Refolding of N^{pro} fusion proteins

Biotechnology and Bioengineering 104, 774-784

DOI: 10.1002/bit.22432

Citation Report

#	Article	IF	CITATIONS
1	EDDIE fusion proteins: Triggering autoproteolytic cleavage. Process Biochemistry, 2009, 44, 1217-1224.	1.8	18
2	Matrix-assisted refolding of autoprotease fusion proteins on an ion exchange column. Journal of Chromatography A, 2009, 1216, 8460-8469.	1.8	14
3	Editorial: Methods for systems metabolic engineering and downstream processing. Biotechnology Journal, 2010, 5, 537-537.	1.8	2
4	Matrix-assisted refolding of autoprotease fusion proteins on an ion exchange column: A kinetic investigation. Journal of Chromatography A, 2010, 1217, 5950-5956.	1.8	13
5	Peptide affinity chromatography media that bind Npro fusion proteins under chaotropic conditions. Journal of Chromatography A, 2010, 1217, 6203-6213.	1.8	7
6	Isolation of cell-free bacterial inclusion bodies. Microbial Cell Factories, 2010, 9, 71.	1.9	72
7	NproAutoprotease Fusion Technology: Development, Characteristics, and Influential Factors. Separation Science and Technology, 2010, 45, 2194-2209.	1.3	10
8	Dissection of an old protein reveals a novel application: domain D of Staphylococcus aureus Protein A (sSpAD) as a secretion - tag. Microbial Cell Factories, 2010, 9, 92.	1.9	7
9	Non-Chromatographic Recombinant Protein Purification by Self-Cleaving Purification Tags. Separation Science and Technology, 2010, 45, 2245-2257.	1.3	8
10	Technoâ€economic evaluation of an inclusion body solubilization and recombinant protein refolding process. Biotechnology Progress, 2011, 27, 1315-1328.	1.3	19
11	Continuous processing of recombinant proteins: Integration of inclusion body solubilization and refolding using simulated moving bed size exclusion chromatography with buffer recycling. Journal of Chromatography A, 2013, 1319, 107-117.	1.8	26
12	Autoprotease Npro: Analysis of self-cleaving fusion protein. Journal of Chromatography A, 2013, 1304, 92-100.	1.8	4
13	Crystal Structures of the Viral Protease Npro Imply Distinct Roles for the Catalytic Water in Catalysis. Structure, 2013, 21, 929-938.	1.6	20
14	Prediction of inclusion body solubilization from shaken to stirred reactors. Biotechnology and Bioengineering, 2014, 111, 84-94.	1.7	14
15	Continuous processing of recombinant proteins: Integration of refolding and purification using simulated moving bed size-exclusion chromatography with buffer recycling. Journal of Chromatography A, 2014, 1337, 48-56.	1.8	51
16	Integrated continuous dissolution, refolding and tag removal of fusion proteins from inclusion bodies in a tubular reactor. Journal of Biotechnology, 2014, 185, 39-50.	1.9	12
17	Getting ready for PAT: Scale up and inline monitoring of protein refolding of Npro fusion proteins. Process Biochemistry, 2014, 49, 1113-1121.	1.8	27
18	Continuous protein refolding in a tubular reactor. Chemical Engineering Science, 2014, 116, 763-772.	1.9	17

#	Article	IF	CITATIONS
19	Engineering batch and pulse refolding with transition of aggregation kinetics: An investigation using green fluorescent protein (GFP). Chemical Engineering Science, 2015, 131, 91-100.	1.9	7
20	Design and optimization of protein refolding with crossflow ultrafiltration. Chemical Engineering Science, 2015, 130, 290-300.	1.9	9
21	Real-time monitoring of protein precipitation in a tubular reactor for continuous bioprocessing. Process Biochemistry, 2016, 51, 1610-1621.	1.8	11
22	Npro fusion technology: On-column complementation to improve efficiency in biopharmaceutical production. Protein Expression and Purification, 2016, 120, 42-50.	0.6	6
23	A microscale bacterial cell disruption technique as first step for automated and miniaturized process development. Process Biochemistry, 2017, 59, 207-215.	1.8	8
24	Integrated process development—a robust, rapid method for inclusion body harvesting and processing at the microscale level. Preparative Biochemistry and Biotechnology, 2017, 47, 874-880.	1.0	2
25	Kinetic fingerprints differentiate the mechanisms of action of anti- $A\hat{l}^2$ antibodies. Nature Structural and Molecular Biology, 2020, 27, 1125-1133.	3.6	123
26	Expression, purification and characterisation of large quantities of recombinant human IAPP for mechanistic studies. Biophysical Chemistry, 2021, 269, 106511.	1.5	10
28	Pestivirus Npro Endopeptidase., 2013,, 2482-2485.		0
29	Identification and Functional Analysis of the Cell Proliferation Regulator, Insulin-like Growth Factor 1 (IGF1) in Freshwater Pearl Mussel (Hyriopsis cumingii). Biology, 2022, 11, 1369.	1.3	2
30	Refolding in the modern biopharmaceutical industry. Biotechnology Advances, 2022, 61, 108050.	6.0	12