CITATION REPORT List of articles citing

Characterization of biochar from fast pyrolysis and gasification systems

DOI: 10.1002/ep.10378 Environmental Progress and Sustainable Energy, 2009 , 28, 386-396.

Source: https://exaly.com/paper-pdf/46079644/citation-report.pdf

Version: 2024-04-28

This report has been generated based on the citations recorded by exaly.com for the above article. For the latest version of this publication list, visit the link given above.

The third column is the impact factor (IF) of the journal, and the fourth column is the number of citations of the article.

#	Paper	IF	Citations
588	Physical and Mineral-Nutrition Properties of Sand-Based Turfgrass Root Zones Amended with Biochar. 2010 , 102, 1627-1631		140
587	The intrinsic kinetics and heats of reactions for cellulose pyrolysis and char formation. 2010 , 3, 1162-5		71
586	Review of the stability of biochar in soils: predictability of O:C molar ratios. 2010 , 1, 289-303		637
585	Charcoal: Taphonomy and significance in geology, botany and archaeology. 2010 , 291, 1-10		80
584	Molecular Analysis of Primary Vapor and Char Products during Stepwise Pyrolysis of Poplar Biomass. 2010 , 24, 5199-5209		20
583	Surface Functionality and Carbon Structures in Lignocellulosic-Derived Biochars Produced by Fast Pyrolysis. 2011 , 25, 4693-4703		176
582	Chemical Structures of Swine-Manure Chars Produced under Different Carbonization Conditions Investigated by Advanced Solid-State 13C Nuclear Magnetic Resonance (NMR) Spectroscopy 2011 , 25, 388-397		180
581	Influence of pyrolysis temperature on biochar property and function as a heavy metal sorbent in soil. 2011 , 59, 2501-10		535
580	Development of Biochar-based Catalyst for Transesterification of Canola Oil. 2011 , 25, 337-344		116
579	Advanced in situ spectroscopic techniques and their applications in environmental biogeochemistry: introduction to the special section. 2011 , 40, 659-66		21
578	Utilization of Dry Distillers Grains and Charcoal as Nitrogen Fertilizer in Corn. 2011 , 103, 1321-1328		4
577	Impact of Biochar on Earthworm Populations: A Review. 2011 , 2011, 1-12		59
576	Interactions of Anthropogenic Organic Chemicals with Natural Organic Matter and Black Carbon in Environmental Particles. 2011 , 1-50		7
575	Nitrogen and Phosphorus Availability in Biochar-Amended Soils. 2011, 176, 218-226		158
574	Quantitative analysis of biochar in field soil. 2011 , 43, 1563-1568		41
573	Biochar effects on soil biota 🖪 review. 2011 , 43, 1812-1836		2707
572	Biochar as a strategy to sequester carbon and increase yield in durum wheat. 2011 , 34, 231-238		290

571	A life cycle assessment of advanced biofuel production from a hectare of corn. Fuel, 2011, 90, 3306-33	147.1	61
57°	Reconciling apparent variability in effects of biochar amendment on soil enzyme activities by assay optimization. 2011 , 43, 296-301		268
569	Criteria to Select Biochars for Field Studies based on Biochar Chemical Properties. 2011 , 4, 312-323		197
568	Stable isotopic analysis of pyrogenic organic matter in soils by liquid chromatography-isotope-ratio mass spectrometry of benzene polycarboxylic acids. 2011 , 25, 3723-31		14
567	The forms of alkalis in the biochar produced from crop residues at different temperatures. <i>Bioresource Technology</i> , 2011 , 102, 3488-97	11	1113
566	Leading global energy and environmental transformation: Unified ASEAN biomass-based bio-energy system incorporating the clean development mechanism. 2011 , 35, 2479-2490		7
565	Residues of bioenergy production chains as soil amendments: immediate and temporal phytotoxicity. <i>Journal of Hazardous Materials</i> , 2011 , 186, 2017-25	12.8	108
564	Screening biochars for heavy metal retention in soil: role of oxygen functional groups. <i>Journal of Hazardous Materials</i> , 2011 , 190, 432-41	12.8	443
563	Influence of biochar on nitrogen fractions in a coastal plain soil. 2012 , 41, 1087-95		74
562	Biochar: a synthesis of its agronomic impact beyond carbon sequestration. 2012 , 41, 973-89		595
561	Extent of pyrolysis impacts on fast pyrolysis biochar properties. 2012 , 41, 1115-22		70
560	Nitrogen mineralisation dynamics of meat bone meal and cattle manure as affected by the application of softwood chip biochar in soil. 2012 , 103, 19-30		8
559	Pyrolysis for biochar purposes: a review to establish current knowledge gaps and research needs. 2012 , 46, 7939-54		516
558	Characterization and potential applications of solid particles produced at a biomass gasification plant. 2012 , 47, 134-144		31
557	Characterization of Wood Chars Produced at Different Temperatures Using Advanced Solid-State 13C NMR Spectroscopic Techniques. 2012 , 26, 5983-5991		106
556	A mechanistic model of fast pyrolysis of glucose-based carbohydrates to predict bio-oil composition. 2012 , 5, 9808		249
555	Imaging of mineral-enriched biochar by FTIR, Raman and SEMEDX. 2012, 62, 248-257		223
554	Multiple Controls on the Chemical and Physical Structure of Biochars. 2012 , 51, 3587-3597		120

553	Steam D2 Blown Circulating Fluidized-Bed (CFB) Biomass Gasification: Characterization of Different Residual Chars and Comparison of Their Gasification Behavior to Thermogravimetric (TG)-Derived Pyrolysis Chars. 2012 , 26, 722-739	12
552	Advanced solid-state NMR characterization of marine dissolved organic matter isolated using the coupled reverse osmosis/electrodialysis method. 2012 , 46, 5806-14	51
551	High-Resolution Mass Spectrometric Characterization of Molecules on Biochar from Pyrolysis and Gasification of Switchgrass. 2012 , 26, 3803-3809	33
550	Structural characterization of gilsonite bitumen by advanced nuclear magnetic resonance spectroscopy and ultrahigh resolution mass spectrometry revealing pyrrolic and aromatic rings substituted with aliphatic chains. 2012 , 44, 21-36	29
549	Elucidating the chemical structure of pyrogenic organic matter by combining magnetic resonance, mid-infrared spectroscopy and mass spectrometry. 2012 , 51, 35-44	35
548	Pyrolysis biochar systems for recovering biodegradable materials: A life cycle carbon assessment. 2012 , 32, 859-68	79
547	Influence of pyrolysis temperature on physicochemical properties of biochar obtained from the fast pyrolysis of pitch pine (Pinus rigida). <i>Bioresource Technology</i> , 2012 , 118, 158-62	366
546	Surface Characterization and Classification of Slow and Fast Pyrolyzed Biochar Using Novel Methods of Pycnometry and Hyperspectral Imaging. 2012 , 32, 105-120	16
545	Chemical characterization of rice straw-derived biochar for soil amendment. 2012 , 47, 268-276	400
544	Physico-chemical characterization of biochars from vacuum pyrolysis of South African agricultural wastes for application as soil amendments. 2012 , 98, 207-213	63
543	Waste gas biofiltration: advances and limitations of current approaches in microbiology. 2012 , 46, 8542-73	63
542	Biochar: Carbon Sequestration, Land Remediation, and Impacts on Soil Microbiology. 2012 , 42, 2311-2364	116
541	Abundant and stable char residues in soils: implications for soil fertility and carbon sequestration. 2012 , 46, 9571-6	188
540	Unusual catalysts from molasses: synthesis, properties and application in obtaining biofuels from algae. 2012 , 5, 1501-12	13
539	Analytical pyrolysis of synthetic chars derived from biomass with potential agronomic application (biochar). Relationships with impacts on microbial carbon dioxide production. 2012 , 93, 77-84	67
538	Production of char from vacuum pyrolysis of South-African sugar cane bagasse and its characterization as activated carbon and biochar. 2012 , 96, 24-32	142
537	Effects of slow and fast pyrolysis biochar on soil C and N turnover dynamics. 2012 , 46, 73-79	315
536	Biochar role as an alternative N-fertilizer: ammonia capture. 2012 , 350, 35-42	197

(2013-2013)

535	An energy-biochar chain involving biomass gasification and rice cultivation in Northern Italy. 2013 , 5, 192-201		26
534	Effects of environmental conditions on the release of phosphorus from biochar. <i>Chemosphere</i> , 2013 , 93, 2069-75	8.4	81
533	Comparison of biochars derived from wood pellets and pelletized wheat straw as replacements for peat in potting substrates. 2013 , 51, 437-443		127
532	Activated carbon from biochar: influence of its physicochemical properties on the sorption characteristics of phenanthrene. <i>Bioresource Technology</i> , 2013 , 149, 383-9	11	126
531	Can biochar and hydrochar stability be assessed with chemical methods?. 2013 , 60, 40-44		32
530	Pyrolysis of Switchgrass (Panicum virgatum L.) at Low Temperatures within N2 and CO2 Environments: Product Yield Study. <i>ACS Sustainable Chemistry and Engineering</i> , 2013 , 1, 198-204	8.3	50
529	Carbon materials from high ash biochar for supercapacitor and improvement of capacitance with HNO3 surface oxidation. 2013 , 236, 285-292		131
528	Transformation of lignocellulosic biomass during torrefaction. 2013 , 100, 199-206		135
527	Comparisons of Biochar Properties from Wood Material and Crop Residues at Different Temperatures and Residence Times. 2013 , 27, 5890-5899		154
526	Characteristics and origin of char and coke from fast and slow, catalytic and thermal pyrolysis of biomass and relevant model compounds. 2013 , 15, 3214		100
525	Biochar: Sustainable and Versatile. 2013 , 193-205		10
524	Biochar-based catalyst for simultaneous reactions of esterification and transesterification. 2013 , 207, 86-92		105
523	Spectrally edited 2D 13C-13C NMR spectra without diagonal ridge for characterizing 13C-enriched low-temperature carbon materials. 2013 , 234, 112-24		37
522	Comparison of Rice Husk and Wheat Straw: From Slow and Fast Pyrolysis to Char Combustion. 2013 , 27, 7115-7125		37
521	Biochar based solid acid catalyst hydrolyze biomass. 2013 , 1, 1174-1181		49
520	Chemical structure changes in kerogen from bituminous coal in response to dike intrusions as investigated by advanced solid-state 13C NMR spectroscopy. 2013 , 108, 53-64		56
519	Effect of pH on surface characteristics of switchgrass-derived biochars produced by fast pyrolysis. <i>Chemosphere</i> , 2013 , 90, 2623-30	8.4	31
518	Characterization of Biochars Using Advanced Solid-State 13C Nuclear Magnetic Resonance Spectroscopy. 2013 , 47-55		2

