137-2137.		0
228	Multilamellar Vesicle (MLV)., 2016,, 2285-2285.		0
229	MEMS Resonant Infrared Detectors. , 2016, , 2028-2028.		0

#	Article	IF	CITATIONS
230	Models for Tumor Growth. , 2016, , 2244-2254.		0
231	Modification of Carbon Nanotubes. , 2016, , 2254-2254.		0
232	Protein viscosity, mineral fraction and staggered architecture cooperatively enable the fastest stress wave decay in load-bearing biological materials. Journal of the Mechanical Behavior of Biomedical Materials, 2016, 60, 339-355.	1.5	23
233	Cartilage-inspired superelastic ultradurable graphene aerogels prepared by the selective gluing of intersheet joints. Nanoscale, 2016, 8, 12900-12909.	2.8	35
234	Designing multi-layer graphene-based assemblies for enhanced toughness in nacre-inspired nanocomposites. Molecular Systems Design and Engineering, 2016, 1, 40-47.	1.7	41
235	Critical length scales and strain localization govern the mechanical performance of multi-layer graphene assemblies. Nanoscale, 2016, 8, 6456-6462.	2.8	57
236	Nature-inspired optimization of hierarchical porous media for catalytic and separation processes. New Journal of Chemistry, 2016, 40, 4016-4026.	1.4	57
237	Biomimetic and bio-inspired uses of mollusc shells. Marine Genomics, 2016, 27, 85-90.	0.4	27
238	Strong and Tough Layered Nanocomposites with Buried Interfaces. ACS Nano, 2016, 10, 4816-4827.	7.3	62
239	Composites reinforced via mechanical interlocking of surface-roughened microplatelets within ductile and brittle matrices. Bioinspiration and Biomimetics, 2016, 11, 036004.	1.5	24
240	Roadmap across the mesoscale for durable and sustainable cement paste $\hat{a} \in A$ bioinspired approach. Construction and Building Materials, 2016, 115, 13-31.	3.2	39
241	Natural Composite Systems for Bioinspired Materials. Advances in Experimental Medicine and Biology, 2016, 940, 143-166.	0.8	7
242	Biomimetic additive manufactured polymer composites for improved impact resistance. Extreme Mechanics Letters, 2016, 9, 317-323.	2.0	125
243	Robust Underwater Oilâ€Repellent Material Inspired by Columnar Nacre. Advanced Materials, 2016, 28, 8505-8510.	11.1	96
245	Effects of Ti5Si3 characteristics adjustment on microstructure and tensile properties of in-situ (Ti5Si3+TiBw)/Ti6Al4V composites with two-scale network architecture. Materials Science & Description of the Engineering A: Structural Materials: Properties, Microstructure and Processing, 2016, 673, 595-605.	2.6	56
246	Hybrid cementitious materials. , 2016, , 79-96.		6
247	Dramatic Enhancement of Graphene Oxide/Silk Nanocomposite Membranes: Increasing Toughness, Strength, and Young's modulus via Annealing of Interfacial Structures. ACS Applied Materials & lnterfaces, 2016, 8, 24962-24973.	4.0	81
248	Competing mechanisms in the wear resistance behavior of biomineralized rod-like microstructures. Journal of the Mechanics and Physics of Solids, 2016, 96, 511-534.	2.3	19

#	Article	IF	CITATIONS
249	Cortical Bone as a Biomimetic Model for the Design of New Composites. Procedia Structural Integrity, 2016, 2, 1319-1326.	0.3	10
250	Bioinspired Grapheneâ€Based Nanocomposites and Their Application in Flexible Energy Devices. Advanced Materials, 2016, 28, 7862-7898.	11.1	178
251	Structure and mechanics of interfaces in biological materials. Nature Reviews Materials, $2016, 1, .$	23.3	486
252	Large-deformation and high-strength amorphous porous carbon nanospheres. Scientific Reports, 2016, 6, 24187.	1.6	42
253	Enhanced Mechanical Performance of Bio-Inspired Hybrid Structures Utilising Topological Interlocking Geometry. Scientific Reports, 2016, 6, 26706.	1.6	68
254	Continuum damage modeling and simulation of hierarchical dental enamel. Modelling and Simulation in Materials Science and Engineering, 2016, 24, 045014.	0.8	19
255	Acoustic emission study of deformation behavior of nacre. International Journal of Modern Physics B, 2016, 30, 1650017.	1.0	5
256	Anisotropic constitutive model incorporating multiple damage mechanisms for multiscale simulation of dental enamel. Journal of the Mechanical Behavior of Biomedical Materials, 2016, 62, 515-533.	1.5	12
257	Role of the polymer phase in the mechanics of nacre-like composites. Journal of the Mechanics and Physics of Solids, 2016, 96, 133-146.	2.3	83
258	Optical Functional Materials Inspired by Biology. Advanced Optical Materials, 2016, 4, 195-224.	3.6	67
259	Bioceramics and Biocomposites from Marine Sources. Key Engineering Materials, 0, 672, 276-292.	0.4	10
260	Mode I fracture along adhesively bonded sinusoidal interfaces. International Journal of Solids and Structures, 2016, 83, 45-64.	1.3	62
261	Additive manufacturing of biologically-inspired materials. Chemical Society Reviews, 2016, 45, 359-376.	18.7	344
262	Understanding the structure–property relationship in cortical bone to design a biomimetic composite. Composite Structures, 2016, 139, 188-198.	3.1	52
263	Influence of platelet aspect ratio on the mechanical behaviour of bio-inspired nanocomposites using molecular dynamics. Journal of the Mechanical Behavior of Biomedical Materials, 2016, 59, 21-40.	1.5	23
264	Visualizations of molecular dynamics simulations of high-performance polycrystalline structural ceramics. Parallel Computing, 2016, 55, 35-42.	1.3	1
265	Nacre-like materials using a simple doctor blading technique: Fabrication, testing and modeling. Journal of the Mechanical Behavior of Biomedical Materials, 2016, 56, 23-33.	1.5	40
266	Hierarchically roughened microplatelets enhance the strength and ductility of nacre-inspired composites. Journal of the Mechanical Behavior of Biomedical Materials, 2016, 60, 367-377.	1.5	31

#	Article	IF	CITATIONS
267	Buckling Behaviors of Staggered Nanostructure of Biological Materials. Journal of Applied Mechanics, Transactions ASME, 2016, 83 , .	1.1	8
268	Three-Dimensional-Printing of Bio-Inspired Composites. Journal of Biomechanical Engineering, 2016, 138, 021006.	0.6	89
269	Hierarchical reinforcement of randomly-oriented carbon nanotube mats by ion irradiation. Carbon, 2016, 99, 491-501.	5.4	7
270	Toughness and Fracture Properties in Nacreâ€Mimetic Clay/Polymer Nanocomposites. Advanced Functional Materials, 2017, 27, 1605378.	7.8	114
271	Developing high toughness and strength Al/TiC composites using ice-templating and pressure infiltration. Ceramics International, 2017, 43, 3831-3838.	2.3	43
272	Distinct failure modes in bio-inspired 3D-printed staggered composites under non-aligned loadings. Smart Materials and Structures, 2017, 26, 035053.	1.8	49
273	Rotation of hard particles in a soft matrix. Journal of the Mechanics and Physics of Solids, 2017, 101, 285-310.	2.3	24
274	A CaCO ₃ /nanocellulose-based bioinspired nacre-like material. Journal of Materials Chemistry A, 2017, 5, 16128-16133.	5.2	30
275	Advanced Structural Materials by Bioinspiration. Advanced Engineering Materials, 2017, 19, 1600787.	1.6	103
276	Abiotic tooth enamel. Nature, 2017, 543, 95-98.	13.7	184
277	Toughness-enhancing metastructure in the recluse spider's looped ribbon silk. Materials Horizons, 2017, 4, 377-382.	6.4	26
278	Extreme lightweight structures: avian feathers and bones. Materials Today, 2017, 20, 377-391.	8.3	104
279	Functional gradients and heterogeneities in biological materials: Design principles, functions, and bioinspired applications. Progress in Materials Science, 2017, 88, 467-498.	16.0	554
280	Learning from nature: constructing high performance graphene-based nanocomposites. Materials Today, 2017, 20, 210-219.	8.3	104
281	Fatigue and Fracture Reliability of Shellâ€Mimetic PE/TiO ₂ Nanolayered Composites. Advanced Engineering Materials, 2017, 19, 1700246.	1.6	3
282	Universal structure motifs in biominerals: a lesson from nature for the efficient design of bioinspired functional materials. Interface Focus, 2017, 7, 20160120.	1.5	10
283	Printing nature: Unraveling the role of nacre's mineral bridges. Journal of the Mechanical Behavior of Biomedical Materials, 2017, 76, 135-144.	1.5	119
284	Hierarchically Enhanced Impact Resistance of Bioinspired Composites. Advanced Materials, 2017, 29, 1700060.	11.1	259

