CITATION REPORT List of articles citing

Controlled synthesis of large-area and patterned electrochemically reduced graphene oxide films

DOI: 10.1002/chem.200900596 Chemistry - A European Journal, 2009, 15, 6116-20.

Source: https://exaly.com/paper-pdf/46057706/citation-report.pdf

Version: 2024-04-11

This report has been generated based on the citations recorded by exaly.com for the above article. For the latest version of this publication list, visit the link given above.

The third column is the impact factor (IF) of the journal, and the fourth column is the number of citations of the article.

#	Paper	IF	Citations
698	Electrogenerated Chemiluminescence Biosensor with a Tripod Probe for the Highly Sensitive Detection of MicroRNA.		
697	The chemistry of graphene oxide. 2010 , 39, 228-40		8747
696	Graphene-based nanomaterials and their electrochemistry. 2010 , 39, 4146-57		898
695	Thinnest two-dimensional nanomaterial-graphene for solar energy. 2010 , 3, 782-96		185
694	Graphene Based Electrochemical Sensors and Biosensors: A Review. <i>Electroanalysis</i> , 2010 , 22, 1027-10	363	2430
693	Comparative Studies on Electrocatalytic Activities of Chemically Reduced Graphene Oxide and Electrochemically Reduced Graphene Oxide Noncovalently Functionalized with Poly(methylene blue). Electroanalysis, 2010, 22, 2862-2870	3	17
692	Chemically derived graphene oxide: towards large-area thin-film electronics and optoelectronics. <i>Advanced Materials</i> , 2010 , 22, 2392-415	24	1818
691	Graphene and graphene oxide: synthesis, properties, and applications. <i>Advanced Materials</i> , 2010 , 22, 3906-24	24	7620
690	Electric current induced reduction of graphene oxide and its application as gap electrodes in organic photoswitching devices. <i>Advanced Materials</i> , 2010 , 22, 5008-12	24	81
689	Characterization, direct electrochemistry, and amperometric biosensing of graphene by noncovalent functionalization with picket-fence porphyrin. <i>Chemistry - A European Journal</i> , 2010 , 16, 10771-7	4.8	101
688	Dispersing carbon nanotubes with graphene oxide in water and synergistic effects between graphene derivatives. <i>Chemistry - A European Journal</i> , 2010 , 16, 10653-8	4.8	327
687	All-Organic Vapor Sensor Using Inkjet-Printed Reduced Graphene Oxide. 2010 , 122, 2200-2203		85
686	Ein Konzept und seine Umsetzung: Graphen gestern, heute und morgen. 2010 , 122, 9524-9532		53
685	All-organic vapor sensor using inkjet-printed reduced graphene oxide. 2010 , 49, 2154-7		760
684	From conception to realization: an historial account of graphene and some perspectives for its future. 2010 , 49, 9336-44		621
683	Graphenegold nanostructure composites fabricated by electrodeposition and their electrocatalytic activity toward the oxygen reduction and glucose oxidation. <i>Electrochimica Acta</i> , 2010 , 56, 491-500	6.7	156
682	Multilayer stacked low-temperature-reduced graphene oxide films: preparation, characterization, and application in polymer memory devices. 2010 , 6, 1536-42		104

(2011-2010)

681	electrochemical approach for detection of extracellular oxygen released from erythrocytes based on graphene film integrated with laccase and 2,2-azino-bis(3-ethylbenzothiazoline-6-sulfonic acid). 2010 , 82, 3588-96	103
680	Immobilization-free direct electrochemical detection for DNA specific sequences based on electrochemically converted gold nanoparticles/graphene composite film. 2010 , 20, 9253	115
679	A roadmap to high quality chemically prepared graphene. 2010 , 43, 374015	48
678	Facile and controllable electrochemical reduction of graphene oxide and its applications. 2010 , 20, 743-748	702
677	Highly uniform 300 mm wafer-scale deposition of single and multilayered chemically derived graphene thin films. 2010 , 4, 524-8	189
676	Local current mapping and patterning of reduced graphene oxide. 2010 , 132, 14130-6	126
675	Centimeter-long and large-scale micropatterns of reduced graphene oxide films: fabrication and sensing applications. 2010 , 4, 3201-8	529
674	A facile approach to the synthesis of highly electroactive Pt nanoparticles on graphene as an anode catalyst for direct methanol fuel cells. <i>Chemical Communications</i> , 2010 , 46, 5951-3	283
673	One-pot, water-phase approach to high-quality graphene/TiO2 composite nanosheets. <i>Chemical Communications</i> , 2010 , 46, 7148-50	175
672	Exploring the physicoelectrochemical properties of graphene. Chemical Communications, 2010, 46, 8986-38	118
671	Intrinsic Capacitance and Redox Activity of Functionalized Graphene Sheets. 2011 , 115, 20326-20334	41
670	Facile synthesis of graphene nanosheets via Fe reduction of exfoliated graphite oxide. 2011 , 5, 191-8	742
669	Graphene transistors via in situ voltage-induced reduction of graphene-oxide under ambient conditions. 2011 , 133, 14320-6	50
668	One-step electrochemical deposition of a graphene-ZrO2 nanocomposite: Preparation, characterization and application for detection of organophosphorus agents. 2011 , 21, 8032	150
667	Self-assembly of graphene onto electrospun polyamide 66 nanofibers as transparent conductive thin films. 2011 , 22, 475603	41
666	Scanning Probe Based Nanolithography and Nanomanipulation on Graphene. 2011 , 357-386	4
665	Chemically-modified graphenes for oxidation of DNA bases: analytical parameters. 2011, 136, 4738-44	38
664	Microwave-assisted, environmentally friendly, one-pot preparation of Pd nanoparticles/graphene nanocomposites and their application in electrocatalytic oxidation of methanol. 2011 , 1, 1636	53

663	Graphene oxide with covalently linked porphyrin antennae: Synthesis, characterization and photophysical properties. 2011 , 21, 109-117		207
662	Graphene and graphene-based nanomaterials: the promising materials for bright future of electroanalytical chemistry. 2011 , 136, 4631-40		121
661	High-performance self-assembled graphene hydrogels prepared by chemical reduction of graphene oxide. 2011 , 26, 9-15		249
660	Comparison of GO, GO/MWCNTs composite and MWCNTs as potential electrode materials for supercapacitors. 2011 , 4, 1855		348
659	Graphene Oxides Exhibit Limited Cathodic Potential Window Due to Their Inherent Electroactivity. 2011 , 115, 17647-17650		41
658	Evaluation Criteria for Reduced Graphene Oxide. 2011 , 115, 11327-11335		409
657	Bimetallic Pt-Au nanocatalysts electrochemically deposited on graphene and their electrocatalytic characteristics towards oxygen reduction and methanol oxidation. <i>Physical Chemistry Chemical Physics</i> , 2011 , 13, 4083-94	3.6	222
656	Electric field-induced nanopatterning of reduced graphene oxide on Si and a pli diode junction. 2011 , 21, 5805		10
655	Hydrolysable tannin as environmentally friendly reducer and stabilizer for graphene oxide. 2011 , 13, 1655		200
654	Direct electrochemical reduction of graphene oxide on ionic liquid doped screen-printed electrode and its electrochemical biosensing application. 2011 , 28, 204-9		196
653	Fabrication of graphene films on TiO2 nanotube arrays for photocatalytic application. <i>Carbon</i> , 2011 , 49, 5312-5320	10.4	116
652	Ultrasonication-assisted ultrafast reduction of graphene oxide by zinc powder at room temperature. <i>Carbon</i> , 2011 , 49, 5389-5397	10.4	296
651	Direct electro-deposition of graphene from aqueous suspensions. <i>Physical Chemistry Chemical Physics</i> , 2011 , 13, 9187-93	3.6	172
650	Graphene nanosheet: synthesis, molecular engineering, thin film, hybrids, and energy and analytical applications. 2011 , 40, 2644-72		1085
649	Solid-state electrochemistry of graphene oxides: absolute quantification of reducible groups using voltammetry. <i>Chemistry - an Asian Journal</i> , 2011 , 6, 2899-901	4.5	79
648	One-step electrochemical synthesis of PtNi nanoparticle-graphene nanocomposites for nonenzymatic amperometric glucose detection. 2011 , 3, 3049-57		323
647	Environmentally friendly approaches toward the mass production of processable graphene from graphite oxide. 2011 , 21, 298-306		154
646	Microbial reduction of graphene oxide by Shewanella. <i>Nano Research</i> , 2011 , 4, 563-570	10	274

(2011-2011)

645	One-step electrochemical approach to the synthesis of Graphene/MnO2 nanowall hybrids. <i>Nano Research</i> , 2011 , 4, 648-657	10	107
644	Graphene-based materials: synthesis, characterization, properties, and applications. 2011 , 7, 1876-902		1968
643	Direct electrodeposition of graphene enabling the one-step synthesis of graphene-metal nanocomposite films. 2011 , 7, 1203-6		307
642	Graphene: Piecing it together. Advanced Materials, 2011 , 23, 4471-90	24	115
641	Electrical assembly and reduction of graphene oxide in a single solution step for use in flexible sensors. <i>Advanced Materials</i> , 2011 , 23, 4626-30	24	81
640	Graphene and Related Materials in Electrochemical Sensing. <i>Electroanalysis</i> , 2011 , 23, 803-826	3	225
639	In Situ one-step electrochemical preparation of graphene oxide nanosheet-modified electrodes for biosensors. 2011 , 4, 1587-91		63
638	Facile synthesis of wide-bandgap fluorinated graphene semiconductors. <i>Chemistry - A European Journal</i> , 2011 , 17, 8896-903	4.8	112
637	One-pot functionalization of graphene with porphyrin through cycloaddition reactions. <i>Chemistry - A European Journal</i> , 2011 , 17, 8957-64	4.8	115
636	Electrochemistry at chemically modified graphenes. Chemistry - A European Journal, 2011, 17, 10763-70	4.8	272
635	Amplified electrochemiluminescence of quantum dots by electrochemically reduced graphene oxide for nanobiosensing of acetylcholine. 2011 , 26, 4552-8		80
634	Synthesis of electrochemically-reduced graphene oxide film with controllable size and thickness and its use in supercapacitor. <i>Carbon</i> , 2011 , 49, 3488-3496	10.4	239
633	Mechanism of nonvolatile resistive switching in graphene oxide thin films. <i>Carbon</i> , 2011 , 49, 3796-3802	10.4	124
632	Solvothermal synthesis of homogeneous graphene dispersion with high concentration. <i>Carbon</i> , 2011 , 49, 3920-3927	10.4	109
631	Direct electrochemistry of catalase at amine-functionalized graphene/gold nanoparticles composite film for hydrogen peroxide sensor. <i>Electrochimica Acta</i> , 2011 , 56, 2947-2953	6.7	158
630	Electrochemical reduction of graphene oxide in organic solvents. <i>Electrochimica Acta</i> , 2011 , 56, 5363-53	3 6 87	80
629	Direct electrodeposition of reduced graphene oxide on glassy carbon electrode and its electrochemical application. 2011 , 13, 133-137		605
628	The electrocatalytic oxidative polymerizations of aniline and aniline derivatives by graphene. <i>Electrochimica Acta</i> , 2011 , 56, 2284-2289	6.7	31

627	The electrocatalytic oxidative polymerization of o-phenylenediamine by reduced graphene oxide and properties of poly(o-phenylenediamine). <i>Electrochimica Acta</i> , 2011 , 56, 3764-3772	6.7	45
626	Experimental study on the reducibility of graphene oxide by hydrazine hydrate. 2011 , 406, 498-502		41
625	A Green and Mild Approach of Synthesis of Highly-Conductive Graphene Film by Zn Reduction of Exfoliated Graphite Oxide. 2012 , 25, 494-500		11
624	Electrochemical reduction of graphene oxide films: Preparation, characterization and their electrochemical properties. 2012 , 57, 3045-3050		77
623	Preparation, characterization, and application of electrochemically functional graphene nanocomposites by one-step liquid-phase exfoliation of natural flake graphite with methylene blue. <i>Nano Research</i> , 2012 , 5, 875-887	10	30
622	Simplifying the evaluation of graphene modified electrode performance using rotating disk electrode voltammetry. <i>Langmuir</i> , 2012 , 28, 5275-85	4	48
621	Chapter 1:Graphene Functionalization: A Review. 2012 , 1-52		3
620	Graphene and Its Derivative-based Biosensing Systems. 2012 , 40, 1772-1779		11
619	Gold Nanospacers Greatly Enhance the Capacitance of Electrochemically Reduced Graphene. 2012 , 77, 71-73		22
618	Electrocatalytic Oxidation and Determination of Hydrazine at an AuCu Nanoparticles Graphene I Ionic Liquid Composite Film Coated Glassy Carbon Electrode. <i>Electroanalysis</i> , 2012 , 24, 2380-2386	3	13
617	Preparation of electrochemically reduced graphene oxide-modified electrode and its application for determination of p-aminophenol. 2012 , 16, 2883-2889		29
616	Electrochemical deoxyribonucleic acid biosensor based on carboxyl functionalized graphene oxide and poly-L-lysine modified electrode for the detection of tlh gene sequence related to vibrio parahaemolyticus. <i>Analytica Chimica Acta</i> , 2012 , 752, 39-44	6.6	56
615	The nano-scale resistive memory effect of graphene oxide. 2012,		4
614	Graphene oxide gives rise to unique and intriguing voltammetry. 2012 , 2, 665-668		40
613	Construction of graphene-based modified electrochemical sensor by electropolymerization. 2012,		0
612	Graphene for impedimetric biosensing. <i>TrAC - Trends in Analytical Chemistry</i> , 2012 , 37, 12-21	14.6	125
611	A facile route to the synthesis copper oxide/reduced graphene oxide nanocomposites and electrochemical detection of catechol organic pollutant. 2012 , 14, 6710		161
610	Electrochemical reduction of graphene oxide and its in situ spectroelectrochemical characterization. <i>Physical Chemistry Chemical Physics</i> , 2012 , 14, 14003-9	3.6	76

(2012-2012)

