Regional climate model sensitivity to domain size

Climate Dynamics 32, 833-854 DOI: 10.1007/s00382-008-0400-z

Citation Report

#	Article	IF	CITATIONS
1	Challenging some tenets of Regional Climate Modelling. Meteorology and Atmospheric Physics, 2008, 100, 3-22.	0.9	184
2	Sensitivity Study of Regional Climate Model Simulations to Large-Scale Nudging Parameters. Monthly Weather Review, 2009, 137, 1666-1686.	0.5	97
3	Model ALADIN as regional climate model for Central and Eastern Europe. Studia Geophysica Et Geodaetica, 2010, 54, 313-332.	0.3	58
4	Stateâ€ofâ€theâ€art with regional climate models. Wiley Interdisciplinary Reviews: Climate Change, 2010, 1, 82-96.	3.6	485
5	Sensitivity study of heavy precipitation in Limited Area Model climate simulations: influence of the size of the domain and the use of the spectral nudging technique. Tellus, Series A: Dynamic Meteorology and Oceanography, 2022, 62, 591.	0.8	136
6	The Effect of Grid Spacing and Domain Size on the Quality of Ensemble Regional Climate Downscaling over South Asia during the Northeasterly Monsoon. Monthly Weather Review, 2010, 138, 2780-2802.	0.5	12
7	The Importance of Lateral Boundaries, Surface Forcing and Choice of Domain Size for Dynamical Downscaling of Global Climate Simulations. Atmosphere, 2011, 2, 67-95.	1.0	13
8	High-resolution ensemble prediction of a polar low development. Tellus, Series A: Dynamic Meteorology and Oceanography, 2022, 63, 585.	0.8	24
9	Climate Scenario Development and Applications for Local/Regional Climate Change Impact Assessments: An Overview for the Non-Climate Scientist. Geography Compass, 2011, 5, 275-300.	1.5	39
10	Evaluation of the internal variability and estimation of the downscaling ability of the Canadian Regional Climate Model for different domain sizes over the north Atlantic region using the Big-Brother experimental approach. Climate Dynamics, 2011, 36, 1979-2001.	1.7	7
11	Error characteristics of high resolution regional climate models over the Alpine area. Climate Dynamics, 2011, 37, 377-390.	1.7	60
12	Diagnosing GCM errors over West Africa using relaxation experiments. Part I: summer monsoon climatology and interannual variability. Climate Dynamics, 2011, 37, 1293-1312.	1.7	12
13	Sensitivity to domain size of mid-latitude summer simulations with a regional climate model. Climate Dynamics, 2011, 37, 343-356.	1.7	21
14	Quantifying internal variability in a regional climate model: a case study for Southern Africa. Climate Dynamics, 2011, 37, 1335-1356.	1.7	47
15	Testing WRF capability in simulating the atmospheric water cycle over Equatorial East Africa. Climate Dynamics, 2011, 37, 1357-1379.	1.7	64
16	How Physical Parameterizations Can Modulate Internal Variability in a Regional Climate Model. Journals of the Atmospheric Sciences, 2012, 69, 714-724.	0.6	35
17	Development of New Ensemble Methods Based on the Performance Skills of Regional Climate Models over South Korea. Journal of Climate, 2012, 25, 7067-7082.	1.2	84
18	Spatial-Scale Characteristics of Precipitation Simulated by Regional Climate Models and the Implications for Hydrological Modeling. Journal of Hydrometeorology, 2012, 13, 1817-1835.	0.7	27

#	Article	IF	CITATIONS
20	A simple regional coupled model experiment for summer-time climate simulation over southern Africa. Climate Dynamics, 2012, 39, 2207-2217.	1.7	33
21	WRF high resolution dynamical downscaling of ERA-Interim for Portugal. Climate Dynamics, 2012, 39, 2497-2522.	1.7	207
22	Regional climate model applications on subâ€regional scales over the Indian monsoon region: The role of domain size on downscaling uncertainty. Journal of Geophysical Research, 2012, 117, .	3.3	52
23	Investigation of indiscriminate nudging and predictability in a nested quasiâ€geostrophic model. Quarterly Journal of the Royal Meteorological Society, 2012, 138, 158-169.	1.0	17
