A Total Synthesis of Norhalichondrinâ€B.

Angewandte Chemie - International Edition 48, 2346-2350 DOI: 10.1002/anie.200806111

Citation Report

#	Article	IF	CITATIONS
1	Halichondrins - antitumor polyether macrolides from a marine sponge. Pure and Applied Chemistry, 1986, 58, 701-710.	1.9	462
3	Second Generation Synthesis of C27â^C35 Building Block of E7389, a Synthetic Halichondrin Analogue. Organic Letters, 2009, 11, 4516-4519.	4.6	29
4	The Halichondrins and E7389. Chemical Reviews, 2009, 109, 3044-3079.	47.7	124
5	New Syntheses of E7389 C14â^'C35 and Halichondrin C14â^'C38 Building Blocks: Double-Inversion Approach. Journal of the American Chemical Society, 2009, 131, 15636-15641.	13.7	77
6	Novel Syntheses of Bridge-Containing Organic Compounds. Chemical Reviews, 2010, 110, 1706-1745.	47.7	78
7	Enantioselective Formal Synthesis of (â^')-Englerin A via a Rh-Catalyzed [4 + 3] Cycloaddition Reaction. Organic Letters, 2010, 12, 3708-3711.	4.6	86
8	Total Synthesis and Configurational Validation of (+)-Phorbaside A. Organic Letters, 2010, 12, 2158-2161.	4.6	53
9	Synthesis of the ABCDEFG Ring System of Maitotoxin. Journal of the American Chemical Society, 2010, 132, 6855-6861.	13.7	62
10	Synthesis of the C(18)â^'C(34) Fragment of Amphidinolide C and the C(18)â^'C(29) Fragment of Amphidinolide F. Organic Letters, 2010, 12, 5326-5329.	4.6	57
12	Six-Membered Ring Systems:. Progress in Heterocyclic Chemistry, 2011, 22, 449-490.	0.5	4
13	Hypervalent iodine reagents in the total synthesis of natural products. Natural Product Reports, 2011, 28, 1722.	10.3	271
14	Marine natural products: Synthetic aspects. Natural Product Reports, 2011, 28, 269.	10.3	32
15	Six-Membered Ring Systems. Progress in Heterocyclic Chemistry, 2011, , 427-463.	0.5	4
17	Five-Membered Ring Systems. Progress in Heterocyclic Chemistry, 2011, , 181-216.	0.5	33
18	Catalytic Asymmetric Propargylation. Chemical Reviews, 2011, 111, 1914-1937.	47.7	368
19	Synthesis of the Câ€2Dâ€2Eâ€2Fâ€2 Domain of Maitotoxin. Journal of the American Chemical Society, 2011, 133, 214-219.	13.7	30
20	Synthesis of the WXYZA′ Domain of Maitotoxin. Journal of the American Chemical Society, 2011, 133, 220-226.	13.7	50
22	Unsymmetrical Ru-NHC catalysts: a key for the selective tandem Ring Opening–Ring Closing alkene Metathesis (RO–RCM) of cyclooctene. Dalton Transactions, 2011, 40, 12443.	3.3	25

#	Article	IF	CITATIONS
23	Ringâ€Rearrangement Metathesis of Nitroso Diels–Alder Cycloadducts. Chemistry - A European Journal, 2011, 17, 2972-2980.	3.3	27
24	Natural product drug discovery: the successful optimization of ISP-1 and halichondrin B. Current Opinion in Chemical Biology, 2011, 15, 523-528.	6.1	24
25	The chemistry of the carbon–transition metal double and triple bond: Annual survey covering the year 2009. Coordination Chemistry Reviews, 2011, 255, 3-100.	18.8	30
26	Total Synthesis of Halichondrin C. Journal of the American Chemical Society, 2012, 134, 893-896.	13.7	57
27	Diastereoselective Reductive Ring Expansion of Spiroketal Dihydropyranones to cis-Fused Bicyclic Ethers. Organic Letters, 2012, 14, 5892-5895.	4.6	30
29	Expeditious Synthesis of the Cores of Naturally Occurring Cyclic Polyethers using a Divergent Ring Rearrangement Metathesis Strategy. Advanced Synthesis and Catalysis, 2012, 354, 3200-3204.	4.3	8