#	Article	IF	CITATIONS
285	Enhanced bending failure strain in biological glass fibers due to internal lamellar architecture. Journal of the Mechanical Behavior of Biomedical Materials, 2017, 76, 69-75.	1.5	15
286	Twisting cracks in Bouligand structures. Journal of the Mechanical Behavior of Biomedical Materials, 2017, 76, 38-57.	1.5	181
287	Lamellae spatial distribution modulates fracture behavior and toughness of african pangolin scales. Journal of the Mechanical Behavior of Biomedical Materials, 2017, 76, 30-37.	1.5	12
288	Computational modeling of interfacial behaviors in nanocomposite materials. International Journal of Solids and Structures, 2017, 115-116, 43-52.	1.3	10
289	Mineral Nanoâ€Interconnectivity Stiffens and Toughens Nacreâ€like Composite Materials. Advanced Materials, 2017, 29, 1605039.	11.1	85
290	3D-printing and mechanics of bio-inspired articulated and multi-material structures. Journal of the Mechanical Behavior of Biomedical Materials, 2017, 73, 114-126.	1.5	64
291	Bio-inspired clay nanosheets/polymer matrix/mineral nanofibers ternary composite films with optimal balance of strength and toughness. Science China Materials, 2017, 60, 909-917.	3.5	12
292	Progress in bio-inspired sacrificial bonds in artificial polymeric materials. Chemical Society Reviews, 2017, 46, 6301-6329.	18.7	157
293	Highâ€Performance Nanocomposites Inspired by Nature. Advanced Materials, 2017, 29, 1702959.	11.1	138
294	Deformation mechanics of non-planar topologically interlocked assemblies with structural hierarchy and varying geometry. Scientific Reports, 2017, 7, 11844.	1.6	41
295	Nano-scaled Ti 5 Si 3 evolution and Strength Enhancement of titanium matrix composites with two-scale architecture via heat treatment. Materials Science & Digineering A: Structural Materials: Properties, Microstructure and Processing, 2017, 701, 359-369.	2.6	49
296	Bioinspired Polymer Systems with Stimuli-Responsive Mechanical Properties. Chemical Reviews, 2017, 12851-12892.	23.0	289
297	Three-Dimensional-Moldable Nanofiber-Reinforced Transparent Composites with a Hierarchically Self-Assembled "Reverse―Nacre-like Architecture. ACS Applied Materials & Samp; Interfaces, 2017, 9, 30177-30184.	4.0	35
298	Biomimetic nanocoatings with exceptional mechanical, barrier, and flame-retardant properties from large-scale one-step coassembly. Science Advances, 2017, 3, e1701212.	4.7	195
299	Computational Framework to Predict Failure and Performance of Bone-Inspired Materials. ACS Biomaterials Science and Engineering, 2017, 3, 3236-3243.	2.6	22
300	A biomimetic ion-crosslinked layered double hydroxide/alginate hybrid film. RSC Advances, 2017, 7, 32601-32606.	1.7	11
301	Bioinspired Multifunctional Ceramic Plateletâ€Reinforced Piezoelectric Polymer Composite. Advanced Engineering Materials, 2017, 19, 1600570.	1.6	11
302	Effects of asperities and organic-inorganic interactions on the strength of nacre-mimetic composites. Materials Science and Engineering C, 2017, 71, 395-400.	3.8	3

#	Article	IF	CITATIONS
303	Anisotropic Lattice Distortions in Biogenic Minerals Originated from Strong Atomic Interactions at Organic/Inorganic Interfaces. Advanced Materials Interfaces, 2017, 4, 1600189.	1.9	29
304	The effect of nanostructured surfaces on stem cell fate. , 2017, , 567-589.		5
305	In Situ Atomic Force Microscopy Studies on Nucleation and Self-Assembly of Biogenic and Bio-Inspired Materials. Minerals (Basel, Switzerland), 2017, 7, 158.	0.8	10
306	Frontier of Inorganic Synthesis and Preparative Chemistry (I) Biomimetic Synthesis., 2017,, 687-721.		6
307	Treatise Online no. 93: Part N, Revised, Volume 1, Chapter 3: Periostracum and shell formation in the Bivalvia. Treatise Online, 0, , .	0.6	6
308	Interplay between Calcite, Amorphous Calcium Carbonate, and Intracrystalline Organics in Sea Urchin Skeletal Elements. Crystal Growth and Design, 2018, 18, 2189-2201.	1.4	34
309	Imaging Inelastic Fracture Processes in Biomimetic Nanocomposites and Nacre by Laser Speckle for Better Toughness. Advanced Science, 2018, 5, 1700635.	5.6	28
310	Impact energy absorption of bio-inspired tubular sections with structural hierarchy. Composite Structures, 2018, 195, 199-210.	3.1	91
311	Smart Nacreâ€inspired Nanocomposites. ChemPhysChem, 2018, 19, 1980-1986.	1.0	8
312	Low velocity impact resistance of bio-inspired building ceramic composites with nacre-like structure. Construction and Building Materials, 2018, 169, 851-858.	3.2	29
313	Discontinuities as a way to influence the failure mechanisms and tensile performance of hybrid carbon fiber/self-reinforced polypropylene composites. Composites Part A: Applied Science and Manufacturing, 2018, 107, 354-365.	3.8	24
314	"Brick-and-Mortar―Nanostructured Interphase for Glass-Fiber-Reinforced Polymer Composites. ACS Applied Materials & Diterfaces, 2018, 10, 7352-7361.	4.0	52
315	Insights on synergy of materials and structures in biomimetic platelet-matrix composites. Applied Physics Letters, 2018, 112, .	1.5	8
316	Microcrack patterns control the mechanical strength in theÂbiocomposites. Materials and Design, 2018, 140, 505-515.	3.3	15
317	An extended analytic model for the elastic properties of platelet-staggered composites and its application to 3D printed structures. Composite Structures, 2018, 189, 27-36.	3.1	33
318	Beyond the dimensional limitation in bio-inspired composite: Insertion of carbon nanotubes induced laminated Cu composite and the simultaneously enhanced strength and toughness. Carbon, 2018, 130, 222-232.	5.4	58
319	Unraveling crack stability and strain localization in staggered composites by fracture analysis on the shear-lag model. Composites Science and Technology, 2018, 156, 262-268.	3.8	18
320	Dramatically enhanced impact toughness of two-scale laminate-network structured composites. Materials and Design, 2018, 140, 163-171.	3.3	38