517	Biochar, Tool for Climate Change Mitigation and Soil Management. 2013 , 73-140	4
516	Chars produced by slow pyrolysis and hydrothermal carbonization vary in carbon sequestration potential and greenhouse gases emissions. 2013 , 62, 137-146	126
515	Characterization of kerogen using solid-state nuclear magnetic resonance spectroscopy: A review. 2013 , 108, 83-90	35
514	Use of chemical and physical characteristics to investigate trends in biochar feedstocks. 2013 , 61, 2196-204	259
513	Microwave and slow pyrolysis biochar©omparison of physical and functional properties. 2013 , 100, 41-48	151
512	Fast pyrolysis of microalgae remnants in a fluidized bed reactor for bio-oil and biochar production. Bioresource Technology, 2013 , 127, 494-9	216
511	Solid-State Nuclear Magnetic Resonance Characterization of Chars Obtained from Hydrothermal Carbonization of Corncob and Miscanthus. 2013 , 27, 303-309	31
510	Effects of Biomass Feedstocks and Gasification Conditions on the Physiochemical Properties of Char. 2013 , 6, 3972-3986	123
509	Characteristics of Straw Biochar and its Influence on the Forms of Arsenic in Heavy Metal Polluted Soil. 2013 , 409-410, 133-138	6
508	Alterations in Molecular Composition of Humic Substances from Eucalypt Plantation Soils Assessed by 13C-NMR Spectroscopy. <i>Soil Science Society of America Journal</i> , 2013 , 77, 293-306	12
507	Distributed biochar and bioenergy coproduction: a regionally specific case study of environmental benefits and economic impacts. 2013 , 5, 177-191	86
506	Impact of Biochar on Organic Contaminants in Soil: A Tool for Mitigating Risk?. 2013 , 3, 349-375	66
505	The Application of Biochar in the EU: Challenges and Opportunities. 2013, 3, 462-473	40
504	Characterization, stability, and plant effects of kiln-produced wheat straw biochar. 2013, 42, 429-36	23
503	Characterization and Mineralization Rates of Low Temperature Peanut Hull and Pine Chip Biochars. 2013 , 3, 294-312	26
502	Characterization of Biochar from Switchgrass Carbonization. 2014 , 7, 548-567	104
501	Effects of Biochar-Amendment to Landfill Cover Soil on Microbial Methane Oxidation: Initial Results. 2014 ,	7
500	Characterization of biochar from fast pyrolysis and its effect on chemical properties of the tea garden soil. 2014 , 110, 375-381	64

499	Physical and chemical characterization of biochars derived from different agricultural residues. 2014 , 11, 6613-6621		385
498	Characterization and Utilization of Char Derived from Fast Pyrolysis of Plastic Wastes. 2014 , 931-932, 849-853		3
497	Kinetics of thermal degradation of wood biomass. 2014 , 68,		5
496	Contrasting Effects of Sorghum Biochars and Sorghum Residues on Soil Chemical Changes of Coastal Plains Ultisols With Winter Wheat. 2014 , 179, 383-392		1
495	Production of Biochar and Activated Carbon via Intermediate Pyrolysis [Recent Studies for Non-Woody Biomass. 2014 , 321-338		2
494	Cadmium and lead remediation using magnetic oak wood and oak bark fast pyrolysis bio-chars. 2014 , 236, 513-528		348
493	Synthesis and evaluation of biochar-derived catalysts for removal of toluene (model tar) from biomass-generated producer gas. 2014 , 66, 346-353		91
492	Carbon mineralization in two ultisols amended with different sources and particle sizes of pyrolyzed biochar. <i>Chemosphere</i> , 2014 , 103, 313-21	3.4	65
491	New approaches to measuring biochar density and porosity. 2014 , 66, 176-185		315
490	Biochar as a Substitute for Vermiculite in Potting Mix for Hybrid Poplar. 2014 , 7, 120-131		46
489	Characterization of engineered biochar for soil management. <i>Environmental Progress and Sustainable Energy</i> , 2014 , 33, 490-496	2.5	23
488	Solid state NMR study of chemical structure and hydrothermal deactivation of moderate-temperature carbon materials with acidic SO3H sites. 2014 , 74, 333-345		57
487	Organic and inorganic contaminants removal from water with biochar, a renewable, low cost and sustainable adsorbenta critical review. <i>Bioresource Technology</i> , 2014 , 160, 191-202	[1	1406
486	Production Factors Controlling the Physical Characteristics of Biochar Derived from Phytoremediation Willow for Agricultural Applications. 2014 , 7, 371-380		20
485	Effects of co-produced biochar on life cycle greenhouse gas emissions of pyrolysis-derived renewable fuels. 2014 , 8, 189-204		26
484	Quantitative solid-state 13C NMR with signal enhancement by multiple cross polarization. 2014 , 239, 44-9		195
483	Characterization and Utilization of Char Derived from Fast Pyrolysis of Plastic Wastes. 2014 , 69, 1437-144	12	71
482	Soil Chemical Insights Provided through Vibrational Spectroscopy. 2014 , 126, 1-148		120

481	Simplifying pyrolysis: Using gasification to produce corn stover and wheat straw biochar for sorptive and horticultural media. 2014 , 53, 228-235		48
480	Producing energy while sequestering carbon? The relationship between biochar and agricultural productivity. 2014 , 63, 167-176		40
479	Comparative study of the pyrolysis of lignocellulose and its major components: characterization and overall distribution of their biochars and volatiles. <i>Bioresource Technology</i> , 2014 , 155, 21-7	11	60
478	Electrosorption on activated biochar: effect of thermo-chemical activation treatment on the electric double layer capacitance. 2014 , 44, 141-157		56
477	Fluoride removal from ground water using magnetic and nonmagnetic corn stover biochars. 2014 , 73, 798-808		88
476	Unintended effects of biochars on short-term plant growth in a calcareous soil. 2014 , 385, 87-105		53
475	Biochar application to soil for climate change mitigation by soil organic carbon sequestration. 2014 , 177, 651-670		114
474	Influence of molecular structure and adsorbent properties on sorption of organic compounds to a temperature series of wood chars. 2014 , 48, 4790-8		114
473	Speciation of sulfur in biochar produced from pyrolysis and gasification of oak and corn stover. 2014 , 48, 8474-80		82
472	Steam gasification of rapeseed, wood, sewage sludge and miscanthus biochars for the production of a hydrogen-rich syngas. 2014 , 69, 276-286		72
471	Experimental and Mechanistic Modeling of Fast Pyrolysis of Neat Glucose-Based Carbohydrates. 1. Experiments and Development of a Detailed Mechanistic Model. 2014 , 53, 13274-13289		133
470	Investigation on Pyrolysis of Low Lipid Microalgae Chlorella vulgaris and Dunaliella salina. 2014 , 28, 95	-103	73
469	Simple One-Step Synthesis of Aromatic-Rich Materials with High Concentrations of Hydrothermally Stable Catalytic Sites, Validated by NMR. 2014 , 26, 5523-5532		11
468	Comparison of in-situ and ex-situ catalytic pyrolysis in a micro-reactor system. <i>Bioresource Technology</i> , 2014 , 173, 124-131	11	141
467	Kinetic analysis of co-pyrolysis of cellulose and polypropylene. 2014 , 117, 1441-1451		63
466	Biochar from Slow Pyrolysis of Two-Phase Olive Mill Waste: Effect of Pressure and Peak Temperature on its Potential Stability. 2014 , 28, 3271-3280		23
465	Rhizoctonia solani suppression and plant growth promotion in cucumber as affected by biochar pyrolysis temperature, feedstock and concentration. 2014 , 69, 110-118		106
464	Life cycle assessment of pyrolysis oil applications. <i>Biomass Conversion and Biorefinery</i> , 2014 , 5, 1	2.3	6

463	Biochar impact on Midwestern Mollisols and maize nutrient availability. 2014 , 230-231, 340-347		111
462	Biochar from pyrolysis of deinking paper sludge and its use in the treatment of a nickel polluted soil. 2014 , 107, 46-52		76
461	Characterization of liquid and solid product from pyrolysis of Pongamia glabra deoiled cake. <i>Bioresource Technology</i> , 2014 , 165, 336-42	11	62
460	Advances in solid-state NMR of cellulose. 2014 , 27, 176-84		110
459	Leaching characteristics of inherent inorganic nutrients in biochars from the slow and fast pyrolysis of mallee biomass. <i>Fuel</i> , 2014 , 128, 433-441	7.1	48
458	Subcritical water extraction of lipids from wet algae for biodiesel production. <i>Fuel</i> , 2014 , 133, 73-81	7.1	71
457	Experimental study on the effect of pyrolysis pressure, peak temperature, and particle size on the potential stability of vine shoots-derived biochar. <i>Fuel</i> , 2014 , 133, 163-172	7.1	57
456	Utilizing bio-char as a bio-modifier for asphalt cement: A sustainable application of bio-fuel by-product. <i>Fuel</i> , 2014 , 133, 52-62	7.1	59
455	Assessing Microbial Contributions to N2O Impacts Following Biochar Additions. 2014 , 4, 478-496		8
454	The Profiles of Mass and Heat Transfer during Pinewood Conversion. 2015 , 66, 285-288		3
454 453	The Profiles of Mass and Heat Transfer during Pinewood Conversion. 2015 , 66, 285-288 Characterization and Surface Analysis of Commercially Available Biochars for Geoenvironmental Applications. 2015 ,		2
	Characterization and Surface Analysis of Commercially Available Biochars for Geoenvironmental		
453	Characterization and Surface Analysis of Commercially Available Biochars for Geoenvironmental Applications. 2015 , Use of biochar and oxidized lignite for reconstructing functioning agronomic topsoil: Effects on soil		2
453 452	Characterization and Surface Analysis of Commercially Available Biochars for Geoenvironmental Applications. 2015, Use of biochar and oxidized lignite for reconstructing functioning agronomic topsoil: Effects on soil properties in a greenhouse study. 2015, 95, 269-285 Production and Characterization of Biochar from Agricultural By-Products: Overview and Use of		2
453 452 451	Characterization and Surface Analysis of Commercially Available Biochars for Geoenvironmental Applications. 2015, Use of biochar and oxidized lignite for reconstructing functioning agronomic topsoil: Effects on soil properties in a greenhouse study. 2015, 95, 269-285 Production and Characterization of Biochar from Agricultural By-Products: Overview and Use of Cotton Biomass Residues. 2015, 63-86		2 11 9
453 452 451 450	Characterization and Surface Analysis of Commercially Available Biochars for Geoenvironmental Applications. 2015, Use of biochar and oxidized lignite for reconstructing functioning agronomic topsoil: Effects on soil properties in a greenhouse study. 2015, 95, 269-285 Production and Characterization of Biochar from Agricultural By-Products: Overview and Use of Cotton Biomass Residues. 2015, 63-86 Considerations in Biochar Characterization. 2015, 87-100		2 11 9
453 452 451 450 449	Characterization and Surface Analysis of Commercially Available Biochars for Geoenvironmental Applications. 2015, Use of biochar and oxidized lignite for reconstructing functioning agronomic topsoil: Effects on soil properties in a greenhouse study. 2015, 95, 269-285 Production and Characterization of Biochar from Agricultural By-Products: Overview and Use of Cotton Biomass Residues. 2015, 63-86 Considerations in Biochar Characterization. 2015, 87-100 Agricultural and Environmental Applications of Biochar: Advances and Barriers. 2015, 495-504 Terrestrial pyrogenic carbon export to fluvial ecosystems: Lessons learned from the White Nile		2 11 9 3

