GFAPâ€GFP neural progenitors are antigenically homogenclosed mosaic niche

Glia 57, 66-78 DOI: 10.1002/glia.20735

Citation Report

#	Article	IF	CITATIONS
1	The astrocyte odyssey. Progress in Neurobiology, 2008, 86, 342-67.	2.8	428
2	Simultaneous prospective purification of adult subventricular zone neural stem cells and their progeny. Proceedings of the National Academy of Sciences of the United States of America, 2009, 106, 6387-6392.	3.3	342
3	Analysis of Stem Cell Lineage Progression in the Neonatal Subventricular Zone Identifies EGFR+/NG2â^' Cells as Transit-Amplifying Precursors. Stem Cells, 2009, 27, 1443-1454.	1.4	51
4	Polydendrocytes (NG2 cells): multifunctional cells with lineage plasticity. Nature Reviews Neuroscience, 2009, 10, 9-22.	4.9	720
5	Selective upregulation of 3-phosphoglycerate dehydrogenase (Phgdh) expression in adult subventricular zone neurogenic niche. Neuroscience Letters, 2009, 453, 21-26.	1.0	11
6	The Glial Nature of Embryonic and Adult Neural Stem Cells. Annual Review of Neuroscience, 2009, 32, 149-184.	5.0	2,067
7	GABA's Control of Stem and Cancer Cell Proliferation in Adult Neural and Peripheral Niches. Physiology, 2009, 24, 171-185.	1.6	109
8	Endothelinergic cells in the subependymal region of mice. Brain Research, 2010, 1321, 20-30.	1.1	14
9	NG2 cells: Properties, progeny and origin. Brain Research Reviews, 2010, 63, 72-82.	9.1	214
10	Neurotransmitter signaling in postnatal neurogenesis: The first leg. Brain Research Reviews, 2010, 63, 60-71.	9.1	81
11	Expression of the transcription factor Olig2 in proliferating cells in the adult zebrafish telencephalon. Developmental Dynamics, 2010, 239, 3336-3349.	0.8	41
12	GABAA increases calcium in subventricular zone astrocyte-like cells through L- and T-type voltage-gated calcium channels. Frontiers in Cellular Neuroscience, 2010, 4, 8.	1.8	57
13	Imaging and recording subventricular zone progenitor cells in live tissue of postnatal mice. Frontiers in Neuroscience, 2010, 4, .	1.4	46
14	Complex environment experience rescues impaired neurogenesis, enhances synaptic plasticity, and attenuates neuropathology in familial Alzheimer's diseaseâ€ŀinked APPswe/PS1ΔE9 mice. FASEB Journal, 2010, 24, 1667-1681.	0.2	162
15	Neural Stem Cell Niches and Homing: Recruitment and Integration into Functional Tissues. ILAR Journal, 2010, 51, 3-23.	1.8	64
16	Antidepressant imipramine induces human astrocytes to differentiate into cells with neuronal phenotype. International Journal of Neuropsychopharmacology, 2010, 13, 603-615.	1.0	25
17	In vivo targeting of subventricular zone astrocytes. Progress in Neurobiology, 2010, 92, 19-32.	2.8	16
18	NMDA Receptors Activated by Subventricular Zone Astrocytic Glutamate Are Critical for Neuroblast	3.8	206