#	ARTICLE	IF	CITATIONS
321	Mechanical properties and optimal grain size distribution profile of gradient grained nickel. Acta Materialia, 2018, 153, 279-289.	3.8	161
322	Dynamic shear-lag model for understanding the role of matrix in energy dissipation in fiber-reinforced composites. Acta Biomaterialia, 2018, 74, 270-279.	4.1	28
323	Binary Cellulose Nanocrystal Blends for Bioinspired Damage Tolerant Photonic Films. Advanced Functional Materials, 2018, 28, 1800032.	7.8	63
324	Increasing carbon fiber composite strength with a nanostructured "brick-and-mortar―interphase. Materials Horizons, 2018, 5, 668-674.	6.4	38
325	Biomimetic Design of Artificial Materials Inspired by Iridescent Nacre Structure and Its Growth Mechanism. Polymer-Plastics Technology and Engineering, 2018, 57, 1592-1606.	1.9	18
326	Strong and tough metal/ceramic micro-laminates. Acta Materialia, 2018, 144, 202-215.	3.8	73
327	Application of Bionic Design to FRP T-Joints. Applied Composite Materials, 2018, 25, 983-999.	1.3	2
328	Strong Poly(Vinyl Alcohol) (PVA)/Bamboo Charcoal (BC) Nanocomposite Films with Particle Size Effect. ACS Sustainable Chemistry and Engineering, 2018, 6, 467-479.	3.2	37
329	Eco-friendly polyvinyl alcohol (PVA)/bamboo charcoal (BC) nanocomposites with superior mechanical and thermal properties. Advanced Composite Materials, 2018, 27, 499-509.	1.0	25
330	Biomimetic Structural Materials: Inspiration from Design and Assembly. Annual Review of Physical Chemistry, 2018, 69, 23-57.	4.8	96
331	Mapping the coupled role of structure and materials in mechanics of platelet-matrix composites. Journal of the Mechanics and Physics of Solids, 2018, 112, 169-186.	2.3	13
332	The mechanical behavior of nacre across length scales. Journal of the Mechanical Behavior of Biomedical Materials, 2018, 78, 96-107.	1.5	20
333	Design, Fabrication, and Function of Silkâ€Based Nanomaterials. Advanced Functional Materials, 2018, 28, 1805305.	7.8	120
334	Quantifying the role of mineral bridges on the fracture resistance of nacre-like composites. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115, 12698-12703.	3.3	44
335	Optical Properties of Individual Aragonite Plates from Nacre. ChemistrySelect, 2018, 3, 11700-11704.	0.7	6
336	Additive Manufacturing as a Method to Design and Optimize Bioinspired Structures. Advanced Materials, 2018, 30, e1800940.	11.1	158
337	Mechanical Properties of Architected Nanomaterials Made from Organic–Inorganic Nanocrystals. Jom, 2018, 70, 2205-2217.	0.9	20
338	Thin Nacre-Biomimetic Coating with Super-Anticorrosion Performance. ACS Nano, 2018, 12, 10189-10200.	7.3	114

#	Article	IF	CITATIONS
339	Combining In Silico Design and Biomimetic Assembly: A New Approach for Developing Highâ€Performance Dynamic Responsive Bioâ€Nanomaterials. Advanced Materials, 2018, 30, e1802306.	11.1	34
340	Optimizing mechanical properties of bio-inspired composites through functionally graded matrix and microstructure design. Composite Structures, 2018, 206, 621-627.	3.1	7
341	Hard-yet-tough high-vanadium hierarchical composite coating: Microstructure and mechanical properties. Materials Science & Description A: Structural Materials: Properties, Microstructure and Processing, 2018, 736, 87-99.	2.6	6
342	Multifunctional Stimuli-Responsive Cellulose Nanocrystals via Dual Surface Modification with Genetically Engineered Elastin-Like Polypeptides and Poly(acrylic acid). ACS Macro Letters, 2018, 7, 646-650.	2.3	21
343	Biomimetic Ultralight, Highly Porous, Shapeâ€Adjustable, and Biocompatible 3D Graphene Minerals via Incorporation of Selfâ€Assembled Peptide Nanosheets. Advanced Functional Materials, 2018, 28, 1801056.	7.8	65
344	Molecular influence in the glass/polymer interface design: The role of segmental dynamics. Polymer, 2018, 146, 222-229.	1.8	17
345	Compressive failure of a carbon nano-tesseract: Sci-Fi inspired materials and the strength of thanos. Extreme Mechanics Letters, 2018, 22, 19-26.	2.0	3
346	Revealing the Mechanics of Helicoidal Composites through Additive Manufacturing and Beetle Developmental Stage Analysis. Advanced Functional Materials, 2018, 28, 1803073.	7.8	55
347	Clay Nanopapers. , 2018, , 59-86.		7
348	Assembly Preparation of Multilayered Biomaterials with High Mechanical Strength and Bone-Forming Bioactivity. Chemistry of Materials, 2018, 30, 4646-4657.	3.2	32
349	Microstructure and mechanical properties of hard Acrocomia mexicana fruit shell. Scientific Reports, 2018, 8, 9668.	1.6	28
350	6.4 Bioinspired Composite Materials: Processing Strategies Across Length Scales. , 2018, , 73-96.		0
351	Biomimetic twisted plywood structural materials. National Science Review, 2018, 5, 703-714.	4.6	79
352	Mechanical behavior and size effect of the staggered bio-structure materials. Mechanics of Materials, 2018, 126, 47-56.	1.7	15
353	Hierarchical nanostructures for functional materials. Nanotechnology, 2018, 29, 280201.	1.3	7
354	Progress on discontinuously reinforced titanium matrix composites. Journal of Alloys and Compounds, 2018, 767, 1196-1215.	2.8	156
355	Nacre-like composites made by graphite nanoplatelets. AIP Conference Proceedings, 2018, , .	0.3	1
356	Gelation-Assisted Layer-by-Layer Deposition of High Performance Nanocomposites. Zeitschrift Fur Physikalische Chemie, 2018, 232, 1383-1398.	1.4	6

#	Article	IF	CITATIONS
357	Materials Engineering of High-Performance Anodes as Layered Composites with Self-Assembled Conductive Networks. Journal of Physical Chemistry C, 2018, 122, 14014-14028.	1.5	7
358	Multiscale structure of nacre biomaterial: Thermomechanical behavior and wear processes. Materials Science and Engineering C, 2018, 91, 78-93.	3.8	6
359	Length-scale dependency of biomimetic hard-soft composites. Scientific Reports, 2018, 8, 12052.	1.6	28
360	On the Materials Science of Nature's Arms Race. Advanced Materials, 2018, 30, e1705220.	11.1	63
361	Optimizing fatigue performance of nacre-mimetic PE/TiO ₂ nanolayered composites by tailoring thickness ratio. Journal of Materials Research, 2018, 33, 1543-1552.	1.2	5
362	Mechanical Properties of Nanolaminates Based on Graphene Nanoplatelets. , 2018, , 233-251.		O
363	Interfacial characteristics and mechanical properties of TiAl/Ti6Al4V laminate composite (LMC) fabricated by vacuum hot pressing. Materials Science & Department of the Structural Materials: Properties, Microstructure and Processing, 2019, 742, 704-711.	2.6	36
364	The Art of Curved Reinforcing in Biological Armors â€" Seashells. Journal of Bionic Engineering, 2019, 16, 711-718.	2.7	15
365	Bioinspired Materials: From Living Systems to New Concepts in Materials Chemistry. Materials, 2019, 12, 2117.	1.3	14
366	Microstructure and Size Effects on the Mechanics of Two Dimensional, High Aspect Ratio Nanoparticle Assemblies. Frontiers in Materials, 2019, 6, .	1.2	7
367	Unprecedentedly Tough, Foldingâ€Endurance, and Multifunctional Grapheneâ€Based Artificial Nacre with Predesigned 3D Nanofiber Network as Matrix. Advanced Functional Materials, 2019, 29, 1903876.	7.8	77
368	Energy absorption of muscle-inspired hierarchical structure: Experimental investigation. Composite Structures, 2019, 226, 111250.	3.1	42
369	Multiscale Toughening Mechanisms in Biological Materials and Bioinspired Designs. Advanced Materials, 2019, 31, e1901561.	11,1	342
370	Biological design of materials. , 2019, , 27-97.		7
371	Ballistic performance of bioinspired nacre-like aluminium composite plates. Composites Part B: Engineering, 2019, 177, 107382.	5.9	28
372	Correlation between Microstructure and Failure Mechanism of Hyriopsis cumingii Shell Structure. Journal of Bionic Engineering, 2019, 16, 869-881.	2.7	8
373	Engineering tensile behavior of hybrid carbon fiber/self-reinforced polypropylene composites by bio-inspired fiber discontinuities. Composites Part B: Engineering, 2019, 178, 107502.	5.9	11
374	Amorphous Alumina Nanosheets/Polylactic Acid Artificial Nacre. Matter, 2019, 1, 1385-1398.	5.0	30