24	Impact of spectral nudging and domain size in studies of RCM response to parameter modification. Climate Dynamics, 2012, 38, 1325-1343.	1.7	29
25	Comparative analysis of the role of domain size, horizontal resolution and initial conditions in the simulation of tropical heavy rainfall events. Meteorological Applications, 2012, 19, 170-178.	0.9	25
26	Uncertainties in simulating regional climate of Southern Africa: sensitivity to physical parameterizations using WRF. Climate Dynamics, 2012, 38, 613-634.	1.7	129
27	Potential for added value in precipitation simulated by high-resolution nested Regional Climate Models and observations. Climate Dynamics, 2012, 38, 1229-1247.	1.7	201
28	Uncertainties in a regional climate model in the midlatitudes due to the nesting technique and the domain size. Journal of Geophysical Research D: Atmospheres, 2013, 118, 6189-6199.	1.2	12
29	Can added value be expected in RCM-simulated large scales?. Climate Dynamics, 2013, 41, 1769-1800.	1.7	68
30	Evaluation of the regional climate model ALADIN to simulate the climate over North America in the CORDEX framework. Climate Dynamics, 2013, 41, 1117-1137.	1.7	22
31	Optimal nudging strategies in regional climate modelling: investigation in a Big-Brother experiment over the European and Mediterranean regions. Climate Dynamics, 2013, 41, 2451-2470.	1.7	51
32	Does increasing the spatial resolution of a regional climate model improve the simulated daily precipitation?. Climate Dynamics, 2013, 41, 1475-1495.	1.7	129
33	On the role of domain size and resolution in the simulations with the HIRHAM region climate model. Climate Dynamics, 2013, 40, 2903-2918.	1.7	28
34	A regional response in mean westerly circulation and rainfall to projected climate warming over Tasmania, Australia. Climate Dynamics, 2013, 40, 2035-2048.	1.7	16
35	Mechanism of Orographic Precipitation around the Meghalaya Plateau Associated with Intraseasonal Oscillation and the Diurnal Cycle. Monthly Weather Review, 2013, 141, 2451-2466.	0.5	39
36	The WRF nested within the CESM: Simulations of a midlatitude cyclone over the Southern Great Plains. Journal of Advances in Modeling Earth Systems, 2013, 5, 611-622.	1.3	18
37	Impacts of boundary conditions on the precipitation simulation of RegCM4 in the CORDEX East Asia domain. Journal of Geophysical Research D: Atmospheres, 2013, 118, 1652-1667.	1.2	52

	CITATION	CITATION REPORT	
#	ARTICLE Results from a full coupling of the HIRHAM regional climate model and the MIKE SHE hydrological	IF	CITATIONS
38	model for a Danish catchment. Hydrology and Earth System Sciences, 2014, 18, 4733-4749.	1.9	34
39	Extendedâ€range highâ€resolution dynamical downscaling over a continentalâ€scale spatial domain with atmospheric and surface nudging. Journal of Geophysical Research D: Atmospheres, 2014, 119, 13,720.	1.2	4
40	A Comparison of Mesh Refinement in the Global MPAS-A and WRF Models Using an Idealized Normal-Mode Baroclinic Wave Simulation. Monthly Weather Review, 2014, 142, 3614-3634.	0.5	51
41	Downscaling of Climate Information. Regional Climate Studies, 2014, , 201-250.	1.2	8
42	Flow resistance of vegetated oblique weir-like obstacles during high water stages. Hydrology and Earth System Sciences, 2014, 18, 1-14.	1.9	28
43	How well are daily intense rainfall events captured by current climate models over Africa?. Climate Dynamics, 2014, 42, 2691-2711.	1.7	62
44	Simulation of the annual and diurnal cycles of rainfall over South Africa by a regional climate model. Climate Dynamics, 2014, 43, 2207-2226.	1.7	36
45	Developing a likely climate scenario from multiple regional climate model simulations with an optimal weighting factor. Climate Dynamics, 2014, 43, 11-35.	1.7	17
