Novel de novo SHANK3 mutation in autistic patients

American Journal of Medical Genetics Part B: Neuropsychiatric 150B, 421-424 DOI: 10.1002/ajmg.b.30822

Citation Report

#	Article	IF	CITATIONS
1	Medical conditions in autism spectrum disorders. Journal of Neurodevelopmental Disorders, 2009, 1, 102-113.	1.5	19
2	Association study of SHANK3 gene polymorphisms with autism in Chinese Han population. BMC Medical Genetics, 2009, 10, 61.	2.1	28
3	Copy number variation and association analysis of SHANK3 as a candidate gene for autism in the IMGSAC collection. European Journal of Human Genetics, 2009, 17, 1347-1353.	1.4	76
4	The emerging role of synaptic cell-adhesion pathways in the pathogenesis of autism spectrum disorders. Trends in Neurosciences, 2009, 32, 402-412.	4.2	271
5	Autism genetics: emerging data from genome-wide copy-number and single nucleotide polymorphism scans. Expert Review of Molecular Diagnostics, 2009, 9, 795-803.	1.5	76
6	Emerging Pharmacotherapies for Neurodevelopmental Disorders. Journal of Developmental and Behavioral Pediatrics, 2010, 31, 564-581.	0.6	44
7	Chromosome 22q13 Rearrangements Causing Global Developmental Delay and Autistic Spectrum Disorder. Monographs in Human Genetics, 2010, , 137-150.	0.5	2
8	Genetics of autistic disorders: review and clinical implications. European Child and Adolescent Psychiatry, 2010, 19, 169-178.	2.8	185
9	Associating Neural Alterations and Genotype in Autism and Fragile X Syndrome: Incorporating Perceptual Phenotypes in Causal Modeling. Journal of Autism and Developmental Disorders, 2010, 40, 1541-1548.	1.7	18
10	In the swim of things: recent insights to neurogenetic disorders from zebrafish. Trends in Genetics, 2010, 26, 373-381.	2.9	45
11	Key role for gene dosage and synaptic homeostasis in autism spectrum disorders. Trends in Genetics, 2010, 26, 363-372.	2.9	296
12	Submicroscopic subtelomeric aberrations in Chinese patients with unexplained developmental delay/mental retardation. BMC Medical Genetics, 2010, 11, 72.	2.1	60
13	Haploinsufficiency of the autism-associated Shank3 gene leads to deficits in synaptic function, social interaction, and social communication. Molecular Autism, 2010, 1, 15.	2.6	521
14	Molecular Evaluation of exons 8 and 22 of the SHANK3 gene in Autism Spectrum Disorders. Nature Precedings, 2010, , .	0.1	0
15	SCAMP5, NBEA and AMISYN: three candidate genes for autism involved in secretion of large dense-core vesicles. Human Molecular Genetics, 2010, 19, 1368-1378.	1.4	80
16	The clinical context of copy number variation in the human genome. Expert Reviews in Molecular Medicine, 2010, 12, e8.	1.6	157
17	Fever Plus Mitochondrial Disease Could Be Risk Factors for Autistic Regression. Journal of Child Neurology, 2010, 25, 429-434.	0.7	84
18	De novo mutations in the gene encoding the synaptic scaffolding protein <i>SHANK3</i> in patients ascertained for schizophrenia. Proceedings of the National Academy of Sciences of the United States of America, 2010, 107, 7863-7868.	3.3	361

#	Article	IF	CITATIONS
19	Olfactory Receptor-Related Duplicons Mediate a Microdeletion at 11q13.2q13.4 Associated with a Syndromic Phenotype. Molecular Syndromology, 2010, 1, 176-184.	0.3	30
20	Cell Adhesion Molecules and Their Involvement in Autism Spectrum Disorder. NeuroSignals, 2010, 18, 62-71.	0.5	36
21	Environmental risk factors for autism: Do they help cause de novo genetic mutations that contribute to the disorder?. Medical Hypotheses, 2010, 74, 102-106.	0.8	105
