The Potential of Supported Cu₂O and CuO H₂ Production

ChemSusChem

2,230-233

DOI: 10.1002/cssc.200900032

Citation Report

#	Article	IF	CITATIONS
1	Experimental Study on Photocatalytic Activity of Cu2O/Cu Nanocomposites Under Visible Light. Catalysis Letters, 2009, 132, 75-80.	1.4	61
2	Chemical vapor deposition of copper oxide films and entangled quasi-1D nanoarchitectures as innovative gas sensors. Sensors and Actuators B: Chemical, 2009, 141, 270-275.	4.0	114
3	Hydrogen Production over Titaniaâ€Based Photocatalysts. ChemSusChem, 2010, 3, 681-694.	3.6	404
4	Special Issue on â€~CVD and Hydrogen'. Chemical Vapor Deposition, 2010, 16, 264-265.	1.4	0
5	CVD Co ₃ O ₄ Nanopyramids: a Nanoâ€Platform for Photoâ€Assisted H ₂ Production. Chemical Vapor Deposition, 2010, 16, 296-300.	1.4	29
6	Modeling the Transport and Reaction Mechanisms of Copper Oxide CVD. Chemical Vapor Deposition, 2010, 16, 336-345.	1.4	11
8	"Hot―Surface Activation of Molecular Complexes: Insight from Modeling Studies. Angewandte Chemie - International Edition, 2010, 49, 1944-1948.	7.2	50
9	Shape-controlled synthesis of Cu2O microcrystals by electrochemical method. Applied Surface Science, 2010, 256, 2269-2275.	3.1	29
10	Photocatalytic activity of CuO towards HER in catalyst from oxalic acid solution under simulated sunlight irradiation. Transactions of Nonferrous Metals Society of China, 2010, 20, 1944-1949.	1.7	35
11	CuO _{<i>x</i>} â^`TiO ₂ Photocatalysts for H ₂ Production from Ethanol and Glycerol Solutions. Journal of Physical Chemistry A, 2010, 114, 3916-3925.	1.1	239
12	Controlled vapor-phase synthesis of cobalt oxide nanomaterials with tuned composition and spatial organization. CrystEngComm, 2010, 12, 2185.	1.3	110
13	Novel Synthesis and Gas Sensing Performances of CuO–TiO ₂ Nanocomposites Functionalized with Au Nanoparticles. Journal of Physical Chemistry C, 2011, 115, 10510-10517.	1.5	133
14	Highly active oxide photocathode for photoelectrochemical water reduction. Nature Materials, 2011, 10, 456-461.	13.3	1,894
15	An Insight into Artificial Leaves for Sustainable Energy Inspired by Natural Photosynthesis. ChemCatChem, 2011, 3, 513-528.	1.8	65
16	Nanostructured Cu/TiO ₂ Photocatalysts for H ₂ Production from Ethanol and Glycerol Aqueous Solutions ChemCatChem, 2011, 3, 574-577.	1.8	158
17	The energy-environment nexus: aerosol science and technology enabling solutions. Frontiers of Environmental Science and Engineering in China, 2011, 5, 299-312.	0.8	17
18	Supported Metal Oxide Nanosystems for Hydrogen Photogeneration: Quo Vadis?. Advanced Functional Materials, 2011, 21, 2611-2623.	7.8	126
19	Photocatalytic H ₂ and Addedâ€Value Byâ€Products – The Role of Metal Oxide Systems in Their Synthesis from Oxygenates. European Journal of Inorganic Chemistry, 2011, 2011, 4309-4323.	1.0	134