#	Article	IF	CITATIONS
375	Nanoscale deformation mechanics reveal resilience in nacre of Pinna nobilis shell. Nature Communications, 2019, 10, 4822.	5.8	67
376	High-performance bio-inspired composite T-joints. Composites Science and Technology, 2019, 184, 107840.	3.8	33
377	Natureâ€Inspired Nacreâ€Like Composites Combining Human Toothâ€Matching Elasticity and Hardness with Exceptional Damage Tolerance. Advanced Materials, 2019, 31, e1904603.	11.1	73
378	3D Printed Tubulanes as Lightweight Hypervelocity Impact Resistant Structures. Small, 2019, 15, e1904747.	5.2	24
379	Interplay of various fracture mechanisms in bio-inspired staggered structure. Mechanics of Materials, 2019, 139, 103215.	1.7	18
380	Characterization of fracture in topology-optimized bioinspired networks. Physical Review E, 2019, 100, 042402.	0.8	8
381	Investigation on the Preparation and Properties of CMC/magadiite Nacre-Like Nanocomposite Films. Polymers, 2019, 11, 1378.	2.0	6
382	Manufacturing and properties of biomimetic graphite nanoplatelets foils. Polymer Engineering and Science, 2019, 59, 2443-2448.	1.5	1
383	Optimization design on simultaneously strengthening and toughening graphene-based nacre-like materials through noncovalent interaction. Journal of the Mechanics and Physics of Solids, 2019, 133, 103706.	2.3	36
384	Pseudo-Biomineralization: Complex Mineral Structures Shaped by Microbes. ACS Biomaterials Science and Engineering, 2019, 5, 5088-5096.	2.6	8
385	Impact resistance of nanocellulose films with bioinspired Bouligand microstructures. Nanoscale Advances, 2019, 1, 1351-1361.	2.2	25
386	Optimization of the properties in Al/SiC composites by tailoring microstructure through gelatin freeze casting. Materials Science & Description of the properties, Microstructure and Processing, 2019, 748, 286-293.	2.6	21
387	The structural efficiency of the sea sponge <i>Euplectella aspergillum</i> skeleton: bio-inspiration for 3D printed architectures. Journal of the Royal Society Interface, 2019, 16, 20180965.	1.5	21
388	A comprehensive review of selected biological armor systems – From structure-function to bio-mimetic techniques. Composite Structures, 2019, 225, 111172.	3.1	21
389	Dynamic self-strengthening of a bio-nanostructured armor $\hat{a}\in$ " conch shell. Materials Science and Engineering C, 2019, 103, 109820.	3.8	26
390	Beyond Seashells: Bioinspired 2D Photonic and Photoelectronic Devices. Advanced Functional Materials, 2019, 29, 1901460.	7.8	78
391	A Review on Modeling Techniques of Cementitious Materials under Different Length Scales: Development and Future Prospects. Advanced Theory and Simulations, 2019, 2, 1900047.	1.3	20
392	Using convolutional neural networks to predict composite properties beyond the elastic limit. MRS Communications, 2019, 9, 609-617.	0.8	54

#	Article	IF	CITATIONS
393	Fabrication and characterization of nacre-inspired alumina-epoxy composites. Ceramics International, 2019, 45, 14464-14468.	2.3	5
394	Superstrong Noncovalent Interface between Melamine and Graphene Oxide. ACS Applied Materials & Lamp; Interfaces, 2019, 11, 17068-17078.	4.0	18
395	Buildup of Multi-Ionic Supramolecular Network Facilitated by In-Situ Intercalated Organic Montmorillonite in 1,2-Polybutadiene. Polymers, 2019, 11, 492.	2.0	8
396	Hybrid films of cellulose nanofibrils, chitosan and nanosilicaâ€"Structural, thermal, optical, and mechanical properties. Carbohydrate Polymers, 2019, 218, 87-94.	5.1	26
397	Electrode engineering starting from live biomass: a †smart†way to construct smart pregnant hybrids for sustainable charge storage devices. Materials Chemistry Frontiers, 2019, 3, 796-805.	3.2	1
398	Topological Interlocking Materials. Springer Series in Materials Science, 2019, , 23-49.	0.4	14
399	Water-Evaporation-Powered Fast Actuators with Multimodal Motion Based on Robust Nacre-Mimetic Composite Film. ACS Applied Materials & Interfaces, 2019, 11, 12890-12897.	4.0	29
400	Nanostructure and Properties of Nacre-Inspired Clay/Cellulose Nanocomposites—Synchrotron X-ray Scattering Analysis. Macromolecules, 2019, 52, 3131-3140.	2.2	38
401	Bioinspired nacre-like alumina with a bulk-metallic glass-forming alloy as a compliant phase. Nature Communications, 2019, 10, 961.	5.8	106
402	Elasticity and fracture of brick and mortar materials using discrete element simulations. Journal of the Mechanics and Physics of Solids, 2019, 126, 101-116.	2.3	31
403	Buckling resistance of cylinders made of textile composite material. IOP Conference Series: Earth and Environmental Science, 2019, 403, 012162.	0.2	6
404	Biological Material Interfaces as Inspiration for Mechanical and Optical Material Designs. Chemical Reviews, 2019, 119, 12279-12336.	23.0	121
405	Biomacromolecules in bivalve shells with crossed lamellar architecture. Journal of Materials Science, 2019, 54, 4952-4969.	1.7	29
406	Locking of the operculum in a water snail: Theoretical modeling and applications for mechanical sealing. Journal of Theoretical Biology, 2019, 464, 104-111.	0.8	3
407	Interfacial strength-controlled energy dissipation mechanism and optimization in impact-resistant nacreous structure. Materials and Design, 2019, 163, 107532.	3.3	43
408	Tough and conductive bio-based artificial nacre via synergistic effect between water-soluble cellulose acetate and graphene. Carbohydrate Polymers, 2019, 206, 319-327.	5.1	10
409	Hydrothermal fabrication of rGO/Apatite layers on AZ31 magnesium alloy for enhanced bonding strength and corrosion resistance. Applied Surface Science, 2019, 470, 430-438.	3.1	27
410	Nucleation of Biomimetic Hydroxyapatite Nanoparticles on the Surface of Type I Collagen: Molecular Dynamics Investigations. Journal of Physical Chemistry C, 2019, 123, 2533-2543.	1.5	22