22	The Genetics of Child Psychiatric Disorders: Focus on Autism and Tourette Syndrome. Neuron, 2010, 68, 254-269.	3.8	156
23	Importance of Shank3 Protein in Regulating Metabotropic Glutamate Receptor 5 (mGluR5) Expression and Signaling at Synapses. Journal of Biological Chemistry, 2011, 286, 34839-34850.	1.6	180
24	Systematic resequencing of X-chromosome synaptic genes in autism spectrum disorder and schizophrenia. Molecular Psychiatry, 2011, 16, 867-880.	4.1	260
25	Identification of Copy Number Variants on Human Chromosome 22 in Patients with a Variety of Clinical Findings. Cytogenetic and Genome Research, 2011, 134, 260-268.	0.6	14
26	Zebrafish models for the functional genomics of neurogenetic disorders. Biochimica Et Biophysica Acta - Molecular Basis of Disease, 2011, 1812, 335-345.	1.8	95
27	Slitrks as emerging candidate genes involved in neuropsychiatric disorders. Trends in Neurosciences, 2011, 34, 143-153.	4.2	88
28	The Genetic Basis of Phenotypic Diversity: Autism as an Extreme Tail of a Complex Dimensional Trait. , 2011, , .		4
29	A New Genetic Mechanism for Autism. , 2011, , .		1
30	Genetic basis of autism: is there a way forward?. Current Opinion in Psychiatry, 2011, 24, 226-236.	3.1	74
31	Synaptic Signaling and Aberrant RNA Splicing in Autism Spectrum Disorders. Frontiers in Synaptic Neuroscience, 2011, 3, 1.	1.3	50
32	Clinical utility gene card for: Deletion 22q13 syndrome. European Journal of Human Genetics, 2011, 19, 492-492.	1.4	11
33	A double hit implicates DIAPH3 as an autism risk gene. Molecular Psychiatry, 2011, 16, 442-451.	4.1	68
34	A novel frameshift mutation in UPF3B identified in brothers affected with childhood onset schizophrenia and autism spectrum disorders. Molecular Psychiatry, 2011, 16, 238-239.	4.1	101
35	Shank3 mutant mice display autistic-like behaviours and striatal dysfunction. Nature, 2011, 472, 437-442.	13.7	1,273
36	Postsynaptic ProSAP/Shank scaffolds in the cross-hair of synaptopathies. Trends in Cell Biology, 2011, 21, 594-603.	3.6	238

#	Article	IF	CITATIONS
37	Sociability and motor functions in Shank1 mutant mice. Brain Research, 2011, 1380, 120-137.	1.1	206
38	Analysis of a purported SHANK3 mutation in a boy with autism: Clinical impact of rare variant research in neurodevelopmental disabilities. Brain Research, 2011, 1380, 98-105.	1.1	28
39	Etiological heterogeneity in autism spectrum disorders: More than 100 genetic and genomic disorders and still counting. Brain Research, 2011, 1380, 42-77.	1.1	788
40	The 22q13.3 Deletion Syndrome (Phelan-McDermid Syndrome). Molecular Syndromology, 2011, 2, 186-201.	0.3	374
41	The conundrums of understanding genetic risks for autism spectrum disorders. Nature Neuroscience, 2011, 14, 1499-1506.	7.1	287
42	Excess of De Novo Deleterious Mutations in Genes Associated with Glutamatergic Systems in Nonsyndromic Intellectual Disability. American Journal of Human Genetics, 2011, 88, 306-316.	2.6	310
43	The ongoing dissection of the genetic architecture of autistic spectrum disorder. Molecular Autism, 2011, 2, 12.	2.6	18
44	A translocation between Xq21.33 and 22q13.33 causes an intragenic <i>SHANK3</i> deletion in a woman with Phelan–McDermid syndrome and hypergonadotropic hypogonadism. American Journal of Medical Genetics, Part A, 2011, 155, 403-408.	0.7	32