#	Article	IF	CITATIONS
20	Biotemplated Materials for Sustainable Energy and Environment: Current Status and Challenges. ChemSusChem, 2011, 4, 1344-1387.	3.6	157
21	How Does Cu ^{II} Convert into Cu ^I ? An Unexpected Ringâ€Mediated Singleâ€Electron Reduction. Chemistry - A European Journal, 2011, 17, 10864-10870.	1.7	31
22	Controlled Fabrication of Photoactive Copper Oxide–Cobalt Oxide Nanowire Heterostructures for Efficient Phenol Photodegradation. ACS Applied Materials & Interfaces, 2012, 4, 5590-5607.	4.0	48
23	One-dimensional nanostructured materials for solar energy harvesting. Nanomaterials and Energy, 2012, 1, 4-17.	0.1	31
24	Correlation between the Oxidation State of Copper and the Photocatalytic Activity of Cu/Nb ₂ O ₅ . Journal of Physical Chemistry C, 2012, 116, 12181-12186.	1.5	19
25	Cu2O NiOx nanocomposite as an inexpensive photocathode in photoelectrochemical water splitting. Chemical Science, 2012, 3, 3482.	3.7	240
26	(Zn,H)-codoped copper oxide nanoparticles via pulsed laser ablation on Cu-Zn alloy in water. Nanoscale Research Letters, 2012, 7, 272.	3.1	13
27	Synthesis and Characterization of High-Photoactivity Electrodeposited Cu ₂ O Solar Absorber by Photoelectrochemistry and Ultrafast Spectroscopy. Journal of Physical Chemistry C, 2012, 116, 7341-7350.	1.5	305
29	Hydrogen Production by Photoreforming of Renewable Substrates. ISRN Chemical Engineering, 2012, 2012, 1-21.	1.2	57
30	Structural, surface morphological, and optical properties of nanocrystalline Cu ₂ O and CuO films formed by RF magnetron sputtering: Oxygen partial pressure effect. Physica Status Solidi (A) Applications and Materials Science, 2012, 209, 1279-1286.	0.8	26
31	The adsorption of CO ₂ , H ₂ CO ₃ , HCO ₃ ^{â^`} and CO ₃ ^{2â^`} on Cu ₂ O (111) surface: Firstâ€principles study. International Journal of Quantum Chemistry, 2012, 112, 2532-2540.	1.0	28
32	Vertically oriented CuO/ZnO nanorod arrays: from plasma-assisted synthesis to photocatalytic H2 production. Journal of Materials Chemistry, 2012, 22, 11739.	6.7	108
33	A cuprous oxide–reduced graphene oxide (Cu2O–rGO) composite photocatalyst for hydrogen generation: employing rGO as an electron acceptor to enhance the photocatalytic activity and stability of Cu2O. Nanoscale, 2012, 4, 3875.	2.8	279
34	Achievement in hydrogen storage on adsorbents with high surface-to-bulk ratio – Prospects for Si-containing matrices. International Journal of Hydrogen Energy, 2012, 37, 5032-5049.	3.8	26
35	Copper oxide photocathodes prepared by a solution based process. International Journal of Hydrogen Energy, 2012, 37, 8232-8239.	3.8	93
36	Photocatalytic hydrogen production over CuO and TiO2 nanoparticles mixture. International Journal of Hydrogen Energy, 2013, 38, 13541-13546.	3.8	71
37	Prediction of (TiO ₂) _x (Cu ₂ O) _y alloys for efficient photoelectrochemical water splitting. Physical Chemistry Chemical Physics, 2013, 15, 1778-1781.	1.3	17
38	Growth of nanostructured CuO thin films via microplasma-assisted, reactive chemical vapor deposition at high pressures. Journal of Crystal Growth, 2013, 363, 69-75.	0.7	47

#	Article	IF	Citations
39	Towards a perfect system for solar hydrogen production: an example of synergy on the atomic scale. , 2013, , .		1
40	Photoassisted H2 production by metal oxide nanomaterials fabricated through CVD-based approaches. Surface and Coatings Technology, 2013, 230, 219-227.	2.2	21
41	Copper(I) Oxide Nanocrystals – One Step Synthesis, Characterization, Formation Mechanism, and Photocatalytic Properties. European Journal of Inorganic Chemistry, 2013, 2013, 2640-2651.	1.0	106
42	Preparation of copper oxide nanowire-based conductometric chemical sensors. Sensors and Actuators B: Chemical, 2013, 182, 7-15.	4.0	58
43	Clean Energy. Interface Science and Technology, 2013, 19, 279-383.	1.6	12
44	Silicon nanowire array/Cu ₂ O crystalline core–shell nanosystem for solar-driven photocatalytic water splitting. Nanotechnology, 2013, 24, 265402.	1.3	45
45	Solar Energy Conversion. , 2013, , 267-304.		2
46	Design of p-CuO/n-ZnO heterojunctions by rf magnetron sputtering. Physica Status Solidi (A) Applications and Materials Science, 2013, 210, 1386-1391.	0.8	24
47	CuO/Cu2O composite hollow polyhedrons fabricated from metal–organic framework templates for lithium-ion battery anodes with a long cycling life. Nanoscale, 2013, 5, 4186.	2.8	326
48	Fabrication, Characterization, and Photoelectrochemical Properties of Cuâ€Doped PbTiO ₃ and Its Hydrogen Production Activity. ChemCatChem, 2013, 5, 3812-3820.	1.8	38
49	Freestanding atomically-thin cuprous oxide sheets for improved visible-light photoelectrochemical water splitting. Nano Energy, 2014, 8, 205-213.	8.2	54
50	Opening the Pandora's jar of molecule-to-material conversion in chemical vapor deposition: Insights from theory. International Journal of Quantum Chemistry, 2014, 114, 1-7.	1.0	20
51	Cu ₂ Oâ€Decorated Mesoporous TiO ₂ Beads as a Highly Efficient Photocatalyst for Hydrogen Production. ChemCatChem, 2014, 6, 293-300.	1.8	74
52	CuO/Pd composite photocathodes for photoelectrochemical hydrogen evolution reaction. International Journal of Hydrogen Energy, 2014, 39, 7686-7696.	3.8	110
53	One-Dimensional Nanomaterials for Energy Applications. , 2014, , 75-120.		6
54	CVD precursors for transition metal oxide nanostructures: molecular properties, surface behavior and temperature effects. Physica Status Solidi (A) Applications and Materials Science, 2014, 211, 251-259.	0.8	24
55	Cu ₂ O Film via Hydrothermal Redox Approach: Morphology and Photocatalytic Performance. Journal of Physical Chemistry C, 2014, 118, 16335-16343.	1.5	95
56	Heavy metal recovery from electroplating wastewater by synthesis of mixed-Fe ₃ O ₄ @SiO ₂ /metal oxide magnetite photocatalysts. Green Chemistry, 2014, 16, 2696-2705.	4.6	56