609	A facile two-step electroreductive synthesis of anthraquinone/graphene nanocomposites as efficient electrocatalyst for O2 reduction in neutral medium. 2012 , 22, 69-72		32
608	One-pot green synthesis of Ag nanoparticles-graphene nanocomposites and their applications in SERS, H2O2, and glucose sensing. 2012 , 2, 538-545		250
607	In situ synthesis of highly loaded and ultrafine Pd nanoparticles-decorated graphene oxide for glucose biosensor application. 2012 , 22, 24821		39
606	Graphene-based electrodes. Advanced Materials, 2012, 24, 5979-6004	24	756
605	Nonenzymatic glucose sensor based on graphene oxide and electrospun NiO nanofibers. <i>Sensors and Actuators B: Chemical</i> , 2012 , 171-172, 580-587	8.5	209
604	An electrochemically reduced graphene oxide-based electrochemical immunosensing platform for ultrasensitive antigen detection. 2012 , 84, 1871-8		159
603	A glassy carbon electrode modified with electrochemically reduced graphene for simultaneous determination of guanine and adenine. <i>Analytical Methods</i> , 2012 , 4, 2935	3.2	27
602	Graphene and Its Synthesis. 2012 , 415-438		5
601	Synthesis, Characterization, and Selected Properties of Graphene. 2012 , 1-47		14
600	Inherently electroactive graphene oxide nanoplatelets as labels for single nucleotide polymorphism detection. 2012 , 6, 8546-51		105
599	Electrochemical fabrication of long-term stable Pt-loaded PEDOT/graphene composites for ethanol electrooxidation. <i>International Journal of Hydrogen Energy</i> , 2012 , 37, 14085-14093	6.7	53
598	Nanocomposite of electrochemically reduced graphene oxide and gold nanoparticles enhanced electrochemilunescence of peroxydisulfate and its immunosensing abililty towards human IgG. <i>Journal of Electroanalytical Chemistry</i> , 2012 , 686, 25-31	4.1	23
597	Electrochemical DNA biosensor for the detection of Listeria monocytogenes with dendritic nanogold and electrochemical reduced graphene modified carbon ionic liquid electrode. <i>Electrochimica Acta</i> , 2012 , 85, 145-151	6.7	54
596	Electrodeposition of graphene-supported PdPt nanoparticles with enhanced electrocatalytic activity. 2012 , 24, 17-20		37
595	A new approach to reduced graphite oxide with tetrathiafulvalene in the presence of metal ions. 2012 , 22, 4391		16
594	Carbonaceous debris that resided in graphene oxide/reduced graphene oxide profoundly affect their electrochemical behaviors. 2012 , 23, 94-97		30
593	Application of electrochemically reduced graphene oxide on screen-printed ion-selective electrode. 2012 , 84, 3473-9		135
592	Unique synthesis of graphene-based materials for clean energy and biological sensing applications. 2012 , 57, 3000-3009		18

591	Impurities in graphenes and carbon nanotubes and their influence on the redox properties. 2012, 3, 3347	101
590	Poly(methylene blue) functionalized graphene modified carbon ionic liquid electrode for the electrochemical detection of dopamine. <i>Analytica Chimica Acta</i> , 2012 , 751, 59-65	59
589	An electrochemical detection of Hg2+ ion using graphene oxide as an electrochemically active indicator. 2012 , 24, 100-103	54
588	Electroactivity of graphene oxide on different substrates. 2012 , 2, 10575	4
587	Stripping voltammetry at chemically modified graphenes. 2012 , 2, 6068	11
586	A facile green strategy for rapid reduction of graphene oxide by metallic zinc. 2012 , 2, 8827	163
585	Voltammetry of carbon nanotubes and graphenes: excitement, disappointment, and reality. 2012 , 12, 201-13	98
584	Graphene-based composites. 2012 , 41, 666-86	3116
583	The electrochemistry of CVD graphene: progress and prospects. <i>Physical Chemistry Chemical Physics</i> , 2012 , 14, 8264-81	121
582	GrapheneIhorganic nanocomposites. 2012 , 2, 64-98	507
581	Electrically controlled electron transfer and resistance switching in reduced graphene oxide noncovalently functionalized with thionine. 2012 , 22, 16422	33
580	Graphene electrochemistry: fundamental concepts through to prominent applications. 2012 , 41, 6944-76	497
579	Electrochemically Synthesized Polypyrrole/Graphene Composite Film for Lithium Batteries. 2012 , 2, 266-272	137
578	Inherent electrochemistry and activation of chemically modified graphenes for electrochemical applications. <i>Chemistry - an Asian Journal</i> , 2012 , 7, 759-70	34
577	On oxygen-containing groups in chemically modified graphenes. <i>Chemistry - A European Journal</i> , 2012 , 18, 4541-8	68
576	Stable and Water-Dispersible Graphene Nanosheets: Sustainable Preparation, Functionalization, and High-Performance Adsorbents for Pb2+. 2012 , 77, 379-386	36
575	Ultrafast reduction of graphene oxide with Zn powder in neutral and alkaline solutions at room temperature promoted by the formation of metal complexes. 2012 , 22, 9109	51
574	A brief review of graphene-based material synthesis and its application in environmental pollution management. 2012 , 57, 1223-1234	134

573	The reduction of graphene oxide. <i>Carbon</i> , 2012 , 50, 3210-3228	10.4	3551
572	Self-assembly of silvergraphene hybrid on electrospun polyurethane nanofibers as flexible transparent conductive thin films. <i>Carbon</i> , 2012 , 50, 3473-3481	10.4	45
571	Graphene materials preparation methods have dramatic influence upon their capacitance. 2012 , 14, 5-8		88
57°	Comparison of the electroanalytical performance of chemically modified graphenes (CMGs) using uric acid. 2012 , 20, 141-144		11
569	The electrical properties of a sandwich of electrodeposited polypyrrole nanofibers between two layers of reduced graphene oxide nanosheets. <i>Electrochimica Acta</i> , 2012 , 72, 53-60	6.7	37
568	Electrochemically reduced graphene modified carbon ionic liquid electrode for the sensitive sensing of rutin. 2012 , 520, 5064-5069		44
567	Graphene oxide adsorption enhanced by in situ reduction with sodium hydrosulfite to remove acridine orange from aqueous solution. 2012 , 203-204, 101-10		146
566	Comparative studies on single-layer reduced graphene oxide films obtained by electrochemical reduction and hydrazine vapor reduction. 2012 , 7, 161		66
565	Nucleic acid functionalized graphene for biosensing. <i>Chemistry - A European Journal</i> , 2012 , 18, 1668-73	4.8	69
564	Metallic Impurities in Graphenes Prepared from Graphite Can Dramatically Influence Their Properties. 2012 , 124, 515-518		19
563	Metallic impurities in graphenes prepared from graphite can dramatically influence their properties. 2012 , 51, 500-3		149
562	Decoration of electro-reduced graphene oxide with uniform gold nanoparticles based on in situ diazonium chemistry and their application in methanol oxidation. <i>Journal of Electroanalytical Chemistry</i> , 2013 , 690, 111-116	4.1	5
561	Prospects for graphene-nanoparticle-based hybrid sensors. <i>Physical Chemistry Chemical Physics</i> , 2013 , 15, 12785-99	3.6	132
560	A disposable immunosensor for Enterobacter sakazakii based on an electrochemically reduced graphene oxide-modified electrode. 2013 , 434, 218-20		21
559	Reduced graphene oxide-based photocatalysts containing Ag nanoparticles on a TiO2 nanotube array. 2013 , 48, 6203-6211		25
558	Enhanced electron transfer in composite films of reduced graphene oxide and poly(N-methylaniline). <i>Carbon</i> , 2013 , 63, 588-592	10.4	6
557	Graphene-modified electrode for DNA detection via PNADNA hybridization. <i>Sensors and Actuators B: Chemical</i> , 2013 , 186, 563-570	8.5	38
556	One-step electrochemical synthesis of a graphenelinO hybrid for improved photocatalytic activity. 2013 , 48, 2855-2860		62

555	Application of poly(acridine orange) and graphene modified carbon/ionic liquid paste electrode for the sensitive electrochemical detection of rutin. <i>Electrochimica Acta</i> , 2013 , 109, 298-304	7	41
554	Direct electron transfer reaction of laccase on a glassy carbon electrode modified with 1-aminopyrene functionalized reduced graphene oxide. 2013 , 3, 18036		23
553	Electrodeposited nanogold decorated graphene modified carbon ionic liquid electrode for the electrochemical myoglobin biosensor. 2013 , 17, 2333-2340		27
552	Insights into the Early Growth of Homogeneous Single-Layer Graphene over NiMo Binary Substrates. 2013 , 25, 3880-3887		27
551	Novel determination of hydrogen peroxide by electrochemically reduced graphene oxide grafted with aminothiophenol P d nanoparticles. <i>Sensors and Actuators B: Chemical</i> , 2013 , 178, 450-457	5	67
550	Synthesis of graphene-supported noble metal hybrid nanostructures and their applications as advanced electrocatalysts for fuel cells. 2013 , 5, 10765-75		53
549	Electrochemistry of graphene, graphene oxide and other graphenoids: Review. 2013 , 36, 14-18		199
548	Potassium assisted reduction and doping of graphene oxides: towards faster electron transfer kinetics. 2013 , 3, 10900		7
547	Inherently electroactive graphene oxide nanoplatelets as labels for specific protein-target recognition. 2013 , 5, 7844-8		29
546	Highly sensitive gold-overoxidized polypyrrole nanocomposite immunosensor for antitransglutaminase antibody. 2013 , 28, 167-177		6
545	Electro-reduced graphene oxide film modified glassy carbon electrode as an electrochemical sensor for sibutramine. <i>Analytical Methods</i> , 2013 , 5, 7090	1	9
544	Graphene platforms for the detection of caffeine in real samples. <i>Analytica Chimica Acta</i> , 2013 , 804, 92-76.6	ó	39
543	Solid-phase electrochemical reduction of graphene oxide films in alkaline solution. 2013, 8, 397		46
542	An overview of the engineered graphene nanostructures and nanocomposites. 2013 , 3, 22790		167
541	Electrochemically reduced graphene oxide modified acetylene black paste electrode for the sensitive determination of bisphenol A. <i>Journal of Electroanalytical Chemistry</i> , 2013 , 707, 7-14	[37
540	Synchronous electrosynthesis of poly(xanthurenic acid)-reduced graphene oxide nanocomposite for highly sensitive impedimetric detection of DNA. 2013 , 5, 3495-9		50
539	Construction of 3D electrochemically reduced graphene oxideBilver nanocomposite film and application as nonenzymatic hydrogen peroxide sensor. 2013 , 27, 1-4		62
538	Spontaneous redox synthesis of Prussian blue/graphene nanocomposite as a non-precious metal catalyst for efficient four-electron oxygen reduction in acidic medium. 2013 , 240, 101-108		39

(2013-2013)

537	Unusual inherent electrochemistry of graphene oxides prepared using permanganate oxidants. <i>Chemistry - A European Journal</i> , 2013 , 19, 12673-83	4.8	80
536	Electrochemically Reduced Graphene Oxide Film Modified Electrode for Detection of Hydrogen Peroxide. 2013 , 538, 165-168		1
535	Recent advances in the development of graphene-based surface plasmon resonance (SPR) interfaces. 2013 , 405, 1435-43		159
534	Methods for Obtaining Graphene. 2013 , 129-228		11
533	Graphene-related nanomaterials: tuning properties by functionalization. 2013 , 5, 4541-83		524
532	Recent advances in the efficient reduction of graphene oxide and its application as energy storage electrode materials. 2013 , 5, 52-71		392
531	A method based on electrodeposition of reduced graphene oxide on glassy carbon electrode for sensitive detection of theophylline. 2013 , 17, 167-173		31
530	Electrodeposited graphene nano-stacks for biosensor applications. Surface groups as redox mediators for laccase. <i>Electrochimica Acta</i> , 2013 , 98, 75-81	6.7	21
529	Application of carboxyl functionalized graphene oxide as mimetic peroxidase for sensitive voltammetric detection of H2O2 with 3,3?,5,5?-tetramethylbenzidine. 2013 , 26, 113-116		35
528	Fabrication of Electrochemically Reduced Graphene Oxide Films on Glassy Carbon Electrode by Self-Assembly Method and Their Electrocatalytic Application. 2013 , 117, 4326-4335		139
527	A reduced graphene oxide based biosensor for high-sensitive detection of phenols in water samples. <i>Sensors and Actuators B: Chemical</i> , 2013 , 181, 661-667	8.5	82
526	Electrochemical approaches to the production of graphene flakes and their potential applications. <i>Carbon</i> , 2013 , 54, 1-21	10.4	253
525	The tunable electrical properties of graphene nano-bridges. 2013 , 1, 2548		6
524	Ultrasonic-electrodeposition of Flower-like Graphene Nanosheets in Ionic Liquid and Its Sensing for Ascorbic Acid. 2013 , 60, 199-203		1
523	Graphene⊞ickel composites. 2013 , 273, 484-490		178
522	Direct and freely switchable detection of target genes engineered by reduced graphene oxide-poly(m-aminobenzenesulfonic acid) nanocomposite via synchronous pulse electrosynthesis. 2013 , 85, 1358-66		59
521	Graphene-based electrochemical sensors. 2013 , 9, 1160-72		434
520	Atomic scale imaging and spectroscopic characterization of electrochemically reduced graphene oxide. 2013 , 611, 54-59		60

519	Thrombin aptasensing with inherently electroactive graphene oxide nanoplatelets as labels. 2013 , 5, 4758-62		52
518	Large-area, three-dimensional interconnected graphene oxide intercalated with self-doped polyaniline nanofibers as a free-standing electrocatalytic platform for adenine and guanine. 2013 , 1, 2926-2933		36
517	Graphene-Based Chemical and Biosensors. 2013 , 103-141		9
516	Graphene-based materials: fabrication, characterization and application for the decontamination of wastewater and wastegas and hydrogen storage/generation. 2013 , 195-196, 19-40		265
515	Electrochemical reduction of graphene oxide films in aqueous and organic solutions. <i>Electrochimica Acta</i> , 2013 , 89, 84-89	7	99
514	Electrochemical determination of uric acid in the presence of ascorbic acid on electrochemically reduced graphene oxide modified electrode. <i>Journal of Electroanalytical Chemistry</i> , 2013 , 700, 54-59	1	49
513	Graphene in lithium ion battery cathode materials: A review. 2013 , 240, 66-79		436
512	Fabrication of Ecyclodextrin-coated poly (diallyldimethylammonium chloride)-functionalized graphene composite film modified glassy carbon-rotating disk electrode and its application for simultaneous electrochemical determination colorants of sunset yellow and tartrazine. <i>Analytica</i>	5.6	108
511	In situ chemical synthesis of ruthenium oxide/reduced graphene oxide nanocomposites for electrochemical capacitor applications. 2013 , 5, 6804-11		56
510	Graphene nanoelectrodes: fabrication and size-dependent electrochemistry. 2013 , 135, 10073-80		80
509	Core-shell Fe3O4-Au magnetic nanoparticles based nonenzymatic ultrasensitive electrochemiluminescence immunosensor using quantum dots functionalized graphene sheet as labels. <i>Analytica Chimica Acta</i> , 2013 , 770, 132-9	5.6	46
508	Electrodeposited Graphene and Gold Nanoparticle Modified Carbon Ionic Liquid Electrode for Sensitive Detection of Rutin. 2013 , 41, 709-713		17
507	A facile one-step redox route for the synthesis of graphene/poly (3,4-ethylenedioxythiophene) nanocomposite and their applications in biosensing. <i>Sensors and Actuators B: Chemical</i> , 2013 , 181, 567-57	45	68
506	Fabrication of molecular imprinted polymer sensor for chlortetracycline based on controlled electrochemical reduction of graphene oxide. <i>Sensors and Actuators B: Chemical</i> , 2013 , 185, 438-444	5.5	37
505	A switch of the oxidation state of graphene oxide on a surface plasmon resonance chip. 2013 , 5, 2096-103	3	33
504	Electrochemical DNA Biosensor Based on Partially Reduced Graphene Oxide Modified Carbon Ionic Liquid Electrode for the Detection of Transgenic Soybean A2704-12 Gene Sequence. <i>Electroanalysis</i> , 2013 , 25, 1417-1424	,	26
503	Ultrafast spectral migration of photoluminescence in graphene oxide. 2013 , 13, 344-9		56
502	Scalable solid-template reduction for designed reduced graphene oxide architectures. 2013 , 5, 7676-81		12