30	Synthesis of the C45–C53 tetrahydropyran domain of norhalichondrins and the C14–C22 tetrahydrofuran domain of the halichondrin family. RSC Advances, 2012, 2, 10157.	3.6	11
31	Concise and Highly Stereoselective Synthesis of the C20–C26 Building Block of Halichondrins and Eribulin. Organic Letters, 2012, 14, 660-663.	4.6	16
32	Marine Natural Products Synthesis. , 2012, , 601-673.		1
33	Linkerâ€Free, Silicaâ€Bound Olefinâ€Metathesis Catalysts: Applications in Heterogeneous Catalysis. Chemistry - A European Journal, 2012, 18, 14717-14724.	3.3	42
34	On the proposed structures and stereocontrolled synthesis of the cephalosporolides. Beilstein Journal of Organic Chemistry, 2012, 8, 1287-1292.	2.2	25
35	Selective Alkene Metathesis in the Total Synthesis of Complex Natural Product. Topics in Current Chemistry, 2012, 327, 163-196.	4.0	13
36	Olefin Metathesis on a TLC Plate as a Tool for a Highâ€Throughput Screening of Catalystâ€Substrate Sets. Advanced Synthesis and Catalysis, 2012, 354, 1043-1051.	4.3	25
38	Enantioselective Synthesis of αâ€Alkylâ€Î²â€ketoesters: Asymmetric Roskamp Reaction Catalyzed by an Oxazaborolidinium Ion. Angewandte Chemie - International Edition, 2012, 51, 8322-8325.	13.8	82
39	Formal Synthesis of (â^)â€Englerinâ€A and Cytotoxicity Studies of Truncated Englerins. Chemistry - an Asian Journal, 2012, 7, 1052-1060.	3.3	30
40	Catalytic Asymmetric Homologation of αâ€Ketoesters with αâ€Diazoesters: Synthesis of Succinate Derivatives with Chiral Quaternary Centers. Angewandte Chemie - International Edition, 2013, 52, 10883-10886.	13.8	63
41	Inhibitory Effect of Ethylene in Ene–Yne Metathesis: The Case for Ruthenacyclobutane Resting States. Journal of the American Chemical Society, 2013, 135, 16777-16780.	13.7	16
42	CHAPTER 1. Asymmetric Domino Reactions Based on the Use of Chiral Substrates. RSC Catalysis Series, 0, , 1-149.	0.1	0

#	Article	IF	CITATIONS
44	Novartis Chemistry Lectureship 2012–2013 / Blaise Pascal Medal: J.â€P. Sauvage and H.â€J. Freund / Meyerâ€Galow Prize: S. Röhrig. Angewandte Chemie - International Edition, 2013, 52, 1083-1084.	13.8	1
45	Total Syntheses of Multiple Cladiellin Natural Products by Use of a Completely General Strategy. Journal of Organic Chemistry, 2013, 78, 673-696.	3.2	33
46	Stereocontrolled Domino Reactions. Chemical Reviews, 2013, 113, 442-524.	47.7	610
49	Intramolecular generation and rearrangement of oxonium ylides: methodology studies and their application in synthesis. Tetrahedron, 2013, 69, 2667-2686.	1.9	65
50	Update 1 of: Macrolactonizations in the Total Synthesis of Natural Products. Chemical Reviews, 2013, 113, PR1-PR40.	47.7	164
51	Diastereoselective Iodoaldol Reaction of γâ€Alkoxyâ€Î±,βâ€Alkynyl Ketone Derivatives Promoted by Titanium Tetraiodide. Asian Journal of Organic Chemistry, 2013, 2, 931-934.	2.7	8
52	The Tandem Ring Opening/Ring Closing Metathesis Route to Oxaspirocycles: An Approach to Phelligridin G. Molecules, 2013, 18, 2438-2448.	3.8	10
54	Reversal of the Regiochemistry in the Rhodiumâ€Catalyzed [4+3] Cycloaddition between Vinyldiazoacetates and Dienes. Angewandte Chemie - International Edition, 2014, 53, 13083-13087.	13.8	61
56	Synthesis of 5,6- and 6,6-Spirocyclic Compounds. Topics in Heterocyclic Chemistry, 2014, , 189-267.	0.2	9