#	Article	IF	Citations
411	Hierarchical Toughening of Nacre‣ike Composites. Advanced Functional Materials, 2019, 29, 1806800.	7.8	89
412	Interplay of structure and mechanics in silk/carbon nanocomposites. MRS Bulletin, 2019, 44, 53-58.	1.7	18
413	The fracture mechanics of biological and bioinspired materials. MRS Bulletin, 2019, 44, 46-52.	1.7	31
414	Effects of interface properties on the mechanical properties of bio-inspired cellulose nanocrystal (CNC)-based materials. Journal of the Mechanics and Physics of Solids, 2019, 124, 871-896.	2.3	41
415	Mixed mode crack propagation in staggered biocomposites using phase field modelling. Journal of the Mechanical Behavior of Biomedical Materials, 2020, 101, 103421.	1.5	5
416	Strength and toughness trade-off optimization of nacre-like ceramic composites. Composites Part B: Engineering, 2020, 183, 107699.	5.9	35
417	Structural Orientation and Anisotropy in Biological Materials: Functional Designs and Mechanics. Advanced Functional Materials, 2020, 30, 1908121.	7.8	59
418	Bioinspired and Biomimetic Design of Multilayered and Multiscale Structures. , 2020, , 3-19.		1
419	Bioinspired Design for Energy Storage Devices. , 2020, , 193-211.		0
420	Self-assembly of bioinspired and biologically functional materials. MRS Bulletin, 2020, 45, 832-840.	1.7	7
421	Crack propagation and toughening mechanisms of bio-inspired artificial spicules fabricated by additive manufacturing technique. Theoretical and Applied Fracture Mechanics, 2020, 110, 102797.	2.1	11
422	Bioinspired Underwater Propulsors. , 2020, , 113-139.		6
423	Bioinspired Design of Grapheneâ€Based Materials. Advanced Functional Materials, 2020, 30, 2007458.	7.8	15
424	Aquatic Animals Operating at High Reynolds Numbers. , 2020, , 235-270.		1
425	Multi-scale interface design of strong and damage resistant hierarchical nanostructured materials. Materials and Design, 2020, 196, 109169.	3.3	16
426	High strength and high ductility copper matrix composite reinforced by graded distribution of carbon nanotubes. Composites Part A: Applied Science and Manufacturing, 2020, 138, 106063.	3.8	16
427	Investigation of failure mechanisms of nacre at macro and nano scales. Journal of the Mechanical Behavior of Biomedical Materials, 2020, 112, 104018.	1.5	12
428	A nature-inspired interface design strategy of carbon fiber composites by growing brick-and-mortar structure on carbon fiber. Composites Science and Technology, 2020, 200, 108382.	3.8	32

#	Article	IF	CITATIONS
430	Bioinspired Design of Dental Functionally Graded Multilayer Structures., 2020,, 140-166.		0
431	Bionic Organs. , 2020, , 167-192.		1
432	Bioinspired Design of Nanostructures. , 2020, , 212-232.		0
433	Flying of Insects. , 2020, , 271-299.		5
434	Bioinspired Building Envelopes. , 2020, , 343-354.		0
436	Mapping the Mechanical Properties of Hierarchical Supercrystalline Ceramic-Organic Nanocomposites. Molecules, 2020, 25, 4790.	1.7	9
437	Anisotropic Dynamics and Mechanics of Macromolecular Crystals Containing Lattice-Patterned Polymer Networks. Journal of the American Chemical Society, 2020, 142, 19402-19410.	6.6	8
438	High velocity impact response of hybridized pseudo-woven carbon fiber composite architectures. Composites Part B: Engineering, 2020, 203, 108478.	5.9	10
439	Human Cortical Bone as a Structural Material. , 2020, , 20-44.		0
440	Bamboo-Inspired Materials and Structures. , 2020, , 89-110.		5
441	Designing Nature-Inspired Liquid-Repellent Surfaces. , 2020, , 300-319.		1
442	A multiscale analytical framework for mode I crack in staggered composites. Journal of the Mechanics and Physics of Solids, 2020, 145, 104157.	2.3	10
443	Biomimetic and Soft Robotics. , 2020, , 320-342.		0
444	Biomimetic peptide self-assembly for functional materials. Nature Reviews Chemistry, 2020, 4, 615-634.	13.8	411
445	Bioinspired Design of Multilayered Composites. , 2020, , 45-88.		0
446	Surface and Interface Engineering for Nanocellulosic Advanced Materials. Advanced Materials, 2021, 33, e2002264.	11.1	239
447	Nano-Mechanics Reveal Resilience in Nacre of Mollusk Shells and Pearls. Microscopy and Microanalysis, 2020, 26, 104-106.	0.2	0
448	Transparent Nacreâ€ike Composites Toughened through Mineral Bridges. Advanced Functional Materials, 2020, 30, 2002149.	7.8	24

#	Article	IF	CITATIONS
449	Creation of Highly Ordered "Nano-Mille-Feuille―Hard/Soft Nanoparticle Multilayers with Interparticle Cross-Linking by Diacetylene-Containing Chains. Langmuir, 2020, 36, 5596-5607.	1.6	6
450	Modified Timoshenko beam model for bending behaviors of layered materials and structures. Extreme Mechanics Letters, 2020, 39, 100799.	2.0	11
451	How Charged Amino Acids Regulate Nucleation of Biomimetic Hydroxyapatite Nanoparticles on the Surface of Collagen Mimetic Peptides: Molecular Dynamics and Free Energy Investigations. Crystal Growth and Design, 2020, 20, 4561-4572.	1.4	15
452	Sliding Avalanches Between Nacreous Tablets. Nano Letters, 2020, 20, 5024-5029.	4.5	10
453	Biological and bioinspired materials: Structure leading to functional and mechanical performance. Bioactive Materials, 2020, 5, 745-757.	8.6	89
454	Ecoâ€Degradable and Flexible Solidâ€State Ionic Conductors by Clayâ€Nanoconfined DMSO Composites. Advanced Sustainable Systems, 2020, 4, 1900134.	2.7	10
455	Micromechanics of engineered interphases in nacre-like composite structures. Mechanics of Advanced Materials and Structures, 2021, 28, 2327-2342.	1.5	14
456	Failure simulation and design optimization of bioinspired heterogeneous interfaces by Floquet-based bar-spring model. Composite Structures, 2020, 252, 112665.	3.1	8
457	Layered structure of alumina/graphene-augmented-inorganic-nanofibers with directional electrical conductivity. Carbon, 2020, 167, 634-645.	5.4	12
458	Strong and tough nacre-like aluminas: Process–structure–performance relationships and position within the nacre-inspired composite landscape. Journal of Materials Research, 2020, 35, 1076-1094.	1.2	36
459	Natural protein bioinspired materials for regeneration of hard tissues. Journal of Materials Chemistry B, 2020, 8, 2199-2215.	2.9	43
460	Highly thermally conductive, ductile biomimetic boron nitride/aramid nanofiber composite film. Composites Science and Technology, 2020, 189, 108021.	3.8	7 3
461	Impact resistance of nacre-like composites diversely patterned by 3D printing. Composite Structures, 2020, 238, 111951.	3.1	44
462	Correlative Analysis of Specific Compatibilization in Composites by Coupling in situ X-Ray Scattering and Mechanical Tensile Testing. Frontiers in Materials, 2020, 6, .	1.2	1
463	Multiâ€Material 3D Printing of Functionally Graded Hierarchical Soft–Hard Composites. Advanced Engineering Materials, 2020, 22, 1901142.	1.6	15
464	A New Biomimetic Composite Structure with Tunable Stiffness and Superior Toughness via Designed Structure Breakage. Materials, 2020, 13, 636.	1.3	3
465	An analytical model for the bio-inspired nacreous composites with interlocked "brick-and-mortar― structures. Composites Science and Technology, 2020, 193, 108131.	3.8	24
466	Bioinspired design of elastomeric vitrimers with sacrificial metal-ligand interactions leading to supramechanical robustness and retentive malleability. Materials and Design, 2020, 192, 108756.	3.3	42