45	No association between a common single nucleotide polymorphism, rs4141463, in the <i>MACROD2</i> gene and autism spectrum disorder. American Journal of Medical Genetics Part B: Neuropsychiatric Genetics, 2011, 156, 633-639.	1.1	30
46	Synaptic dysfunction and abnormal behaviors in mice lacking major isoforms of Shank3. Human Molecular Genetics, 2011, 20, 3093-3108.	1.4	510
47	Autism: A "Critical Period―Disorder?. Neural Plasticity, 2011, 2011, 1-17.	1.0	241
48	Genetic risk in autism: new associations and clinical testing. Expert Opinion on Medical Diagnostics, 2011, 5, 347-356.	1.6	6
49	Genetics and Function of Neocortical GABAergic Interneurons in Neurodevelopmental Disorders. Neural Plasticity, 2011, 2011, 1-25.	1.0	181
50	Molecular Mechanisms Generating and Stabilizing Terminal 22q13 Deletions in 44 Subjects with Phelan/McDermid Syndrome. PLoS Genetics, 2011, 7, e1002173.	1.5	172
51	SynaptomeDB: an ontology-based knowledgebase for synaptic genes. Bioinformatics, 2012, 28, 897-899.	1.8	120
52	Autism-Associated Mutations in ProSAP2/Shank3 Impair Synaptic Transmission and Neurexin–Neuroligin-Mediated Transsynaptic Signaling. Journal of Neuroscience, 2012, 32, 14966-14978.	1.7	154
53	Reduced Excitatory Neurotransmission and Mild Autism-Relevant Phenotypes in Adolescent <i>Shank3</i> Null Mutant Mice. Journal of Neuroscience, 2012, 32, 6525-6541.	1.7	342
54	Genetics and Epigenetics of Autism Spectrum Disorders. Research and Perspectives in Neurosciences, 2012, , 105-132.	0.4	4

D

#	Article	IF	CITATIONS
55	Negative Allosteric Modulation of the mGluR5 Receptor Reduces Repetitive Behaviors and Rescues Social Deficits in Mouse Models of Autism. Science Translational Medicine, 2012, 4, 131ra51.	5.8	238
56	First-degree relatives of young children with autism spectrum disorders: Some gender aspects. Research in Developmental Disabilities, 2012, 33, 1642-1648.	1.2	36
57	CNVs: Harbingers of a Rare Variant Revolution in Psychiatric Genetics. Cell, 2012, 148, 1223-1241.	13.5	759
58	Identification of rare X-linked neuroligin variants by massively parallel sequencing in males with autism spectrum disorder. Molecular Autism, 2012, 3, 8.	2.6	22
59	Molecular and synaptic defects in intellectual disability syndromes. Current Opinion in Neurobiology, 2012, 22, 530-536.	2.0	32
60	Mining and modeling human genetics for autism therapeutics. Current Opinion in Neurobiology, 2012, 22, 902-910.	2.0	9
61	Autistic-like behaviours and hyperactivity in mice lacking ProSAP1/Shank2. Nature, 2012, 486, 256-260.	13.7	570
62	Scaffold Proteins at the Postsynaptic Density. Advances in Experimental Medicine and Biology, 2012, 970, 29-61.	0.8	67
63	Functional Consequences of Mutations in Postsynaptic Scaffolding Proteins and Relevance to Psychiatric Disorders. Annual Review of Neuroscience, 2012, 35, 49-71.	5.0	103
64	SHANK1 Deletions in Males with Autism Spectrum Disorder. American Journal of Human Genetics, 2012, 90, 879-887.	2.6	292
65	Annual Research Review: Impact of advances in genetics in understanding developmental psychopathology. Journal of Child Psychology and Psychiatry and Allied Disciplines, 2012, 53, 510-518.	3.1	32
66	Effect of experimental genital mycoplasmosis on gene expression in the fetal brain. Journal of Reproductive Immunology, 2012, 93, 9-16.	0.8	9
67	Metabolic Imbalance Associated with Methylation Dysregulation and Oxidative Damage in Children with Autism. Journal of Autism and Developmental Disorders, 2012, 42, 367-377.	1.7	201