#	Article	IF	CITATIONS
19	A symphony of signals conducts early and late stages of adult neurogenesis. Neuropharmacology, 2010, 58, 865-876.	2.0	90
20	Decreased numbers of progenitor cells but no response to antidepressant drugs in the hippocampus of elderly depressed patients. Neuropharmacology, 2010, 58, 940-949.	2.0	187
21	Characterization of novel monoclonal antibodies able to identify neurogenic niches and arrest neurosphere proliferation and differentiation. Neuroscience, 2010, 169, 1473-1485.	1.1	13
22	Distinct effects of Sonic hedgehog and Wnt-7a on differentiation of neonatal neural stem/progenitor cells in vitro. Neuroscience, 2010, 171, 693-711.	1.1	19
23	Adult SVZ Lineage Cells Home to and Leave the Vascular Niche via Differential Responses to SDF1/CXCR4 Signaling. Cell Stem Cell, 2010, 7, 163-173.	5.2	344
24	In Vivo Fate Mapping and Expression Analysis Reveals Molecular Hallmarks of Prospectively Isolated Adult Neural Stem Cells. Cell Stem Cell, 2010, 7, 744-758.	5.2	337
25	Lake-Front Property: A Unique Germinal Niche by the Lateral Ventricles of the Adult Brain. Neuron, 2011, 70, 674-686.	3.8	312
26	Cell proliferation in human ganglionic eminence and suppression after prematurity-associated haemorrhage. Brain, 2011, 134, 1344-1361.	3.7	105
27	Gap junctionâ€mediated calcium waves define communication networks among murine postnatal neural progenitor cells. European Journal of Neuroscience, 2011, 34, 1895-1905.	1.2	74
28	Injury-induced neurogenesis in the mammalian forebrain. Cellular and Molecular Life Sciences, 2011, 68, 1645-1656.	2.4	62
29	Expression of <i>Tlx</i> in Both Stem Cells and Transit Amplifying Progenitors Regulates Stem Cell Activation and Differentiation in the Neonatal Lateral Subependymal Zone. Stem Cells, 2011, 29, 1415-1426.	1.4	23
30	Locating and labeling neural stem cells in the brain. Journal of Cellular Physiology, 2011, 226, 1-7.	2.0	52
31	Early microglia activation in a mouse model of chronic glaucoma. Journal of Comparative Neurology, 2011, 519, 599-620.	0.9	289
32	Culturing conditions remarkably affect viability and organization of mouse subventricular zone in ex vivo cultured forebrain slices. Journal of Neuroscience Methods, 2011, 197, 65-81.	1.3	3
33	Age-dependent fate and lineage restriction of single NG2 cells. Development (Cambridge), 2011, 138, 745-753.	1.2	400
34	Different expression of human GFAP promoter-derived GFP in different subsets of astrocytes in the mouse brain. Animal Cells and Systems, 2011, 15, 268-273.	0.8	26
35	Transplanted L1 Expressing Radial Glia and Astrocytes Enhance Recovery after Spinal Cord Injury. Journal of Neurotrauma, 2011, 28, 1921-1937.	1.7	31
36	Postnatal neurogenesis generates heterotopias, olfactory micronodules and cortical infiltration following single-cell Tsc1 deletion. Human Molecular Genetics, 2012, 21, 799-810.	1.4	64

#	Article	IF	CITATIONS
37	Neural Progenitor Cells Regulate Capillary Blood Flow in the Postnatal Subventricular Zone. Journal of Neuroscience, 2012, 32, 16435-16448.	1.7	64
38	PEDF Is a Novel Oligodendrogenic Morphogen Acting on the Adult SVZ and Corpus Callosum. Journal of Neuroscience, 2012, 32, 12152-12164.	1.7	21
39	NKCC1 Knockdown Decreases Neuron Production through GABA _A -Regulated Neural Progenitor Proliferation and Delays Dendrite Development. Journal of Neuroscience, 2012, 32, 13630-13638.	1.7	65
40	Multifaces of neuropeptide Y in the brain – Neuroprotection, neurogenesis and neuroinflammation. Neuropeptides, 2012, 46, 299-308.	0.9	103
41	Olig2-dependent developmental fate switch of NG2 cells. Development (Cambridge), 2012, 139, 2299-2307.	1.2	118
42	Stem cells in gliomas. Handbook of Clinical Neurology / Edited By P J Vinken and G W Bruyn, 2012, 104, 63-73.	1.0	10
43	Transient mGlu5R inhibition enhances the survival of granule cell precursors in the neonatal cerebellum. Neuroscience, 2012, 219, 271-279.	1.1	4
44	IDH Mutation and Neuroglial Developmental Features Define Clinically Distinct Subclasses of Lower Grade Diffuse Astrocytic Glioma. Clinical Cancer Research, 2012, 18, 2490-2501.	3.2	127
46	S Phase Entry of Neural Progenitor Cells Correlates with Increased Blood Flow in the Young Subventricular Zone. PLoS ONE, 2012, 7, e31960.	1.1	26
47	Cell cycle and lineage progression of neural progenitors in the ventricular-subventricular zones of adult mice. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110, E1045-54.	3.3	212
48	Shades of gray: The delineation of marker expression within the adult rodent subventricular zone. Progress in Neurobiology, 2013, 111, 1-16.	2.8	20
49	Hypoxia-inducible factor 1a is a Tsc1-regulated survival factor in newborn neurons in tuberous sclerosis complex. Human Molecular Genetics, 2013, 22, 1725-1734.	1.4	13
50	mTORC1 Targets the Translational Repressor 4E-BP2, but Not S6 Kinase 1/2, to Regulate Neural Stem Cell Self-Renewal InÂVivo. Cell Reports, 2013, 5, 433-444.	2.9	124
51	Adult Neural Stem Cells From the Subventricular Zone: A Review of the Neurosphere Assay. Anatomical Record, 2013, 296, 1435-1452.	0.8	62
52	Neural Stem Cells Among Glia. , 2013, , 685-705.		5
53	The adult spinal cord harbors a population of GFAP-positive progenitors with limited self-renewal potential. Clia, 2013, 61, 2100-2113.	2.5	26
54	<i>In vivo</i> contribution of nestin―and GLASTâ€lineage cells to adult hippocampal neurogenesis. Hippocampus, 2013, 23, 708-719.	0.9	101
55	Environmental Cues and Signaling Pathways that Regulate Neural Precursor Development. , 2013, , 355-383.		5