#	Article	IF	Citations
467	The shell matrix of the european thorny oyster, Spondylus gaederopus: microstructural and molecular characterization. Journal of Structural Biology, 2020, 211, 107497.	1.3	9
468	Adsorption of Aspartate Derivatives to Calcite Surfaces in Aqueous Environment. Crystal Growth and Design, 2020, 20, 2853-2859.	1.4	10
469	Evolutionary Algorithm Optimization of Staggered Biological or Biomimetic Composites Using the Random Fuse Model. Physical Review Applied, 2020, 13, .	1.5	5
470	Distinctive Optical Properties of Hierarchically Ordered Nanostructures Selfâ€Assembled from Multiblock Copolymer/Nanoparticle Mixtures. Macromolecular Rapid Communications, 2020, 41, 2000131.	2.0	6
471	Modeling of a biological material nacre: Multi-objective optimization model. Mechanics of Advanced Materials and Structures, 2021, 28, 430-439.	1.5	3
472	Ultra-strong capillarity of bioinspired micro/nanotunnels in organic cathodes enabled high-performance all-organic sodium-ion full batteries. Chemical Engineering Journal, 2021, 420, 127597.	6.6	28
473	A scalable hydrogel processing route to high-strength, foldable clay-based artificial nacre. Composites Science and Technology, 2021, 201, 108543.	3.8	10
474	Multi-phase field modeling for various fracture mechanisms in composites. Engineering Fracture Mechanics, 2021, 241, 107348.	2.0	18
475	Inspiration from Nature's body armours – A review of biological and bioinspired composites. Composites Part B: Engineering, 2021, 205, 108513.	5.9	94
476	Enhanced mechanical properties of CNTs/Mg biomimetic laminated composites. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2021, 802, 140632.	2.6	16
477	Bioinspired approaches for toughening of fibre reinforced polymer composites. Materials and Design, 2021, 199, 109336.	3.3	26
478	Geometrically toughening mechanism of cellular composites inspired by Fibonacci lattice in Liquidambar formosana. Composite Structures, 2021, 262, 113349.	3.1	8
479	Effect of geometrical structure variations on the viscoelastic and anisotropic behaviour of cortical bone using multi-scale finite element modelling. Journal of the Mechanical Behavior of Biomedical Materials, 2021, 113, 104153.	1.5	17
480	Nonbrittle Nanocomposite Materials Prepared by Coprecipitation of TEMPO-Oxidized Cellulose Nanofibers and Hydroxyapatite. ACS Sustainable Chemistry and Engineering, 2021, 9, 158-167.	3.2	9
481	WebNet: A biomateriomic three-dimensional spider web neural net. Extreme Mechanics Letters, 2021, 42, 101034.	2.0	10
482	A bioinspired interfacial design to toughen carbon nanotube fibers. Materials Chemistry Frontiers, 2021, 5, 5706-5717.	3.2	3
483	Hydroxyapatite-based composites for orthopedic drug delivery and tissue engineering., 2021,, 293-320.		1
484	Bioinorganic and bioinspired solid-state chemistry: from classical crystallization to nonclassical synthesis concepts., 2021,, 433-490.		2

#	Article	IF	CITATIONS
485	Porous Biphasic Calcium Phosphate for Biomedical Application. Journal of Biomimetics, Biomaterials and Biomedical Engineering, 0, 49, 101-110.	0.5	4
487	Scaling behavior of stiffness and strength of hierarchical network nanomaterials. Science, 2021, 371, 1026-1033.	6.0	88
488	Understanding macroscopic assemblies of carbon nanostructures with microstructural complexity. Composites Part A: Applied Science and Manufacturing, 2021, 143, 106318.	3.8	14
489	Bio-inspired composite laminate design with improved out-of-plane strength and ductility. Composites Part A: Applied Science and Manufacturing, 2021, 144, 106362.	3.8	26
490	A novel biomimetic design inspired by nested cylindrical structures of spicules. Journal of Alloys and Compounds, 2021, 864, 158197.	2.8	8
491	Tunable interface hardening: Designing tough bio-inspired composites through 3D printing, testing, and computational validation. Composites Part B: Engineering, 2021, 215, 108754.	5.9	21
492	A novel nacre-like metal/metal structure by lithography and electrodeposition. Journal of Alloys and Compounds, 2021, 865, 158853.	2.8	1
493	Gradient design of bio-inspired nacre-like composites for improved impact resistance. Composites Part B: Engineering, 2021, 215, 108830.	5.9	48
494	Microstructures and mechanical properties of high-performance nacre-inspired Al-Si/TiB2 composites prepared by freeze casting and pressure infiltration. Ceramics International, 2021, 47, 16891-16901.	2.3	15
495	Automated manufacturing of bio-inspired carbon-fibre reinforced polymers. Composites Part B: Engineering, 2021, 215, 108795.	5.9	14
496	High damage-tolerance bio-inspired B4C/2024Al composites with adjustable mechanical performance by tuning ceramic thickness. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2021, 819, 141469.	2.6	13
497	Mechanical property gradients of taenioglossan radular teeth are associated with specific function and ecological niche in Paludomidae (Gastropoda: Mollusca). Acta Biomaterialia, 2021, 134, 513-530.	4.1	17
498	Theoretical and experimental research on anisotropic and nonlinear mechanics of periodic network materials. Journal of the Mechanics and Physics of Solids, 2021, 152, 104458.	2.3	17
499	Damage-tolerant 3D-printed ceramics via conformal coating. Science Advances, 2021, 7, .	4.7	32
500	Biomimetic armour design strategies for additive manufacturing: A review. Materials and Design, 2021, 205, 109730.	3.3	90
501	Nacre-like GNP/Epoxy composites: Reinforcement efficiency vis-Ã-vis graphene content. Composites Science and Technology, 2021, 211, 108873.	3.8	18
502	Numerical investigation on the enhanced damping behavior of bio-inspired nacreous composites by introducing interlocked structure. Journal of the Mechanical Behavior of Biomedical Materials, 2021, 119, 104442.	1.5	13
503	Bioinspired fish-scale-like magnesium composites strengthened by contextures of continuous titanium fibers: Lessons from nature. Journal of Magnesium and Alloys, 2023, 11, 869-881.	5.5	6

#	Article	IF	CITATIONS
504	Stiff and tough PDMS-MMT layered nanocomposites visualized by AIE luminogens. Nature Communications, 2021, 12, 4539.	5.8	64
505	Hierarchically Architected Polyvinylidene Fluoride Piezoelectric Foam for Boosted Mechanical Energy Harvesting and Self-Powered Sensor. ACS Applied Materials & Interfaces, 2021, 13, 37252-37261.	4.0	30
506	Bioinspired modified graphite film with superb mechanical and thermoconductive properties. Carbon, 2021, 181, 40-47.	5.4	21
507	Additive manufacturing of ceramics and cermets: present status and future perspectives. Sadhana - Academy Proceedings in Engineering Sciences, 2021, 46, 1 .	0.8	10
508	Physics-informed neural networks for estimating stress transfer mechanics in single lap joints. Journal of Zhejiang University: Science A, 2021, 22, 621-631.	1.3	16
509	Towards damage resistant Al2O3–SiO2 glasses with structural and chemical heterogeneities through consolidation of glassy nanoparticles. Acta Materialia, 2021, 215, 117016.	3.8	8
510	Centrifugation and index matching yield a strong and transparent bioinspired nacreous composite. Science, 2021, 373, 1229-1234.	6.0	48
511	Food waste eggshell valorization through development of new composites: A review. Sustainable Materials and Technologies, 2021, 29, e00317.	1.7	16
512	Controlled Vertically Aligned Structures in Polymer Composites: Natural Inspiration, Structural Processing, and Functional Application. Advanced Materials, 2021, 33, e2103495.	11.1	62
513	Multi-layered Barium and Strontium Carbonate Structures Induced by the Small Organic Dye Acid Orange 7. Crystal Growth and Design, 2021, 21, 6349-6356.	1.4	1
514	Prestressing Strategy for Strengthening Biocomposites: A Numerical Study. ACS Biomaterials Science and Engineering, 2021, 7, 5014-5021.	2.6	2
515	Compression fatigue properties and damage mechanisms of a bioinspired nacre-like ceramic-polymer composite. Scripta Materialia, 2021, 203, 114089.	2.6	16
516	A two-scale strategy for the modeling of hook and loop fasteners. Journal of the Mechanics and Physics of Solids, 2021, 156, 104600.	2.3	1
517	A Soy Protein-Based Composite Film with a Hierarchical Structure Inspired by Nacre. Journal of Renewable Materials, 2022, 10, 639-652.	1.1	6
518	Gradients of Mechanical Properties in Taenioglossan Radular Teeth is Linked with Specific Function and Ecological Niche. SSRN Electronic Journal, 0, , .	0.4	0
519	Hydrogen bond reinforced, transparent polycaprolactone-based degradable polyurethane. Materials Chemistry Frontiers, 2021, 5, 5371-5381.	3.2	24
520	A Novel Biomimetic Material Duplicating the Structure and Mechanics of Natural Nacre. Conference Proceedings of the Society for Experimental Mechanics, 2011, , 181-187.	0.3	4
521	Interfacial Fracture Toughness of Nacre. Conference Proceedings of the Society for Experimental Mechanics, 2013, , 31-38.	0.3	2