(2013-2013)

501	Progress in the electrochemical modification of graphene-based materials and their applications. <i>Electrochimica Acta</i> , 2013 , 107, 425-440	6.7	96
500	Electrodeposition of PdAu Alloy Nanoparticles on Ionic Liquid Functionalized Graphene Film for the Voltammetric Determination of Oxalic Acid. <i>Electroanalysis</i> , 2013 , 25, 453-459	3	17
499	A sandwich-type DNA biosensor based on electrochemical co-reduction synthesis of graphene-three dimensional nanostructure gold nanocomposite films. <i>Analytica Chimica Acta</i> , 2013 , 767, 50-8	6.6	65
498	Precise tuning of surface composition and electron-transfer properties of graphene oxide films through electroreduction. <i>Chemistry - A European Journal</i> , 2013 , 19, 4748-53	4.8	87
497	Graphene oxide nanoribbons from the oxidative opening of carbon nanotubes retain electrochemically active metallic impurities. 2013 , 52, 8685-8		49
496	Electrogenerated chemiluminescence of luminol at a polyaniline/graphene modified electrode in neutral solution. <i>Electrochimica Acta</i> , 2013 , 91, 240-245	6.7	24
495	Direct electrochemistry with enhanced electrocatalytic activity of hemoglobin in hybrid modified electrodes composed of graphene and multi-walled carbon nanotubes. <i>Analytica Chimica Acta</i> , 2013 , 781, 41-7	6.6	79
494	Synthesis of graphene platelets by chemical and electrochemical route. 2013 , 48, 3834-3842		52
493	Direct electrochemical reduction of graphene oxide and its application to determination of L-tryptophan and L-tyrosine. 2013 , 101, 183-8		103
492	Direct electrochemical DNA detection originated from the self-redox signal of sulfonated polyaniline enhanced by graphene oxide in neutral solution. 2013 , 5, 10889-94		32
491	A simple preparation method for large-area, wavy graphene oxide nanowalls and their application to freely switchable impedimetric DNA detection. 2013 , 3, 22430		9
490	Synthesis of Cobalt Sulfidell raphene (CoS/G) Nanocomposites for Supercapacitor Applications. 2013 , 12, 985-990		32
489	Electrodeposition of electroreduced graphene oxide-Au nanoparticles composite film at glassy carbon electrode for anodic stripping voltammetric analysis of trace arsenic(III). <i>Sensors and Actuators B: Chemical</i> , 2013 , 188, 894-901	8.5	77
488	Determination of Sudan I Using Electrochemically Reduced Graphene Oxide. 2013, 46, 923-935		14
487	The oxidation of aqueous thiols on a graphite intercalation compound adsorbent. 2013 , 19, 989-996		10
486	Electrogenerated chemiluminescence of nanomaterials for bioanalysis. 2013 , 138, 43-61		166
485	Synthesis of Cobalt sulfide-Graphene (CoS/G) nanocomposites for supercapacitor applications. 2013 , 1-1		1
484	Graphite Oxide. 2013 , 571-604		

483	Sensitive Voltammetric Determination of Baicalein at Thermally Reduced Graphene Oxide Modified Glassy Carbon Electrode. <i>Electroanalysis</i> , 2013 , 25, 2136-2144	3	26
482	Graphene Oxide Nanoribbons from the Oxidative Opening of Carbon Nanotubes Retain Electrochemically Active Metallic Impurities. 2013 , 125, 8847-8850		23
481	In situ Raman spectroelectrochemistry of graphene oxide. 2013 , 250, 2662-2667		20
480	Electro-Deoxidation Behavior of Graphite Oxide in Aqueous Solution. 2013 , 46, 245-249		1
479	Graphene-based nanomaterials as heterogeneous acid catalysts: a comprehensive perspective. 2014 , 19, 14582-614		103
478	A simple and efficient electrochemical reductive method for graphene oxide. 2014 , 37, 1529-1533		9
477	Synthesis and Modification of Graphene. 2014 , 17-40		
476	Mechanistic aspects of the radiation-chemical reduction of graphene oxide to graphene-like materials. 2014 , 90, 486-94		13
475	Electrosynthesis of a composite based on graphene oxide nanosheets and polyaniline with hexachloroiridate anion. 2014 , 63, 627-634		1
474	Simultaneous determination of uric Acid and xanthine using a poly(methylene blue) and electrochemically reduced graphene oxide composite film modified electrode. 2014 , 2014, 984314		7
473	The Electrochemistry of Graphene. 2014 , 79-126		O
472	Reduction of graphene oxide 🗈 comprehensive electrochemical investigation in alkaline and acidic electrolytes. 2014 , 4, 57781-57790		24
471	Ultrasonicated-ozone modification of exfoliated graphite for stable aqueous graphitic nanoplatelet dispersions. 2014 , 25, 495607		22
470	Carbonaceous Impurities Contained in Graphene Oxide/Reduced Graphene Oxide Dominate Their Electrochemical Capacitances. <i>Electroanalysis</i> , 2014 , 26, 139-146	3	15
469	Electrochemically Reduced Graphene Oxide on Electrochemically Roughened Gold as a Support for Horseradish Peroxidase. 2014 , 118, 29731-29738		15
468	The Preparation of Graphene Oxide and Its Derivatives and Their Application in Bio-Tribological Systems. 2014 , 2, 137-161		104
467	A facile one-step electrochemical synthesis of graphene/NiO nanocomposites as efficient electrocatalyst for glucose and methanol. <i>Sensors and Actuators B: Chemical</i> , 2014 , 190, 809-817	8.5	108
466	Sensitive detection of uric acid on partially electro-reduced graphene oxide modified electrodes. <i>Electrochimica Acta</i> , 2014 , 119, 32-37	6.7	24

465	Electrochemically "writing" graphene from graphene oxide. 2014 , 10, 3555-9		24
464	Metal Free Graphene Based Catalysts: A Review. 2014 , 57, 762-773		107
463	Concurrent phosphorus doping and reduction of graphene oxide. <i>Chemistry - A European Journal</i> , 2014 , 20, 4284-91	4.8	38
462	Development of an electrochemically reduced graphene oxide modified disposable bismuth film electrode and its application for stripping analysis of heavy metals in milk. 2014 , 151, 65-71		128
461	Improved charging/discharging behavior of electropolymerized nanostructured composite films of polyaniline and electrochemically reduced graphene oxide. <i>Carbon</i> , 2014 , 69, 122-131	10.4	45
460	Patterning of graphene with tunable size and shape for microelectrode array devices. <i>Carbon</i> , 2014 , 67, 390-397	10.4	21
459	Facile Synthesis of 3D MnO2©raphene and Carbon Nanotube©raphene Composite Networks for High-Performance, Flexible, All-Solid-State Asymmetric Supercapacitors. 2014 , 4, 1400064		330
458	Graphene production via electrochemical reduction of graphene oxide: Synthesis and characterisation. <i>Chemical Engineering Journal</i> , 2014 , 251, 422-434	14.7	388
457	Synthesis of Pt nanoparticles on electrochemically reduced graphene oxide by potentiostatic and alternate current methods. 2014 , 89, 56-68		14
456	Fabrication of electrochemical sensor based on green reduction of graphene oxide for an antimigraine drug, rizatriptan benzoate. <i>Sensors and Actuators B: Chemical</i> , 2014 , 196, 596-603	8.5	23
455	Quantitative evaluation of electrophoretic deposition kinetics of graphene oxide. <i>Carbon</i> , 2014 , 67, 656	5-66.14	50
454	Acetylene black paste electrode modified with graphene as the voltammetric sensor for selective determination of tryptophan in the presence of high concentrations of tyrosine. 2014 , 35, 54-60		56
453	Sensitive electrochemical detection of dopamine with a DNA/graphene bi-layer modified carbon ionic liquid electrode. <i>Talanta</i> , 2014 , 128, 373-8	6.2	34
452	An Introduction to Graphene. 2014 , 1-20		11
45 ¹	Oxidation debris in graphene oxide is responsible for its inherent electroactivity. 2014 , 8, 4197-204		67
450	A novel potentiometric sensor based on a poly(anilineboronic acid)/graphene modified electrode for probing sialic acid through boronic acid-diol recognition. 2014 , 60, 231-6		42
449	Co9S8 nanoflakes on graphene (Co9S8/G) nanocomposites for high performance supercapacitors. 2014 , 4, 21151-21162		87
448	Oxygen Plasma Exfoliated Vertically-Aligned Carbon Nanotubes as Electrodes for Ultrasensitive Stripping Detection of Pb2+. <i>Journal of the Electrochemical Society</i> , 2014 , 161, H321-H325	3.9	12

447	Electrochemical biosensor for simultaneous determination of dopamine and serotonin based on electrochemically reduced GO-porphyrin. <i>Sensors and Actuators B: Chemical</i> , 2014 , 190, 886-895	8.5	80	
446	Reaction mechanisms of graphene oxide chemical reduction by sulfur-containing compounds. <i>Carbon</i> , 2014 , 67, 146-155	10.4	25	
445	Electrocatalytic degradation of 2,4-dichlorophenol using a Pd/graphene gas-diffusion electrode. 2014 , 4, 56263-56272		15	
444	Computational Study on Removal of Epoxide from Narrow Zigzag Graphene Nanoribbons. 2014 , 118, 27123-27130		2	
443	A large-area smooth graphene film on a TiO2 nanotube array via a one-step electrochemical process. 2014 , 2, 5187		8	
442	Electrochemically Reduced Graphene Oxide Modified Carbon Ceramic Electrode for the Determination of Pyridoxine. 2014 , 4, 73-85		6	
441	Haemoglobin electrochemical detection on various reduced graphene surfaces: well-defined glassy carbon electrode outperforms the graphenoids. 2014 , 4, 8050		14	
440	Investigating the interaction of dye molecules with graphene oxide by using a surface plasmon resonance technique. 2014 , 4, 50789-50794		16	
439	Electrochemical tuning of oxygen-containing groups on graphene oxides: towards control of the performance for the analysis of biomarkers. <i>Physical Chemistry Chemical Physics</i> , 2014 , 16, 12178-82	3.6	14	
438	Effective electron transfer between heteropoly blue and graphene oxide: a green approach to graphene synthesis. 2014 , 38, 3354		6	
437	Effective low temperature reduction of graphene oxide with vanadium(III). 2014 , 2, 3602		7	
436	Reduced carboxylic graphene/palladium nanoparticles composite modified ultramicroelectrode array and its application in biochemical oxygen demand microsensor. <i>Electrochimica Acta</i> , 2014 , 145, 64-70	6.7	5	
435	Graphene Oxides: Transformations in Natural Waters over a Period of Three Months. 2014 , 79, 844-849)	3	
434	Electrochemical-Reduction-Assisted Fabrication of a Polyoxometalate/Graphene Composite Film Electrode and Its Electrocatalytic Performance. <i>Journal of the Electrochemical Society</i> , 2014 , 161, B248-	BŽŽ5	15	
433	Deft dipping combined with electrochemical reduction to obtain 3D electrochemical reduction graphene oxide and its applications in supercapacitors. 2014 , 2, 1137-1143		28	
432	Electrochemically reduced graphene nanoribbons: Interference from inherent electrochemistry of the material in DPV studies. 2014 , 46, 137-139		7	
431	Theoretical simulation of reduction mechanism of graphene oxide in sodium hydroxide solution. <i>Physical Chemistry Chemical Physics</i> , 2014 , 16, 12858-64	3.6	32	
430	Is Graphene a Stable Platform for Photocatalysis? Mineralization of Reduced Graphene Oxide With UV-Irradiated TiO2 Nanoparticles. 2014 , 26, 4662-4668		131	

429	Electrochemistry of aqueous colloidal graphene oxide on Pt electrodes. <i>Langmuir</i> , 2014 , 30, 9599-606	4	5
428	Preparation of electrochemically reduced graphene oxide/multi-wall carbon nanotubes hybrid film modified electrode, and its application to amperometric sensing of rutin. 2014 , 126, 1021-1029		4
427	Electrochemical oxidation and determination of dopamine in the presence of AA using ferulic acid functionalized electrochemically reduced graphene. <i>Sensors and Actuators B: Chemical</i> , 2014 , 204, 289-29	8 ₆ 5	44
426	Synthetic routes contaminate graphene materials with a whole spectrum of unanticipated metallic elements. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 2014 , 111, 13774-9	11.5	113
425	Achieving direct electrochemistry of glucose oxidase by one step electrochemical reduction of graphene oxide and its use in glucose sensing. 2014 , 45, 103-8		20
424	Tuning the reduction extent of electrochemically reduced graphene oxide electrode film to enhance its detection limit for voltammetric analysis. <i>Electrochimica Acta</i> , 2014 , 139, 232-237	6.7	32
423	A simple route to prepare free-standing graphene thin film for high-performance flexible electrode materials. 2014 , 4, 30422		6
422	A novel and green CTAB-functionalized graphene nanosheets electrochemical sensor for Sudan I determination. <i>Sensors and Actuators B: Chemical</i> , 2014 , 203, 759-765	8.5	37
421	Nickel hydroxide nanoparticles-reduced graphene oxide nanosheets film: layer-by-layer electrochemical preparation, characterization and rifampicin sensory application. <i>Talanta</i> , 2014 , 119, 156-63	6.2	44
420	Voltammetric Behavior of Guanine at ERGO/GC Electrode and Its Application in Cell Counting. <i>Journal of the Electrochemical Society</i> , 2014 , 161, G21-G25	3.9	3
419	Permanganate-Route-Prepared Electrochemically Reduced Graphene Oxides Exhibit Limited Anodic Potential Window. 2014 , 118, 23368-23375		3
418	The electrocatalytic oxidation of glucose on the bimetallic Au-Ag particles-modified reduced graphene oxide electrodes in alkaline solutions. <i>Electrochimica Acta</i> , 2014 , 133, 335-346	6.7	47
417	Highly efficient silver-assisted reduction of graphene oxide dispersions at room temperature: mechanism, and catalytic and electrochemical performance of the resulting hybrids. 2014 , 2, 7295-7305		25
416	Electrochemistry of graphene and related materials. 2014 , 114, 7150-88		802
415	Sensitive electrochemical determination of trace cadmium on a stannum film/poly(p-aminobenzene sulfonic acid)/electrochemically reduced graphene composite modild electrode. <i>Electrochimica Acta</i> , 2014 , 120, 140-146	6.7	55
414	Electrodeposited nickel oxide and graphene modified carbon ionic liquid electrode for electrochemical myglobin biosensor. 2014 , 562, 653-658		24
413	Phenylenediamine functionalized reduced graphene oxide/polyaniline hybrid: synthesis, characterization, improved conductivity and photocurrent generation. 2014 , 4, 29901-29908		12
412	Electrochemical sensor for transgenic maize MON810 sequence with electrostatic adsorption DNA on electrochemical reduced graphene modified electrode. <i>Sensors and Actuators B: Chemical</i> , 2014 , 202, 160-166	8.5	30