445	BIOCHAR: PYROGENIC CARBON FOR AGRICULTURAL USE - A CRITICAL REVIEW. 2015 , 39, 321-344		105
444	Characterization of biochar of pine pellet. 2015 , 122, 21-32		19
443	Effect of holding time on fuel properties of biochars prepared from the torrefaction of coffee residue. <i>Biomass Conversion and Biorefinery</i> , 2015 , 5, 209-214	2.3	7
442	Controlled Burning of Forest Detritus Altering Spectroscopic Characteristics and Chlorine Reactivity of Dissolved Organic Matter: Effects of Temperature and Oxygen Availability. 2015 , 49, 14019	9-27	33
441	Production and Evaluation of Physicochemical Characteristics of Paddy Husk Bio-char for its C Sequestration Applications. 2015 , 8, 1800-1809		15
440	Lead sorptive removal using magnetic and nonmagnetic fast pyrolysis energy cane biochars. 2015 , 448, 238-50		111
439	Removal of acetaminophen and naproxen by combined coagulation and adsorption using biochar: influence of combined sewer overflow components. <i>Environmental Science and Pollution Research</i> , 2015 , 22, 10058-69	5.1	46
438	Multifaceted application of crop residue biochar as a tool for sustainable agriculture: An ecological perspective. 2015 , 77, 324-347		85
437	A comparative review of biochar and hydrochar in terms of production, physico-chemical properties and applications. <i>Renewable and Sustainable Energy Reviews</i> , 2015 , 45, 359-378	16.2	788
436	Nutrient Transport in Soils Amended with Biochar: A Transient Model with Two Stationary Phases and Intraparticle Diffusion. 2015 , 54, 4123-4135		10
435	Effects of temperature and processing conditions on biochar chemical properties and their influence on soil C and N transformations. 2015 , 83, 19-28		126
434	Application of biochar for the removal of pollutants from aqueous solutions. <i>Chemosphere</i> , 2015 , 125, 70-85	8.4	989
433	Effect of biochar amendment on PAH dissipation and indigenous degradation bacteria in contaminated soil. 2015 , 15, 313-322		43
432	High resolution solid state 2D NMR analysis of biomass and biochar. 2015 , 87, 843-7		38
431	ChemicalEtructural properties of South African bituminous coals: Insights from wide angle XRDEarbon fraction analysis, ATRETIR, solid state 13 C NMR, and HRTEM techniques. <i>Fuel</i> , 2015 , 158, 779-792	7.1	182
430	Dissolved Phosphorus Speciation of Flash Carbonization, Slow Pyrolysis, and Fast Pyrolysis Biochars. <i>ACS Sustainable Chemistry and Engineering</i> , 2015 , 3, 1642-1649	8.3	63
429	Cascading microalgae biorefinery: Fast pyrolysis of Dunaliella tertiolecta lipid extracted-residue. 2015 , 11, 184-193		58
428	Investigation on the Physical and Chemical Properties of Hydrochar and Its Derived Pyrolysis Char for Their Potential Application: Influence of Hydrothermal Carbonization Conditions. 2015 , 29, 5222-523	30	45

427	Life Cycle Assessment of Biochar versus Metal Catalysts Used in Syngas Cleaning. 2015 , 8, 621-644		17
426	Pattern of pore water nutrients in planted and non-planted soilless substrates as affected by the addition of biochars from wood gasification. 2015 , 51, 625-635		22
425	Biochar from Pine and Birch Morphology and Pore Structure Change by Treatment in Biofilter. 2015 , 226, 1		29
424	Pyrolysis of hornbeam shell (Carpinus betulus L.) in a fixed bed reactor: Characterization of bio-oil and bio-char. <i>Fuel</i> , 2015 , 150, 672-678	7.1	97
423	Esterification of glycerol over a solid acid biochar catalyst derived from waste biomass. <i>RSC Advances</i> , 2015 , 5, 44550-44556	3.7	31
422	Influence of Carbonization Methods on the Aromaticity of Pyrogenic Dissolved Organic Carbon. 2015 , 29, 2503-2513		20
421	Producing pipeline-quality biomethane via anaerobic digestion of sludge amended with corn stover biochar with in-situ CO2 removal. 2015 , 158, 300-309		174
420	Development of Biochar-Based Functional Materials: Toward a Sustainable Platform Carbon Material. 2015 , 115, 12251-85		792
419	Characterization of biochars produced from seven biomasses grown in three different climate zones. 2015 , 34, 592-600		15
418	Feeding Biochar to Cows: An Innovative Solution for Improving Soil Fertility and Farm Productivity. 2015 , 25, 666-679		56
418 417			56 125
	2015 , 25, 666-679 Anion exchange capacity of biochar. 2015 , 17, 4628-4636		
417	2015 , 25, 666-679 Anion exchange capacity of biochar. 2015 , 17, 4628-4636	5.1	125
4 ¹ 7 4 ¹ 6	Anion exchange capacity of biochar. 2015, 17, 4628-4636 Physical and chemical characterization of waste wood derived biochars. 2015, 36, 256-68 The impact of biochars on sorption and biodegradation of polycyclic aromatic hydrocarbons in	5.1	125
4 ¹ 7 4 ¹ 6 4 ¹ 5	Anion exchange capacity of biochar. 2015, 17, 4628-4636 Physical and chemical characterization of waste wood derived biochars. 2015, 36, 256-68 The impact of biochars on sorption and biodegradation of polycyclic aromatic hydrocarbons in soilsa review. Environmental Science and Pollution Research, 2015, 22, 3314-41	5.1	125 220 83
4 ¹ 7 4 ¹ 6 4 ¹ 5	Anion exchange capacity of biochar. 2015, 17, 4628-4636 Physical and chemical characterization of waste wood derived biochars. 2015, 36, 256-68 The impact of biochars on sorption and biodegradation of polycyclic aromatic hydrocarbons in soils—a review. Environmental Science and Pollution Research, 2015, 22, 3314-41 Aromaticity and degree of aromatic condensation of char. 2015, 78, 135-143 Sorptive removal of salicylic acid and ibuprofen from aqueous solutions using pine wood fast	7.1	125 220 83 150
417 416 415 414 413	Anion exchange capacity of biochar. 2015, 17, 4628-4636 Physical and chemical characterization of waste wood derived biochars. 2015, 36, 256-68 The impact of biochars on sorption and biodegradation of polycyclic aromatic hydrocarbons in soilsa review. Environmental Science and Pollution Research, 2015, 22, 3314-41 Aromaticity and degree of aromatic condensation of char. 2015, 78, 135-143 Sorptive removal of salicylic acid and ibuprofen from aqueous solutions using pine wood fast pyrolysis biochar. 2015, 265, 219-227 Physical properties and reactivity of char obtained from downdraft gasification of sorghum and		125 220 83 150

409	Recent advances in utilization of biochar. <i>Renewable and Sustainable Energy Reviews</i> , 2015 , 42, 1055-106 4 6.2	466
408	Characterization of chemicalphysical, structural and morphological properties of biochars from biowastes produced at different temperatures. 2015 , 15, 792-804	79
407	Biochar in thermal and thermochemical biorefineriesproduction of biochar as a coproduct. 2016 , 655-671	4
406	An Innovative Agro-Forestry Supply Chain for Residual Biomass: Physicochemical Characterisation of Biochar from Olive and Hazelnut Pellets. 2016 , 9, 526	33
405	Carbon Abatement and Emissions Associated with the Gasification of Walnut Shells for Bioenergy and Biochar Production. 2016 , 11, e0150837	11
404	Influence of Pyrolysis Temperature on Physico-Chemical Properties of Corn Stover (Zea mays L.) Biochar and Feasibility for Carbon Capture and Energy Balance. 2016 , 11, e0156894	129
403	The Role of Biochar Production in Sustainable Development in Thailand, Lao PDR and Cambodia. 266-288	1
402	Characterization of biomass char formation investigated by advanced solid state NMR. 2016 , 108, 165-177	42
401	Gasification reactor engineering approach to understanding the formation of biochar properties. 2016 , 472, 20150841	12
400	Feedstock and Production Parameters. 2016 , 41-54	3
399	Spatial heterogeneity of soil biochar content affects soil quality and wheat growth and yield. 2016 , 562, 690-700	23
398	Thermal degradation capabilities of modified bio-chars and fluid cracking catalyst (FCC) for acetic acid. 2016 , 90, 243-251	11
397	Improving the deconvolution and interpretation of XPS spectra from chars by ab initio calculations. 2016 , 110, 155-171	168
396	Catalytic fast pyrolysis for improved liquid quality. 2016 , 391-429	5
395	Size distribution of carbon layer planes in biochar from different plant type of feedstock with different heating temperatures. <i>Chemosphere</i> , 2016 , 163, 252-258	4
394	Hydrothermal gasification of Cladophora glomerata macroalgae over its hydrochar as a catalyst for hydrogen-rich gas production. <i>Bioresource Technology</i> , 2016 , 222, 232-241	80
393	Pyrolysis of Nordic biomass types in a cyclone pilot plant [Mass balances and yields. <i>Fuel Processing Technology</i> , 2016 , 152, 274-284	14
392	Combination of biochar amendment and phytoremediation for hydrocarbon removal in petroleum-contaminated soil. <i>Environmental Science and Pollution Research</i> , 2016 , 23, 21219-21228	30

(2016-2016)

391	Promotion of hydrogen-rich gas and phenolic-rich bio-oil production from green macroalgae Cladophora glomerata via pyrolysis over its bio-char. <i>Bioresource Technology</i> , 2016 , 219, 643-651	11	81
390	Towards a sustainable paradigm of waste-to-energy process: Enhanced anaerobic digestion of sludge with woody biochar. 2016 , 135, 1054-1064		129
389	The impact of biochars prepared from agricultural residues on phosphorus release and availability in two fertile soils. <i>Journal of Environmental Management</i> , 2016 , 181, 536-543	7.9	55
388	Biochar prepared from castor oil cake at different temperatures: A voltammetric study applied for Pb(2+), Cd(2+) and Cu(2+) ions preconcentration. <i>Journal of Hazardous Materials</i> , 2016 , 318, 526-532	12.8	44
387	Influence of pyrolysis temperature and hardwood species on resulting biochar properties and their effect on azimsulfuron sorption as compared to other sorbents. 2016 , 566-567, 1454-1464		40
386	Biochar properties: Transport, fate, and impact. 2016 , 46, 1183-1296		75
385	H/C atomic ratio as a smart linkage between pyrolytic temperatures, aromatic clusters and sorption properties of biochars derived from diverse precursory materials. 2016 , 6, 22644		106
384	Characterization of Biochars and Their Use as an Amendment to Acid Soils. 2016 , 181, 412-426		26
383	Potential of Fusarium wilt-inducing chlamydospores, in vitro behaviour in root exudates and physiology of tomato in biochar and compost amended soil. 2016 , 406, 425-440		30
382	Carbon-Based Adsorbents for Postcombustion CO2 Capture: A Critical Review. 2016 , 50, 7276-89		282
381	Phosphorus removal from wastewater by field-scale fortified filter beds during a one-year study. 2016 , 37, 2953-63		13
380	Production and utilization of biochar: A review. 2016 , 40, 1-15		611
379	Mineral-Biochar Composites: Molecular Structure and Porosity. 2016 , 50, 7706-14		108
378	Alkaline-Earth-Metal-Catalyzed Thin-Film Pyrolysis of Cellulose. 2016 , 8, 818-829		41
377	Carbon footprint of rice production under biochar amendment 🗈 case study in a Chinese rice cropping system. 2016 , 8, 148-159		37
376	Temperature effect on hydrothermal liquefaction of Nannochloropsis gaditana and Chlorella sp 2016 , 165, 943-951		102
375	Coke formation of model compounds relevant to pyrolysis bio-oil over ZSM-5. 2016 , 513, 67-81		65
374	Structural analysis of char by Raman spectroscopy: Improving band assignments through computational calculations from first principles. 2016 , 100, 678-692		182