#	Article	IF	CITATIONS
57	Electrolyte-controllable synthesis of CuxO with novel morphology and their application in glucose sensors. RSC Advances, 2014, 4, 52067-52073.	1.7	10
58	Sol–gel deposited Cu ₂ O and CuO thin films for photocatalytic water splitting. Physical Chemistry Chemical Physics, 2014, 16, 25928-25934.	1.3	203
59	Facile synthesis of hierarchical CuO nanostructures with enhanced photocatalytic activity. Crystal Research and Technology, 2014, 49, 594-598.	0.6	11
60	A plasma-assisted approach for the controlled dispersion of CuO aggregates into β iron(<scp>iii</scp>) oxide matrices. CrystEngComm, 2014, 16, 8710-8716.	1.3	29
61	Hollow/porous nanostructures derived from nanoscale metal–organic frameworks towards high performance anodes for lithium-ion batteries. Nanoscale, 2014, 6, 1236-1257.	2.8	281
62	Fabrication and characterization of copper oxide (CuO)–gold (Au)–titania (TiO2) and copper oxide (CuO)–gold (Au)–indium tin oxide (ITO) nanowire heterostructures. Materials Characterization, 2014, 96, 71-77.	1.9	3
63	Titanium Dioxide-Based Nanomaterials for Photocatalytic Fuel Generations. Chemical Reviews, 2014, 114, 9987-10043.	23.0	2,096
64	Facile synthesis of self-assembled mesoporous CuO nanospheres and hollow Cu ₂ O microspheres with excellent adsorption performance. RSC Advances, 2014, 4, 43024-43028.	1.7	10
65	Copper-based water reduction catalysts for efficient light-driven hydrogen generation. Journal of Molecular Catalysis A, 2014, 395, 449-456.	4.8	20
66	Nanostructured copper oxide semiconductors: a perspective on materials, synthesis methods and applications. Journal of Materials Chemistry C, 2014, 2, 5247-5270.	2.7	323
67	One-pot synthesis of ternary Ag2CO3/Ag/AgCl photocatalyst in natural geothermal water with enhanced photocatalytic activity under visible light irradiation. Journal of Hazardous Materials, 2014, 280, 260-268.	6.5	89
68	Overall Water Splitting under Visible Light Irradiation Using Nanoparticulate RuO2 Loaded Cu2O Powder as Photocatalyst. Energy Procedia, 2014, 54, 221-227.	1.8	20
69	Graphene spheres loaded urchin-like CuxO (x=1 or 2) for use as a high performance photocatalyst. Ceramics International, 2014, 40, 5055-5059.	2.3	18
70	Cu ₂ O Decorated with Cocatalyst MoS ₂ for Solar Hydrogen Production with Enhanced Efficiency under Visible Light. Journal of Physical Chemistry C, 2014, 118, 14238-14245.	1.5	138
71	A Unique Semiconductor–Metal–Graphene Stack Design to Harness Charge Flow for Photocatalysis. Advanced Materials, 2014, 26, 5689-5695.	11.1	134
73	TiO ₂ /Cu ₂ O Core/Ultrathin Shell Nanorods as Efficient and Stable Photocatalysts for Water Reduction. Angewandte Chemie - International Edition, 2015, 54, 15260-15265.	7.2	109
74	Multidisciplinary approaches to solar hydrogen. Interface Focus, 2015, 5, 20140091.	1.5	24
75	Hierarchical Nanoflowers on Nanograss Structure for a Non-wettable Surface and a SERS Substrate. Nanoscale Research Letters, 2015, 10, 505.	3.1	16