57	Chemoselective reductions and iodinations using titanium tetraiodide. Tetrahedron Letters, 2014, 55, 2781-2788.	1.4	8
58	Total Synthesis of Halichondrin A, the Missing Member in the Halichondrin Class of Natural Products. Journal of the American Chemical Society, 2014, 136, 5171-5176.	13.7	47
59	Evolution of Catalytic Stereoselective Olefin Metathesis: From Ancillary Transformation to Purveyor of Stereochemical Identity. Journal of Organic Chemistry, 2014, 79, 4763-4792.	3.2	180
60	Rhodium(II)-Catalyzed Stereocontrolled Synthesis of 2-Tetrasubstituted Saturated Heterocycles from 1-Sulfonyl-1,2,3-triazoles. Organic Letters, 2014, 16, 5878-5881.	4.6	65
61	Total Synthesis and Structural Revision of (+)â€Uprolide G Acetate. Angewandte Chemie - International Edition, 2015, 54, 627-632.	13.8	28
62	Total syntheses of (±)-musellarins A–C. Chemical Communications, 2014, 50, 10990-10993.	4.1	26
63	A Biomimetic Synthesis of (±)â€Basiliolideâ€B. Angewandte Chemie - International Edition, 2014, 53, 11294-11297.	13.8	23
64	1.15 Olefination of Carbonyl Compounds by Main-Group Element Mediators. , 2014, , 516-608.		16
65	Rhodium(II)-Catalyzed Stereocontrolled Synthesis of Dihydrofuran-3-imines from 1-Tosyl-1,2,3-triazoles. Organic Letters, 2014, 16, 1660-1663.	4.6	88

#	Article	IF	CITATIONS
67	Development and Commercialization of a Fully Synthetic Marine Natural Product Analogue, Halaven® (Eribulin Mesylate). , 2015, , 497-530.		0
71	Recent applications of ring-rearrangement metathesis in organic synthesis. Beilstein Journal of Organic Chemistry, 2015, 11, 1833-1864.	2.2	60
72	Selected hybrid natural products as tubulin modulators. European Journal of Medicinal Chemistry, 2015, 94, 497-508.	5.5	16
73	Chemoselective Synthesis of β-Ketophosphonates Using Lithiated α-(Trimethylsilyl)methylphosphonate. Journal of Organic Chemistry, 2015, 80, 3302-3308.	3.2	11
74	Unified Synthesis of C1–C19 Building Blocks of Halichondrins via Selective Activation/Coupling of Polyhalogenated Nucleophiles in (Ni)/Cr-Mediated Reactions. Journal of the American Chemical Society, 2015, 137, 6226-6231.	13.7	12
75	Selective Activation/Coupling of Polyhalogenated Nucleophiles in Ni/Cr-Mediated Reactions: Synthesis of C1–C19 Building Block of Halichondrin Bs. Journal of the American Chemical Society, 2015, 137, 6219-6225.	13.7	18
76	Pt-Catalyzed Rearrangement of Oxaspirohexanes to 3-Methylenetetrahydrofurans: Scope and Mechanism. Journal of Organic Chemistry, 2015, 80, 5196-5209.	3.2	19
77	Stereoselective Synthesis of the Halaven C14–C26 Fragment from <scp>D</scp> â€Quinic Acid: Crystallizationâ€induced Diastereoselective Transformation of an αâ€Methyl Nitrile. Angewandte Chemie - International Edition, 2015, 54, 5108-5111.	13.8	17
79	Preparation of Antimalarial Endoperoxides by a Formal [2 + 2 + 2] Cycloaddition. Organic Letters, 2015, 17, 5420-5423.	4.6	20
81	Catalytic Asymmetric Intramolecular Homologation of Ketones with αâ€Diazoesters: Synthesis of Cyclic αâ€Aryl/Alkyl βâ€Ketoesters. Angewandte Chemie - International Edition, 2015, 54, 1608-1611.	13.8	57
82	Story of Eribulin Mesylate: Development of the Longest Drug Synthesis. Topics in Heterocyclic Chemistry, 2016, , 209-270.	0.2	18
83	From Resting State to the Steady State: Mechanistic Studies of Ene–Yne Metathesis Promoted by the Hoveyda Complex. Journal of the American Chemical Society, 2016, 138, 5380-5391.	13.7	24