411	Direct voltammetry of colloidal graphene oxides. 2014 , 43, 87-90		15
410	Electrophoretic deposition of graphene oxide on mild carbon steel for anti-corrosion application. 2014 , 254, 167-174		121
409	The Handbook of Graphene Electrochemistry. 2014 ,		123
408	Localized reduction of graphene oxide by electrogenerated naphthalene radical anions and subsequent diazonium electrografting. 2014 , 136, 4833-6		25
407	A powerful tool for graphene functionalization: Benzophenone mediated UV-grafting. <i>Carbon</i> , 2014 , 77, 226-235	10.4	36
406	Chemically derived graphene. 2014 , 50-80		6
405	Amplified electrochemiluminescence of lucigenin triggered by electrochemically reduced graphene oxide and its sensitive detection of bisphenol A. <i>Analytical Methods</i> , 2014 , 6, 4746-4753	3.2	12
404	Fabrication of flexible graphene paper and its electrochemical properties used in lithium ion batteries. 2014 , 66, 30301		3
403	Stochastic Events in Nanoelectrochemical Systems. 2015 , 256-307		
402	- Functionalization of Carbon Nanotubes with Polymers. 2015 , 848-869		1
402	- Functionalization of Carbon Nanotubes with Polymers. 2015 , 848-869 Reduction of Graphene Oxide and its Effect on Square Resistance of Reduced Graphene Oxide Films. 2015 , 36, 1681-1687		10
	Reduction of Graphene Oxide and its Effect on Square Resistance of Reduced Graphene Oxide		
401	Reduction of Graphene Oxide and its Effect on Square Resistance of Reduced Graphene Oxide Films. 2015 , 36, 1681-1687 Electrocatalytic Interface Based on Novel Carbon Nanomaterials for Advanced Electrochemical		10
401	Reduction of Graphene Oxide and its Effect on Square Resistance of Reduced Graphene Oxide Films. 2015, 36, 1681-1687 Electrocatalytic Interface Based on Novel Carbon Nanomaterials for Advanced Electrochemical Sensors. 2015, 7, 2744-2764		10
401 400	Reduction of Graphene Oxide and its Effect on Square Resistance of Reduced Graphene Oxide Films. 2015, 36, 1681-1687 Electrocatalytic Interface Based on Novel Carbon Nanomaterials for Advanced Electrochemical Sensors. 2015, 7, 2744-2764 Carbon Electrodes in Molecular Electronics. 2015, 339-378 A novel hydrogen peroxide sensor based on Ag nanoparticles decorated polyaniline/graphene	4.8	10 51 1
401 400 399 398	Reduction of Graphene Oxide and its Effect on Square Resistance of Reduced Graphene Oxide Films. 2015, 36, 1681-1687 Electrocatalytic Interface Based on Novel Carbon Nanomaterials for Advanced Electrochemical Sensors. 2015, 7, 2744-2764 Carbon Electrodes in Molecular Electronics. 2015, 339-378 A novel hydrogen peroxide sensor based on Ag nanoparticles decorated polyaniline/graphene composites. 2015, 132, n/a-n/a Chemically Modified Graphene: The Influence of Structural Properties on the Assessment of	4.8	10 51 1
401 400 399 398 397	Reduction of Graphene Oxide and its Effect on Square Resistance of Reduced Graphene Oxide Films. 2015, 36, 1681-1687 Electrocatalytic Interface Based on Novel Carbon Nanomaterials for Advanced Electrochemical Sensors. 2015, 7, 2744-2764 Carbon Electrodes in Molecular Electronics. 2015, 339-378 A novel hydrogen peroxide sensor based on Ag nanoparticles decorated polyaniline/graphene composites. 2015, 132, n/a-n/a Chemically Modified Graphene: The Influence of Structural Properties on the Assessment of Antioxidant Capacity. <i>Chemistry - A European Journal</i> , 2015, 21, 11793-8 Enhanced electropolymerization of poly(xanthurenic acid)-MoS film for specific electrocatalytic	4.8	10 51 1 10

(2015-2015)

393	Polyoxometalate/chitosan lectrochemically reduced graphene oxide as effective mediating systems for electrocatalytic reduction of persulfate. <i>Electrochimica Acta</i> , 2015 , 173, 540-550	6.7	17
392	Single-walled carbon nanotubesBarboxyl-functionalized graphene oxide-based electrochemical DNA biosensor for thermolabile hemolysin gene detection. <i>Analytical Methods</i> , 2015 , 7, 5303-5310	3.2	26
391	Electrochemically reduced graphene oxide with enhanced electrocatalytic activity toward tetracycline detection. 2015 , 36, 1936-1942		20
390	Controlled electrosynthesis of polyaniline on branched surface of reduced graphene oxide. 2015 , 51, 976-985		3
389	Functional holey graphene oxide: a new electrochemically transformed substrate material for dopamine sensing. 2015 , 5, 107123-107135		9
388	Electrochemical deoxyribonucleic acid biosensor based on electrodeposited graphene and nickel oxide nanoparticle modified electrode for the detection of salmonella enteritidis gene sequence. 2015 , 49, 34-39		19
387	Electrochemical codeposition of Pt/graphene catalyst for improved methanol oxidation. 2015 , 15, 219-	225	31
386	A new ratiometric electrochemical sensor for sensitive detection of bisphenol A based on poly-Etyclodextrin/electroreduced graphene modified glassy carbon electrode. <i>Journal of Electroanalytical Chemistry</i> , 2015 , 742, 97-103	4.1	67
385	Graphene and carbon quantum dots electrochemistry. 2015 , 52, 75-79		82
384	Electron transfer study on graphene modified glassy carbon substrate via electrochemical reduction and the application for tris(2,2'-bipyridyl)ruthenium(II) electrochemiluminescence sensor fabrication. <i>Talanta</i> , 2015 , 139, 6-12	6.2	14
383	Highly sensitive electrochemical sensor for dopamine with a double-stranded deoxyribonucleic acid/gold nanoparticle/graphene modified electrode. <i>Analytical Methods</i> , 2015 , 7, 1878-1883	3.2	8
382	Study of benzophenone grafting on reduced graphene oxide by unconventional techniques. 2015 , 39, 2966-2972		7
381	Application of nanosized gold and graphene modified carbon ionic liquid electrode for the sensitive electrochemical determination of folic acid. 2015 , 204, 112-117		27
380	Memristive devices based on graphene oxide. <i>Carbon</i> , 2015 , 85, 383-396	10.4	103
379	Design of Experiments for Pulse Reverse Electrodeposition of Graphene Oxide toward Hydrogen Evolution Reaction. 2015 , 4, M7-M17		12
378	A label-free hemin/G-quadruplex DNAzyme biosensor developed on electrochemically modified electrodes for detection of a HBV DNA segment. 2015 , 5, 11541-11548		30
377	Investigation of conductivity and catalytic ability at an electrochemically reduced graphene oxide film modified electrode. <i>Journal of Materials Science: Materials in Electronics</i> , 2015 , 26, 943-949	2.1	5
376	Electrochemical Oxidation of Glassy Carbon Provides Similar Electrochemical Response as Graphene Oxide Prepared by Tour or Hummers Routes. 2015 , 2, 761-767		14

375	Design, synthesis, and characterization of graphene-nanoparticle hybrid materials for bioapplications. 2015 , 115, 2483-531		514
374	Preparation and photocathodic protection performance of CdSe/reduced graphene oxide/TiO2 composite. 2015 , 94, 342-349		63
373	A sensitive, selective and rapid determination of lead(II) ions in real-life samples using an electrochemically reduced graphene oxide-graphite reinforced carbon electrode. <i>Talanta</i> , 2015 , 144, 969-76	6.2	23
372	Simultaneous Electrochemical Reduction and Delamination of Graphene Oxide Films. 2015 , 9, 8737-43		52
371	A Nanocomposite of Poly(melamine) and Electrochemically Reduced Graphene Oxide Decorated with Cu Nanoparticles: Application to Simultaneous Determination of Hydroquinone and Catechol. <i>Journal of the Electrochemical Society</i> , 2015 , 162, B237-B244	3.9	19
370	Memory Behaviors Based on ITO/Graphene Oxide/Al Structure. 2015 , 32, 077201		3
369	Superstructured Assembly of Nanocarbons: Fullerenes, Nanotubes, and Graphene. 2015 , 115, 7046-117		381
368	Facile and green synthesis of graphene oxide by electrical exfoliation of pencil graphite and gold nanoparticle for non-enzymatic simultaneous sensing of ascorbic acid, dopamine and uric acid. 2015 , 5, 63513-63520		32
367	Electrochemical DNA sensor for Staphylococcus aureus nuc gene sequence with zirconia and graphene modified electrode. 2015 , 19, 2431-2438		13
366	Reduced Graphene Oxide: Is it a promising catalyst for the electrochemistry of [UO2(CO3)3]4/[UO2(CO3)3]5/2 <i>Electrochimica Acta</i> , 2015 , 174, 1002-1008	6.7	13
365	Hierarchical graphene/CdS/Ag2S sandwiched nanofilms for photoelectrochemical water splitting. <i>Electrochimica Acta</i> , 2015 , 176, 334-343	6.7	26
364	Electrocatalytic synthesis of poly(2,6-diaminopyridine) on reduced graphene oxide and its application in glucose sensing. 2015 , 5, 52896-52901		7
363	A highly conductive porous graphene electrode prepared via in situ reduction of graphene oxide using Cu nanoparticles for the fabrication of high performance supercapacitors. 2015 , 5, 54275-54282		43
362	Nanoscale reduction of graphene oxide thin films and its characterization. 2015 , 26, 285301		24
361	Chemically Modified Graphene and Sulfonic Acid-Doped Polyaniline Nanofiber Composites: Preparation Routes, Characterization, and Comparison of Direct DNA Detection. 2015 , 119, 9076-9084		13
360	Preparation of reduced graphene oxide/flake carbonyl iron powders/polyaniline composites and their enhanced microwave absorption properties. 2015 , 636, 310-316		84
359	Functionalized carbonaceous fibers for high performance flexible all-solid-state asymmetric supercapacitors. 2015 , 3, 11817-11823		118
358	Highly dispersed reduced graphene oxide and its hybrid complexes as effective additives for improving thermophysical property of heat transfer fluid. 2015 , 87, 284-294		25

(2015-2015)

357	Synthesis of a flower-like CuS/ZnS nanocomposite decorated on reduced graphene oxide and its photocatalytic performance. 2015 , 5, 36185-36191		23	
356	A green approach for assembling graphene films on different carbon-based substrates and their electrocatalysis toward nitrite. 2015 , 5, 36707-36714		12	
355	Simultaneous synthesis of diverse graphene via electrochemical reduction of graphene oxide. 2015 , 45, 453-462		13	
354	Hierarchically structured MnO2/graphene/carbon fiber and porous graphene hydrogel wrapped copper wire for fiber-based flexible all-solid-state asymmetric supercapacitors. 2015 , 3, 11215-11223		218	
353	The Effect of Thermal Exfoliation Temperature on the Structure and Supercapacitive Performance of Graphene Nanosheets. 2015 , 7, 17-26		26	
352	Efficient low-temperature transparent electrocatalytic layers based on graphene oxide nanosheets for dye-sensitized solar cells. 2015 , 7, 10863-71		16	
351	Application of titanium dioxide nanowires and electroreduced graphene oxide modified electrodes for the electrochemical detection of specific tlh gene sequence from Vibrio parahaemolyticus. <i>Analytical Methods</i> , 2015 , 7, 2623-2629	3.2	10	
350	Preliminary comparison of different reduction methods of graphene oxide. 2015 , 38, 7-12		34	
349	Shape-Tailorable Graphene-Based Ultra-High-Rate Supercapacitor for Wearable Electronics. 2015 , 9, 5636-45		111	
348	Bulk synthesis of highly conducting graphene oxide with long range ordering. 2015 , 5, 35893-35898		35	
347	Graphene oxide electrocatalyst on MnODair cathode as an efficient electron pump for enhanced oxygen reduction in alkaline solution. 2015 , 5, 9108		24	
346	An electrochemical sensor for hydrazine and nitrite based on graphenellobalt hexacyanoferrate nanocomposite: Toward environment and food detection. <i>Journal of Electroanalytical Chemistry</i> , 2015 , 745, 80-87	4.1	80	
345	Mycotoxin Aptasensing Amplification by using Inherently Electroactive Graphene-Oxide Nanoplatelet Labels. 2015 , 2, 743-747		33	
344	Electrochemistry of actinide on electrochemically reduced graphene oxide: Electrocatalysis of Np(VI)O22+/Np(V)O2+ in nitric acid solution. <i>Electrochimica Acta</i> , 2015 , 185, 259-266	6.7	2	
343	Simultaneous determination of hydrazine and hydroxylamine on a magnetic bar carbon paste electrode modified with reduced graphene oxide/Fe3O4 nanoparticles and a heterogeneous mediator. <i>Journal of Electroanalytical Chemistry</i> , 2015 , 758, 68-77	4.1	47	
342	Electrochemical Fabrication of Graphene-Based Nanomaterials. 2015, 1-16		1	
341	Electrochemical immunosensor for Enterobacter sakazakii detection based on electrochemically reduced graphene oxidegold nanoparticle/ionic liquid modified electrode. <i>Journal of Electroanalytical Chemistry</i> , 2015 , 756, 43-48	4.1	24	
340	Two-step process for programmable removal of oxygen functionalities of graphene oxide: functional, structural and electrical characteristics. 2015 , 5, 95657-95665		90	