#	Article	IF	CITATIONS
76	Growth and sensing properties of networked p-CuO nanowires. Sensors and Actuators B: Chemical, 2015, 212, 190-195.	4.0	76
77	Hysteresis phenomena and rate fluctuations under conditions of glycerol photo-reforming reaction over CuOx/TiO2 catalysts. Applied Catalysis B: Environmental, 2015, 178, 201-209.	10.8	62
78	Additive Free Co-Deposition of Nanocrystalline Copper/Cuprous Oxide by Electrodeposition. Journal of the Electrochemical Society, 2015, 162, D124-D128.	1.3	5
79	Effects of architectures and H2O2 additions on the photocatalytic performance of hierarchical Cu2O nanostructures. Nanoscale Research Letters, 2015, 10, 8.	3.1	33
80	Effect of bath concentration on the growth and photovoltaic response of SILAR-deposited CuO thin films. Applied Physics A: Materials Science and Processing, 2015, 120, 1105-1111.	1.1	23
81	Molecular cobalt–salen complexes as novel cocatalysts for highly efficient photocatalytic hydrogen production over a CdS nanorod photosensitizer under visible light. Journal of Materials Chemistry A, 2015, 3, 15729-15737.	5.2	83
82	Photocatalytic oxidation of gas-phase Hg0 by CuO/TiO2. Applied Catalysis B: Environmental, 2015, 176-177, 559-569.	10.8	102
83	Heterostructured Cu ₂ O/CuO decorated with nickel as a highly efficient photocathode for photoelectrochemical water reduction. Journal of Materials Chemistry A, 2015, 3, 12482-12499.	5.2	257
84	Graphene oxide as the passivation layer for Cu_xO photocatalyst on a plasmonic Au film and the corresponding photoluminescence study. Optics Express, 2015, 23, A1245.	1.7	10
85	Electrochemical Synthesis of Photoelectrodes and Catalysts for Use in Solar Water Splitting. Chemical Reviews, 2015, 115, 12839-12887.	23.0	481
86	Molecular cathode and photocathode materials for hydrogen evolution in photoelectrochemical devices. Journal of Photochemistry and Photobiology C: Photochemistry Reviews, 2015, 25, 90-105.	5.6	84
87	Hierarchical Shape Evolution of Cuprous Oxide Micro- and Nanocrystals by Surfactant-Assisted Electrochemical Deposition. Crystal Growth and Design, 2015, 15, 4969-4974.	1.4	12
88	Review of one-dimensional and two-dimensional nanostructured materials for hydrogen generation. Physical Chemistry Chemical Physics, 2015, 17, 2960-2986.	1.3	151
89	Hydrogen Photoproduction from Ethanol–Water Mixtures Over Au–Cu Alloy Nanoparticles Supported on TiO2. Topics in Catalysis, 2015, 58, 77-84.	1.3	19
90	Shape effects of cuprous oxide particles on stability in water and photocatalytic water splitting. Journal of Materials Chemistry A, 2015, 3, 156-162.	5.2	114
91	Nearâ€Infrared Lightâ€Induced Photocurrent from a (NaYF ₄ :Ybâ€Tm)/(Cu ₂ O) Composite Thin Film. Advanced Energy Materials, 2015, 5, 1401041.	10.2	36
92	Enhanced photocatalytic activity of CuO–SiO2 nanocomposite based on a new Cu nanocomplex. Journal of Materials Science: Materials in Electronics, 2016, 27, 11509-11517.	1.1	11
93	Ionicâ€Liquidâ€Functionalized Copper Oxide Nanorods for Photocatalytic Splitting of Water. ChemPlusChem, 2016, 81, 489-495.	1.3	18

#	Article	IF	CITATIONS
94	Low-temperature preparation of magnetically separable Fe3O4@CuO-RGO core-shell heterojunctions for high-performance removal of organic dye under visible light. Journal of Alloys and Compounds, 2016, 688, 649-656.	2.8	52
95	Silica-supported Cu2O nanoparticles with tunable size for sustainable hydrogen generation. Applied Catalysis B: Environmental, 2016, 192, 199-207.	10.8	38
96	Tin oxide as stable protective layer for composite cuprous oxide water-splitting photocathodes. Nano Energy, 2016, 24, 10-16.	8.2	84
97	Enhanced Activity and Stability of Carbon-Decorated Cuprous Oxide Mesoporous Nanorods for CO ₂ Reduction in Artificial Photosynthesis. ACS Catalysis, 2016, 6, 6444-6454.	5.5	201
98	Highly Photoactive and Photo-Stable Spray Pyrolyzed Tenorite CuO Thin Films for Photoelectrochemical Energy Conversion. Journal of the Electrochemical Society, 2016, 163, H1195-H1203.	1.3	25
99	Plasma electrochemical synthesis of cuprous oxide nanoparticles and their visible-light photocatalytic effect. Electrochimica Acta, 2016, 222, 1677-1681.	2.6	24
100	lonic Liquid Assisted Hydrothermal Syntheses of TiO ₂ /CuO Nano ompositesÂfor Enhanced Photocatalytic Hydrogen Production from Water. ChemistrySelect, 2016, 1, 2199-2206.	0.7	11
101	Influences of TiO2 phase structures on the structures and photocatalytic hydrogen production of CuOx/TiO2 photocatalysts. Applied Surface Science, 2016, 389, 760-767.	3.1	56
102	Copper (II) Oxide Nanoparticles as an Efficient Catalyst in the Azide–AlkyneCycloaddition. ChemistrySelect, 2016, 1, 4607-4612.	0.7	17
103	Effect of solvent ratio and counter ions on the morphology of copper nanoparticles and their catalytic application in β-enaminone synthesis. RSC Advances, 2016, 6, 101800-101807.	1.7	9
104	An in situ porous cuprous oxide/nitrogen-rich graphitic carbon nanocomposite derived from a metal–organic framework for visible light driven hydrogen evolution. Journal of Materials Chemistry A, 2016, 4, 18037-18042.	5.2	27
105	Photocatalytic reduction of CO2 using nanostructured Cu2O with foam-like structure. Solar Energy, 2016, 139, 452-457.	2.9	42
106	Cu2O/CuO Bilayered Composite as a High-Efficiency Photocathode for Photoelectrochemical Hydrogen Evolution Reaction. Scientific Reports, 2016, 6, 35158.	1.6	338
107	Photocatalytic activity of Cu2O supported on multi layers graphene for CO2 reduction by water under batch and continuous flow. Catalysis Communications, 2016, 84, 30-35.	1.6	33
108	Scalable Binder-Free Supersonic Cold Spraying of Nanotextured Cupric Oxide (CuO) Films as Efficient Photocathodes. ACS Applied Materials & Interfaces, 2016, 8, 15406-15414.	4.0	44
109	Structural, electrical and H2 sensing properties of copper oxide nanowires on glass substrate by anodization. Sensors and Actuators B: Chemical, 2016, 236, 1118-1125.	4.0	17
110	Facile synthesis of cuprous oxide nanoparticles by plasma electrochemistry. Journal Physics D: Applied Physics, 2016, 49, 275201.	1.3	10
111	Photocatalytic H 2 evolution from water–methanol mixtures on InGaO 3 (ZnO) m with an anisotropic layered structure modified with CuO and NiO cocatalysts. Journal of Molecular Catalysis A, 2016, 415, 82-88.	4.8	8