#	Article	IF	CITATIONS
56	Effects of Chronic D-Serine Elevation on Animal Models of Depression and Anxiety-Related Behavior. PLoS ONE, 2013, 8, e67131.	1.1	49
57	Postnatal Neurogenesis in the Subventricular Zone: A Manipulable Source for CNS Plasticity and Repair. , 2013, , .		Ο
58	GABAergic striatal neurons project dendrites and axons into the postnatal subventricular zone leading to calcium activity. Frontiers in Cellular Neuroscience, 2014, 8, 10.	1.8	30
59	Astrocyteâ€restricted disruption of connexinâ€43 impairs neuronal plasticity in mouse barrel cortex. European Journal of Neuroscience, 2014, 39, 35-45.	1.2	40
60	Receptor Tyrosine Kinase (RTK) Signalling in the Control of Neural Stem and Progenitor Cell (NSPC) Development. Molecular Neurobiology, 2014, 49, 440-471.	1.9	23
61	Prospective Identification and Purification of Quiescent Adult Neural Stem Cells from Their In Vivo Niche. Neuron, 2014, 82, 545-559.	3.8	563
62	Finding degrees of separation: Experimental approaches for astroglial and oligodendroglial cell isolation and genetic targeting. Journal of Neuroscience Methods, 2014, 236, 125-147.	1.3	13
63	MEK-ERK1/2-Dependent FLNA Overexpression Promotes Abnormal Dendritic Patterning in Tuberous Sclerosis Independent of mTOR. Neuron, 2014, 84, 78-91.	3.8	45
64	Unlocking epigenetic codes in neurogenesis. Genes and Development, 2014, 28, 1253-1271.	2.7	79
65	NG2 cells (polydendrocytes) in brain physiology and repair. Frontiers in Neuroscience, 2014, 8, 133.	1.4	86
66	Voltageâ€dependent K ⁺ currents contribute to heterogeneity of olfactory ensheathing cells. Glia, 2015, 63, 1646-1659.	2.5	9
67	Striatal astrocytes produce neuroblasts in an excitotoxic model of Huntington's disease. Development (Cambridge), 2015, 142, 840-5.	1.2	92
68	Single-Cell Transcriptomics Reveals a Population of Dormant Neural Stem Cells that Become Activated upon Brain Injury. Cell Stem Cell, 2015, 17, 329-340.	5.2	641
69	Adult Neural Stem Cells from the Subventricular Zone Give Rise to Reactive Astrocytes in the Cortex after Stroke. Cell Stem Cell, 2015, 17, 624-634.	5.2	235
70	Live Imaging of Adult Neural Stem Cells in Rodents. Frontiers in Neuroscience, 2016, 10, 78.	1.4	17
71	Taking Advantage of Nature's Gift: Can Endogenous Neural Stem Cells Improve Myelin Regeneration?. International Journal of Molecular Sciences, 2016, 17, 1895.	1.8	9
72	Transgenic mouse models for studying adult neurogenesis. Frontiers in Biology, 2016, 11, 151-167.	0.7	36
73	Strategies for immunohistochemical protein localization using antibodies: What did we learn from neurotransmitter transporters in glial cells and neurons. Glia, 2016, 64, 2045-2064.	2.5	18