#	Article	IF	CITATIONS
522	Synthetic Multi-level Matrices for Bone Regeneration. , 2011, , 99-122.		5
523	Identification of Deformation Mechanisms in Biomaterials Through AFM and Digital Image Correlation. Conference Proceedings of the Society for Experimental Mechanics, 2019, , 89-93.	0.3	1
524	Silk and Web Synergy: The Merging of Material and Structural Performance. Biologically-inspired Systems, 2014, , 219-268.	0.4	2
525	Tuning the Mechanical Properties of Shape Memory Metallic Glass Composites with Brick and Mortar Designs. Scripta Materialia, 2020, 186, 69-73.	2.6	18
527	Additive manufacturing of polymer-based structures by extrusion technologies. Oxford Open Materials Science, 2020, 1 , .	0.5	26
528	Biominerals at the nanoscale., 0,, 377-435.		7
529	Coarse-Graining Parameterization and Multiscale Simulation of Hierarchical Systems. Part I. , 2010, , 13-34.		4
531	Material properties and osteoporosis. F1000Research, 2019, 8, 1481.	0.8	5
532	A mechanical model of the crack-bridging effect in nacre with interlocking interface. Archive of Applied Mechanics, 2022, 92, 151-162.	1.2	2
533	The mesoscale order of nacreous pearls. Proceedings of the National Academy of Sciences of the United States of America, 2021, 118 , .	3.3	12
534	Challenges and Outlook. , 2010, , 263-274.		1
535	Mechanical Properties of a Nanostructured Poly (KAMPS)/aragonite Composite. Conference Proceedings of the Society for Experimental Mechanics, 2011, , 131-136.	0.3	1
536	Novel Synthetic Material Mimicking Mechanisms from Natural Nacre. Conference Proceedings of the Society for Experimental Mechanics, 2011, , 289-290.	0.3	0
538	Ultratough Artificial Nacre Based on Conjugated Cross-linked Graphene Oxide. Angewandte Chemie, 2013, , n/a-n/a.	1.6	0
539	A Multiscale Modeling of Multiple Physics. , 2013, , .		0
540	Molecular Modeling of the Microstructure of Soft Materials. , 2013, , .		0
541	Mother-of-Pearl: An Engineering Gem. , 2014, , 29-40.		0
542	Bio-inspired Bridge Design. , 2015, , 235-254.		3

#	Article	IF	Citations
543	Mechanical Properties of Hierarchical Protein Materials. , 2016, , 1915-1926.		0
544	Effect of treatment time on mechanical properties of pure copper processed by surface mechanical attrition treatment at cryogenic temperature. Letters on Materials, 2019, 9, 534-540.	0.2	2
545	Effect of processing parameters on the microstructure and mechanical properties of TiAl/Ti2AlNb laminated composites. Journal of Materials Science and Technology, 2022, 109, 228-244.	5.6	19
546	Introduction to PVA-Based Bionanocomposite Films. , 2021, , 1-40.		1
547	Identifying structure-property relationships of micro-architectured porous scaffolds through 3D printing and finite element analysis. Computational Materials Science, 2022, 202, 110987.	1.4	5
548	Polymeric materials as bionanocomposites. , 2020, , 335-365.		1
549	Directed Assembly of Largeâ€Sized, Mechanically Robust, Nacreâ€Inspired Graphene Oxide/Sodium Alginate Nanocomposite Paper. Macromolecular Materials and Engineering, 2020, 305, 2000493.	1.7	3
550	In Situ Manipulation and Micromechanical Characterization of Diatom Frustule Constituents Using Focused Ion Beam Scanning Electron Microscopy. Small Methods, 2021, 5, e2100638.	4.6	5
551	Advances in Fieldâ€Assisted 3D Printing of Bioâ€Inspired Composites: From Bioprototyping to Manufacturing. Macromolecular Bioscience, 2022, 22, e2100332.	2.1	19
552	Band gap tuning through microscopic instabilities of compressively loaded lightened nacre-like composite metamaterials. Composite Structures, 2022, 282, 115032.	3.1	24
553	Nacre's brick–mortar structure suppresses the adverse effect of microstructural randomness. Journal of the Mechanics and Physics of Solids, 2022, 159, 104769.	2.3	24
554	Designing staggered platelet composite structure with Gaussian process regression based Bayesian optimization. Composites Science and Technology, 2022, 220, 109254.	3.8	12
555	Interlaminar and translaminar fracture toughness of Automated Manufactured Bio-inspired CFRP laminates. Composites Science and Technology, 2022, 219, 109236.	3.8	11
556	Biologically-inspired Stimuli-responsive DDS. Biomaterials Science Series, 2018, , 265-283.	0.1	0
557	Biomineralized Materials as Model Systems for Structural Composites: 3D Architecture. Advanced Materials, 2022, 34, e2106259.	11.1	24
558	3D Printing of Nacre-Inspired Structures with Exceptional Mechanical and Flame-Retardant Properties. Research, 2022, 2022, 9840574.	2.8	18
559	Artificial Nacre with High Toughness Amplification Factor: Residual Stressâ€Engineering Sparks Enhanced Extrinsic Toughening Mechanisms. Advanced Materials, 2022, 34, e2108267.	11.1	34
560	Revealing Layerâ€Specific Ultrastructure and Nanomechanics of Fibrillar Collagen in Human Aorta via Atomic Force Microscopy Testing: Implications on Tissue Mechanics at Macroscopic Scale. Advanced NanoBiomed Research, 2022, 2, .	1.7	15