373	Birchwood biochar as partial carbon black replacement in styreneButadiene rubber composites. 2016 , 48, 305-316		36
372	Soil organic carbon content affects the stability of biochar in paddy soil. 2016 , 223, 59-66		32
371	A novel method to tailor the porous structure of KOH-activated biochar and its application in capacitive deionization and energy storage. 2016 , 87, 107-121		121
370	Lignocellulosic biomass pyrolysis: A review of product properties and effects of pyrolysis parameters. <i>Renewable and Sustainable Energy Reviews</i> , 2016 , 57, 1126-1140	2	1036
369	Effect of particle size and doses of olivine addition on carbon dioxide sequestration during anaerobic digestion of sewage sludge at ambient and mesophilic temperatures. 2016 , 51, 59-72		13
368	Chemical and structural properties of dissolved black carbon released from biochars. 2016 , 96, 759-767		154
367	Ameliorating soil chemical properties of a hard setting subsoil layer in Coastal Plain USA with different designer biochars. <i>Chemosphere</i> , 2016 , 142, 168-75	-	19
366	Slow pyrolysis of relevant biomasses in the Mediterranean basin. Part 2. Char characterisation for carbon sequestration and agricultural uses. 2016 , 120, 191-197		31
365	Highly stable rice-straw-derived charcoal in 3700-year-old ancient paddy soil: evidence for an effective pathway toward carbon sequestration. <i>Environmental Science and Pollution Research</i> , 5.1 2016 , 23, 1007-14		5
364	Biochar for crop production: potential benefits and risks. 2017 , 17, 685-716		222
363	Highly efficient adsorption of Cr(VI) from aqueous solution by Fe3+ impregnated biochar. 2017, 38, 815-82	5	14
362	A Systems-Level Roadmap for Biomass Thermal Fractionation and Catalytic Upgrading Strategies. 2017 , 5, 130-150		19
361	Modified method for proximate analysis of biochars. 2017 , 124, 335-342		21
360	Evolution of chars during slow pyrolysis of citrus waste. Fuel Processing Technology, 2017 , 158, 255-263 $_{7.2}$		30
359	Experimental comparison of two bench scale units for fast and intermediate pyrolysis. 2017, 124, 504-514		32
358	Corn cob biochar increases soil culturable bacterial abundance without enhancing their capacities in utilizing carbon sources in Biolog Eco-plates. 2017 , 16, 713-724		27
357	Comparison of characteristics of twenty-one types of biochar and their ability to remove multi-heavy metals and methylene blue in solution. <i>Fuel Processing Technology</i> , 2017 , 160, 55-63		93
356	Effect of biochars produced from solid organic municipal waste on soil quality parameters. <i>Journal of Environmental Management</i> , 2017 , 192, 271-280		70

355	Physicochemical Characteristics of Biochar Produced from Rice Straw at Different Pyrolysis Temperature for Soil Amendment and Removal of Organics. 2017 , 87, 207-214	17
354	Effect of pyrolysis temperature on aromatic cluster size of cellulose char by quantitative multi cross-polarization 13C NMR with long range dipolar dephasing. 2017 , 116, 210-222	16
353	Effects of alkali-treated hierarchical HZSM-5 zeolites on the production of aromatic hydrocarbons from catalytic fast pyrolysis of waste cardboard. 2017 , 125, 153-161	62
352	A Direct Observation of the Fine Aromatic Clusters and Molecular Structures of Biochars. 2017 , 51, 5473-548	2 109
351	Characterization of biochar and its effects on the water holding capacity of loamy sand soil: Comparison of hemlock biochar and switchblade grass biochar characteristics. <i>Environmental Progress and Sustainable Energy</i> , 2017 , 36, 1474-1479	19
350	Characterization of biochar prepared from biogas digestate. 2017 , 66, 53-60	93
349	In-situ biogas upgrading during anaerobic digestion of food waste amended with walnut shell biochar at bench scale. 2017 , 35, 669-679	57
348	Biomaterials. 2017 , 185-231	
347	Biochar-based water treatment systems as a potential low-cost and sustainable technology for clean water provision. <i>Journal of Environmental Management</i> , 2017 , 197, 732-749	182
346	Chemical and morphological evaluation of chars produced from primary biomass constituents: Cellulose, xylan, and lignin. 2017 , 104, 17-35	49
345	Gasification Char as a Potential Substitute of Activated Carbon in Adsorption Applications. 2017 , 105, 712-717	30
344	Pyrogenic carbon and its role in contaminant immobilization in soils. 2017 , 47, 795-876	59
343	Aluminum and iron biomass pretreatment impacts on biochar anion exchange capacity. 2017 , 118, 422-430	39
342	Biomass Treatment Strategies for Thermochemical Conversion. 2017 , 31, 3525-3536	54
341	Investigation on by-products of bioenergy systems (anaerobic digestion and gasification) as potential crop nutrient using FTIR, XRD, SEM analysis and phyto-toxicity test. <i>Journal of 7.9 Environmental Management</i> , 2017 , 196, 201-216	35
340	The reduction of chromium (VI) phytotoxicity and phytoavailability to wheat (Triticum aestivum L.) using biochar and bacteria. 2017 , 114, 90-98	57
339	Effect of environmental exposure on charcoal density and porosity in a boreal forest. 2017 , 592, 316-325	9
338	Potassium enriched biochar production by thermal plasma processing of banana peduncle for soil application. 2017 , 123, 165-172	25

337	Steam gasification of a thermally pretreated high lignin corn stover simultaneous saccharification and fermentation digester residue. <i>Energy</i> , 2017 , 119, 400-407	7.9	3
336	Biochar total surface area and total pore volume determined by N and CO physisorption are strongly influenced by degassing temperature. 2017 , 580, 770-775		74
335	Adsorption of metribuzin from aqueous solution using magnetic and nonmagnetic sustainable low-cost biochar adsorbents. <i>Environmental Science and Pollution Research</i> , 2017 , 24, 4577-4590	5.1	58
334	Effects of pyrolysis conditions on Miscanthus and corncob chars: Characterization by IR, solid state NMR and BPCA analysis. 2017 , 128, 335-345		17
333	Catalytic microwave pyrolysis of oil palm fiber (OPF) for the biochar production. <i>Environmental Science and Pollution Research</i> , 2017 , 24, 26521-26533	5.1	12
332	Solid-State NMR Investigation of Bio-chars Produced from Biomass Components and Whole Biomasses. 2017 , 10, 1036-1044		4
331	Polycyclic aromatic hydrocarbons (PAHs) in biochar ITheir formation, occurrence and analysis: A review. 2017 , 114, 1-11		88
330	Soil biochemical properties and crop productivity following application of locally produced biochar at organic farms on Waldron Island, WA. 2017 , 136, 31-46		21
329	Carbon sequestration potential and physicochemical properties differ between wildfire charcoals and slow-pyrolysis biochars. 2017 , 7, 11233		67
328	Biochar soil amendments for increased crop yields: How to design a flesigner[biochar. 2017, 63, 5425-	5437	8
327	Retracted Article: The feasibility of char and bio-oil production from pyrolysis of pit latrine sludge. 2017 ,		
326	Recent developments of post-modification of biochar for electrochemical energy storage. <i>Bioresource Technology</i> , 2017 , 246, 224-233	11	97
325	A Dialogue on Perspectives of Biochar Applications and Its Environmental Risks. 2017 , 228, 1		24
324	Novel multidimensional carbons from structural transformations of waste lignin: A low temperature pyrolysis investigation. <i>Fuel Processing Technology</i> , 2017 , 166, 312-321	7.2	18
323	Magnesium Oxide Embedded Nitrogen Self-Doped Biochar Composites: Fast and High-Efficiency Adsorption of Heavy Metals in an Aqueous Solution. 2017 , 51, 10081-10089		197
322	Composite-pulse and partially dipolar dephased multiCP for improved quantitative solid-state C NMR. 2017 , 285, 68-78		46
321	Optimum Utilization of Biochemical Components in Chlorella sp. KR1 via Subcritical Hydrothermal Liquefaction. <i>ACS Sustainable Chemistry and Engineering</i> , 2017 , 5, 7240-7248	8.3	11
320	Uptake of Cu2+ and Zn2+ from simulated wastewater using muskmelon peel biochar: Isotherm and		18

319	Composition and structure of natural organic matter through advanced nuclear magnetic resonance techniques. 2017 , 4,	5
318	A critical review on sustainable biochar system through gasification: Energy and environmental applications. <i>Bioresource Technology</i> , 2017 , 246, 242-253	188
317	Biochar physicochemical parameters as a result of feedstock material and pyrolysis temperature: predictable for the fate of biochar in soil?. 2017 , 39, 1381-1395	15
316	Profiles of Volatile Organic Compounds in Biochar: Insights into Process Conditions and Quality Assessment. <i>ACS Sustainable Chemistry and Engineering</i> , 2017 , 5, 510-517	40
315	Temperature and reaction atmosphere effects on the properties of corn stover biochar. Environmental Progress and Sustainable Energy, 2017, 36, 696-707	11
314	A multicomponent approach to using waste-derived biochar in biofiltration: A case study based on dissimilar types of waste. 2017 , 119, 565-576	24
313	Effects of biochar and maize straw on the short-term carbon and nitrogen dynamics in a cultivated silty loam in China. <i>Environmental Science and Pollution Research</i> , 2017 , 24, 1019-1029	32
312	Characterization and quantification of biochar alkalinity. <i>Chemosphere</i> , 2017 , 167, 367-373	163
311	Rheological behaviour and stability characteristics of biochar-water slurry fuels: Effect of biochar particle size and size distribution. <i>Fuel Processing Technology</i> , 2017 , 156, 27-32	15
310	Advances and future directions of biochar characterization methods and applications. 2017 , 47, 2275-2330	128
309	Study on the evolution characteristic of intermediate during the pyrolysis of oil shale. 2017 , 130, 2227-2238	3 4
308	Biochar and Soil Physical Properties. <i>Soil Science Society of America Journal</i> , 2017 , 81, 687-711 2.5	280
307	Air gasification of biogas-derived digestate in a downdraft fixed bed gasifier. 2017 , 69, 162-169	49
306	Biomass Chars: The Effects of Pyrolysis Conditions on Their Morphology, Structure, Chemical Properties and Reactivity. 2017 , 10, 796	94
305	Application of fast pyrolysis char in an electric arc furnace. <i>Fuel Processing Technology</i> , 2018 , 174, 61-68 7.2	14
304	Development of biochar as fuel and catalyst in energy recovery technologies. 2018 , 188, 477-488	106
303	Abundant Nonprotonated Aromatic and Oxygen-Bonded Carbons Make Humic Substances Distinct from Biopolymers. 2018 , 5, 476-480	28
302	Insight into Multiple and Multilevel Structures of Biochars and Their Potential Environmental Applications: A Critical Review. 2018 , 52, 5027-5047	349