46	On the use of nudging techniques for regional climate modeling: application for tropical convection. Climate Dynamics, 2014, 43, 1693-1714.	1.7	21
47	Sensitivity of seasonal precipitation extremes to model configuration of the Canadian Regional Climate Model over eastern Canada using historical simulations. Climate Dynamics, 2014, 43, 2431-2453.	1.7	4
48	Present and future climatologies in the phase I CREMA experiment. Climatic Change, 2014, 125, 23-38.	1.7	55
49	A review on regional dynamical downscaling in intraseasonal to seasonal simulation/prediction and major factors that affect downscaling ability. Atmospheric Research, 2014, 147-148, 68-85.	1.8	178
50	Recent developments of ocean environmental description with focus on uncertainties. Ocean Engineering, 2014, 86, 26-46.	1.9	47
51	Evaluation of Climate Models. , 2014, , 741-866.		458
52	Internal variability of North Atlantic tropical cyclones. Journal of Geophysical Research D: Atmospheres, 2014, 119, 6506-6519.	1.2	25
53	Modelling the influence of urbanization on the 20th century temperature record of weather station De Bilt (The Netherlands). International Journal of Climatology, 2015, 35, 1732-1748.	1.5	11
54	Errors and uncertainties introduced by a regional climate model in climate impact assessments: example of crop yield simulations in West Africa. Environmental Research Letters, 2015, 10, 124014.	2.2	16
55	Perspectives for Very High-Resolution Climate Simulations with Nested Models: Illustration of Potential in Simulating St. Lawrence River Valley Channelling Winds with the Fifth-Generation Canadian Regional Climate Model. Climate, 2015, 3, 283-307.	1.2	18

#	Article	IF	CITATIONS
56	A review on regional convectionâ€permitting climate modeling: Demonstrations, prospects, and challenges. Reviews of Geophysics, 2015, 53, 323-361.	9.0	907
57	Challenges in the Quest for Added Value of Regional Climate Dynamical Downscaling. Current Climate Change Reports, 2015, 1, 10-21.	2.8	109
58	Modeling high-impact weather and climate: lessons from a tropical cyclone perspective. Climatic Change, 2015, 129, 381-395.	1.7	109
59	The Challenge of Forecasting the Onset and Development of Radiation Fog Using Mesoscale Atmospheric Models. Boundary-Layer Meteorology, 2015, 154, 265-289.	1.2	114
60	High-resolution rainfall variability simulated by the WRF RCM: application to eastern France. Climate Dynamics, 2015, 44, 1093-1107.	1.7	22
61	Towards convection-resolving, global atmospheric simulations with the Model for Prediction Across Scales (MPAS) v3.1: an extreme scaling experiment. Geoscientific Model Development, 2016, 9, 77-110.	1.3	35
62	Estimating uncertainties from high resolution simulations of extreme wind storms and consequences for impacts. Meteorologische Zeitschrift, 2016, 25, 531-541.	0.5	14
63	Towards European-scale convection-resolving climate simulations with GPUs: a study with COSMO 4.19. Geoscientific Model Development, 2016, 9, 3393-3412.	1.3	78
64	The Sensitivity of Heavy Precipitation to Horizontal Resolution, Domain Size, and Rain Rate Assimilation: Case Studies with a Convection-Permitting Model. Advances in Meteorology, 2016, 2016, 1-20.	0.6	9
65	Investigating the impact of land-use land-cover change on Indian summer monsoon daily rainfall and temperature during 1951–2005 using a regional climate model. Hydrology and Earth System Sciences, 2016, 20, 1765-1784.	1.9	67
66	Modelling strategies for performing convection-permitting climate simulations. Meteorologische Zeitschrift, 2016, 25, 149-163.	0.5	49
67	A Characterization of Greenland Ice Sheet Surface Melt and Runoff in Contemporary Reanalyses and a Regional Climate Model. Frontiers in Earth Science, 2016, 4, .	0.8	23