#	ARTICLE	IF	Citations
561	Advancing the Mechanical Performance of Glasses: Perspectives and Challenges. Advanced Materials, 2022, 34, e2109029.	11.1	50
562	Biomimicry for natural and synthetic composites and use of machine learning in hierarchical design. , 2022, , 141-182.		1
563	Damage and Failure Mechanisms of Biological Materials. , 2022, , .		1
564	Morse-Code inspired architectures for tunable damage tolerance in brittle material systems. Journal of Materials Research, 2022, 37, 1201-1215.	1.2	3
565	Bioinspired, High-Strength, and Flexible MXene/Aramid Fiber for Electromagnetic Interference Shielding Papers with Joule Heating Performance. ACS Nano, 2022, 16, 6700-6711.	7.3	120
566	Ultrahigh content cellulose reinforced sustainable structural materials enabled by a nacre-inspired strategy. Industrial Crops and Products, 2022, 180, 114749.	2.5	3
567	Insights on Shear Transfer Efficiency in "Brick-and-Mortar―Composites Made of 2D Carbon Nanoparticles. Nanomaterials, 2022, 12, 1359.	1.9	8
568	Extra plasticity governed by shear band deflection in gradient metallic glasses. Nature Communications, 2022, 13, 2120.	5.8	27
569	Fabrication and mechanical properties of nacre-like alumina with addition of silicon nitride. Ceramics International, 2022, , .	2.3	0
570	Development of a biopolymer modified geopolymer based cementitious material for enhancement of pumpable roof support. Materials and Structures/Materiaux Et Constructions, 2022, 55, 1.	1.3	2
571	Nacre inspired robust self-encapsulating flexible perovskite photodetector. Nano Energy, 2022, 98, 107254.	8.2	17
573	Investigating the Morphology and Mechanics of Biogenic Hierarchical Materials at and below Micrometer Scale. Nanomaterials, 2022, 12, 1549.	1.9	0
574	Friction and wear behavior of bioinspired composites with nacre-like lamellar and brick-and-mortar architectures against human enamel. Journal of Materials Science and Technology, 2022, 128, 133-141.	5.6	5
575	Nanochitin: Chemistry, Structure, Assembly, and Applications. Chemical Reviews, 2022, 122, 11604-11674.	23.0	102
576	On the damage tolerance of 3-D printed Mg-Ti interpenetrating-phase composites with bioinspired architectures. Nature Communications, 2022, 13, .	5.8	58
577	Damage delocalisation in skeletal muscle-inspired hierarchical armoured structures for impact protection. Composite Structures, 2022, 297, 115947.	3.1	3
578	Strong and Tough Nacre-Inspired Graphene Oxide Composite with Hierarchically Similar Structure. ACS Nano, 2022, 16, 10509-10516.	7.3	10
579	Mechanically Reinforced Artificial Enamel by Mg ²⁺ -Induced Amorphous Intergranular Phases. ACS Nano, 2022, 16, 10422-10430.	7.3	8

#	Article	IF	CITATIONS
580	A theoretical model of fracture of biological composites considering complex structural arrangement of microstructures. Journal of the Mechanics and Physics of Solids, 2022, 167, 105001.	2.3	4
581	Biomimetic "Nacre-like―Films Prepared via Layer-by-Layer Self-assembly of Mica, Polyvinyl Alcohol and Polymethyl Methacrylate. Journal Wuhan University of Technology, Materials Science Edition, 2022, 37, 554-558.	0.4	0
582	Engineered Interphase Mechanics in Single Lap Joints: Analytical and PINN Formulations. International Journal of Computational Methods, 2022, 19, .	0.8	7
583	Interfacial Mechanical Behavior in Nacre of Red Abalone and Other Shells: A Review. ACS Biomaterials Science and Engineering, 2023, 9, 3843-3859.	2.6	5
584	Self-assembling nacre-like high-strength and extremely tough polymer composites with new toughening mechanism. Journal of Materials Science and Technology, 2023, 136, 236-244.	5.6	5
585	Nacre-inspired topological design tuning the impact resistant behaviors of composite plates. Composite Structures, 2022, 299, 116077.	3.1	7
586	Towards strength-ductility enhancement of titanium matrix composites through heterogeneous grain structured Ti matrix design. Journal of Alloys and Compounds, 2022, 927, 167022.	2.8	11
587	Heterostructured materials. Progress in Materials Science, 2023, 131, 101019.	16.0	264
588	Tensile and Viscoelastic Behavior in Nacre-Inspired Nanocomposites: A Coarse-Grained Molecular Dynamics Study. Nanomaterials, 2022, 12, 3333.	1.9	2
589	Lightweight, ultra-tough, 3D-architected hybrid carbon microlattices. Matter, 2022, 5, 4029-4046.	5.0	13
590	High Density of Interfaces With Severely Mechanical Difference Controlled High Ductility in Heterogeneous Materials Based on Crystal Plasticity. Metallurgical and Materials Transactions A: Physical Metallurgy and Materials Science, 2022, 53, 3918-3936.	1.1	0
591	Bioinspired staggered-array structure design for flexible batteries. International Journal of Solids and Structures, 2022, 256, 111986.	1.3	1
592	Trans-scale dynamic shear-lag model for wave attenuation in staggered composites. International Journal of Mechanical Sciences, 2023, 238, 107841.	3.6	6
593	Bending Study of Six Biological Models for Design of High Strength and Tough Structures. Biomimetics, 2022, 7, 176.	1.5	5
594	Structural effects in †brick-and-mortar†architecture: Bio-inspired ceramic matrix composites developed through a new method. Ceramics International, 2023, 49, 5042-5048.	2.3	2
595	Investigation of dynamic impact responses of layered polymer-graphene nanocomposite films using coarse-grained molecular dynamics simulations. Carbon, 2023, 203, 202-210.	5.4	7
596	Effect of geometrical structure variations on strength and damage onset of cortical bone using multi-scale cohesive zone based finite element method. Journal of the Mechanical Behavior of Biomedical Materials, 2023, 138, 105578.	1.5	2
597	Review on Recent Developments in Bioinspired-Materials for Sustainable Energy and Environmental Applications. Sustainability, 2022, 14, 16931.	1.6	5

#	Article	IF	CITATIONS
598	Fiber-dominated Soft Actuators Inspired by Plant Cell Walls and Skeletal Muscles. Journal of Bionic Engineering, $0, , .$	2.7	0
599	Biologically enhanced 3D printed micro-nano hybrid scaffolds doped with abalone shell for bone regeneration. Advanced Composites and Hybrid Materials, 2023, 6, .	9.9	13
600	Interfacial Crack Growth Between Nacreous Tablets. , 2023, , .		0
601	Ductile 2-GPa steels with hierarchical substructure. Science, 2023, 379, 168-173.	6.0	40
602	Bioinspired brick-and-mortar geopolymer composites with ultra-high toughness. Cement and Concrete Composites, 2023, 137, 104944.	4.6	9
603	Scalable Manufacturing of Mechanical Robust Bioinspired Ceramic–Resin Composites with Locally Tunable Heterogeneous Structures. Advanced Materials, 2023, 35, .	11.1	7
604	A crack-bridging model of brick and mortar architecture considering the anisotropic property. Composite Structures, 2023, 312, 116868.	3.1	3
605	Mixed-mode fracture model to quantify local toughness in nacre-like alumina. Journal of the European Ceramic Society, 2023, 43, 4472-4481.	2.8	0
606	Effects of different kinds of shell powder on the structure and properties of polycaprolactone-based composites. Journal of Thermoplastic Composite Materials, 0, , 089270572311544.	2.6	2
607	Interface modulations of high-performance graphene anticorrosion coatings. Progress in Organic Coatings, 2023, 178, 107463.	1.9	4
608	Construction of Mussel-Inspired "Inorganic–Organic―Hybrids onto a Cylindrical Carbon Fiber via Green and Rapid Manufacturing toward Enhanced Interfacial Adhesion of Composites. ACS Sustainable Chemistry and Engineering, 2023, 11, 3907-3916.	3.2	5
609	Materials, design, and technology of body armor. , 2023, , 259-301.		0
610	Fracture toughness analysis of interlocked brick and mortar structure considering the anisotropic behavior. Archive of Applied Mechanics, 2023, 93, 2389-2409.	1.2	1
611	The Fracture Mechanics ofÂBiological Materials. CISM International Centre for Mechanical Sciences, Courses and Lectures, 2023, , 255-282.	0.3	0
612	Bond clusters control rupture force limit in shear loaded histidine-Ni ²⁺ metal-coordinated proteins. Nanoscale, 2023, 15, 8578-8588.	2.8	4
613	The role of nanochitin in biologically-active matrices for tissue engineering-where do we stand?. Journal of Materials Chemistry B, 2023, 11, 5630-5649.	2.9	2
645	Learning from nature by leveraging integrative biomateriomics modeling toward adaptive and functional materials. MRS Bulletin, 0, , .	1.7	0
653	Ballistic Performance of Bio-mimicked Nacreous Protection System on Concrete Target: A Numerical Investigation. Springer Proceedings in Materials, 2024, , 233-245.	0.1	0

Article IF Citations