339	Controlled synthesis of partially reduced graphene oxide: Enhance electrochemical determination of isoniazid with high sensitivity and stability. <i>Journal of Electroanalytical Chemistry</i> , 2015 , 757, 183-191	4.1	22
338	A novel solid-to-solid electrocatalysis of graphene oxide reduction on copper electrode. 2015 , 5, 87987	-87992	2 6
337	Synthesis, Structure, and Properties of Graphene and Graphene Oxide. 2015 , 29-94		16
336	Nitrogen-Doped Reduced Graphene Oxide Prepared by Simultaneous Thermal Reduction and Nitrogen Doping of Graphene Oxide in Air and Its Application as an Electrocatalyst. 2015 , 7, 26952-8		79
335	Graphene for DNA Biosensing. 2015 , 11-33		2
334	Recent advances in chemical modifications of graphene. <i>Nano Research</i> , 2015 , 8, 1039-1074	10	154
333	Electrodeposition of copper oxide/polypyrrole/reduced graphene oxide as a nonenzymatic glucose biosensor. <i>Sensors and Actuators B: Chemical</i> , 2015 , 209, 100-108	8.5	106
332	2D and 3D graphene materials: Preparation and bioelectrochemical applications. 2015 , 65, 404-19		146
331	The room temperature electrochemical synthesis of N-doped graphene and its electrocatalytic activity for oxygen reduction. <i>Chemical Communications</i> , 2015 , 51, 1198-201	5.8	48
330	Sensitive Detection of Acetaminophen with Graphene-Based Electrochemical Sensor. <i>Electrochimica Acta</i> , 2015 , 162, 198-204	6.7	89
329	Hollow reduced graphene oxide microspheres as a high-performance anode material for Li-ion batteries. <i>Electrochimica Acta</i> , 2015 , 153, 540-545	6.7	19
328	High loading MnO2 nanowires on graphene paper: facile electrochemical synthesis and use as flexible electrode for tracking hydrogen peroxide secretion in live cells. <i>Analytica Chimica Acta</i> , 2015 , 853, 200-206	6.6	123
327	One-step electrochemical synthesis of three-dimensional graphene foam loaded nickelflobalt hydroxides nanoflakes and its electrochemical properties. <i>Electrochimica Acta</i> , 2015 , 152, 195-201	6.7	52
326	. 2016,		66
325	An Oxygen Reduction Study of Graphene-Based Nanomaterials of Different Origin. 2016 , 6, 108		43
324	Controllable Electrochemical Synthesis of Reduced Graphene Oxide Thin-Film Constructed as Efficient Photoanode in Dye-Sensitized Solar Cells. <i>Materials</i> , 2016 , 9,	3.5	14
323	Electrochemical Synthesis of Polypyrrole, Reduced Graphene Oxide, and Gold Nanoparticles Composite and Its Application to Hydrogen Peroxide Biosensor. <i>Nanomaterials</i> , 2016 , 6,	5.4	31
322	Progress in graphene-based optical and electrochemical aptasensors. 2016 , 393-431		1

(2016-2016)

321	A Facile Graphene Nanosheets-based Electrochemical Sensor for Sensitive Detection of Honokiol in Traditional Chinese Medicine. <i>Electroanalysis</i> , 2016 , 28, 508-515	3	5
320	Photo-reduction of Graphene Oxide during Photo-polymerization of Graphene Oxide/Epoxy-Novolac Nanocomposite Coatings. 2016 , 29, 769-773		4
319	Electrochemical behavior of polydatin and its highly-sensitive determination based on graphene modified electrode. <i>Journal of Electroanalytical Chemistry</i> , 2016 , 773, 39-46	4.1	1
318	A novel electrochemical DNA biosensor based on a modified magnetic bar carbon paste electrode with Fe3O4NPs-reduced graphene oxide/PANHS nanocomposite. 2016 , 68, 1-8		26
317	Graphene and its electrochemistry - an update. 2016 , 45, 2458-93		289
316	Improving the Analytical Performance of Graphene Oxide towards the Assessment of Polyphenols. <i>Chemistry - A European Journal</i> , 2016 , 22, 3830-4	4.8	21
315	Modifications in development of graphene oxide synthetic routes. <i>Chemical Engineering Journal</i> , 2016 , 294, 458-477	14.7	54
314	Electrochemical activation of carbon cloth in aqueous inorganic salt solution for superior capacitive performance. 2016 , 8, 10406-14		61
313	A simple route to Develop Highly porous Nano Polypyrrole/Reduced Graphene Oxide Composite film for Selective Determination of Dopamine. <i>Electrochimica Acta</i> , 2016 , 206, 77-85	6.7	35
312	Metal-assisted mechanochemical reduction of graphene oxide. <i>Carbon</i> , 2016 , 110, 79-86	10.4	21
311	Real-time amperometric monitoring of cellular hydrogen peroxide based on electrodeposited reduced graphene oxide incorporating adsorption of electroactive methylene blue hybrid composites. <i>Journal of Electroanalytical Chemistry</i> , 2016 , 780, 60-67	4.1	15
310	Corrosion study of electrophoretically deposited graphene oxide coatings on copper metal. 2016 , 620, 150-159		47
309	Functionalization and Reduction of Graphene Oxide. 2016, 175-229		5
308	Remarkably High Heterogeneous Electron Transfer Activity of Carbon-Nanotube-Supported Reduced Graphene Oxide. 2016 , 28, 7422-7432		15
307	Layered double hydroxide- and graphene-based hierarchical nanocomposites: Synthetic strategies and promising applications in energy conversion and conservation. <i>Nano Research</i> , 2016 , 9, 3598-3621	10	85
306	A CTAB-modified S/C nanocomposite cathode for high performance LiB batteries. 2016 , 6, 92621-92628	3	2
305	3D graphene-based hybrid materials: synthesis and applications in energy storage and conversion. 2016 , 8, 15414-47		105
304	Amino-modification and successive electrochemical reduction of graphene oxide for highly sensitive electrochemical detection of trace Pb 2+. <i>Carbon</i> , 2016 , 109, 479-486	10.4	31

303	Electrochemical reduction of bulk graphene oxide materials. 2016 , 6, 80106-80113		29
302	Biosensing Test-Bed Using Electrochemically Deposited Reduced Graphene Oxide. 2016 , 8, 24350-60		33
301	Challenges in Liquid-Phase Exfoliation, Processing, and Assembly of Pristine Graphene. <i>Advanced Materials</i> , 2016 , 28, 8796-8818	24	97
300	An electrochemically reduced graphene oxide chemiresistive sensor for sensitive detection of Hg ion in water samples. 2016 , 320, 226-233		49
299	Observing the Heterogeneous Electro-redox of Individual Single-Layer Graphene Sheets. 2016 , 10, 8434-	-42	9
298	Silicon-based anodes for lithium-ion batteries: Effectiveness of materials synthesis and electrode preparation. 2016 , 27, 359-376		297
297	Fabrication and Applications of Biocompatible Graphene Oxide and Graphene. 2016, 143-150		5
296	Phenols as probes of chemical composition of graphene oxide. <i>Physical Chemistry Chemical Physics</i> , 2016 , 18, 30515-30519	3.6	5
295	Ultrasmooth transparent conductive hybrid films of reduced graphene oxide and single-walled carbon nanotube by ultrasonic spraying. 2016 , 221, 340-344		12
294	Wafer-scale high-resolution patterning of reduced graphene oxide films for detection of low concentration biomarkers in plasma. 2016 , 6, 31276		23
293	Analysis of Electrochemical Reduction Process of Graphene Oxide and its Electrochemical Behavior. <i>Electroanalysis</i> , 2016 , 28, 1377-1382	3	27
292	Electrochemical Behavior and Voltammetric Determination of Curcumin at Electrochemically Reduced Graphene Oxide Modified Glassy Carbon Electrode. <i>Electroanalysis</i> , 2016 , 28, 749-756	3	37
291	The influence of oxidation debris containing in graphene oxide on the adsorption and electrochemical properties of 1,10-phenanthroline-5,6-dione. 2016 , 141, 2761-6		10
290	Graphene composite coated carbon fiber: electrochemical synthesis and application in electrochemical sensing. 2016 , 6, 11250-11255		10
289	Modified glassy carbon electrodes based on carbon nanostructures for ultrasensitive electrochemical determination of furazolidone. 2016 , 61, 842-50		43
288	Intense charge transfer surface based on graphene and thymine-Hg(II)-thymine base pairs for detection of Hg(2.). 2016 , 77, 740-5		40
287	Complete Coating of Underlying Pt Electrodes by Electrochemical Reduction of Graphene Oxide. <i>Electrochimica Acta</i> , 2016 , 188, 111-119	6.7	14
286	Facile, single step synthesis of CdSRGO heterostructure and its photo enhanced field emission investigations. 2016 , 3, 035602		2

(2016-2016)

285	The impact of electrochemical reduction potentials on the electrocatalytic activity of graphene oxide toward the oxygen reduction reaction in an alkaline medium. <i>Electrochimica Acta</i> , 2016 , 199, 194-20	93	25
284	Intrinsic Catalytic Activity of Graphene Defects for the Co(II/III)(bpy)3 Dye-Sensitized Solar Cell Redox Mediator. 2016 , 8, 9134-41		11
283	Electrochemical sensing of dopamine at the surface of a dopamine grafted graphene oxide/poly(methylene blue) composite modified electrode. 2016 , 6, 19982-19991		37
282	Electrochemically reduced graphene oxide/carbon nanotubes composites as binder-free supercapacitor electrodes. 2016 , 311, 144-152		51
281	Reduced Graphene Oxide Hydrogels Deposited in Nickel Foam for Supercapacitor Applications: Toward High Volumetric Capacitance. 2016 , 120, 5353-5360		50
280	Electrocatalytic hydrogen evolution reaction on reduced graphene oxide electrode decorated with cobaltphthalocyanine. 2016 , 188, 217-226		61
279	Voltammetric determination of trace heavy metals using an electrochemically deposited graphene/bismuth nanocomposite film-modified glassy carbon electrode. <i>Journal of Electroanalytical Chemistry</i> , 2016 , 766, 120-127	1	61
278	The green reduction of graphene oxide. 2016 , 6, 27807-27828		159
277	Electrochemical investigation of a metalloporphyringraphene composite modified electrode and its electrocatalysis on Ascorbic Acid. <i>Journal of Electroanalytical Chemistry</i> , 2016 , 760, 105-112	1	19
276	Simultaneous determination of acetaminophen, theophylline and caffeine using a glassy carbon disk electrode modified with a composite consisting of poly(Alizarin Violet 3B), multiwalled carbon nanotubes and graphene. 2016 , 183, 731-739		32
275	Direct Reduction of Graphene Oxide by Ni Foam as a High-Capacitance Supercapacitor Electrode. 2016 , 8, 2297-305		63
274	Metal-Organic Frameworks/Graphene Oxide Composite: A New Enzymatic Immobilization Carrier for Hydrogen Peroxide Biosensors. <i>Journal of the Electrochemical Society</i> , 2016 , 163, B32-B37	.9	31
273	Role of the intrinsic properties of partially reduced graphene oxides on the chemical transformation of iopromide. <i>Carbon</i> , 2016 , 99, 456-465	0.4	26
272	The novel voltammetric method for determination of hesperetin based on a sensitive electrochemical sensor. <i>Talanta</i> , 2016 , 150, 61-70	ó.2	14
271	A Review on Composite Papers of Graphene Oxide, Carbon Nanotube, Polymer/GO, and Polymer/CNT: Processing Strategies, Properties, and Relevance. 2016 , 55, 559-581		27
270	A Review on Graphene-Based Gas/Vapor Sensors with Unique Properties and Potential Applications. 2016 , 8, 95-119		383
269	A review of graphene oxide, graphene buckypaper, and polymer/graphene composites: Properties and fabrication techniques. 2016 , 32, 336-379		62
268	Application of three-dimensional reduced graphene oxide-gold composite modified electrode for direct electrochemistry and electrocatalysis of myoglobin. 2016 , 58, 450-7		30

267	Label-free and direct detection of C-reactive protein using reduced graphene oxide-nanoparticle hybrid impedimetric sensor. 2016 , 107, 37-44		71
266	Comparison of impedimetric detection of DNA hybridization on the various biosensors based on modified glassy carbon electrodes with PANHS and nanomaterials of RGO and MWCNTs. <i>Talanta</i> , 2016 , 147, 621-7	6.2	57
265	Tuning the electrochemical reduction of graphene oxide: structural correlations towards the electrooxidation of nicotinamide adenine dinucleotide hydride. <i>Electrochimica Acta</i> , 2016 , 197, 194-199	6.7	17
264	Graphene and Two-Dimensional Transition Metal Dichalcogenide Materials for Energy-Related Applications. 2016 , 253-291		
263	Carbon nanomaterial-based electrochemical biosensors for label-free sensing of environmental pollutants. <i>Chemosphere</i> , 2016 , 143, 85-98	8.4	136
262	2D nanomaterials based electrochemical biosensors for cancer diagnosis. 2017 , 89, 136-151		147
261	UV-assisted reduction of graphite oxide to graphene by using a photoinitiator. 2017 , 52, 4866-4877		11
260	Photoelectric properties of graphene oxide@nO composite nanosheets vertically grown on substrate. 2017 , 699, 468-478		9
259	Reduction of graphene oxide by Ar-H2 mixture gase at 200 LC with the aid of Pd. 2017 , 703, 10-12		12
258	The role of graphene oxide and graphene oxide-based nanomaterials in the removal of pharmaceuticals from aqueous media: a review. 2017 , 24, 7938-7958		128
257	Graphene/polyaniline@carbon cloth composite as a high-performance flexible supercapacitor electrode prepared by a one-step electrochemical co-deposition method. 2017 , 7, 7688-7693		56
256	Liquid Crystals of Graphene Oxide: A Route Towards Solution-Based Processing and Applications. 2017 , 34, 1600396		14
255	Toward Graphene/Silicon Interface via Controlled Electrochemical Reduction of Graphene Oxide. 2017 , 121, 5675-5683		25
254	Continuous and catalyst free synthesis of graphene sheets in thermal plasma jet. <i>Chemical Engineering Journal</i> , 2017 , 322, 385-396	14.7	18
253	One-step electrochemical preparation of graphene-coated pencil graphite electrodes by cyclic voltammetry and their application in vanadium redox batteries. <i>Electrochimica Acta</i> , 2017 , 243, 239-249	6.7	49
252	Tuning the plasmon resonance and work function of laser-scribed chemically doped graphene. <i>Carbon</i> , 2017 , 120, 44-53	10.4	14
251	Design of a new nanocomposite between bismuth nanoparticles and graphene oxide for development of electrochemical sensors. 2017 , 79, 262-269		16
250	MnO 2 -GO double-shelled sulfur (S@MnO 2 @GO) as a cathode for Li-S batteries with improved rate capability and cyclic performance. 2017 , 356, 72-79		48

(2017-2017)