#	Article	IF	CITATIONS
112	Correlation between Deposition Parameters and Hydrogen Production in CuO Nanostructured Thin Films. Langmuir, 2016, 32, 1510-1520.	1.6	28
113	Ethanol gas and humidity sensors of CuO/Cu2O composite nanowires based on a Cu through-silicon via approach. Sensors and Actuators B: Chemical, 2016, 224, 95-102.	4.0	94
114	Photocatalytic production of hydrogen from biomass-derived feedstocks. Coordination Chemistry Reviews, 2016, 315, 1-66.	9.5	334
115	Hierarchical heterostructures based on prickly Ni nanowires/Cu ₂ O nanoparticles with enhanced photocatalytic activity. Dalton Transactions, 2016, 45, 7258-7266.	1.6	11
116	RuO2 nanoparticles by a novel green process via Aspalathus linearis natural extract & their water splitting response. Journal of Alloys and Compounds, 2016, 662, 283-289.	2.8	51
117	The advanced removal of benzene from aerosols by photocatalytic oxidation and adsorption of Cu–TiO 2 /PU under visible light irradiation. Applied Catalysis B: Environmental, 2016, 182, 172-183.	10.8	97
118	Photocatalytic reforming of formic acid for hydrogen production in aqueous solutions containing cupric ions and TiO2 suspended nanoparticles under UV-simulated solar radiation. Applied Catalysis A: General, 2016, 518, 181-188.	2.2	18
119	Ultralight, Flexible, and Semi-Transparent Metal Oxide Papers for Photoelectrochemical Water Splitting. ACS Applied Materials & Interfaces, 2017, 9, 3922-3930.	4.0	17
120	Photocatalytic Hydrogen Production: A Rift into the Future Energy Supply. ChemCatChem, 2017, 9, 1523-1544.	1.8	396
121	Electrochemically deposited Cu 2 O cubic particles on boron doped diamond substrate as efficient photocathode for solar hydrogen generation. Applied Surface Science, 2017, 408, 125-134.	3.1	35
122	Effect of gold underlayer on copper(I) oxide photocathode performance. Journal of Materials Research, 2017, 32, 1656-1664.	1.2	6
123	Yin and Yang Dual Characters of CuO _{<i>x</i>} Clusters for C–C Bond Oxidation Driven by Visible Light. ACS Catalysis, 2017, 7, 3850-3859.	5.5	103
124	Electrospun CuO Nanofibers: Stable Nanostructures for Solar Water Splitting. ChemPhotoChem, 2017, 1, 326-340.	1.5	30
125	Cu 2 O precipitation-assisted with ultrasound and microwave radiation for photocatalytic hydrogen production. International Journal of Hydrogen Energy, 2017, 42, 12997-13010.	3.8	39
126	Photocatalytic oxidation of gas-phase Hg0 by carbon spheres supported visible-light-driven CuO–TiO2. Journal of Industrial and Engineering Chemistry, 2017, 46, 416-425.	2.9	40
127	Progress in Developing Metal Oxide Nanomaterials for Photoelectrochemical Water Splitting. Advanced Energy Materials, 2017, 7, 1700555.	10.2	455
128	Synthesis of High-Density Poinsettia-Like Microstructure of CuO by the Hydrothermal Method and Its Ethanol Sensing Properties. Journal of Electronic Materials, 2017, 46, 3445-3452.	1.0	6
129	Possibility of selective and morphology-controlled growth of CuO and Cu 2 O films. Thin Solid Films, 2017, 644, 146-155.	0.8	10