301	Biochar characteristics and early applications in anaerobic digestion-a review. 2018 , 6, 2892-2909		70
300	Structural Characterization of Loblolly Pine Derived Biochar by X-ray Diffraction and Electron Energy Loss Spectroscopy. <i>ACS Sustainable Chemistry and Engineering</i> , 2018 , 6, 2621-2629	8.3	39
299	Synergestic effect in the steam co-gasification of olive pomace, coal and petcoke: Thermogravimetric-mass spectrometric analysis. 2018 , 159, 140-150		28
298	Effects of biochar application in forest ecosystems on soil properties and greenhouse gas emissions: a review. 2018 , 18, 546-563		178
297	Pyrolysis of chemically treated corncob for biochar production and its application in Cr(VI) removal. <i>Environmental Progress and Sustainable Energy</i> , 2018 , 37, 1606-1617	2.5	39
296	Surface oxygenation of biochar through ozonization for dramatically enhancing cation exchange capacity. 2018 , 5,		20
295	Biochar immobilizes soil-borne arsenic but not cationic metals in the presence of low-molecular-weight organic acids. 2018 , 630, 1188-1194		25
294	A review on common adsorbents for acid gases removal: Focus on biochar. <i>Renewable and Sustainable Energy Reviews</i> , 2018 , 81, 1705-1720	16.2	101
293	Impact of biochar properties on soil conditions and agricultural sustainability: A review. <i>Land Degradation and Development</i> , 2018 , 29, 2124-2161	4.4	118
292	Sewage sludge gasification in a bench scale rotary kiln. <i>Fuel</i> , 2018 , 212, 88-94	7.1	41
292 291	Sewage sludge gasification in a bench scale rotary kiln. <i>Fuel</i> , 2018 , 212, 88-94 Characterization of char from biomass gasification and its similarities with activated carbon in adsorption applications. 2018 , 227, 92-99	7.1	41 8 ₇
	Characterization of char from biomass gasification and its similarities with activated carbon in	7.1	
291	Characterization of char from biomass gasification and its similarities with activated carbon in adsorption applications. 2018 , 227, 92-99	7.1	87
291 290	Characterization of char from biomass gasification and its similarities with activated carbon in adsorption applications. 2018 , 227, 92-99 The feasibility of char and bio-oil production from pyrolysis of pit latrine sludge. 2018 , 4, 253-264	7.1	87
291 290 289	Characterization of char from biomass gasification and its similarities with activated carbon in adsorption applications. 2018 , 227, 92-99 The feasibility of char and bio-oil production from pyrolysis of pit latrine sludge. 2018 , 4, 253-264 Review of Pulverized Combustion of Non-Woody Residues. 2018 , 32, 4069-4095 Co-gasification of pine and oak biochar with sub-bituminous coal in carbon dioxide. <i>Bioresource</i>		8 ₇ 7 16
291 290 289 288	Characterization of char from biomass gasification and its similarities with activated carbon in adsorption applications. 2018 , 227, 92-99 The feasibility of char and bio-oil production from pyrolysis of pit latrine sludge. 2018 , 4, 253-264 Review of Pulverized Combustion of Non-Woody Residues. 2018 , 32, 4069-4095 Co-gasification of pine and oak biochar with sub-bituminous coal in carbon dioxide. <i>Bioresource Technology</i> , 2018 , 251, 31-39 Sustainable bioeconomy transitions: Targeting value capture by integrating pyrolysis in a winery		87 7 16
291 290 289 288	Characterization of char from biomass gasification and its similarities with activated carbon in adsorption applications. 2018, 227, 92-99 The feasibility of char and bio-oil production from pyrolysis of pit latrine sludge. 2018, 4, 253-264 Review of Pulverized Combustion of Non-Woody Residues. 2018, 32, 4069-4095 Co-gasification of pine and oak biochar with sub-bituminous coal in carbon dioxide. <i>Bioresource Technology</i> , 2018, 251, 31-39 Sustainable bioeconomy transitions: Targeting value capture by integrating pyrolysis in a winery waste biorefinery. 2018, 172, 3387-3397 Characterization and valorization of biomass char: a comparison with biomass ash. <i>Environmental</i>	11	87 7 16 24 19

283	An Experimental and Theoretical Study of the Gasification of Miscanthus Briquettes in a Double-Stage Downdraft Gasifier: Syngas, Tar, and Biochar Characterization. 2018 , 11, 3225		8
282	Rice straw biochar as a novel niche for improved alterations to the cecal microbial community in rats. 2018 , 8, 16426		5
281	Biochar Amendment to Soil for Sustainable Agriculture. 2018 , 207-227		3
280	Biochar for sustainable soil and environment: a comprehensive review. 2018, 11, 1		16
279	Characterization the potential of biochar from cow and pig manure for geoecology application. 2018 , 131, 012055		6
278	Sorption of ammonium and nitrate to biochars is electrostatic and pH-dependent. 2018 , 8, 17627		93
277	Preparation and Application of Biochar-Based Catalysts for Biofuel Production. <i>Catalysts</i> , 2018 , 8, 346	4	90
276	Characterization of mesoporous biochar produced from biogas digestate implemented in an anaerobic process of large-scale hog farm. <i>Biomass Conversion and Biorefinery</i> , 2018 , 8, 945-951	2.3	5
275	Biochar Supercapacitors: Recent Developments in the Materials and Methods. 2018, 223-249		7
274	Pyrolysis behavior and economics analysis of the biomass pyrolytic polygeneration of forest farming waste. <i>Bioresource Technology</i> , 2018 , 270, 189-197	11	19
273	Fast Pyrolysis of Sisal Residue in a Pilot Fluidized Bed Reactor. 2018 , 32, 9478-9492		3
272	Use of Penicillium bilaiae to improve phosphorus bioavailability of thermally treated sewage sludge [A potential novel type biofertiliser. 2018 , 69, 169-177		11
271	Production Temperature Effects on the Structure of Hydrochar-Derived Dissolved Organic Matter and Associated Toxicity. 2018 , 52, 7486-7495		48
270	The Chemical Structure of Carbon Nanothreads Analyzed by Advanced Solid-State NMR. 2018 , 140, 7658	-7666	5 33
269	Experimental investigation of hardwood air gasification in a pilot scale bubbling fluidized bed reactor and CFD simulation of jet/grid and pressure conditions. 2018 , 168, 599-610		20
268	Bone char vs. S-enriched bone char: Multi-method characterization of bone chars and their transformation in soil. 2018 , 643, 145-156		12
267	A predictive model of biochar formation and characterization. 2018 , 134, 326-335		39
266	A versatile approach to the synthesis of biomass derived from furfural residues as a potential adsorbent. 2018 , 6, 5049-5052		7

265	Protective Carbon Overlayers from 2,3-Naphthalenediol Pyrolysis on Mesoporous SiOland Allo Analyzed by Solid-State NMR. 2018 , 11,		3
264	Valorization of biochars from pinewood gasification and municipal solid waste torrefaction as peat substitutes. <i>Environmental Science and Pollution Research</i> , 2018 , 25, 26461-26469	5.1	17
263	Activity of chars and activated carbons for removal and decomposition of tar model compounds IA review. <i>Renewable and Sustainable Energy Reviews</i> , 2018 , 94, 1044-1056	16.2	58
262	Effects of temperature and low-concentration oxygen on pine wood sawdust briquettes pyrolysis: Gas yields and biochar briquettes physical properties. <i>Fuel Processing Technology</i> , 2018 , 177, 228-236	7.2	7
261	Biochar. 2018 , 301-355		2
2 60	Changes in root traits explain the variability of biochar effects on fruit production in eight agronomic species. 2019 , 9, 139-153		6
259	Wood-based biochar for the removal of potentially toxic elements in water and wastewater: a critical review. 2019 , 64, 216-247		228
258	Pyrolysis and carbon dioxide gasification kinetics of hydrochar produced from cow manure. <i>Environmental Progress and Sustainable Energy</i> , 2019 , 38, 154-162	2.5	9
257	Spectroscopic analyses combined with Gaussian and Coats-Redfern models to investigate the characteristics and pyrolysis kinetics of sugarcane residue-derived biochars. 2019 , 237, 117855		20
256	Biochar application on paddy and purple soils in southern China: soil carbon and biotic activity. 2019 , 6, 181499		11
255	Carbon mineralization in subtropical dryland soil amended with different biochar sources. 2019 , 12, 1		2
254	Short-term leachability of salts from Atriplex-derived biochars. 2019 , 688, 701-707		4
253	Effects of post-pyrolysis air oxidation on the chemical composition of biomass chars investigated by solid-state nuclear magnetic resonance spectroscopy. 2019 , 153, 173-178		4
252	Feedstock-induced changes in composition and stability of biochar derived from different agricultural wastes. 2019 , 12, 1		8
251	Slow Pyrolysis Temperature and Duration Effects on Fuel Properties of Food Rice Waste Bio-Char. 2019 , 797, 319-326		1
250	Characteristics of biochar porosity by NMR and study of ammonium ion adsorption. 2019 , 143, 104687		19
249	CFD analysis and characterization of biochar produced via fixed-bed gasification of fallen leaf pellets. <i>Energy</i> , 2019 , 186, 115904	7.9	8
248	Kinetics of Carbon Mineralization and Sequestration of Sole and/or Co-amended Biochar and Cattle Manure in a Sandy Soil. 2019 , 50, 2593-2609		3

247	Phosphorus retention and availability in three contrasting soils amended with rice husk and corn cob biochar at varying pyrolysis temperatures. 2019 , 341, 10-17		64
246	Recovery of Cr(III) by using chars from the co-gasification of agriculture and forestry wastes. <i>Environmental Science and Pollution Research</i> , 2019 , 26, 22723-22735	5.1	5
245	Impact of oxidative carbonization on structure development of loblolly pine-derived biochar investigated by nuclear magnetic resonance spectroscopy and X-ray photoelectron spectroscopy. 2019 , 96, 140-147		7
244	Microstructure and mechanical, physical and structural properties of sustainable lightweight metakaolin-based geopolymer cements and mortars employing rice husk. 2019 , 7, 199-212		15
243	Biocarbon Production and Use as a Fuel. 2019 , 295-324		2
242	Strategic use of biochar for CO2 capture and sequestration. 2019 , 32, 128-139		91
241	Effects of wood biomass type and airflow rate on fuel and soil amendment properties of biochar produced in a top-lit updraft gasifier. <i>Environmental Progress and Sustainable Energy</i> , 2019 , 38, 13105	2.5	9
240	Biochar's role as an electron shuttle for mediating soil N2O emissions. 2019 , 133, 94-96		30
239	Assessment of energy parameters of biomass and biochars, leachability of heavy metals and phytotoxicity of their ashes. 2019 , 21, 786-800		40
238	Impact of Carbon Properties on Mo2C/Carbon Catalysts for the Hydrodeoxygenation of 4-Methylphenol. 2019 , 33, 4506-4514		6
237	Biochar versus bone char for a sustainable inorganic arsenic mitigation in water: What needs to be done in future research?. 2019 , 127, 52-69		58
236	Carbonaceous Catalysts from Biomass. 2019 , 185-231		1
235	Effects of innovative biofertilizers on yield of processing tomato cultivated in organic cropping systems in northern Italy. 2019 , 129-136		16
234	Biochar as a management tool for soilborne diseases affecting early stage nursery seedling production. 2019 , 120, 34-42		21
233	The Heat Treatment Severity Index: A new metric correlated to the properties of biochars obtained from entrained flow pyrolysis of biomass. <i>Fuel</i> , 2019 , 244, 61-68	7.1	11
232	Food waste to biochars through pyrolysis: A review. 2019 , 144, 310-320		150
231	Woody Feedstock Pretreatments to Enhance Pyrolysis Bio-oil Quality and Produce Transportation Fuel. 2019 ,		1
230	Impacts of different biochar types on the anaerobic digestion of sewage sludge <i>RSC Advances</i> , 2019 , 9, 42375-42386	3.7	34