84	Recent applications in natural product synthesis of dihydrofuran and -pyran formation by ring-closing alkene metathesis. Organic and Biomolecular Chemistry, 2016, 14, 5875-5893.	2.8	72
85	Synthesis of polyfunctional glycosyl derivatives of 2,7-dioxabicyclo[3.2.1]octane. Russian Journal of Organic Chemistry, 2016, 52, 1220-1222.	0.8	1
86	Rhodium atalyzed [4+3] Cycloaddition to Furans: Direct Access to Functionalized Bicyclo[5.3.0]decane Derivatives. European Journal of Organic Chemistry, 2016, 2016, 41-44.	2.4	11
87	Achmatowicz reaction and its application in the syntheses of bioactive molecules. RSC Advances, 2016, 6, 111564-111598.	3.6	66
89	Natural Products Containing Oxygen Heterocycles—Synthetic Advances Between 1990 and 2015. Advances in Heterocyclic Chemistry, 2016, 119, 107-142.	1.7	23
90	Drugs and Drug Candidates from Marine Sources: An Assessment of the Current "State of Playâ€. Planta Medica, 2016, 82, 775-789.	1.3	127

#	Article	IF	Citations
91	Application of a Rotor–Stator High-Shear System for Cr/Mn-Mediated Reactions in Eribulin Mesylate Synthesis. Organic Process Research and Development, 2016, 20, 100-104.	2.7	14
92	Diastereoselective Total Synthesis of (±)-Basiliolide B and (±)- <i>epi</i> -8-Basiliolide B. Journal of Organic Chemistry, 2017, 82, 3463-3481.	3.2	14
93	C H and C C bond insertion reactions of diazo compounds into aldehydes. Tetrahedron, 2017, 73, 6815-6829.	1.9	28
94	Unified Synthesis of Right Halves of Halichondrins A–C. Journal of Organic Chemistry, 2017, 82, 8792-8807.	3.2	8
95	Stereocontrolled Synthesis of Left Halves of Halichondrins. Journal of Organic Chemistry, 2017, 82, 8808-8830.	3.2	10
96	Unified, Efficient, and Scalable Synthesis of Halichondrins: Zirconium/Nickelâ€Mediated Oneâ€Pot Ketone Synthesis as the Final Coupling Reaction. Angewandte Chemie - International Edition, 2017, 56, 10796-10800.	13.8	30
97	Expeditious Synthesis of Enantioenriched Tetrahydropyrans <i>via</i> Chemoselective <i>Câ^'N</i> bond Cleavage of Azaâ€Oxaâ€Bicyclo[3.2.1]Octanes. Advanced Synthesis and Catalysis, 2017, 359, 3638-3641.	4.3	6
98	Unified, Efficient, and Scalable Synthesis of Halichondrins: Zirconium/Nickelâ€Mediated Oneâ€Pot Ketone Synthesis as the Final Coupling Reaction. Angewandte Chemie, 2017, 129, 10936-10940.	2.0	2
99	Divergent synthesis of (+)-tanikolide and its analogues employing stereoselective rhodium(II)-catalyzed reaction. Tetrahedron, 2018, 74, 1059-1070.	1.9	11
100	Recent advances in ruthenium-based olefin metathesis. Chemical Society Reviews, 2018, 47, 4510-4544.	38.1	501
101	Conformational Control of Initiation Rate in Hoveyda–Grubbs Precatalysts. Organometallics, 2018, 37, 1526-1533.	2.3	9
102	Total Syntheses of Basiliolide A ₁ , Basiliolide A ₂ , Basiliolide C, and their Structural Analogues. European Journal of Organic Chemistry, 2018, 2018, 196-208.	2.4	5
103	Application of (4+3) cycloaddition strategies in the synthesis of natural products. Chemical Society Reviews, 2018, 47, 8881-8924.	38.1	105
104	Stereoselective Protection-Free Asymmetric Total Synthesis of (+)-Chamuvarinin, a Potent Anticancer and Antitrypanosomal Agent: Substrate-Controlled Construction of the Adjacently Linked Oxatricyclic Core by Internal Alkylation. Organic Letters, 2018, 20, 6398-6402.	4.6	12