#	Article	IF	CITATIONS
130	Electrochemical Synthesis of Cu ₂ O Concave Octahedrons with High-Index Facets and Enhanced Photoelectrochemical Activity. ACS Applied Materials & Interfaces, 2017, 9, 39027-39033.	4.0	40
131	Fabricating efficient CdSe–CdS photocatalyst systems by spatially resetting water splitting sites. Journal of Materials Chemistry A, 2017, 5, 20131-20135.	5.2	21
132	Antibacterial and photocatalytic properties of Cu2O/ZnO composite film synthesized by electrodeposition. Research on Chemical Intermediates, 2017, 43, 2517-2528.	1.3	14
133	Hydrogen evolution from aqueous-phase photocatalytic reforming of ethylene glycol over Pt/TiO2 catalysts: Role of Pt and product distribution. Applied Surface Science, 2017, 391, 251-258.	3.1	42
134	Nanotextured cupric oxide nanofibers coated with atomic layer deposited ZnO-TiO2 as highly efficient photocathodes. Applied Catalysis B: Environmental, 2017, 201, 479-485.	10.8	41
135	Facile synthesis of CuxO (xÂ=Â1, 2)/TiO2 nanotube arrays as an efficient visible-light driven photocatalysts. Journal of Porous Materials, 2017, 24, 97-102.	1.3	5
136	Noble metal-modified octahedral anatase titania particles with enhanced activity for decomposition of chemical and microbiological pollutants. Chemical Engineering Journal, 2017, 318, 121-134.	6.6	69
137	Exploring the Influence of Au Underlayer Thickness on Photocathode Performance. ECS Transactions, 2017, 80, 1049-1055.	0.3	2
138	Synthesis and enhanced photocatalytic property of CuO nanostructure via dip coating method. , 2017, ,		0
139	On the Origin of Enhanced Photocatalytic Activity of Copper-Modified Titania in the Oxidative Reaction Systems. Catalysts, 2017, 7, 317.	1.6	193
140	Light to Hydrogen: Photocatalytic Hydrogen Generation from Water with Molecularly-Defined Iron Complexes. Inorganics, 2017, 5, 14.	1.2	33
141	Preparing cuprous oxide nanomaterials by electrochemical method for non-enzymatic glucose biosensor. Nanotechnology, 2018, 29, 205501.	1.3	23
142	Recent advancements in semiconductor materials for photoelectrochemical water splitting for hydrogen production using visible light. Renewable and Sustainable Energy Reviews, 2018, 89, 228-248.	8.2	141
143	Effective Photocurrent Enhancement in Nanostructured CuO by Organic Dye Sensitization: Studies on Charge Transfer Kinetics. Journal of Physical Chemistry C, 2018, 122, 3690-3699.	1.5	15
144	High Efficient Cu ₂ 0/TiO ₂ Nanocomposite Photocatalyst to Degrade Organic Polluant under Visible Light Irradiation. ChemistrySelect, 2018, 3, 1682-1687.	0.7	23
145	Coupling photocatalytic CO ₂ reduction with benzyl alcohol oxidation to produce benzyl acetate over Cu ₂ O/Cu. Catalysis Science and Technology, 2018, 8, 2218-2223.	2.1	38
146	Increasing Effectiveness of Photogenerated Carriers by in Situ Anchoring of Cu ₂ O Nanoparticles on a Nitrogen-Doped Porous Carbon Yolk–Shell Cuboctahedral Framework. ACS Catalysis, 2018, 8, 3348-3356.	5.5	112
147	Cu2O clusters decorated on flower-like TiO2 nanorod array film for enhanced hydrogen production under solar light irradiation. Journal of Photochemistry and Photobiology A: Chemistry, 2018, 351, 78-86	2.0	18

ARTICLE IF CITATIONS # Magnetic properties of $\hat{I}\mu$ iron(III) oxide nanorod arrays functionalized with gold and copper(II) oxide. 148 3.1 8 Applied Surface Science, 2018, 427, 890-896. The photocatalytic degradation of methylene blue by green semiconductor films that is induced by 149 irradiation by a light-emitting diode and visible light. Journal of the Air and Waste Management Association, 2018, 68, 29-38. Efficient Photocatalysts Made by Uniform Decoration of Cu2O Nanoparticles on Si Nanowire Arrays 150 3.117 with Low Visible Reflectivity. Nanoscale Research Letters, 2018, 13, 312. Photodegradation of Stearic Acid Adsorbed on Copper Oxide Heterojunction Thin Films Prepared by Magnetron Sputtering. ChemEngineering, 2018, 2, 40. Solar Fuels by Heterogeneous Photocatalysis: From Understanding Chemical Bases to Process 152 1.0 13 Development. ChemEngineering, 2018, 2, 42. Carbon-nitride-based core–shell nanomaterials: synthesis and applications. Journal of Materials Science: Materials in Electronics, 2018, 29, 20280-20301. 1.1 Brand new 1D branched CuO nanowire arrays for efficient photoelectrochemical water reduction. 154 1.6 14 Dalton Transactions, 2018, 47, 14566-14572. Noble metal-modified titania with visible-light activity for the decomposition of microorganisms. 1.5 36 Beilstein Journal of Nanotechnology, 2018, 9, 829-841. Oxide Nanomaterials for Photoelectrochemical Hydrogen Energy Sources. Advances in Inorganic 156 0.4 9 Chemistry, 2018, , 145-183. Copper-Modified TiO₂ and ZrTiO₄: Cu Oxidation State Evolution during Photocatalytic Hydrogen Production. ACS Applied Materials & amp; Interfaces, 2018, 10, 27745-27756. Enhancing photocatalytic performance of TiO2 in H2 evolution via Ru co-catalyst deposition. Applied 158 10.8 85 Catalysis B: Environmental, 2018, 238, 434-443. Mn3O4 thin films functionalized with Ag, Au, and TiO2 analyzed using x-ray photoelectron spectroscopy. Surface Science Spectra, 2018, 25, 014003. Lignin-Based Composite Materials for Photocatalysis and Photovoltaics. Topics in Current Chemistry, 160 3.0 53 2018, 376, 20. Sizeâ€Dependent Visible Light Photocatalytic Performance of Cu₂O Nanocubes. ChemCatChem, 2018, 10, 3554-3563. 1.8 44 Self-assembly of three-dimensional CdS nanosphere/graphene networks for efficient photocatalytic 162 7.1 35 hydrogen evolution. Journal of Energy Chemistry, 2019, 31, 34-38. Photocatalysis for Hydrogen Production and CO₂ Reduction: The Case of 1.8 131 Copperâ€Ćatalysts. ĆhemCatChem, 2019, 11, 368-382. Characterization of semiconductor photocatalysts. Chemical Society Reviews, 2019, 48, 5184-5206. 164 18.7 260 Atomic Layer Deposition of Photoconductive Cu₂0 Thin Films. ACS Omega, 2019, 4, 1.6 11205-11214.