229	Technogenic metallic elements in biomass and their effects on biomass product properties. 2019 , 68, 623-644		1
228	Microwave assisted and conventional pyrolysis of MDF ICharacterization of the produced biochars. 2019 , 138, 218-230		28
227	Production and Characterisation of Teak Tree Saw Dust and Rice Husk Biochar. 2019 , 291-306		1
226	Kinetic study of uranium removal from aqueous solutions by macaBa biochar. 2019 , 206, 1354-1366		7
225	Production and Formation of Biochar. 2019 , 3-18		12
224	Elemental and Spectroscopic Characterization of Low-Temperature (350°C) Lignocellulosic- and Manure-Based Designer Biochars and Their Use as Soil Amendments. 2019 , 37-58		6
223	Characterization of products derived from the high temperature flash pyrolysis of microalgae and rice hulls. 2019 , 196, 527-537		13
222	Labile and recalcitrant components of organic matter of a Mollisol changed with land use and plant litter management: An advanced C NMR study. 2019 , 660, 1-10		9
221	Removal of azo dye from water via adsorption on biochar produced by the gasification of wood wastes. <i>Environmental Science and Pollution Research</i> , 2019 , 26, 28558-28573	5.1	37
220	Insights into biochar and hydrochar production and applications: A review. <i>Energy</i> , 2019 , 171, 581-598	7.9	241
219	Colloidal stability and aggregation kinetics of biochar colloids: Effects of pyrolysis temperature, cation type, and humic acid concentrations. 2019 , 658, 1306-1315		47
218	Conceptual design of a dedicated-crop biorefinery for Jatropha curcas using a systematic sustainability evaluation. 2019 , 13, 86-106		5
218	Conceptual design of a dedicated-crop biorefinery for Jatropha curcas using a systematic sustainability evaluation. 2019 , 13, 86-106 Measuring biomass fast pyrolysis kinetics: State of the art. 2019 , 8, e326		5 27
	sustainability evaluation. 2019 , 13, 86-106		
217	Measuring biomass fast pyrolysis kinetics: State of the art. 2019 , 8, e326		27
217	Measuring biomass fast pyrolysis kinetics: State of the art. 2019 , 8, e326 Biochar [Recovery Material from Pyrolysis of Sewage Sludge: A Review. 2020 , 11, 3677-3709 Understanding structure-performance correlation of biochar materials in environmental	12.8	27 27 59
217216215	Measuring biomass fast pyrolysis kinetics: State of the art. 2019, 8, e326 Biochar [Recovery Material from Pyrolysis of Sewage Sludge: A Review. 2020, 11, 3677-3709 Understanding structure-performance correlation of biochar materials in environmental remediation and electrochemical devices. 2020, 382, 122977 Overview of biochar production from preservative-treated wood with detailed analysis of biochar characteristics, heavy metals behaviors, and their ecotoxicity. <i>Journal of Hazardous Materials</i> , 2020,	12.8	27275945

(2020-2020)

211	Gasification biochar from biowaste (food waste and wood waste) for effective CO adsorption. Journal of Hazardous Materials, 2020 , 391, 121147	12.8	62
210	Analysis of green pesticide production by valorization of husks from Croton megalocarpus tree nuts. <i>Environmental Progress and Sustainable Energy</i> , 2020 , 39, e13312	2.5	
209	Influence of Pyro-Gasification and Activation Conditions on the Porosity of Activated Biochars: A Literature Review. 2020 , 11, 5079-5098		10
208	A Review of Non-Soil Biochar Applications. 2020 , 13,		37
207	Co-pyrolysis of lignocellulosic and macroalgae biomasses for the production of biochar - A review. <i>Bioresource Technology</i> , 2020 , 297, 122408	11	66
206	Environmentally friendly and sustainable bark cloth for garment applications: Evaluation of fabric properties and apparel development. 2020 , 23, e00136		4
205	Advances in design strategies for preparation of biochar based catalytic system for production of high value chemicals. <i>Bioresource Technology</i> , 2020 , 299, 122564	11	22
204	Mechanism of orthophosphate (PO4-P) adsorption onto different biochars. 2020 , 17, 100572		31
203	Biochar of distillers' grains anaerobic digestion residue: Influence of pyrolysis conditions on its characteristics and ammonium adsorptive optimization. 2020 , 38, 86-97		3
202	Gasification of Cup Plant (Silphium perfoliatum L.) Biomass E nergy Recovery and Environmental Impacts. 2020 , 13, 4960		3
201	The rational design of biomass-derived carbon materials towards next-generation energy storage: A review. <i>Renewable and Sustainable Energy Reviews</i> , 2020 , 134, 110308	16.2	49
200	Artificial Neural Networks To Distinguish Charcoal from Eucalyptus and Native Forests Based on Their Mineral Components. 2020 , 34, 9599-9608		1
199	Thermochemical conversion of oil palm Fiber-LDPE hybrid waste into biochar. 2020 , 14, 1313-1323		11
198	Redox-Active Biochar and Conductive Graphite Stimulate Methanogenic Metabolism in Anaerobic Digestion of Waste-Activated Sludge: Beyond Direct Interspecies Electron Transfer. <i>ACS Sustainable Chemistry and Engineering</i> , 2020 , 8, 12626-12636	8.3	24
197	Mechanism of in-situ dynamic catalysis and selective deactivation of H2O-activated biochar for biomass tar reforming. <i>Fuel</i> , 2020 , 279, 118450	7.1	55
196	Iron oxide loaded biochar/polyaniline nanocomposite: Synthesis, characterization and electrochemical analysis. 2020 , 119, 108097		7
195	Biochar Potential in Improving Agricultural Production in East Africa. 2020,		1
194	Co-pyrolysis of softwood with waste mussel shells: Biochar analysis. <i>Fuel</i> , 2020 , 282, 118792	7.1	15

193	Techno-economic and environmental assessments for nutrient-rich biochar production from cattle manure: A case study in Idaho, USA. 2020 , 279, 115782	21
192	Impact of agricultural management practices on soil carbon sequestration and its monitoring through simulation models and remote sensing techniques: A review. 2020 , 1-49	18
191	Corn and hardwood biochars affected soil microbial community and enzyme activities. 2020, 3, e20082	3
190	Biochar amendment as a remediation strategy for surface soils impacted by crude oil. 2020 , 265, 115006	17
189	Pyrolysis of microalgae biomass over carbonate catalysts. 2020 , 95, 3270-3279	10
188	Selective production of glycolaldehyde via hydrothermal pyrolysis of glucose: Experiments and microkinetic modeling. 2020 , 149, 104846	6
187	Hydrochar structural determination from artifact-free Raman analysis. 2020, 167, 378-387	6
186	Characterization of tar generated from the mixture of municipal solid waste and coal pyrolysis at 800 °C. 2020 , 6, 147-152	11
185	Enhanced high-quality biomethane production from anaerobic digestion of primary sludge by corn stover biochar. <i>Bioresource Technology</i> , 2020 , 306, 123159	43
184	Waste valorization technology options for the egg and broiler industries: A review and recommendations. 2020 , 262, 121129	21
183	Biochar based catalysts for the abatement of emerging pollutants: A review. 2020 , 394, 124856	64
182	Temporal physicochemical changes and transformation of biochar in a rice paddy: Insights from a 9-year field experiment. 2020 , 721, 137670	28
181	Hybrid biocomposites from polypropylene, sustainable biocarbon and graphene nanoplatelets. 2020 , 10, 10714	20
180	Impact of Biomass Sources on Acoustic-Based Chemical Functionalization of Biochars for Improved CO2 Adsorption. 2020 , 34, 8608-8627	4
179	Oxidation kinetics of biochar from woody and herbaceous biomass. 2020 , 401, 126043	17
178	A novel self-sustained single step process for synthesizing activated char from ligno-cellulosic biomass. <i>Fuel Processing Technology</i> , 2020 , 208, 106516	3
177	Filter Media-Packed Bed Reactor Fortification with Biochar to Enhance Wastewater Quality. 2020 , 10, 790	1
176	The Effect of Gasification Conditions on the Surface Properties of Biochar Produced in a Top-Lit Updraft Gasifier. 2020 , 10, 688	9

175	Biocoal - Quality control and assurance. 2020 , 135, 105509		12
174	Biomass ashes as potent adsorbent for pesticide: prediction of adsorption capacity by artificial neural network. 2020 , 17, 3209-3216		5
173	Application of biochar-based materials in environmental remediation: from multi-level structures to specific devices. <i>Biochar</i> , 2020 , 2, 1-31	.О	60
172	Adsorptive removal of micropollutants from wastewater with floating-fixed-bed gasification char. 2020 , 8, 103757		1
171	Role of redox-active biochar with distinctive electrochemical properties to promote methane production in anaerobic digestion of waste activated sludge. 2021 , 278, 123212		33
170	Facile preparation of sulfonated biochar for highly efficient removal of toxic Pb(II) and Cd(II) from wastewater. 2021 , 750, 141545		35
169	Study of surface heterogeneity and nitrogen functionalizing of biochars: Molecular modeling approach. 2021 , 171, 161-170		6
168	Biochar as a support for nanocatalysts and other reagents: Recent advances and applications. 2021 , 426, 213585		34
167	Microscopic mechanism about the selective adsorption of Cr(VI) from salt solution on O-rich and N-rich biochars. <i>Journal of Hazardous Materials</i> , 2021 , 404, 124162	2.8	26
166	Morpho-mineralogical exploration of crop, weed and tree derived biochar. <i>Journal of Hazardous Materials</i> , 2021 , 407, 124370	2.8	18
165	Development of biomass-derived biochar for agronomic and environmental remediation applications. <i>Biomass Conversion and Biorefinery</i> , 2021 , 11, 339-361	3	8
164	Progress of using biochar as a catalyst in thermal conversion of biomass. 2021 , 37, 229-258		8
163	Advanced applications of green materials for gas separation and storage. 2021 , 681-703		О
162	Application of Biochar for Sustainable Development in Agriculture and Environmental Remediation. 2021 , 133-153		1
161	Biopolymer-derived carbonaceous composites and their potential applications. 2021 , 253-280		2
160	Characterization of Bael Shell (Aegle marmelos) Pyrolytic Biochar. 2021 , 747-760		
159	Biomass pyrolysis technologies for value-added products: a state-of-the-art review. 2021 , 23, 14324-1437	'8	18
158	Biochar from lab-scale pyrolysis: influence of feedstock and operational temperature. <i>Biomass Conversion and Biorefinery</i> , 1	3	6