68	Forecasting radiation fog at climatologically contrasting sites: evaluation of statistical methods and WRF. Quarterly Journal of the Royal Meteorological Society, 2016, 142, 1048-1063.	1.0	69
69	Optimizing dynamic downscaling in one-way nesting using a regional ocean model. Ocean Modelling, 2016, 106, 104-120.	1.0	18
70	Changes of precipitation extremes over South Korea projected by the 5 RCMs under RCP scenarios. Asia-Pacific Journal of Atmospheric Sciences, 2016, 52, 223-236.	1.3	31
71	Comparison between high-resolution climate simulations using single- and double-nesting approaches within the Big-Brother experimental protocol. Climate Dynamics, 2016, 47, 3613-3626.	1.7	14
72	Precipitation intercomparison of a set of satellite- and raingauge-derived datasets, ERA Interim reanalysis, and a single WRF regional climate simulation over Europe and the North Atlantic. Theoretical and Applied Climatology, 2016, 123, 217-232.	1.3	37
73	Control of shortwave radiation parameterization on tropical climate SST-forced simulation. Climate Dynamics, 2016, 47, 1807-1826.	1.7	3

#	Article	IF	CITATIONS
74	Sensitivity studies of high-resolution RegCM3 simulations of precipitation over the European Alps: the effect of lateral boundary conditions and domain size. Theoretical and Applied Climatology, 2016, 126, 617-630.	1.3	5
75	Impact of spectral nudging on regional climate simulation over CORDEX East Asia using WRF. Climate Dynamics, 2017, 48, 2339-2357.	1.7	51
76	Roles of land surface albedo and horizontal resolution on the Indian summer monsoon biases in a coupled ocean–atmosphere tropical-channel model. Climate Dynamics, 2017, 48, 1571-1594.	1.7	22
77	Evaluation of precipitation over an oceanic region of Japan in convection-permitting regional climate model simulations. Climate Dynamics, 2017, 48, 1779-1792.	1.7	15
78	Forecasts of extreme precipitation in the western <scp>B</scp> alkans in <scp>M</scp> ay 2014: model skill and sensitivity to the vertical coâ€ordinate. Meteorological Applications, 2017, 24, 387-396.	0.9	1
79	Distinct Influence of Air–Sea Interactions Mediated by Mesoscale Sea Surface Temperature and Surface Current in the Arabian Sea. Journal of Climate, 2017, 30, 8061-8080.	1.2	50
80	Evaluation of the added value of a highâ€resolution regional climate model simulation of the South Asian summer monsoon climatology. International Journal of Climatology, 2017, 37, 3630-3643.	1.5	20
81	Spatial spin-up of fine scales in a regional climate model simulation driven by low-resolution boundary conditions. Climate Dynamics, 2017, 49, 563-574.	1.7	45
82	Regional Extreme Precipitation Events: Robust Inference From Credibly Simulated <scp>GCM</scp> Variables. Water Resources Research, 2018, 54, 3809-3824.	1.7	27
83	Climate Modelling. , 2018, , .		7
84	Changes in air temperature means and interannual variability over Europe in simulations by ALADIN-Climate/CZ: dependence on the size of the integration domain. Theoretical and Applied Climatology, 2018, 131, 363-376.	1.3	4
85	Assessment of CORDEX-SA experiments in representing precipitation climatology of summer monsoon over India. Theoretical and Applied Climatology, 2018, 134, 283-307.	1.3	33
86	Domainâ€size and topâ€height dependence in regional predictions for the Northeast Asia in spring. Atmospheric Science Letters, 2018, 19, e799.	0.8	6
87	Highâ€Resolution Climate Projections for the Northeastern United States Using Dynamical Downscaling at Convectionâ€Permitting Scales. Earth and Space Science, 2018, 5, 801-826.	1.1	25
88	Atmospheric Moisture Pathways to the Highlands of the Tropical Andes: Analyzing the Effects of Spectral Nudging on Different Driving Fields for Regional Climate Modeling. Atmosphere, 2018, 9, 456.	1.0	11
89	Explicitly Accounting for the Role of Remote Oceans in Regional Climate Modeling of South America. Journal of Advances in Modeling Earth Systems, 2018, 10, 2408-2426.	1.3	8