105	galacto-C- Furanosides (l, β- C -Lyxose). , 2018, , 11-64.		0
106	Lyxose and Ribose C -Glycosides. , 2018, , 291-381.		0
108	Synthesis of C1–C11 eribulin fragment and its diastereomeric analogues. Tetrahedron Letters, 2019, 60, 150915.	1.4	4
109	Chemo- and stereoselective six-membered oxonium ylide formation–[2,3]-sigmatropic rearrangement of 2-diazo-3-ketoesters with dirhodium(II) catalyst and its application to the synthesis of (+)-tanikolide. Tetrahedron, 2019, 75, 2436-2445.	1.9	6

#	Article	IF	CITATIONS
110	Synthesis of a Polycyclic Halichondrin C1–C14 Fragment via Intermolecular Oxy-Michael/ <i>Trans</i> -Ketalization. Journal of Organic Chemistry, 2019, 84, 4898-4903.	3.2	1
111	<i>p</i> -Methylbenzyl 2,2,2-Trichloroacetimidate: Simple Preparation and Application to Alcohol Protection. Chemistry Letters, 2020, 49, 1034-1037.	1.3	1
112	Scalable Synthesis of Esp and Rhodium(II) Carboxylates from Acetylacetone and RhCl ₃ · <i>x</i> H ₂ O. Organic Process Research and Development, 2020, 24, 1207-1212.	2.7	4
113	A Reverse Approach to the Total Synthesis of Halichondrin B. Journal of the American Chemical Society, 2021, 143, 9267-9276.	13.7	16
115	Unusual Transformations of Strain-Heightened Oxetanes. Accounts of Chemical Research, 2021, 54, 3850-3862.	15.6	8
116	A concise/catalytic approach for the construction of the C14–C28 fragment of eribulin. Organic and Biomolecular Chemistry, 2021, 19, 4542-4550.	2.8	5
118	Recent Applications of Alkene Metathesis in Fine Chemical Synthesis. NATO Science for Peace and Security Series A: Chemistry and Biology, 2010, , 207-274.	0.5	5
119	Research and Development of HALAVEN(Eribulin Mesylate). Yuki Gosei Kagaku Kyokaishi/Journal of Synthetic Organic Chemistry, 2011, 69, 600-610.	0.1	22
120	New Synthetic Reactions Using the Iodotitanation Ability of Titanium Tetraiodide. Yuki Gosei Kagaku Kyokaishi/Journal of Synthetic Organic Chemistry, 2017, 75, 1226-1237.	0.1	1
121	Drug Discovery in Ocean drug discovery in Ocean. , 2012, , 3150-3170.		0
122	Furans and Their Benzo Derivatives: Reactivity. , 2020, , 233-233.		0
123	A Highly Convergent Total Synthesis of Norhalichondrin B. Journal of the American Chemical Society, 2021, , .	13.7	5
124	Dearomative [4 + 3] cycloaddition of furans with vinyl- <i>N</i> -triftosylhydrazones by silver catalysis: stereoselective access to oxa-bridged seven-membered bicycles. Organic Chemistry Frontiers, 2022, 9, 2444-2452.	4.5	14
125	A unified strategy for the total syntheses of eribulin and a macrolactam analogue of halichondrin B. Proceedings of the National Academy of Sciences of the United States of America, 2022, 119, .	7.1	3
126	A novel, environment-friendly method to prepare pyranones from furfural alcohols <i>via</i> photocatalytic O ₂ oxidation in an aqueous phase. Green Chemistry, 2023, 25, 196-210.	9.0	6
127	Convergent Assembly of the Tricyclic Labdane Core Enables Synthesis of Diverse Forskolinâ€like Molecules. Angewandte Chemie - International Edition, 0, , .	13.8	1
128	Convergent Assembly of the Tricyclic Labdane Core Enables Synthesis of Diverse Forskolinâ€like Molecules. Angewandte Chemie, 0, , .	2.0	0
129	Gram-Scale Synthesis of the C14–C23 Fragment of Eribulin. Organic Process Research and Development, 2023, 27, 367-372.	2.7	ο