157	Can the addition of biochar improve the performance of biogas digesters operated at 45°C?. 2022 , 27, 200648-0		O
156	Biochar Volatile Matter and Feedstock Effects on Soil Nitrogen Mineralization and Soil Fungal Colonization. <i>Sustainability</i> , 2021 , 13, 2018	3.6	2
155	Biochar production, activation and adsorptive applications: a review. 2021 , 19, 2237-2259		27
154	Critical review of biochar applications in geoengineering infrastructure: moving beyond agricultural and environmental perspectives. <i>Biomass Conversion and Biorefinery</i> , 1	2.3	20
153	Analysis and Characterization of Metallic Nodules on Biochar from Single-Stage Downdraft Gasification. 2021 , 9, 533		О
152	Role of biochar, compost and plant growth promoting rhizobacteria in the management of tomato early blight disease. 2021 , 11, 6092		12
151	Physiochemical Characterization of Biochars from Six Feedstocks and Their Effects on the Sorption of Atrazine in an Organic Soil. 2021 , 11, 716		9
150	Biochar prepared from Fe-rich sludge as suitable microbial carriers for facilitating biodegradation of phenanthrene in soil. 2021 , 96, 2014-2021		O
149	Cement Catalyzed Valorization of Rice Straw into Upgraded Bio-Oil and Fuel Gases Using Pyrolysis Reactions. 1-15		
148	Review on biomass feedstocks, pyrolysis mechanism and physicochemical properties of biochar: State-of-the-art framework to speed up vision of circular bioeconomy. 2021 , 297, 126645		63
147	Occurrence, formation and environmental fate of polycyclic aromatic hydrocarbons in biochars. 2021 , 1, 296-305		6
146	Multifunctional applications of biochar beyond carbon storage. 2022 , 1-51		58
145	Porous biochar purification method from coconut shell by alkali roasting followed by leaching and its application as a lithium primary battery. 2021 , 749, 012036		
144	Biochar-based Water Treatment Systems for Clean Water Provision. 2021 , 77-101		
143	Combined analyses of hygroscopic properties of organic and inorganic components of three representative black carbon samples recovered from pyrolysis. 2021 , 771, 145393		O
142	Efficiency assessment of municipal landfill leachate treatment during advanced oxidation process (AOP) with biochar adsorption (BC). <i>Journal of Environmental Management</i> , 2021 , 287, 112309	7.9	15
141	A scientometric review of biochar preparation research from 2006 to 2019. <i>Biochar</i> , 2021 , 3, 283-298	10	4
140	Utilizing dissimilar feedstocks derived biochar amendments to alter soil biological indicators in acidic soil of Northeast India. <i>Biomass Conversion and Biorefinery</i> , 1	2.3	3

139 Biochar for Wastewater Treatment. **2021**, 103-117

138	Biochar Amendment Improves Crop Production in Problematic Soils. 2021 , 189-204		О
137	Yeast-based biodiesel production using sulfonated carbon-based solid acid catalyst by an integrated biorefinery of durian peel waste. 2021 , 171, 647-657		10
136	Mini-Review on Hot Gas Filtration in Biomass Gasification: Focusing on Ceramic Filter Candles. 2021 , 35, 11800-11819		4
135	Mycorrhizal inoculation and treatment with biochar and compost from pruning waste improve the qualitative properties of a calcareous soil under wheat cultivation.		
134	Characterization Techniques as Supporting Tools for the Interpretation of Biochar Adsorption Efficiency in Water Treatment: A Critical Review. 2021 , 26,		1
133	The potential of biochar and lignin-based adsorbents for wastewater treatment: Comparison, mechanism, and application areview. 2021 , 166, 113473		10
132	Gasification biochar from horticultural waste: An exemplar of the circular economy in Singapore. 2021 , 781, 146573		6
131	Use of charcoal from gasification residues in adsorption pilot plant for the practical application of circular economy in industrial wastewater treatment. 1-18		О
130	Biochar Derived from Domestic Sewage Sludge: Influence of Temperature Pyrolysis on Biochars Chemical Properties and Phytotoxicity. 2021 , 2021, 1-10		1
129	Physicochemical Changes in Biomass Chars by Thermal Oxidation or Ambient Weathering and Their Impacts on Sorption of a Hydrophobic and a Cationic Compound. 2021 , 55, 13072-13081		1
128	Assessment of Pyrolytic Biochar as a Solar Absorber Material for Cost-Effective Water Evaporation Enhancement.		O
127	Biochar derived from agricultural wastes and wood residues for sustainable agricultural and environmental applications. 2021 ,		4
126	Reusing biochar as a filler or cement replacement material in cementitious composites: A review. 2021 , 300, 124295		7
125	Properties of biochar and its potential role in climate change mitigation and bioenergy generation: a review. 1		
124	Prediction of char production from slow pyrolysis of lignocellulosic biomass using multiple nonlinear regression and artificial neural network. 2021 , 159, 105286		4
123	Use of either pumice or willow-based biochar amendments to decrease soil salinity under arid conditions. 2021 , 24, 101849		4
122	Relative proportions of organic carbon functional groups in biochars as influenced by spectral data collection and processing. <i>Chemosphere</i> , 2021 , 283, 131023	8.4	O

121	A review on lignocellulosic biomass waste into biochar-derived catalyst: Current conversion techniques, sustainable applications and challenges. 2021 , 154, 106245	5
120	A critical review of the possible adverse effects of biochar in the soil environment. 2021, 796, 148756	21
119	Effects of biochar amendment on wheat production, mycorrhizal status, soil microbial community, and properties of an Andisol in Southern Chile. 2021 , 273, 108306	1
118	Propensity and appraisal of biochar performance in removal of oil spills: A comprehensive review. 2021 , 288, 117676	9
117	Char suppression mechanism using recycled intermediate phenol in supercritical water gasification of coal. <i>Fuel</i> , 2021 , 305, 121441	1
116	Life-cycle assessment of hydrogen production via catalytic gasification of wheat straw in the presence of straw derived biochar catalyst. <i>Bioresource Technology</i> , 2021 , 341, 125796	6
115	Experimental and DFT investigation on N-functionalized biochars for enhanced removal of Cr(VI). 2021 , 291, 118244	3
114	Adsorptive removal of fluoride using biochar [A potential application in drinking water treatment. 2022 , 278, 119106	8
113	Biochar for asphalt modification: A case of high-temperature properties improvement. 2022 , 804, 150194	5
112	Production, characterization, activation and environmental applications of engineered biochar: a review. 2021 , 19, 2261-2297	30
111	Environmental Benign Biochar Technologies: Strategic Utilization for CO2 Capture and Wastewater Treatment. 2021 , 181-214	
110	State-of-the-Art Char Production with a Focus on Bark Feedstocks: Processes, Design, and Applications. 2021 , 9, 87	4
109	Encyclopedia of Sustainability Science and Technology. 2012 , 845-893	6
108	Recent Development in Bioremediation of Soil Pollutants Through Biochar for Environmental Sustainability. 2020 , 123-140	7
107	Use of Char Derived from Waste Plastic Pyrolysis for Asphalt Binder Modification. 2021, 337-356	6
106	Adsorption of Dissolved Organic Compounds by Black Carbon. 2013 , 359-385	6
105	Microstructural analysis of nitrogen-doped char by Raman spectroscopy: Raman shift analysis from first principles. 2020 , 167, 559-574	20
104	Water hyacinth as a biomass: A review. 2020 , 277, 122214	34

103	CHAPTER 10:Biochar Production, Activation and Application as a Promising Catalyst. 340-366	3
102	Mechanical Properties of Mortar Containing Bio-Char From Pyrolysis. 2012 , 16, 67-74	27
101	Risk Evaluation of Pyrolyzed Biochar from Multiple Wastes. 2019 , 2019, 1-28	22
100	Effect of biochar on N2O emission, crop yield and properties of Stagnic Luvisol in a field experiment. 2019 , 106, 297-306	5
99	Biochar from sugarcane filtercake reduces soil CO2 emissions relative to raw residue and improves water retention and nutrient availability in a highly-weathered tropical soil. 2014 , 9, e98523	23
98	Morphological and physicochemical characterization of biochar produced by gasification of selected forestry species. 2017 , 26,	17
97	Comparison of photoacoustic, diffuse reflectance, attenuated total reflectance and transmission infrared spectroscopy for the study of biochars. 2018 , 20, 75-83	4
96	Cadmium and Copper Removal From Aqueous Solutions Using Chitosan-Coated Gasifier Biochar. 2020 , 8,	7
95	Soil amendment impact to soil organic matter and physical properties on the three soil types after second corn cultivation. 2020 , 5, 150-168	10
94	Preparation and Application of Biochars for Organic and Microbial Control in Wastewater Treatment Regimes. 2019 , 19-34	2
93	Application of Spectral Induced Polarization and Electrical Impedance Tomography on Mixtures of Biochars and Active Carbons with Sand. 2012 ,	1
92	Review Paper: The Fundamentals of Biochar as a Soil Amendment Tool and Management in Agriculture Scope: An Overview for Farmers and Gardeners. 2017 , 06, 38-61	18
91	Optimizing slow pyrolysis of banana peels wastes using response surface methodology. 2019 , 24, 354-361	27
90	Physical and chemical characterizations of biochars derived from different agricultural residues.	6
89	Interactions between Biochar and Compost Treatment and Mycorrhizal Fungi to Improve the Qualitative Properties of a Calcareous Soil under Rhizobox Conditions. 2021 , 11, 993	2
88	Hydrothermal and Thermochemical Synthesis of Bio-Oil from Lignocellulosic Biomass: Composition, Engineering and Catalytic Upgrading. 2016 , 325-370	1
87	Characterization of soil amendment potential of 18 different biochar types produced by slow pyrolysis. <i>Eurasian Journal of Soil Science</i> , 2019 , 8, 329-339	3
86	The properties of biochars derived from different plant residue and different pyrolysis temperatures. <i>Akademik Ziraat Dergisi</i> ,	