#	Article	IF	CITATIONS
166	Effect of Wavelength-Scale Cu ₂ O Particles on the Performance of Photocathodes for Solar Water Splitting. Journal of Physical Chemistry C, 2019, 123, 24846-24854.	1.5	5
167	Morphology-controlled synthesis of cuprous oxide nanoparticles by plasma electrochemistry and its photocatalytic activity. European Physical Journal D, 2019, 73, 1.	0.6	5
168	Porous Cupric Oxide: Efficient Photocathode for Photoelectrochemical Water Splitting. ChemPhotoChem, 2019, 3, 1254-1262.	1.5	14
169	Near UVâ€Irradiation of CuO _x â€Impregnated TiO ₂ Providing Active Species for H ₂ Production Through Methanol Photoreforming. ChemCatChem, 2019, 11, 4314-4326.	1.8	25
170	Synthesis and characterizations of Cu2O/Ni(OH)2 nanocomposite having a double co-catalyst for photoelectrochemical hydrogen production. Chemical Engineering Journal, 2019, 368, 784-794.	6.6	32
171	Evidence for a dual mechanism in the TiO2/CuxO photocatalyst during the degradation of sulfamethazine under solar or visible light: Critical issues. Journal of Photochemistry and Photobiology A: Chemistry, 2019, 375, 270-279.	2.0	48
172	Modified Photocatalysts. Energy and Environment Research in China, 2019, , 65-82.	2.3	0
173	Uniform dispersion of CuO nanoparticles on mesoporous TiO2 networks promotes visible light photocatalysis. Ceramics International, 2020, 46, 8819-8826.	2.3	41
174	Photocatalytic oxidation removal of elemental mercury from flue gas.ÂA review. Environmental Chemistry Letters, 2020, 18, 417-431.	8.3	40
175	Confining Mo-activated CoSx active sites within MCM-41 for highly efficient dye-sensitized photocatalytic H2 evolution. Journal of Colloid and Interface Science, 2020, 563, 112-121.	5.0	12
176	Pompon Dahliaâ€like Cu ₂ 0/rGO Nanostructures for Visible Light Photocatalytic H ₂ Production and 4â€Chlorophenol Degradation. ChemCatChem, 2020, 12, 1699-1709.	1.8	34
177	Metal oxide- and metal sulfide-based nanomaterials as photocatalysts. , 2020, , 77-96.		8
178	An enzyme free detection of L-Glutamic acid using deposited CuO.GdO nanospikes on a flat glassy carbon electrode. Surfaces and Interfaces, 2020, 20, 100617.	1.5	13
179	Hydrogen production through photoreforming of methanol by Cu(s)/TiO2 nanocatalyst: Optimization and simulation. Surfaces and Interfaces, 2020, 21, 100709.	1.5	8
180	Rapid photodegradation of methylene blue dye by rGO- V2O5 nano composite. Journal of Alloys and Compounds, 2020, 842, 155746.	2.8	30
181	Towards sustainable and efficient p-type metal oxide semiconductor materials in dye-sensitised photocathodes for solar energy conversion. Physical Chemistry Chemical Physics, 2020, 22, 13850-13861.	1.3	28
182	Highly Crystalline Ordered Cu-dopedTiO2Nanostructure by Paper Templated Method: Hydrogen Production and Dye Degradation under Natural Sunlight. Journal of Composites Science, 2020, 4, 48.	1.4	9
183	All-electrochemical fabrication of <i>α</i> -Fe ₂ O ₃ nanotube array/Cu ₂ O composites toward visible-light-responsive photocatalysis. Japanese Journal of Applied Physics, 2020, 59, 065503.	0.8	5