68	A promoter variant of SHANK1 affects auditory working memory in schizophrenia patients and in subjects clinically at risk for psychosis. European Archives of Psychiatry and Clinical Neuroscience, 2012, 262, 117-124.	1.8	47
69	Prospective investigation of autism and genotype-phenotype correlations in 22q13 deletion syndrome and SHANK3 deficiency. Molecular Autism, 2013, 4, 18.	2.6	278
70	SHANK3 haploinsufficiency: a "common―but underdiagnosed highly penetrant monogenic cause of autism spectrum disorders. Molecular Autism, 2013, 4, 17.	2.6	152
71	Neurodevelopmental Genomics of Autism, Schizophrenia, and Related Disorders. , 2013, , 695-708.		0
72	SHANK3 and IGF1 restore synaptic deficits in neurons from 22q13 deletion syndrome patients. Nature, 2013, 503, 267-271.	13.7	399

	Сітаті	CITATION REPORT	
#	ARTICLE The Autism ProSAP1/Shank2 mouse model displays quantitative and structural abnormalities in	IF	CITATIONS
73	ultrasonic vocalisations. Behavioural Brain Research, 2013, 256, 677-689.	1.2	126
74	Novel treatments in autism spectrum disorders: From synaptic dysfunction to experimental therapeutics. Behavioural Brain Research, 2013, 251, 125-132.	1.2	10
75	SHANK3 overexpression causes manic-like behaviour with unique pharmacogenetic properties. Nature, 2013, 503, 72-77.	13.7	323
76	SHANK3 as an autism spectrum disorder-associated gene. Brain and Development, 2013, 35, 106-110.	0.6	106
78	Copy Number Variation in Autism Spectrum Disorders. , 2013, , 145-154.		1
79	Genetic analysis of the DLGAP1 gene as a candidate gene for schizophrenia. Psychiatry Research, 2013, 205, 13-17.	1.7	19
80	Analysis of the effects of rare variants on splicing identifies alterations in GABAA receptor genes in autism spectrum disorder individuals. European Journal of Human Genetics, 2013, 21, 749-756.	1.4	48
81	Mutations of the synapse genes and intellectual disability syndromes. European Journal of Pharmacology, 2013, 719, 112-116.	1.7	17
82	Using mouse models of autism spectrum disorders to study the neurotoxicology of gene–environment interactions. Neurotoxicology and Teratology, 2013, 36, 17-35.	1.2	31
83	Translational Neuroimaging for Drug Discovery and Development in Autism Spectrum Disorders. , 2013, , 245-280.		0
84	Autism spectrum disorder in the genetics clinic: a review. Clinical Genetics, 2013, 83, 399-407.	1.0	153
85	Modeling Autism by SHANK Gene Mutations in Mice. Neuron, 2013, 78, 8-27.	3.8	434
86	Molecular and Phenotypic Characterization of Ring Chromosome 22 in Two Unrelated Patients. Cytogenetic and Genome Research, 2013, 140, 1-11.	0.6	8
87	Autism genetics. Behavioural Brain Research, 2013, 251, 95-112.	1.2	218
88	Autism spectrum disorders: The quest for genetic syndromes. American Journal of Medical Genetics Part B: Neuropsychiatric Genetics, 2013, 162, 327-366.	1.1	84
89	Chronic morphine exposure and its abstinence alters dendritic spine morphology and upregulates Shank1. Neurochemistry International, 2013, 62, 956-964.	1.9	31
90	Prevalence of SHANK3 variants in patients with different subtypes of autism spectrum disorders. European Journal of Human Genetics, 2013, 21, 310-316.	1.4	210
91	Autisms. , 2013, , 651-694.		9

#	Article	IF	CITATIONS
92	SHANK2 and SHANK3 Mutations Implicate Glutamate Signaling Abnormalities in Autism Spectrum Disorders. , 2013, , 437-448.		2
93	Loss of Predominant Shank3 Isoforms Results in Hippocampus-Dependent Impairments in Behavior and Synaptic Transmission. Journal of Neuroscience, 2013, 33, 18448-18468.	1.7	252