90	Evaluation of the ability of the Weather Research and Forecasting model to reproduce a sub-daily extreme rainfall event in Beijing, China using different domain configurations and spin-up times. Hydrology and Earth System Sciences, 2018, 22, 3391-3407.	1.9	20
91	Projected changes in extreme precipitation over Scotland and Northern England using a high-resolution regional climate model. Climate Dynamics, 2018, 51, 3559-3577.	1.7	36

#	Article	IF	CITATIONS
92	Benefits of explicit urban parameterization in regional climate modeling to study climate and city interactions. Climate Dynamics, 2019, 52, 2745-2764.	1.7	69
93	The ClimEx Project: A 50-Member Ensemble of Climate Change Projections at 12-km Resolution over Europe and Northeastern North America with the Canadian Regional Climate Model (CRCM5). Journal of Applied Meteorology and Climatology, 2019, 58, 663-693.	0.6	80
94	Regional climate model RCA4 simulations of temperature and precipitation over the Arabian Peninsula: sensitivity to CORDEX domain and lateral boundary conditions. Climate Dynamics, 2019, 53, 7045-7064.	1.7	15
95	Observed and Simulated Precipitation over Northeastern North America: How Do Daily and Subdaily Extremes Scale in Space and Time?. Journal of Climate, 2019, 32, 8563-8582.	1.2	11
96	Dynamical downscaling the impact of spring Western US land surface temperature on the 2015 flood extremes at the Southern Great Plains: effect of domain choice, dynamic cores and land surface parameterization. Climate Dynamics, 2019, 53, 1039-1061.	1.7	22
97	Largeâ€scale regional model biases in the extratropical North Atlantic storm track and impacts on downstream precipitation. Quarterly Journal of the Royal Meteorological Society, 2019, 145, 2718-2732.	1.0	7
98	Simulating North American Weather Types With Regional Climate Models. Frontiers in Environmental Science, 2019, 7, .	1.5	29
99	The Köppenâ€Trewartha Climateâ€Type Changes Over the CORDEXâ€East Asia Phase 2 Domain Under 2 and 3 Â Global Warming. Geophysical Research Letters, 2019, 46, 14030-14041.	℃ 1.5	18
100	The effect of convection scheme on tropical cyclones simulations over the CORDEX East Asia domain. Climate Dynamics, 2019, 52, 4695-4713.	1.7	10
101	Added value of CORDEXâ€5A experiments in simulating summer monsoon precipitation over India. International Journal of Climatology, 2019, 39, 2156-2172.	1.5	18
102	WRF Model Prediction of a Dense Fog Event Occurred During the Winter Fog Experiment (WIFEX). Pure and Applied Geophysics, 2019, 176, 1827-1846.	0.8	37
103	Errors and uncertainties in regional climate simulations of rainfall variability over Tunisia: a multi-model and multi-member approach. Climate Dynamics, 2019, 52, 335-361.	1.7	10
104	Assessment of MPAS variable resolution simulations in the grey-zone of convection against WRF model results and observations. Climate Dynamics, 2020, 55, 253-276.	1.7	15
105	Influences of North Pacific Ocean Domain Extent on the Western U.S. Winter Hydroclimatology in Variableâ€Resolution CESM. Journal of Geophysical Research D: Atmospheres, 2020, 125, e2019JD031977.	1.2	17
106	Large discrepancies in summer climate change over Europe as projected by global and regional climate models: causes and consequences. Climate Dynamics, 2020, 54, 2981-3002.	1.7	78
107	On the Spinâ€Up Period in WRF Simulations Over Europe: Tradeâ€Offs Between Length and Seasonality. Journal of Advances in Modeling Earth Systems, 2020, 12, e2019MS001945.	1.3	24
108	WRFâ€based dynamical downscaling of <scp>ERA5</scp> reanalysis data for High Mountain Asia: Towards a new version of the High Asia Refined analysis. International Journal of Climatology, 2021, 41, 743-762.	1.5	97