249	Fabrication of reduced graphene oxide-magnetic nanocomposite (rGO-Fe3O4) as an electrochemical sensor for trace determination of As(III) in water resources. <i>Journal of Electroanalytical Chemistry</i> , 2017 , 796, 33-42	4.1	46
248	One-step synthesis of functional pNR/rGO composite as a building block for enhanced ascorbic acid biosensing. <i>Analytica Chimica Acta</i> , 2017 , 981, 34-40	6.6	12
247	Study of graphene oxide-based 3D printable composites: Effect of the in situ reduction. 2017 , 124, 9-15		73
246	Graphene transfer to 3-dimensional surfaces: a vacuum-assisted dry transfer method. 2017 , 4, 025060		27
245	Graphene-based field effect transistors as biosensors. 2017 , 3, 11-17		30
244	A bioinspired ionic liquid tagged cobalt-salophen complex for nonenzymatic detection of glucose. 2017 , 91, 380-387		35
243	Chemically Reduced Graphene Oxide for the Assessment of Food Quality: How the Electrochemical Platform Should Be Tailored to the Application. <i>Chemistry - A European Journal</i> , 2017 , 23, 1930-1936	4.8	6
242	Interface-induced terahertz persistent photoconductance in rGO-gelatin flexible films. 2017 , 9, 637-646	5	13
241	Graphene/gold Nanoparticles for Electrochemical Sensing. 2017 , 139-172		2
240	Synergistic oxidation of CVD graphene on Cu by oxygen plasma etching. <i>Carbon</i> , 2017 , 125, 500-508	10.4	21
239	Electroanalytical Applications of Graphene. 2017 , 119-137		
238	Electronic and magnetic properties of nitrogen functionalized graphene-oxide. <i>Diamond and Related Materials</i> , 2017 , 79, 1-6	3.5	18
237	Fabrication and characterisation of electro-brush plated nickel-graphene oxide nano-composite coatings. 2017 , 644, 106-114		27
236	Graphene Oxide Sheets Combine into Conductive Coatings by Direct Oxidative Electropolymerization. 2017 , 7, 4987		8
235	A UV-light induced photochemical method for graphene oxide reduction. 2017 , 52, 12742-12750		19
234	A layer-by-layer sensing architecture based on dendrimer and ionic liquid supported reduced graphene oxide for simultaneous hollow-fiber solid phase microextraction and electrochemical determination of anti-cancer drug imatinib in biological samples. <i>Journal of Electroanalytical</i>	4.1	40
233	Manipulation and Quantification of Graphene Oxide Flake Size: Photoluminescence and Cytotoxicity. 2017 , 9, 28911-28921		43
232	Synthesis of reduced graphene oxide (rGO) films onto carbon steel by cathodic electrophoretic deposition: Anticorrosive coating. <i>Carbon</i> , 2017 , 122, 266-275	10.4	40

Resistive switching behavior of graphene oxide films in symmetric metal-insulator-metal structures. **2017**,

230	Fat taste detection with odorant-binding proteins (OBPs) on screen-printed electrodes modified by reduced graphene oxide. <i>Sensors and Actuators B: Chemical</i> , 2017 , 252, 973-982	8.5	15
229	Electrochemical luminescence determination of hyperin using a sol-gel@graphene luminescent composite film modified electrode for solid phase microextraction. 2017 , 173, 843-848		10
228	Three-dimensional macroporous graphene scaffolds for tissue engineering. 2017 , 105, 73-83		18
227	Electrodeposited reduced graphene oxide incorporating polymerization of l-lysine on electrode surface and its application in simultaneous electrochemical determination of ascorbic acid, dopamine and uric acid. 2017 , 70, 241-249		71
226	Polydopamine@electrochemically reduced graphene oxide-modified electrode for electrochemical detection of free-chlorine. <i>Sensors and Actuators B: Chemical</i> , 2017 , 240, 818-828	8.5	56
225	Synthesis of mesoporous reduced graphene oxide by Zn particles for electrodes of supercapacitor in ionic liquid electrolyte. 2017 , 45, 105-110		25
224	Synthesis of graphene-transition metal oxide hybrid nanoparticles and their application in various fields. 2017 , 8, 688-714		76
223	Optical Fibre Sensors Using Graphene-Based Materials: A Review. 2017 , 17,		71
222	Enhanced Reduction of Few-Layer Graphene Oxide via Supercritical Water Gasification of Glycerol. <i>Nanomaterials</i> , 2017 , 7,	5.4	11
221	Preparation of highly conductive, transparent, and flexible graphene/silver nanowires substrates using non-thermal laser photoreduction. 2018 , 103, 367-372		47
220	Electrochemical alternative to obtain reduced graphene oxide by pulse potential: Effect of synthesis parameters and study of corrosion properties. <i>Diamond and Related Materials</i> , 2018 , 88, 167-	1885	8
219	Innovations in graphene-based nanomaterials in the preconcentration of pharmaceuticals waste. 2018 , 7, 73-94		6
218	Cyclic voltammetric preparation of graphene-coated electrodes for positive electrode materials of vanadium redox flow battery. 2018 , 24, 3641-3654		23
217	Environmental benign synthesis of reduced graphene oxide (rGO) from spent lithium-ion batteries (LIBs) graphite and its application in supercapacitor. <i>Colloids and Surfaces A: Physicochemical and Engineering Aspects</i> , 2018 , 543, 98-108	5.1	45
216	One-step electrodeposition of reduced graphene oxide on three-dimensional porous nano nickel-copper foam electrode and its use in supercapacitor. <i>Journal of Electroanalytical Chemistry</i> , 2018 , 813, 152-162	4.1	23
215	Green Approach To Produce a Graphene Thin Film on a Conductive LCD Matrix for the Oxidative Transformation of Ciprofloxacin. 2018 , 6, 3453-3462		17
214	Preparation of high-quality graphene using triggered microwave reduction under an air atmosphere. 2018 , 6, 1829-1835		24

213 Multidimensional Assemblies of Graphene. 2018, 27-72

212	All-in-One: Electroactive Nanocarbon as Simultaneous Platform and Label for Single-Step Biosensing. <i>Chemistry - A European Journal</i> , 2018 , 24, 6380-6385	4.8	9
211	Identification of electrocatalytic oxygen reduction (ORR) activity of boron in graphene oxide; incorporated as a charge-adsorbate and/or substitutional p-type dopant. 2018 , 207, 380-388		7
210	Selective electrochemical detection of dopamine based on molecularly imprinted poly(5-amino 8-hydroxy quinoline) immobilized reduced graphene oxide. 2018 , 53, 10627-10639		23
209	Role of Interface Interactions in the Construction of GO-Based Artificial Nacres. 2018 , 5, 1800107		15
208	Novel chlorine doped graphene electrodes for positive electrodes of a vanadium redox flow battery. 2018 , 42, 3303-3314		28
207	Integration of graphene onto silicon through electrochemical reduction of graphene oxide layers in non-aqueous medium. 2018 , 445, 404-414		21
206	Electrochemically reduced graphene oxide nanosheet coatings as solid lubricants in humid air. 2018 , 102, 324-329		11
205	Thermoresponsive Deformable Actuators Prepared by Local Electrochemical Reduction of Poly(N-isopropylacrylamide)/Graphene Oxide Hydrogels. 2018 , 1, 1522-1530		28
204	Surfactant-free electrodeposition of reduced graphene oxide/copper composite coatings with enhanced wear resistance. 2018 , 433, 232-239		64
203	Copper Oxide¶obalt Nanostructures/Reduced Graphene Oxide/Biomass-Derived Macroporous Carbon for Glucose Sensing. 2018 , 5, 501-506		21
202	Reduction of Graphene Oxide Thin Films by Cobaltocene and Decamethylcobaltocene. 2018 , 10, 2004-2	015	16
201	Electrochemically reduced graphene oxide on gold nanoparticles modified with a polyoxomolybdate film. Highly sensitive non-enzymatic electrochemical detection of H2O2. <i>Sensors and Actuators B: Chemical</i> , 2018 , 258, 745-756	8.5	43
200	Self-assembly of phenoxyl-dextran on electrochemically reduced graphene oxide for nonenzymatic biosensing of glucose. <i>Carbon</i> , 2018 , 127, 202-208	10.4	16
199	Structural evolution of defective graphene under heat treatment and gamma irradiation. 2018 , 97, 151	-154	7
198	Ultrafast responsive and highly sensitive enzyme-free glucose sensor based on a novel Ni(OH)2@PEDOT-rGO nanocomposite. <i>Sensors and Actuators B: Chemical</i> , 2018 , 254, 1206-1215	8.5	49
197	Electrocatalysis of Oxygen Reduction on Pristine and Heteroatom-Doped Graphene Materials. 2018 , 497-506		6
196	Cyclic Voltammetry and Electrochemical Impedance Spectroscopy of Partially Reduced Graphene Oxide - PEDOT:PSS Transducer for Biochemical Sensing. 2018 ,		3

195	. 2018,	18
194	Graphene-Semiconductor Composites as Visible Light-Induced Photocatalyst. 2018 ,	1
193	Influence of atmospheric species on the electrical properties of functionalized graphene sheets 2018 , 8, 42073-42079	1
192	Graphene and CNT Based EMI Shielding Materials. 2018 , 241-261	1
191	Interfacing Electrochemically Reduced Graphene Oxide with Poly(erichrome black T) for Simultaneous Determination of Epinephrine, Uric Acid and Folic Acid. <i>Journal of the Electrochemical Society</i> , 2018 , 165, B804-B813	11
190	Characteristics and performance of two-dimensional materials for electrocatalysis. 2018 , 1, 909-921	348
189	Rapid and efficient synthesis of reduced graphene oxide nano-sheets using CO ambient atmosphere as a reducing agent. <i>Journal of Materials Science: Materials in Electronics</i> , 2018 , 29, 19402-19412	7
188	The Role of Surface Chemistry in Impedimetric Aptasensing. 2018 , 5, 3654-3659	6
187	Atomic and electronic structure of graphene oxide/Cu interface. 2018 , 665, 99-108	6
186	Spatially resolved solid-state reduction of graphene oxide thin films. 2018 , 5, 1176-1184	10
185	MgB2 superconductor prepared by Mg diffusion method with the addition of reduced graphene oxide. 2018 , 32, 1850268	
184	Pulsed electrodeposition of reduced graphene oxide on NiNiO foam electrode for high-performance supercapacitor. <i>International Journal of Hydrogen Energy</i> , 2018 , 43, 12233-12250	12
183	Laser-induced reduction of graphene oxide powders by high pulsed ultraviolet laser irradiations. 2018 , 444, 578-583	28
182	A comprehensive review on recently developed carbon based nanocomposites for capacitive deionization: From theory to practice. 2018 , 207, 291-320	98
181	Tunable Electrochemical Approach for Reduction of Graphene Oxide: Taguchi-Assisted Chemical and Structural Optimization. <i>Journal of the Electrochemical Society</i> , 2018 , 165, E429-E438	6
180	Recent advances of graphene family nanomaterials for nanomedicine. 2018 , 413-455	2
179	Encapsulation of Microorganisms, Enzymes, and Redox Mediators in Graphene Oxide and Reduced Graphene Oxide. 2018 , 609, 197-219	3
178	Scalable Fabrication of High-Performance Transparent Conductors Using Graphene Oxide-Stabilized Single-Walled Carbon Nanotube Inks. <i>Nanomaterials</i> , 2018 , 8, 5-4	10

177	Multifunctionalized Reduced Graphene Oxide Biosensors for Simultaneous Monitoring of Structural Changes in Amyloid-卧0. 2018 , 18,		6
176	Solution electrochemical approach to functionalized graphene: History, progress and challenges. <i>Carbon</i> , 2018 , 140, 41-56	10.4	28
175	Electrochemical tuning of capacitive response of graphene oxide. <i>Physical Chemistry Chemical Physics</i> , 2018 , 20, 22698-22709	3.6	9
174	The role of vacancies in electric field mediated graphene oxide reduction. 2018 , 113, 073103		1
173	Nanosized-Zinc-Mediated Self-Gelation of Graphene Oxide under Ambient Conditions. 2018 , 83, 947-95	5	1
172	Three-dimensional kenaf stem-derived macroporous carbon/reduced graphene oxide/polyaniline integrated electrode for supercapacitors. <i>Electrochimica Acta</i> , 2018 , 281, 638-645	6.7	15
171	New Concepts for Production of Scalable Single Layer Oxidized Regions by Local Anodic Oxidation of Graphene. 2019 , 15, e1902817		2
170	Electrochemical determination of methyl parathion based on pillar[5]arene@AuNPs@reduced graphene oxide hybrid nanomaterials. 2019 , 43, 13048-13057		18
169	Electroactive Nanocarbon Can Simultaneously Work as Platform and Signal Generator for Label-Free Immunosensing. 2019 , 6, 3615-3620		8
168	Synthesis and biocompatibility of two-dimensional biomaterials. <i>Colloids and Surfaces A: Physicochemical and Engineering Aspects</i> , 2019 , 583, 124004	5.1	34
167	Graphene Functionalization Strategies. Carbon Nanostructures, 2019,	0.6	2
166	Top-down bottom-up graphene synthesis. 2019 , 3, 042003		12
165	Electrochemical Biosensors Based on Green Synthesized Graphene and Graphene Nanocomposites. 2019 , 233-296		Ο
164	Liquid-Gated Transistors Based on Reduced Graphene Oxide for Flexible and Wearable Electronics. <i>Advanced Functional Materials</i> , 2019 , 29, 1905375	15.6	19
163	Highly sensitive and rapid determination of sunset yellow in drinks using a low-cost carbon material-based electrochemical sensor. 2019 , 411, 7539-7549		19
162	Electrochemically Reduced Graphene Oxide: A Smart Material for Electrochemical Sensing. 2019 , 603-62	29	2
161	Graphene-Based Materials for Implants. 2019 , 143-175		Ο
160	Laser Direct-Writing Graphene Oxide to Graphene Mechanisms to Applications. 2019 , 237-287		O