94	Developmental Trajectories in Children With and Without Autism Spectrum Disorders: The First 3ÂYears. Child Development, 2013, 84, 429-442.	1.7	243
95	Developmental vulnerability of synapses and circuits associated with neuropsychiatric disorders. Journal of Neurochemistry, 2013, 126, 165-182.	2.1	106
96	SHANK3 Gene Mutations Associated with Autism Facilitate Ligand Binding to the Shank3 Ankyrin Repeat Region. Journal of Biological Chemistry, 2013, 288, 26697-26708.	1.6	52
97	Mouse Behavioral Models for Autism Spectrum Disorders. , 2013, , 363-378.		0
98	Genetic aspects of autism spectrum disorders: insights from animal models. Frontiers in Cellular Neuroscience, 2014, 8, 58.	1.8	111
99	Synaptic proteins and receptors defects in autism spectrum disorders. Frontiers in Cellular Neuroscience, 2014, 8, 276.	1.8	138
100	The Potential Role of Insulin on the Shank-Postsynaptic Platform in Neurodegenerative Diseases Involving Cognition. American Journal of Alzheimer's Disease and Other Dementias, 2014, 29, 303-310.	0.9	5
101	Structural and Functional Organization of the Postsynaptic Density. , 2014, , 129-153.		2
102	22q13.2q13.32 genomic regions associated with severity of speech delay, developmental delay, and physical features in Phelan–McDermid syndrome. Genetics in Medicine, 2014, 16, 318-328.	1.1	71
103	Meta-analysis of SHANK Mutations in Autism Spectrum Disorders: A Gradient of Severity in Cognitive Impairments. PLoS Genetics, 2014, 10, e1004580.	1.5	501
104	Reciprocal signaling between translational control pathways and synaptic proteins in autism spectrum disorders. Science Signaling, 2014, 7, re10.	1.6	91
105	Identification of two novel <i>Shank3</i> transcripts in the developing mouse neocortex. Journal of Neurochemistry, 2014, 128, 280-293.	2.1	28
106	The emerging role of <i>SHANK</i> genes in neuropsychiatric disorders. Developmental Neurobiology, 2014, 74, 113-122.	1.5	224
107	Phelan-McDermid syndrome: a review of the literature and practice parameters for medical assessment and monitoring. Journal of Neurodevelopmental Disorders, 2014, 6, 39.	1.5	122
108	A pilot controlled trial of insulin-like growth factor-1 in children with Phelan-McDermid syndrome. Molecular Autism, 2014, 5, 54.	2.6	109
109	Disease-in-a-Dish. American Journal of Physical Medicine and Rehabilitation, 2014, 93, S155-S168.	0.7	18

#	Article	IF	CITATIONS
110	Autism Spectrum Disorder Genetics. Harvard Review of Psychiatry, 2014, 22, 65-75.	0.9	59
111	Common DNA methylation alterations in multiple brain regions in autism. Molecular Psychiatry, 2014, 19, 862-871.	4.1	279
112	Convergent synaptic and circuit substrates underlying autism genetic risks. Frontiers in Biology, 2014, 9, 137-150.	0.7	16
113	Glutamatergic candidate genes in autism spectrum disorder: an overview. Journal of Neural Transmission, 2014, 121, 1081-1106.	1.4	23
114	A commonly carried genetic variant, rs9616915, in SHANK3 gene is associated with a reduced risk of autism spectrum disorder: replication in a Chinese population. Molecular Biology Reports, 2014, 41, 1591-1595.	1.0	13
115	Neurobiology of autism gene products: towards pathogenesis and drug targets. Psychopharmacology, 2014, 231, 1037-1062.	1.5	70
116	Clinical and genomic evaluation of 201 patients with Phelan–McDermid syndrome. Human Genetics, 2014, 133, 847-859.	1.8	142