109	Will the wind associated with the Adriatic storm surges change in future climate?. Theoretical and Applied Climatology, 2021, 143, 1-18.	1.3	11

#	Article	IF	CITATIONS
110	Downscaling, Regional Models and Impacts. , 2021, , 31-99.		0
111	How Strongly Are Mean and Extreme Precipitation Coupled?. Geophysical Research Letters, 2021, 48, e2020GL092075.	1.5	16
112	Comprehensive Methodology for the Evaluation of High-Resolution WRF Multiphysics Precipitation Simulations for Small, Topographically Complex Domains. Journal of Hydrometeorology, 2021, 22, 1169-1186.	0.7	2
113	An integrated framework of coastal flood modelling under the failures of sea dikes: a case study in Shanghai. Natural Hazards, 2021, 109, 671-703.	1.6	7
114	A Retrospective and Prospective Examination of the 1960s U.S. Northeast Drought. Earth's Future, 2021, 9, e2020EF001930.	2.4	5
115	Physical Processes Affecting Radiation Fog Based on WRF Simulations and Validation. Pure and Applied Geophysics, 2021, 178, 4265-4288.	0.8	5
116	<scp>Convection</scp> â€permitting modeling with regional climate models: Latest developments and next steps. Wiley Interdisciplinary Reviews: Climate Change, 2021, 12, e731.	3.6	74
117	Impacts of WRF Model Domain Size on Meiyu Rainfall Forecasts over Zhejiang, China. Asia-Pacific Journal of Atmospheric Sciences, 2022, 58, 265-280.	1.3	2
118	Sensitivity study of the REMO regional climate model to domain size. Advances in Science and Research, 0, 18, 157-167.	1.0	3
119	Investigation of Spatial and Temporal Wind-Speed Variability During Open Cellular Convection with the Model for Prediction Across Scales in Comparison with Measurements. Boundary-Layer Meteorology, 2021, 179, 291-312.	1.2	6
120	Downscaling of Climate Information. , 2018, , 199-269.		3
121	Considerations of Domain Size and Large-Scale Driving for Nested Regional Climate Models: Impact on Internal Variability and Ability at Developing Small-Scale Details. , 2012, , 181-199.		31
122	Winter anticyclonic blocking effects over Europe during 1960–2000 from an ensemble of regional climate models. Climate Research, 2013, 57, 81-91.	0.4	4
123	Assessment of precipitation climatology in an ensemble of CORDEX-East Asia regional climate simulations. Climate Research, 2015, 64, 141-158.	0.4	36
124	Using a nested single-model large ensemble to assess the internal variability of the North Atlantic Oscillation and its climatic implications for central Europe. Earth System Dynamics, 2020, 11, 617-640.	2.7	8
125	The WASCAL high-resolution regional climate simulation ensemble for West Africa: concept, dissemination andÂassessment. Earth System Science Data, 2018, 10, 815-835.	3.7	23
129	High-Resolution WRF Simulation of Extreme Heat Events in Eastern China: Large Sensitivity to Land Surface Schemes. Frontiers in Earth Science, 2021, 9, .	0.8	6
130	The sensitivity of simulated aerosol climatic impact to domain size using regional model (WRF-Chem) Tj ETQq1 1	0.78431	4 rgBT /Overle

#	Article	IF	CITATIONS
131	Air‧ea Interactions and Water Mass Transformation During a Katabatic Storm in the Irminger Sea. Journal of Geophysical Research: Oceans, 2022, 127, .	1.0	7
132	Understanding the genesis of a dense fog event over Delhi using observations and high-resolution model experiments. Modeling Earth Systems and Environment, 2022, 8, 5011-5022.	1.9	1
133	Sensitivity of precipitation and atmospheric low-level circulation patterns to domain size and choice of parameterization schemes in RegCM4.4 over Central America. Climate Research, 2022, 89, 61-83.	0.4	2
134	Weather regimes and rainfall over Tunisia in a multi-model ensemble versus a multi-member ensemble. Climate Dynamics, 2023, 61, 1783-1813.	1.7	1
135	Developing spin-up time framework for WRF extreme precipitation simulations. Journal of Hydrology, 2023, 620, 129443.	2.3	5