159	Self- and Directed-Assembly of Metallic and Nonmetallic Fluorophors: Considerations into Graphene and Graphene Oxides for Sensing and Imaging Applications. 2019 , 469-505		1
158	Reduced Graphene Oxide for Biosensing and Electrocatalytic Applications. 2019 , 143-179		
157	Facile and highly efficient preparation of semi-transparent, patterned and large-sized reduced graphene oxide films by electrochemical reduction on indium tin oxide glass surface. 2019 , 692, 137626	j	3
156	Continuous Graphene Oxide Fiber and Its Applications. 2019 , 409-431		
155	One-step synthesis of reduced graphene oxide and magnetic graphene: characterization and its application in electrochemical detection of lead (II) ions. <i>Journal of Materials Science: Materials in Electronics</i> , 2019 , 30, 20229-20242	2.1	6
154	Polymer network of graphene oxide with covalently attached 2-(4?-Hydroxyphenyl)fulleropyrrolidine and Palladium: Synthesis, properties and theoretical studies. 2019 , 249, 114406		4
153	Flexible Interfaces between Reduced Graphene Oxide and Indium Tin Oxide/Polyethylene Terephthalate for Advanced Optoelectronic Devices. 2019 , 2, 5963-5972		7
152	Fabrication of Non-Enzymatic Electrochemical Hydrogen Peroxide Sensor Based on Ag NPs/Co3O4/ERGO Composite. <i>Journal of the Electrochemical Society</i> , 2019 , 166, B1232-B1237	3.9	15
151	Electrochemically reduced graphene oxide modified with electrodeposited thionine and horseradish peroxidase for hydrogen peroxide sensing and inhibitive measurement of chromium. 2019 , 2, 676-686		3
150	Superior Electronic and Dielectric Properties of Corrugated Electrochemically Reduced Graphene over Graphene Oxide Papers. <i>Journal of the Electrochemical Society</i> , 2019 , 166, D21-D36	3.9	8
149	Comprehensive Application of Graphene: Emphasis on Biomedical Concerns. 2019, 11, 6		97
148	Preparation of Molecularly Imprinted Polymer Sensor on Electrochemically Reduced Graphene Oxide Modified Electrode for Selective Probing of Thiabendazole. <i>Journal of the Electrochemical Society</i> , 2019 , 166, B84-B91	3.9	17
147	Optical Microscopy Unveils Rapid, Reversible Electrochemical Oxidation and Reduction of Graphene. 2019 , 19, 983-989		16
146	Low cost fabrication of three-dimensional hierarchical porous graphene anode material for sodium ion batteries application. 2019 , 360, 110-115		3
145	Graphene-based nanomaterials: the promising active agents for antibiotics-independent antibacterial applications. 2019 , 307, 16-31		102
144	Graphene to improve the physicomechanical properties and bioactivity of the cements. 2019 , 599-614		
143	A Facile Electrochemical Method for Graphene Nanoplatelets Preparation Using Multi-walled Carbon Nanotubes. 2019 , 19, 202-210		3
142	Permselectivity of Electrodeposited Polydopamine/Graphene Composite for Voltammetric Determination of Dopamine. <i>Electroanalysis</i> , 2019 , 31, 1744-1751	3	5

141	A label-free and ultrasensitive DNA impedimetric sensor with enzymatic and electrical dual-amplification. 2019 , 144, 4175-4179		3
140	An ultrasensitive luminol cathodic electrochemiluminescence probe with highly porous Pt on ionic liquid functionalized graphene film as platform for carcinoembryonic antigen sensing. 2019 , 141, 11143	6	24
139	Cyclic Voltammetry Analysis of Co-Electrodeposition Mechanism of rGO-Sb2Se3 Thin Films Photocathode. <i>Journal of the Electrochemical Society</i> , 2019 , 166, D421-D426	3.9	1
138	Tunable degree of oxidation in graphene oxide: cost effective synthesis, characterization and process optimization. 2019 , 6, 085625		4
137	Facile synthesis of highly favorable graphene oxide: Effect of oxidation degree on the structural, morphological, thermal and electrochemical properties. 2019 , 6, 100344		24
136	Electrochemical co-deposition synthesis of Au-ZrO-graphene nanocomposite for a nonenzymatic methyl parathion sensor. <i>Analytica Chimica Acta</i> , 2019 , 1072, 25-34	6.6	38
135	Emerging Trends in the Syntheses of Heterocycles Using Graphene-based Carbocatalysts: An Update. 2019 , 377, 13		10
134	Influence of protons on reduction degree and defect formation in electrochemically reduced graphene oxide. <i>Carbon</i> , 2019 , 149, 722-732	10.4	33
133	Enhancing the corrosion resistance of aluminum by graphene oxide and reduced graphene oxide films. 2019 , 6, 075606		9
132	Enhancement effect of reduced graphene oxide and silver nanocomposite supported on poly brilliant blue platform for ultra-trace voltammetric analysis of rosuvastatin in tablets and human plasma 2019 , 9, 7136-7146		10
131	Functionalized-Graphene and Graphene Oxide: Fabrication and Application in Catalysis. 2019 , 661-727		3
130	A Facile Method for Batch Preparation of Electrochemically Reduced Graphene Oxide. <i>Nanomaterials</i> , 2019 , 9,	5.4	14
129	Plasma jet printing for preparation of N-doped graphene electrode. <i>Journal of Materials Science: Materials in Electronics</i> , 2019 , 30, 8944-8954	2.1	4
128	Laser transmission welding and surface modification of graphene film for flexible supercapacitor applications. 2019 , 483, 481-488		27
127	Recent Progress of Graphene-Based Photoelectrode Materials for Dye-Sensitized Solar Cells. 2019 , 2019, 1-16		18
126	New strategy for determination of anti-viral drugs based on highly conductive layered composite of MnO2/graphene/ionic liquid crystal/carbon nanotubes. <i>Journal of Electroanalytical Chemistry</i> , 2019 , 838, 107-118	4.1	19
125	The optimization of effective parameters for electrodeposition of reduced graphene oxide through Taguchi method to evaluate the charge transfer. 2019 , 137, 683-690		4
124	The magnetic graphene oxide/NHC catalyzed aerobic direct amidation and cross-dehydrogenative coupling of aldehydes. 2019 , 43, 16555-16565		11

123	Recent advances in two-dimensional materials and their nanocomposites in sustainable energy conversion applications. 2019 , 11, 21622-21678		109
122	Upgrading the Properties of Reduced Graphene Oxide and Nitrogen-Doped Reduced Graphene Oxide Produced by Thermal Reduction toward Efficient ORR Electrocatalysts. <i>Nanomaterials</i> , 2019 , 9,	5.4	14
121	Undamaged depositing large-area ZnO quantum dots/RGO films on photoelectrodes for the construction of pure Z-scheme. <i>Chemical Engineering Journal</i> , 2019 , 356, 781-790	14.7	33
120	Mitigating Metal Dendrite Formation in Lithium-Sulfur Batteries via Morphology-Tunable Graphene Oxide Interfaces. 2019 , 11, 2060-2070		12
119	The Comparison of Graphene and Reduced Graphene Oxide Added to MgB2 Prepared by Diffusion Method. 2019 , 29, 1-5		1
118	Fate of adsorbed Pb(II) on graphene oxide under variable redox potential controlled by electrochemical method. 2019 , 367, 152-159		18
117	A promising sensing platform toward dopamine using MnO2 nanowires/electro-reduced graphene oxide composites. <i>Electrochimica Acta</i> , 2019 , 296, 683-692	6.7	148
116	Improved electrochemical performance of nickel-cobalt hydroxides by electrodeposition of interlayered reduced graphene oxide. <i>International Journal of Hydrogen Energy</i> , 2019 , 44, 3658-3667	6.7	8
115	Electrochemical Deposition of Gold Nanoparticles on Reduced Graphene Oxide by Fast Scan Cyclic Voltammetry for the Sensitive Determination of As(III). <i>Nanomaterials</i> , 2018 , 9,	5.4	26
114	Combining 3D graphene-like screen-printed carbon electrode with methylene blue-loaded liposomal nanoprobes for phospholipase A detection. 2019 , 126, 255-260		3
113	Synthesis/Preparation of Carbon Materials. 2019 , 1-64		
112	Fabrication of anti-corrosion nitrogen doped graphene oxide coatings by electrophoretic deposition. 2020 , 499, 143914		19
111	Recent advances in graphene based materials as anode materials in sodium-ion batteries. 2020 , 42, 91-1	107	59
110	2D Nanomaterials for Cancer Theranostic Applications. <i>Advanced Materials</i> , 2020 , 32, e1902333	24	193
109	Controllable Assembly of Hybrid Electrodes by Electrophoretic Deposition for High-Performance BatteryBupercapacitor Hybrid Devices. 2020 , 3, 1784-1793		11
108	Influence of carboxymethyl cellulose content on structures and electrochemical behaviors of reduced graphene oxide films. <i>Electrochimica Acta</i> , 2020 , 330, 135219	6.7	6
107	Spatio-temporal Analysis of the Electric Field-Induced Solid-State Reduction Dynamics of Graphene Oxide Thin Films for Controlled Band-Gap Modulation. 2020 , 124, 21874-21885		O
106	Synthesis of graphene oxide with a lower band gap and study of charge transfer interactions with perylenediimide. 2020 , 44, 12704-12714		4

105	Photocatalytic nanomaterials for degradation of organic pollutants and heavy metals. 2020 , 119-138		6
104	Advances on the Use of Graphene as a Label for Electrochemical Biosensors. 2020 , 7, 4177-4185		3
103	Solar reduced graphene oxide coated sponge for oil and organic solvent adsorption studies. 2020 , 872, 012123		
102	Flexible rGO @ Nonwoven Fabrics IMembranes Guide Stable Lithium Metal Anodes for Lithium Dxygen Batteries. 2020 , 3, 7944-7951		4
101	Supercapacitor Electrodes Utilizing Graphene-Based Ternary Composite Materials. 2020 , 149-167		
100	. 2020,		O
99	A Polymeric Composite Material (rGO/PANI) for Acid Blue 129 Adsorption. 2020 , 12,		3
98	Extracellular electron transfer leading to the biological mediated production of reduced graphene oxide. <i>Chemosphere</i> , 2020 , 256, 127141	8.4	8
97	Electrostatic forces-controlled electric reductions of graphene oxide. <i>Materials Letters</i> , 2020 , 274, 128	0493	
96	Electrochemical Behaviour of Graphene Oxide, Reduced Graphene Oxide and Zinc Oxide Graphene Oxide Composite Material Towards Fabrication of Dye Sensitized Solar Cell. <i>Asian Journal of Chemistry</i> , 2020 , 32, 1557-1562	0.4	1
95	Enhancement of the Electrochemical Properties of an Open-Pore Graphite Foam with Electrochemically Reduced Graphene Oxide and Alternating Current Dispersed Platinum Particles. <i>Coatings</i> , 2020 , 10, 551	2.9	1
94	Room-Temperature Reduction of Graphene Oxide in Water by Metal Chloride Hydrates: A Cleaner Approach for the Preparation of Graphene@Metal Hybrids. <i>Nanomaterials</i> , 2020 , 10,	5.4	O
93	ReviewRecent Advances in Carbon Nanomaterials as Electrochemical Biosensors. <i>Journal of the Electrochemical Society</i> , 2020 , 167, 037555	3.9	148
92	A three-dimensional hybrid electrode with electroactive microbes for efficient electrogenesis and chemical synthesis. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 2020 , 117, 5074-5080	11.5	19
91	Preparing electrodes with highly reduced graphene oxide load for supercapacitors by dropping-electrochemical reduction. <i>Diamond and Related Materials</i> , 2020 , 105, 107766	3.5	4
90	Removing contaminants from transferred CVD graphene. <i>Nano Research</i> , 2020 , 13, 599-610	10	26
89	Graphene Oxide-Assisted Morphology and Structure of Electrodeposited ZnO Nanostructures. <i>Materials</i> , 2020 , 13,	3.5	8
88	Flexible N-Doped reduced graphene oxide/carbon Nanotube-MnO2 film as a Multifunctional Material for High-Performance supercapacitors, catalysts and sensors. <i>Journal of Materiomics</i> , 2020 , 6, 523-531	6.7	50

87	Graphene film for thermal management: A review. Nano Materials Science, 2021, 3, 1-16	10.2	17
86	Electrochemical sensor based on rGO/Au nanoparticles for monitoring H2O2 released by human macrophages. <i>Sensors and Actuators B: Chemical</i> , 2021 , 327, 128901	8.5	33
85	Graphene Oxide for Integrated Photonics and Flat Optics. Advanced Materials, 2021, 33, e2006415	24	24
84	A Review on Graphene Oxide Two-dimensional Macromolecules: from Single Molecules to Macro-assembly. <i>Chinese Journal of Polymer Science (English Edition)</i> , 2021 , 39, 267-308	3.5	16
83	A one-step electrochemically reduced graphene oxide based sensor for sensitive voltammetric determination of furfural in milk products. <i>Analytical Methods</i> , 2021 , 13, 56-63	3.2	8
82	Investigation of electrochemical reduction effects on graphene oxide powders for high-performance supercapacitors. <i>International Journal of Advanced Manufacturing Technology</i> , 2021 , 113, 1203-1213	3.2	2
81	Classification and application of nanomaterials for foodborne pathogens analysis. 2021, 79-99		
80	Graphene-Supported, Well-Defined Metal-Based Catalysts for CH Bond Functionalization and Related Reactions. <i>Advanced Synthesis and Catalysis</i> , 2021 , 363, 1740-1755	5.6	O
79	Pencil graphite as electrode platform for free chlorine sensors and energy storage devices. <i>PLoS ONE</i> , 2021 , 16, e0248142	3.7	4
78	Corrosion protection of zinc by a silane conversion coating modified with graphene oxide. <i>Surface and Interface Analysis</i> , 2021 , 53, 580-591	1.5	1
77	Convenient and highly sensitive electrochemical biosensor for monitoring acid phosphatase activity. <i>Sensors and Actuators B: Chemical</i> , 2021 , 332, 129483	8.5	6
76	Semi-transparent reduced graphene oxide photodetectors for ultra-low power operation. <i>Optics Express</i> , 2021 , 29, 14208-14217	3.3	5
75	Graphene-Reinforced Zn-Ni Alloy Composite Coating on Iron Substrates by Pulsed Reverse Electrodeposition and Its High Corrosion Resistance. <i>ACS Omega</i> , 2021 , 6, 13728-13741	3.9	2
74	Preliminary Study of Reduced Graphene Oxide Cobalt Sulfide Synthesis. <i>Journal of Physics:</i> Conference Series, 2021 , 1912, 012013	0.3	
73	Top-down synthesis of graphene: A comprehensive review. FlatChem, 2021, 27, 100224	5.1	34
72	Progress and Prospects on the Fabrication of Graphene-Based Nanostructures for Energy Storage, Energy Conversion and Biomedical Applications. <i>Chemistry - an Asian Journal</i> , 2021 , 16, 1365-1381	4.5	3
71	Graphene preparation and graphite exfoliation. Turkish Journal of Chemistry, 2021, 45, 493-519	1	3
70	Reversible hydrogenation and irreversible epoxidation induced by graphene oxide electrolysis. <i>Carbon</i> , 2021 , 177, 26-34	10.4	3