117	Ultrasonic vocalizations in Shank mouse models for autism spectrum disorders: Detailed spectrographic analyses and developmental profiles. Neuroscience and Biobehavioral Reviews, 2014, 43, 199-212.	2.9	115
118	Glutamatergic agents in Autism Spectrum Disorders: Current trends. Research in Autism Spectrum Disorders, 2014, 8, 255-265.	0.8	13
119	A blueprint for research on Shankopathies: A view from research on autism spectrum disorder. Developmental Neurobiology, 2014, 74, 85-112.	1.5	12
120	Using genetic findings in autism for the development of new pharmaceutical compounds. Psychopharmacology, 2014, 231, 1063-1078.	1.5	27
121	Dendritic Spines: The Locus of Structural and Functional Plasticity. Physiological Reviews, 2014, 94, 141-188.	13.1	399
122	Epigenetic dysregulation of SHANK3 in brain tissues from individuals with autism spectrum disorders. Human Molecular Genetics, 2014, 23, 1563-1578.	1.4	134
123	A role for synaptic zinc in ProSAP/Shank PSD scaffold malformation in autism spectrum disorders. Developmental Neurobiology, 2014, 74, 136-146.	1.5	91
124	Loss of COMMD1 and copper overload disrupt zinc homeostasis and influence an autism-associated pathway at glutamatergic synapses. BioMetals, 2014, 27, 715-730.	1.8	24
125	Repetitive behaviors in the Shank1 knockout mouse model for autism spectrum disorder: Developmental aspects and effects of social context. Journal of Neuroscience Methods, 2014, 234, 92-100.	1.3	65
126	Zinc deficiency dysregulates the synaptic ProSAP/Shank scaffold and might contribute to autism spectrum disorders. Brain, 2014, 137, 137-152.	3.7	154
127	Therapeutic approaches for shankopathies. Developmental Neurobiology, 2014, 74, 123-135.	1.5	25

#	Article	IF	CITATIONS
130	Novel Therapeutic Approach for Autism Spectrum Disorder: Focus on SHANK3. Current Neuropharmacology, 2015, 13, 786-792.	1.4	17
131	Mutation Burden of Rare Variants in Schizophrenia Candidate Genes. PLoS ONE, 2015, 10, e0128988.	1.1	17
132	Duplications in ADHD patients harbour neurobehavioural genes that are coâ€expressed with genes associated with hyperactivity in the mouse. American Journal of Medical Genetics Part B: Neuropsychiatric Genetics, 2015, 168, 97-107.	1.1	2
133	Rare variants in the neurotrophin signaling pathway implicated in schizophrenia risk. Schizophrenia Research, 2015, 168, 421-428.	1.1	25
134	Autism-Associated Insertion Mutation (InsG) of Shank3 Exon 21 Causes Impaired Synaptic Transmission and Behavioral Deficits. Journal of Neuroscience, 2015, 35, 9648-9665.	1.7	136
135	Proteogenomic Analysis Identifies a Novel Human SHANK3 Isoform. International Journal of Molecular Sciences, 2015, 16, 11522-11530.	1.8	4
136	Phelan–McDermid Syndrome and SHANK3: Implications for Treatment. Neurotherapeutics, 2015, 12, 620-630.	2.1	83
137	MicroRNA-7/Shank3 axis involved in schizophrenia pathogenesis. Journal of Clinical Neuroscience, 2015, 22, 1254-1257.	0.8	28
138	Phelan McDermid Syndrome. Journal of Child Neurology, 2015, 30, 1861-1870.	0.7	62
139	Epigenetic mechanisms: A possible link between autism spectrum disorders and fetal alcohol spectrum disorders. Pharmacological Research, 2015, 102, 71-80.	3.1	15
140	Developing Medications Targeting Glutamatergic Dysfunction in Autism: Progress to Date. CNS Drugs, 2015, 29, 453-463.	2.7	24
141	Excitatory/Inhibitory Balance and Circuit Homeostasis in Autism Spectrum Disorders. Neuron, 2015, 87, 684-698.	3.8	858
142	SHANK1 and autism spectrum disorders. Science China Life Sciences, 2015, 58, 985-990.	2.3	10