#	Article	IF	CITATIONS
74	The multifaceted subventricular zone astrocyte: From a metabolic and pro-neurogenic role to acting as a neural stem cell. Neuroscience, 2016, 323, 20-28.	1.1	33
75	Switching on mTORC1 induces neurogenesis but not proliferation in neural stem cells of young mice. Neuroscience Letters, 2016, 614, 112-118.	1.0	15
76	Hypothalamic Neurogenesis as an Adaptive Metabolic Mechanism. Frontiers in Neuroscience, 2017, 11, 190.	1.4	38
77	Adult Neurogenesis Is Sustained by Symmetric Self-Renewal and Differentiation. Cell Stem Cell, 2018, 22, 221-234.e8.	5.2	184
78	InÂVivo Selection of a Computationally Designed SCHEMA AAV Library Yields a Novel Variant for Infection of Adult Neural Stem Cells in the SVZ. Molecular Therapy, 2018, 26, 304-319.	3.7	72
79	Inhibition of astrocyte FAK–JNK signaling promotes subventricular zone neurogenesis through CNTF. Glia, 2018, 66, 2456-2469.	2.5	20
80	Heterogeneity of the astrocytic AMPAâ€receptor transcriptome. Glia, 2018, 66, 2604-2616.	2.5	19
81	Islet1 and Brn3 Expression Pattern Study in Human Retina and hiPSC-Derived Retinal Organoid. Stem Cells International, 2019, 2019, 1-14.	1.2	14
82	The crosstalk between glycosphingolipids and neural stem cells. Journal of Neurochemistry, 2019, 148, 698-711.	2.1	7
83	Neural stem cells among glia. , 2020, , 775-806.		2
83 84	Neural stem cells among glia. , 2020, , 775-806. S100βâ€mediated astroglial control of firing and input processing in layer 5 pyramidal neurons of the mouse visual cortex. Journal of Physiology, 2021, 599, 677-707.	1.3	2 15
	S100βâ€mediated astroglial control of firing and input processing in layer 5 pyramidal neurons of the	1.3	
84	S100βâ€mediated astroglial control of firing and input processing in layer 5 pyramidal neurons of the mouse visual cortex. Journal of Physiology, 2021, 599, 677-707. Neurospheres: a potential in vitro model for the study of central nervous system disorders.		15
84 85	 S100βâ€mediated astroglial control of firing and input processing in layer 5 pyramidal neurons of the mouse visual cortex. Journal of Physiology, 2021, 599, 677-707. Neurospheres: a potential in vitro model for the study of central nervous system disorders. Molecular Biology Reports, 2021, 48, 3649-3663. Neurogenesis in the adult hypothalamus: A distinct form of structural plasticity involved in metabolic and circadian regulation, with potential relevance for human pathophysiology. Handbook 	1.0	15 14
84 85 87	 S100βâ€mediated astroglial control of firing and input processing in layer 5 pyramidal neurons of the mouse visual cortex. Journal of Physiology, 2021, 599, 677-707. Neurospheres: a potential in vitro model for the study of central nervous system disorders. Molecular Biology Reports, 2021, 48, 3649-3663. Neurogenesis in the adult hypothalamus: A distinct form of structural plasticity involved in metabolic and circadian regulation, with potential relevance for human pathophysiology. Handbook of Clinical Neurology / Edited By P J Vinken and G W Bruyn, 2021, 179, 125-140. 	1.0	15 14 17
84 85 87 88	 S100βâ€mediated astroglial control of firing and input processing in layer 5 pyramidal neurons of the mouse visual cortex. Journal of Physiology, 2021, 599, 677-707. Neurospheres: a potential in vitro model for the study of central nervous system disorders. Molecular Biology Reports, 2021, 48, 3649-3663. Neurogenesis in the adult hypothalamus: A distinct form of structural plasticity involved in metabolic and circadian regulation, with potential relevance for human pathophysiology. Handbook of Clinical Neurology / Edited By P J Vinken and G W Bruyn, 2021, 179, 125-140. Microglia: The Bodyguard and the Hunter of the Adult Neurogenic Niche. , 2012, , 245-279. 	1.0	15 14 17 2
84 85 87 88 89	 S100Î²â€mediated astroglial control of firing and input processing in layer 5 pyramidal neurons of the mouse visual cortex. Journal of Physiology, 2021, 599, 677-707. Neurospheres: a potential in vitro model for the study of central nervous system disorders. Molecular Biology Reports, 2021, 48, 3649-3663. Neurogenesis in the adult hypothalamus: A distinct form of structural plasticity involved in metabolic and circadian regulation, with potential relevance for human pathophysiology. Handbook of Clinical Neurology / Edited By P J Vinken and G W Bruyn, 2021, 179, 125-140. Microglia: The Bodyguard and the Hunter of the Adult Neurogenic Niche. , 2012, , 245-279. NG2 Cells (Polydendrocytes). , 2013, ,. 	1.0	15 14 17 2 1

#	Article	IF	CITATIONS
94	Specific labeling of synaptic schwann cells reveals unique cellular and molecular features. ELife, 2020, 9, .	2.8	45
96	Aging of the ventricular-subventricular zone neural stem cell niche. Advances in Stem Cells and Their Niches, 2020, , 99-125.	0.1	2
97	Selective Depletion of Adult GFAP-Expressing Tanycytes Leads to Hypogonadotropic Hypogonadism in Males. Frontiers in Endocrinology, 2022, 13, 869019.	1.5	8
98	Myelin repair is fostered by the corticosteroid medrysone specifically acting on astroglial subpopulations. EBioMedicine, 2022, 83, 104204.	2.7	9
99	Stroke and Neurogenesis: Bridging Clinical Observations to New Mechanistic Insights from Animal Models. Translational Stroke Research, 2024, 15, 53-68.	2.3	8