69	Reassessing the Necessity of the Drying Step in Hummer's Method for Graphene Oxide Synthesis. <i>Electroanalysis</i> ,	3	2
68	Electrochemical detection of uric acid and ascorbic acid using r-GO/NPs based sensors. <i>Electrochimica Acta</i> , 2021 , 388, 138652	6.7	23
67	Hydrothermally reduced graphene oxide as a sensing material for electrically transduced pH sensors. <i>Journal of Electroanalytical Chemistry</i> , 2021 , 895, 115530	4.1	4
66	Graphene oxide synthesis using a toplown approach and discrete characterization techniques: a holistic review. <i>Carbon Letters</i> , 1	2.3	O
65	In situ-Electrochemically reduced graphene oxide integrated with cross-linked supramolecular polymeric network for electrocatalytic hydrogen evaluation reaction. <i>Polymer</i> , 2021 , 231, 124140	3.9	O
64	Electrophoretically Deposited Green Synthesized Silver Nanoparticles Anchored in Reduced Graphene Oxide Composite Based Electrochemical Sensor for Detection of Bisphenol A. <i>Journal of the Electrochemical Society</i> , 2021 , 168, 097504	3.9	2
63	Microwave-Enabled Size Control of Iron Oxide Nanoparticles on Reduced Graphene Oxide. <i>Langmuir</i> , 2021 , 37, 11131-11141	4	O
62	Electrochemical detection of dopamine with negligible interference from ascorbic and uric acid by means of reduced graphene oxide and metals-NPs based electrodes. <i>Analytica Chimica Acta</i> , 2021 , 1187, 339124	6.6	8
61	Bio-inspired (GOI+ICNTs)-PU hydrophobic coating via replication of Lotus leaf and its enhanced mechanical and anti-corrosion properties. <i>Progress in Organic Coatings</i> , 2021 , 159, 106414	4.8	0
60	Self-Assembled Materials Incorporating Functional Porphyrins and Carbon Nanoplatforms as Building Blocks for Photovoltaic Energy Applications. <i>Frontiers in Chemistry</i> , 2021 , 9, 727574	5	O
59	One-step electrodeposition of ZnO/graphene composite film as photoanode for dye-sensitised solar cells. <i>Colloids and Surfaces A: Physicochemical and Engineering Aspects</i> , 2021 , 630, 127491	5.1	1
58	Alizarin-graphene nanocomposite for calibration-free and online pH monitoring of microbial fuel cell. <i>Chemosphere</i> , 2022 , 287, 132277	8.4	
57	CHAPTER 6:3D GBM-supported Transition Metal Oxide Nanocatalysts and Heteroatom-doped 3D Graphene Electrocatalysts for Potential Application in Fuel Cells. <i>Chemistry in the Environment</i> , 2021 , 139-178		1
56	Graphene and its derivatives for environmental applications. 2021 , 219-259		
55	Graphene/Metal Nanowire Hybrid Transparent Conductive Films. <i>Advanced Structured Materials</i> , 2017 , 121-142	0.6	2
54	Synthesis of Metal/Metal Oxide Supported Reduced Graphene Oxide (RGO) for the Applications of Electrocatalysis and Supercapacitors. <i>Carbon Nanostructures</i> , 2019 , 1-48	0.6	3
53	Graphene Functionalization and Nanopolymers. Carbon Nanostructures, 2019, 157-178	0.6	3
52	Graphene oxide sensors of high sensitivity fabricated using cold atmospheric-pressure hydrogen plasma for use in the detection of small organic molecules. <i>Journal of Applied Physics</i> , 2020 , 128, 24330	1 ^{2.5}	2

51	A Surface Network Based on Reduced Graphene Oxide/Gold Nanoparticles for Selective Determination of Norepinephrine in Real Samples. <i>Journal of the Electrochemical Society</i> , 2020 , 167, 14	46376	3
50	XRD-HTA, UV Visible, FTIR and SEM Interpretation of Reduced Graphene Oxide Synthesized from High Purity Vein Graphite. <i>Material Science Research India</i> , 2017 , 14, 19-30	1	53
49	Novel Green Micro-Synthesis of Graphene-Titanium Dioxide Nano- Composites with Photo-Electrochemical Properties. <i>Current Nanoscience</i> , 2019 , 15, 606-617	1.4	1
48	Amperometric Glucose Biosensor Based on Integration of Glucose Oxidase with Palladium Nanoparticles/Reduced Graphene Oxide Nanocomposite. <i>American Journal of Analytical Chemistry</i> , 2012 , 03, 312-319	0.7	27
47	Comparative study on various sponges as substrates for reduced graphene oxide-based supercapacitor. <i>Carbon Letters</i> , 2016 , 18, 71-75	2.3	6
46	Chemically derived graphene. 2014 , 223-250		1
45	Covalent Graphene-Polymer Nanocomposites. 101-149		
44	The Functionalization of Graphene and Its Assembled Macrostructures. 19-44		
43	Electrochemical Fabrication of Graphene-Based Nanomaterials. 2016, 3-22		
42	References. 2017 , 105-121		
41	Indirect detection of 5-hydroxytryptamine and tyramine by using tris(2,2Ebipyridyl)ruthenium-graphene modified electrode coupled with capillary electrophoresis. European Journal of Chemistry, 2019 , 10, 336-344	0.6	0
41	Indirect detection of 5-hydroxytryptamine and tyramine by using tris(2,2Ebipyridyl)ruthenium-graphene modified electrode coupled with capillary electrophoresis.	0.6	
	Indirect detection of 5-hydroxytryptamine and tyramine by using tris(2,2Ebipyridyl)ruthenium-graphene modified electrode coupled with capillary electrophoresis. <i>European Journal of Chemistry</i> , 2019 , 10, 336-344 Highly sensing and transducing materials for potentiometric ion sensors with versatile applicability.		
40	Indirect detection of 5-hydroxytryptamine and tyramine by using tris(2,2Ebipyridyl)ruthenium-graphene modified electrode coupled with capillary electrophoresis. European Journal of Chemistry, 2019, 10, 336-344 Highly sensing and transducing materials for potentiometric ion sensors with versatile applicability. Progress in Materials Science, 2021, 125, 100885 Syntheses Approach of 2-D Oxide Family of Graphene for Supercapacitor Application (A-Review).	42.2	
40	Indirect detection of 5-hydroxytryptamine and tyramine by using tris(2,2Ebipyridyl)ruthenium-graphene modified electrode coupled with capillary electrophoresis. European Journal of Chemistry, 2019, 10, 336-344 Highly sensing and transducing materials for potentiometric ion sensors with versatile applicability. Progress in Materials Science, 2021, 125, 100885 Syntheses Approach of 2-D Oxide Family of Graphene for Supercapacitor Application (A-Review). Oriental Journal of Chemistry, 2020, 36, 1016-1025 Graphene Oxide: Structure, Properties, Synthesis, and Reduction (A Review). Russian Journal of	0.8	5
40 39 38	Indirect detection of 5-hydroxytryptamine and tyramine by using tris(2,2Ebipyridyl)ruthenium-graphene modified electrode coupled with capillary electrophoresis. <i>European Journal of Chemistry</i> , 2019 , 10, 336-344 Highly sensing and transducing materials for potentiometric ion sensors with versatile applicability. <i>Progress in Materials Science</i> , 2021 , 125, 100885 Syntheses Approach of 2-D Oxide Family of Graphene for Supercapacitor Application (A-Review). <i>Oriental Journal of Chemistry</i> , 2020 , 36, 1016-1025 Graphene Oxide: Structure, Properties, Synthesis, and Reduction (A Review). <i>Russian Journal of Inorganic Chemistry</i> , 2020 , 65, 1965-1976	0.8	5
39 38 37	Indirect detection of 5-hydroxytryptamine and tyramine by using tris(2,2Ebipyridyl)ruthenium-graphene modified electrode coupled with capillary electrophoresis. European Journal of Chemistry, 2019, 10, 336-344 Highly sensing and transducing materials for potentiometric ion sensors with versatile applicability. Progress in Materials Science, 2021, 125, 100885 Syntheses Approach of 2-D Oxide Family of Graphene for Supercapacitor Application (A-Review). Oriental Journal of Chemistry, 2020, 36, 1016-1025 Graphene Oxide: Structure, Properties, Synthesis, and Reduction (A Review). Russian Journal of Inorganic Chemistry, 2020, 65, 1965-1976 Sensing Materials: Carbon Materials. 2021, Analyzing Dynamic Chemical States of Palladium Supported on Graphene Oxide by X-ray Absorption Fine Structure under Oxidative and Reductive Environments. Chemistry Letters, 2020,	42.2 0.8 1.5	5

33	Electrochemically reduced graphene oxide: Preparation, composites, and applications. <i>Carbon</i> , 2022 , 191, 301-332	10.4	4
32	Exploring graphene oxide intrinsic electroactivity to elucidate the non-covalent interactions with DNA oligonucleotides <i>Chemical Communications</i> , 2022 ,	5.8	1
31	Electrochemical Synthesis of Zinc Oxide Nanostructures on Flexible Substrate and Application as an Electrochemical Immunoglobulin-G Immunosensor <i>Materials</i> , 2022 , 15,	3.5	Ο
30	Influence of the coffee-ring effect and size of flakes of graphene oxide films on their electrochemical reduction <i>Physical Chemistry Chemical Physics</i> , 2022 ,	3.6	
29	Preparation of rGO/MnO Composites through Simultaneous Graphene Oxide Reduction by Electrophoretic Deposition <i>ACS Omega</i> , 2022 , 7, 6760-6767	3.9	Ο
28	Two-dimensional materials as a platform in extraction methods: A review. <i>TrAC - Trends in Analytical Chemistry</i> , 2022 , 116606	14.6	1
27	3D Architecturing Strategy on the Utmost Carbon Nanotube Fiber for Ultra-High Performance Fiber-Shaped Supercapacitor. <i>Advanced Functional Materials</i> , 2113057	15.6	2
26	Investigation of electrolysis-related modification of graphene films in biosensors. <i>Journal of Physics: Conference Series</i> , 2021 , 2103, 012103	0.3	
25	Electronic properties and reactivity of oxidized graphene nanoribbons and their interaction with phenol <i>Journal of Molecular Modeling</i> , 2021 , 28, 23	2	О
24	Electroactive nanocarbon materials as signaling tags for electrochemical PCR <i>Talanta</i> , 2022 , 245, 1234	17/0-	
		+ 1012	O
23	Carbon nanomaterial-based sensors: An efficient tool in the environmental sectors. 2022 , 149-165	+ 1012	O
23		6.7	0
	Carbon nanomaterial-based sensors: An efficient tool in the environmental sectors. 2022 , 149-165 Chemically and thermally reduced graphene oxide supported Pt catalysts prepared by supercritical		
22	Carbon nanomaterial-based sensors: An efficient tool in the environmental sectors. 2022, 149-165 Chemically and thermally reduced graphene oxide supported Pt catalysts prepared by supercritical deposition. <i>International Journal of Hydrogen Energy</i> , 2022, Nanoarchitectonics with electrochemical additive manufacturing process for printing the reduced	6.7	0
22	Carbon nanomaterial-based sensors: An efficient tool in the environmental sectors. 2022 , 149-165 Chemically and thermally reduced graphene oxide supported Pt catalysts prepared by supercritical deposition. <i>International Journal of Hydrogen Energy</i> , 2022 , Nanoarchitectonics with electrochemical additive manufacturing process for printing the reduced graphene oxide. <i>Applied Physics A: Materials Science and Processing</i> , 2022 , 128, 1 Porous carbon-based material as a sustainable alternative for the storage of natural gas (methane)	6.7	0
22 21 20	Carbon nanomaterial-based sensors: An efficient tool in the environmental sectors. 2022, 149-165 Chemically and thermally reduced graphene oxide supported Pt catalysts prepared by supercritical deposition. <i>International Journal of Hydrogen Energy</i> , 2022, Nanoarchitectonics with electrochemical additive manufacturing process for printing the reduced graphene oxide. <i>Applied Physics A: Materials Science and Processing</i> , 2022, 128, 1 Porous carbon-based material as a sustainable alternative for the storage of natural gas (methane) and biogas (biomethane): a review. <i>Chemical Engineering Journal</i> , 2022, 137373 Comparison of performance stability of different chemically reduced graphene oxide under	6.7 2.6	0
22 21 20 19	Carbon nanomaterial-based sensors: An efficient tool in the environmental sectors. 2022, 149-165 Chemically and thermally reduced graphene oxide supported Pt catalysts prepared by supercritical deposition. <i>International Journal of Hydrogen Energy</i> , 2022, Nanoarchitectonics with electrochemical additive manufacturing process for printing the reduced graphene oxide. <i>Applied Physics A: Materials Science and Processing</i> , 2022, 128, 1 Porous carbon-based material as a sustainable alternative for the storage of natural gas (methane) and biogas (biomethane): a review. <i>Chemical Engineering Journal</i> , 2022, 137373 Comparison of performance stability of different chemically reduced graphene oxide under long-term preservation. <i>Journal of Materials Science: Materials in Electronics</i> , Recent advances in novel graphene: new horizons in renewable energy storage technologies. 2022,	6.7 2.6	O 1 O

15	High Sensitivity Detection of Capsaicin in Red Pepper Oil Based on Reduced Graphene Oxide Enhanced by Ecyclodextrin.	0
14	Progress and challenges of graphene and its congeners for biomedical applications: Drug delivery, gene delivery, biosensing, bioimaging, and tissue engineering. 2022 , 120703	1
13	Nanostructured Lead Electrodes with Reduced Graphene Oxide for High-Performance Lead A cid Batteries. 2022 , 8, 211	О
12	Recent Advances in Graphene and Graphene-Based Heterogeneous Nanocatalysts: CII And CII Coupling Reactions in Liquid Phase. 2022 , 7,	O
11	Emerging insights into the use of carbon-based nanomaterials for the electrochemical detection of heavy metal ions. 2023 , 476, 214920	5
10	Graphene-based Nanocomposites as Antibacterial, Antiviral, and Antifungal Agents. 2201523	O
9	Synthesis and Functionalization of Graphene Materials for Biomedical Applications: Recent Advances, Challenges, and Perspectives. 2205292	O
8	Development of Polydiphenylamine@Electrochemically Reduced Graphene Oxide Electrode for the D-Penicillamine Sensor from Human Blood Serum Samples Using Amperometry. 2023 , 15, 577	O
7	Synthesis and anticorrosive application of graphene and graphene-based materials. 2023, 109-142	O
6	Electrodeposition synthesis of reduced graphdiyne oxide/NiCo2S4 hierarchical nanosheet arrays for small size and light weight aqueous asymmetry supercapacitors. 2023 , 947, 169403	O
5	GO-Based Membranes for Desalination. 2023 , 13, 220	1
4	Large Area Millisecond Preparation of High-Quality, Few-Layer Graphene Films on Arbitrary Substrates via Xenon Flash Lamp Photothermal Pyrolysis and Their Application for High-Performance Micro-supercapacitors. 2023 , 15, 13495-13507	O
3	Efficient strategies to produce Graphene and functionalized graphene materials: A review. 2023 , 14, 100386	О
2	Synthesis and electrochemical performance of ultrafine hierarchical S-doped MnNi LDH-MWCNTs as highly efficient hybrid cathode for flexible asymmetric supercapacitors.	O
1	Graphene-based nanomaterials for antibiotics-independent antibacterial applications. 2023 , 227-253	0