143	The complex genetics in autism spectrum disorders. Science China Life Sciences, 2015, 58, 933-945.	2.3	7
144	SHANK Mutations in Intellectual Disability andÂAutism Spectrum Disorder. , 2016, , 151-160.		8
145	A Subset of Autism-Associated Genes Regulate the Structural Stability of Neurons. Frontiers in Cellular Neuroscience, 2016, 10, 263.	1.8	84
146	Phelan–McDermid Syndrome. , 2016, , 347-364.		3
147	Human Inducible Pluripotent Stem Cells and Autism Spectrum Disorder: Emerging Technologies. Autism Research, 2016, 9, 513-535.	2.1	26

#	Article	IF	Citations
148	Altered Striatal Synaptic Function and Abnormal Behaviour in <i>Shank3</i> Exon4â€9 Deletion Mouse Model of Autism. Autism Research, 2016, 9, 350-375.	2.1	144
149	nArgBP2 regulates excitatory synapse formation by controlling dendritic spine morphology. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113, 6749-6754.	3.3	31
150	Mouse Behavior and Models for Autism Spectrum Disorders. , 2016, , 269-293.		5
151	Behavioral phenotypes of genetic mouse models of autism. Genes, Brain and Behavior, 2016, 15, 7-26.	1.1	137
152	SHANK3 controls maturation of social reward circuits in the VTA. Nature Neuroscience, 2016, 19, 926-934.	7.1	146
153	Early communication deficits in the <i>Shank1</i> knockout mouse model for autism spectrum disorder: Developmental aspects and effects of social context. Autism Research, 2016, 9, 696-709.	2.1	57
154	Mice with Shank3 Mutations Associated with ASD and Schizophrenia Display Both Shared and Distinct Defects. Neuron, 2016, 89, 147-162.	3.8	279
155	Adult restoration of Shank3 expression rescues selective autistic-like phenotypes. Nature, 2016, 530, 481-484.	13.7	347
156	Reduction in parvalbumin expression not loss of the parvalbumin-expressing GABA interneuron subpopulation in genetic parvalbumin and shank mouse models of autism. Molecular Brain, 2016, 9, 10.	1.3	208
157	Early hyperactivity and precocious maturation of corticostriatal circuits in Shank3Bâ^'/â^' mice. Nature Neuroscience, 2016, 19, 716-724.	7.1	192
158	Micro-electrode array recordings reveal reductions in both excitation and inhibition in cultured cortical neuron networks lacking Shank3. Molecular Psychiatry, 2016, 21, 159-168.	4.1	44
159	SHANK proteins: roles at the synapse and in autism spectrum disorder. Nature Reviews Neuroscience, 2017, 18, 147-157.	4.9	508
160	SHANK proteins limit integrin activation by directly interacting with Rap1 andÂR-Ras. Nature Cell Biology, 2017, 19, 292-305.	4.6	117
161	Aberrant cognitive phenotypes and altered hippocampal BDNF expression related to epigenetic modifications in mice lacking the postâ€synaptic scaffolding protein SHANK1: Implications for autism spectrum disorder. Hippocampus, 2017, 27, 906-919.	0.9	31
162	Investigation of <i>SHANK3</i> in schizophrenia. American Journal of Medical Genetics Part B: Neuropsychiatric Genetics, 2017, 174, 390-398.	1.1	34
163	Language ENvironment Analysis (LENA) in Phelan-McDermid Syndrome: Validity and Suggestions for Use in Minimally Verbal Children with Autism Spectrum Disorder. Journal of Autism and Developmental Disorders, 2017, 47, 1605-1617.	1.7	17
164	Replicable in vivo physiological and behavioral phenotypes of the Shank3B null mutant mouse model of autism. Molecular Autism, 2017, 8, 26.	2.6	135
165	Autism genetics – an overview. Prenatal Diagnosis, 2017, 37, 14-30.	1.1	49