#	Article	IF	CITATIONS
184	Recent progress on heterostructures of photocatalysts for environmental remediation. Materials Today: Proceedings, 2020, 32, 584-593.	0.9	7
185	How photocorrosion can trick you: a detailed study on low-bandgap Li doped CuO photocathodes for solar hydrogen production. Nanoscale, 2020, 12, 7766-7775.	2.8	18
186	RF magnetron sputtered Ag-Cu2O-CuO nanocomposite thin films with highly enhanced photocatalytic and catalytic performance. Applied Surface Science, 2020, 517, 146169.	3.1	38
187	An Operando X-ray Absorption Spectroscopy Study of a NiCuâ^'TiO ₂ Photocatalyst for H ₂ Evolution. ACS Catalysis, 2020, 10, 8293-8302.	5.5	46
188	Quasi-1D MnO2 nanocomposites as gas sensors for hazardous chemicals. Applied Surface Science, 2020, 512, 145667.	3.1	35
189	Impact of the Plasmonic Metal Oxide-Induced Photocatalytic Processes on the Interaction of Quantum Dots with Metallic Nanoparticles. Journal of Physical Chemistry C, 2020, 124, 4261-4269.	1.5	11
190	Interface Engineering of Coâ€LDH@MOF Heterojunction in Highly Stable and Efficient Oxygen Evolution Reaction. Advanced Science, 2021, 8, 2002631.	5.6	151
191	Well-defined Cu ₂ O photocatalysts for solar fuels and chemicals. Journal of Materials Chemistry A, 2021, 9, 5915-5951.	5.2	101
192	Controlled Synthesis of Cu ⁰ /Cu ₂ O for Efficient Photothermal Catalytic Conversion of CO ₂ and H ₂ O. ACS Sustainable Chemistry and Engineering, 2021, 9, 1754-1761.	3.2	53
193	Homogeneous photocatalysts immobilized on polymeric supports: Environmental and chemical synthesis applications. , 2021, , 575-588.		0
194	Perylenetetracarboxylic acid–incorporated silver nanocluster for cost-effective visible-light-driven photocatalysis and catalytic reduction. Colloid and Polymer Science, 2021, 299, 925-936.	1.0	5
195	0D β-Ni(OH)2 nanoparticles/1D Mn0.3Cd0.7S nanorods with rich S vacancies for improved photocatalytic H2 production. Chemical Engineering Journal, 2021, 414, 129157.	6.6	66
196	Effect of Cu+ ions on the structure, morphology, optical and photocatalytic properties of nanostructured ZnO. Materials Characterization, 2021, 179, 111384.	1.9	7
197	Acetic acid conversion to ketene on Cu2O(1 0 0): Reaction mechanism deduced from experimental observations and theoretical computations. Journal of Catalysis, 2021, 402, 154-165.	3.1	3
198	Surface Properties of 1DTiO2 Microrods Modified with Copper (Cu) and Nanocavities. Nanomaterials, 2021, 11, 324.	1.9	1
199	Nanostructured anodic films grown on copper: a review of fabrication techniques and applications. , 2020, , 415-452.		5
200	Photoelectrochemical solar water splitting: From basic principles to advanced devices. , 2018, 2, BDJOC3.		53
201	A Review of Various Nanostructures to Enhance the Efficiency of Solar-Photon-Conversions. , 2017, , 197-225.		1

#	Article	IF	CITATIONS
202	Microwave-Assisted Synthesis of Flower-like and Plate-like CuO Nanopowder and Their Photocatalytic Activity for Polluted Lake Water. Journal of the Korean Ceramic Society, 2012, 49, 151-154.	1.1	22
203	Nanowire-Like Copper Oxide Grown on Porous Copper, a Promising Anode Material for Lithium-Ion Battery. Journal of the Korean Ceramic Society, 2017, 54, 438-442.	1.1	15
204	A Review of Various Nanostructures to Enhance the Efficiency of Solar-Photon-Conversions. Advances in Environmental Engineering and Green Technologies Book Series, 2015, , 277-312.	0.3	0
205	Chapter 11 Hydrogen Generation. , 2016, , 167-184.		0
207	Synthesis mechanism of cuprous oxide nanoparticles by atmospheric-pressure plasma electrolysis. Journal Physics D: Applied Physics, 2021, 54, 105201.	1.3	7
208	Pulsed laser deposited Cu2O/CuO films as efficient photocatalyst. Thin Solid Films, 2022, 744, 139080.	0.8	12
209	Boosting electron kinetics of anatase TiO2 with carbon nanosheet for efficient photo-reforming of xylose into biomass-derived organic acids. Journal of Alloys and Compounds, 2022, 906, 164276.	2.8	16
210	Fabrication of CuO/MoO3 p-n heterojunction for enhanced dyes degradation and hydrogen production from water splitting. International Journal of Hydrogen Energy, 2022, 47, 15491-15504.	3.8	21
211	Photovoltaic/photo-electrocatalysis integration for green hydrogen: A review. Energy Conversion and Management, 2022, 261, 115648.	4.4	48
212	Green synthesis of <scp>Sizeâ€Controlled</scp> copper oxide nanoparticles as catalysts for <scp> H ₂ </scp> production from industrial waste aluminum. International Journal of Energy Research, 2022, 46, 14023-14035.	2.2	4
213	Visible Photocatalytic Hydrogen Production from Ch3oh Over Cuo/Wo3: The Effect of Electron Transfer Behavior of the Adsorbed Ch3oh. SSRN Electronic Journal, 0, , .	0.4	0
214	Value-added fabrication of NiO-doped CuO nanoflakes from waste flexible printed circuit board for advanced photocatalytic application. Scientific Reports, 2022, 12, .	1.6	7
215	Visible photocatalytic hydrogen production from CH3OH over CuO/WO3: The effect of electron transfer behavior of the adsorbed CH3OH. Chemical Engineering Journal, 2023, 459, 141616.	6.6	5
216	Fabrication of a Concave Cubic Z-Scheme ZnIn ₂ S ₄ /Cu ₂ O Heterojunction with Superior Light-Driven CO ₂ Reduction Performance. Energy & Fuels, 2023, 37, 6036-6048.	2.5	4
	Overview of characterization techniques for advanced photosatalyst 2024 85 107		0

222 Overview of characterization techniques for advanced photocatalyst. , 2024, , 85-107. 0