85	CO2 adsorption by carbonaceous materials and nanomaterials. 2020 , 173-192		1
84	Tailoring biochar for persulfate-based environmental catalysis: Impact of biomass feedstocks. Journal of Hazardous Materials, 2021 , 424, 127663	12.8	6
83	Improvement effects of conditioners on properties of acidified-salinized soils and lettuce growth. <i>Journal of Plant Nutrition</i> , 1-14	2.3	
82	Biochars intended for water filtration: A comparative study with activated carbons of their physicochemical properties and removal efficiency towards neutral and anionic organic pollutants. <i>Chemosphere</i> , 2021 , 288, 132538	8.4	6
81	A Biorefinery Based Zero-Waste Utilization of Non-edible Oilseeds for Biodiesel and Biofuel Production Along with Chemicals and Biomaterials. <i>Clean Energy Production Technologies</i> , 2020 , 21-55	0.8	
80	Lignocellulosic Biomass. 2020 , 499-535		
79	Recent Advances in Biochar-Based Mitigation of Dyes, Agrochemicals, and Pharmaceutical Pollutants. <i>Clean Energy Production Technologies</i> , 2020 , 391-415	0.8	
78	The impact of water soaking on physicochemical activated carbon produced by various thermal cracking temperature. 2020 ,		Ο
77	Recent advances in the application of biochar in microbial electrochemical cells. Fuel, 2021, 311, 12250	17.1	5
76	Biochar as a Tool for the Remediation of Agricultural Soils. 2021 , 281-303		
76 75	Biochar as a Tool for the Remediation of Agricultural Soils. 2021 , 281-303 Role of Biochar in the Removal of Organic and Inorganic Contaminants from Wastewater. 2021 , 107-13	4	
		4-4	O
75	Role of Biochar in the Removal of Organic and Inorganic Contaminants from Wastewater. 2021 , 107-13		Ο
75 74	Role of Biochar in the Removal of Organic and Inorganic Contaminants from Wastewater. 2021, 107-13 Biochar-based land development. Land Degradation and Development, Treatment of wastewater from biomass pyrolysis and recovery of its organic compounds with	4.4	
75 74 73	Role of Biochar in the Removal of Organic and Inorganic Contaminants from Wastewater. 2021, 107-13 Biochar-based land development. <i>Land Degradation and Development</i> , Treatment of wastewater from biomass pyrolysis and recovery of its organic compounds with char-assisted drying. <i>Fuel</i> , 2022, 312, 122825 Preparation of nano-biochar from conventional biorefineries for high-value applications. <i>Renewable</i>	4·4 7·1	
75 74 73 72	Role of Biochar in the Removal of Organic and Inorganic Contaminants from Wastewater. 2021, 107-13 Biochar-based land development. Land Degradation and Development, Treatment of wastewater from biomass pyrolysis and recovery of its organic compounds with char-assisted drying. Fuel, 2022, 312, 122825 Preparation of nano-biochar from conventional biorefineries for high-value applications. Renewable and Sustainable Energy Reviews, 2022, 157, 112057 Lignocellulosic biomass carbonization for biochar production and characterization of biochar	7.1 16.2	2
75 74 73 72 71	Role of Biochar in the Removal of Organic and Inorganic Contaminants from Wastewater. 2021, 107-13 Biochar-based land development. Land Degradation and Development, Treatment of wastewater from biomass pyrolysis and recovery of its organic compounds with char-assisted drying. Fuel, 2022, 312, 122825 Preparation of nano-biochar from conventional biorefineries for high-value applications. Renewable and Sustainable Energy Reviews, 2022, 157, 112057 Lignocellulosic biomass carbonization for biochar production and characterization of biochar reactivity. Renewable and Sustainable Energy Reviews, 2022, 157, 112056 Characteristics of Biochar from Jengkok Tobacco: The Effect of Quenching in Pyrolysis Process.	4·4 7.1 16.2	2

67	A review of the recent trend in the synthesis of carbon nanomaterials derived from oil palm by-product materials <i>Biomass Conversion and Biorefinery</i> , 2022 , 1-32	2.3	2
66	Metal-Supported Biochar Catalysts for Sustainable Biorefinery, Electrocatalysis and Energy Storage Applications: A Review. <i>Catalysts</i> , 2022 , 12, 207	4	2
65	Valorization of Cotton Gin Trash through Thermal and Biological Conversion for Soil Application. <i>Sustainability</i> , 2021 , 13, 13842	3.6	0
64	Does biochar improve nutrient availability in Ultisols of tree plantations in the Ecuadorian Amazonia?. <i>Soil Science Society of America Journal</i> ,	2.5	O
63	Use of Biochar in Asphalts: Review. Sustainability, 2022, 14, 4745	3.6	1
62	Data_Sheet_1.docx. 2020 ,		
61	Emerging application of biochar as a renewable and superior filler in polymer composites <i>RSC Advances</i> , 2022 , 12, 13938-13949	3.7	1
60	Biochar characterization for water and wastewater treatments. 2022 , 135-152		
59	Retention of oxyanions on biochar surface. 2022 , 233-276		
58	Life cycle assessment of bioenergy from lignocellulosic herbaceous biomass: The case study of Spartina argentinensis. <i>Energy</i> , 2022 , 124215	7.9	1
57	Synergetic effects of biochar addition on mesophilic and high total solids anaerobic digestion of chicken manure <i>Journal of Environmental Management</i> , 2022 , 315, 115192	7.9	1
56	Biochar soil application: soil improvement and pollution remediation. 2022, 97-102		
55	Activated Carbon-Based Supercapacitors. Advances in Material Research and Technology, 2022, 165-182	0.4	
54	Biochar from microalgae. 2022 , 613-637		
53	Sorption kinetics of 1,3,5-trinitrobenzene to biochars produced at various temperatures. <i>Biochar</i> , 2022 , 4,	10	О
52	Hydrogenation/Hydrodeoxygenation Selectivity Modulation by Cometal Addition to Palladium on Carbon-Coated Supports. <i>ACS Sustainable Chemistry and Engineering</i> ,	8.3	1
51	Application of biochar for the removal of methylene blue from aquatic environments. 2022, 29-76		
50	Modification of biomass-derived biochar: A practical approach towards development of sustainable CO2 adsorbent. <i>Biomass Conversion and Biorefinery</i> ,	2.3	Ο

49	Recent Advances and Prospects of Biochar-based Adsorbents for Malachite Green Removal: A Comprehensive Review. <i>Chemistry Africa</i> ,	2.2	0
48	Addition of biochar as thin preamble layer into sand filtration columns could improve the microplastics removal from water. <i>Water Research</i> , 2022 , 221, 118783	12.5	O
47	Production and Characterization of Biochar and Hybrid Produced from the Co-carbonization of Corn Husk and Low-Density Polyethylene Wastes. <i>Green Energy and Technology</i> , 2022 , 13-25	0.6	0
46	Design and Development of Onsite Biofilter Unit for Effective Remediation of Contaminants from Wastewater. <i>Clean - Soil, Air, Water</i> , 2100396	1.6	
45	Fruit quality and marketability of Okra (Abelmoschus esculentus (L.) Moench) as influenced by biochar rates and weeding regime. <i>International Journal of Pest Management</i> , 1-9	1.5	
44	Effects of biochar application on the loss characteristics of Cd from acidic soil under simulated rainfall conditions. <i>Environmental Science and Pollution Research</i> ,	5.1	
43	Characterization of biochar and phosphorus adsorption in charnockite-originated soils. <i>Journal of the Saudi Society of Agricultural Sciences</i> , 2022 ,	3.3	
42	Biochar amended microbial conversion of C1 gases to ethanol and butanol: Effects of biochar feedstock type and processing temperature. <i>Bioresource Technology</i> , 2022 , 360, 127573	11	О
41	Influence of indirectly heated steam-blown gasification process conditions on biochar physico-chemical properties. <i>Fuel Processing Technology</i> , 2022 , 235, 107347	7.2	0
40	The response of paddy with biochar application and legowo planting system at Tanjung Garbus Kampung Village. 2022 , 977, 012038		
39	Perspectives of Engineered Biochar for Environmental Applications: A Review. 2022 , 36, 7940-7986		2
38	Preparation of High-Performance Porous Carbon Materials by Citric Acid-Assisted Hydrothermal Carbonization of Bamboo and Their Application in Electrode Materials. 2022 , 36, 9303-9312		O
37	Sustainable carbon materials from the pyrolysis of lignocellulosic biomass. 2022 , 19, 100209		0
36	A green approach towards sorption of CO2 on waste derived biochar. 2022 , 214, 113954		O
35	Predictions of burnout times of biomass char using experimentally determined CO to CO2 ratio. 2022 , 450, 138404		0
34	The Effect of Activation on the Structure of Biochars Prepared from Wood and from Posidonia Oceanica: A Spectroscopic Study. 2022 , 2, 286-304		O
33	Characterization of Poultry Litter Biochar and Activated Biochar as a Soil Amendment for Valorization. 2022 , 2, 209-223		0
32	Production and Characterization of Biochar from Almond Shells. 2022 , 4, 854-864		2

31	Microwave-Assisted Chemically Modified Biochar for the Sequestration of Emerging Contaminants. 2022 , 283-310	О
30	Waste to catalyst: Role of agricultural waste in water and wastewater treatment. 2022 , 159762	O
29	Model for the Physical Activation of Biochar to Activated Carbon. 2022 , 105769	О
28	Physical-Chemical Characterization of Different Carbon-Based Sorbents for Environmental Applications. 2022 , 15, 7162	O
27	Enhancement of biogas production from individually or co-digested green algae Cheatomorpha linum using ultrasound and ozonation treated biochar. 2022 , 90, 106197	О
26	Solar pyrolysis of biomass - part II: The physicochemical structure evolution of char. 2023 , 333, 126474	1
25	Mechanistic investigation of char growth from lignin monomers during biomass utilisation. 2023 , 239, 107556	0
24	Coconut shell and husk biochar: A review of production and activation technology, economic, financial aspect and application. 0734242X2211271	Ο
23	Surface functional groups and degree of carbonization of selected chars from different processes and feedstock. 2022 , 17, e0277365	0
22	Removal of RhB from water by Fe-modified hydrochar and biochar IAn experimental evaluation supported by genetic programming. 2023 , 369, 120971	1
21	Reviewing the effect of pyrolysis temperature on the fourier-transform infrared spectra of biochars. 2022 , 25, 160-173	О
20	Improving the electrochemical desalination performance of chloride-doped polyaniline activated carbon electrode by tuning the synthesis method. 2022 , 141059	O
19	Pyrolysis of the anaerobic digestion solid by-product: Characterization of digestate decomposition and screening of the biochar use as soil amendment and as additive in anaerobic digestion. 2023 , 277, 116658	О
18	Sustainable production and application of biochar for energy storage and conversion. 2023, 333-364	O
17	Production of biochar from biowaste and its application in wastewater treatment. 2023, 149-193	О
16	Soil Organic Carbon Sequestration in Dryland Soils to Alleviate Impacts of Climate Change. 2023 , 221-245	О
15	Production and application of biochar. 2023,	0
14	The effect of ferrous sulfate pretreatment on the optimal temperature for production of sugars during autothermal pyrolysis. 2023 , 171, 105966	O

13	Microalgae for biofuel: Isothermal pyrolysis of a fresh and a marine microalga with mass and energy assessment. 2023 , 14, 100474	0
12	Adsorption of CO2 using biochar - Review of the impact of gas mixtures and water on adsorption. 2023 , 11, 109643	O
11	A comprehensive review on low-cost waste-derived catalysts for environmental remediation. 2023 , 164, 112261	О
10	Improving Pharmaceuticals Removal at Wastewater Treatment Plants Using Biochar: A Review.	O
9	Sustainable management of unavoidable biomass wastes. 2023 , 1, 100005	1
8	Carbon nano-materials (CNMs) derived from biomass for energy storage applications: a review.	O
7	Evidence for the formation of fused aromatic ring structures in an organic soil profile in the early diagenesis.	0
6	Biochar from Grapevine-Pruning Residues Is Affected by Grapevine Rootstock and Pyrolysis Temperature. 2023 , 15, 4851	O
5	Facile Functionalization of Charcoal by a Green Approach. 2023, 13, 476	0
4	Bamboo: A Sustainable Alternative for Biochar Production. 2023 , 265-295	O
3	Use of Plasticized Biochar Intermediate for Producing Biocarbons with Improved Mechanical Properties. 2023 , 11, 5845-5857	О
2	Assessment of the effects of biochar on biogas production during anaerobic digestion of aqueous pyrolysis condensate: a circular economy approach. 2023 , 109982	O
1	The Potential of Waste Phloem Fraction of Quercus cerris Bark in Biochar Production. 2023 , 10, 71	0