#	Article	IF	CITATIONS
166	Pharmaceuticals and Stem Cells in Autism Spectrum Disorders: Wishful Thinking?. World Neurosurgery, 2017, 98, 659-672.	0.7	5
167	Structural and Functional Organization of the Postsynaptic Densityâ $$, 2017, , .		1
168	Developmental social communication deficits in the <i>Shank3</i> rat model of phelanâ€mcdermid syndrome and autism spectrum disorder. Autism Research, 2018, 11, 587-601.	2.1	78
169	Association between SHANK3 polymorphisms and susceptibility to autism spectrum disorder. Gene, 2018, 651, 100-105.	1.0	17
170	Role of Striatal Direct Pathway 2-Arachidonoylglycerol Signaling in Sociability and Repetitive Behavior. Biological Psychiatry, 2018, 84, 304-315.	0.7	36
171	mGlu5-mediated signalling in developing astrocyte and the pathogenesis of autism spectrum disorders. Current Opinion in Neurobiology, 2018, 48, 139-145.	2.0	23
172	Delineation of the genetic and clinical spectrum of Phelan-McDermid syndrome caused by SHANK3 point mutations. Molecular Autism, 2018, 9, 31.	2.6	152
173	nArgBP2-SAPAP-SHANK, the core postsynaptic triad associated with psychiatric disorders. Experimental and Molecular Medicine, 2018, 50, 1-9.	3.2	7
174	Imaging genetics in autism spectrum disorders: Linking genetics and brain imaging in the pursuit of the underlying neurobiological mechanisms. Progress in Neuro-Psychopharmacology and Biological Psychiatry, 2018, 80, 101-114.	2.5	15
175	Synaptopathology in autism spectrum disorders: Complex effects of synaptic genes on neural circuits. Progress in Neuro-Psychopharmacology and Biological Psychiatry, 2018, 84, 398-415.	2.5	12
176	Behavioral phenotypes and neurobiological mechanisms in the Shank1 mouse model for autism spectrum disorder: A translational perspective. Behavioural Brain Research, 2018, 352, 46-61.	1.2	25
177	Dendritic spine actin cytoskeleton in autism spectrum disorder. Progress in Neuro-Psychopharmacology and Biological Psychiatry, 2018, 84, 362-381.	2.5	58
178	Phelanâ€McDermid syndrome data network: Integrating patient reported outcomes with clinical notes and curated genetic reports. American Journal of Medical Genetics Part B: Neuropsychiatric Genetics, 2018, 177, 613-624.	1.1	12
179	SHANK genes in autism: Defining therapeutic targets. Progress in Neuro-Psychopharmacology and Biological Psychiatry, 2018, 84, 416-423.	2.5	45
180	Neurodevelopmental synaptopathies: Insights from behaviour in rodent models of synapse gene mutations. Progress in Neuro-Psychopharmacology and Biological Psychiatry, 2018, 84, 424-439.	2.5	28
181	SHANK3 variant as a cause of nonsyndromal autism in an 11-year-old boy and a review of published literature. Clinical Dysmorphology, 2018, 27, 113-115.	0.1	11
182	The Wnt Signaling Pathway and Related Therapeutic Drugs in Autism Spectrum Disorder. Clinical Psychopharmacology and Neuroscience, 2018, 16, 129-135.	0.9	30
183	Reduced Efficacy of d-Amphetamine and 3,4-Methylenedioxymethamphetamine in Inducing Hyperactivity in Mice Lacking the Postsynaptic Scaffolding Protein SHANK1. Frontiers in Molecular Neuroscience, 2018, 11, 419.	1.4	5

#	Article	IF	CITATIONS
184	Genetic variability in scaffolding proteins and risk for schizophrenia and autism-spectrum disorders: a systematic review. Journal of Psychiatry and Neuroscience, 2018, 43, 223-244.	1.4	34
185	Synaptopathology Involved in Autism Spectrum Disorder. Frontiers in Cellular Neuroscience, 2018, 12, 470.	1.8	191
186	Genotype and phenotype correlations for <i>SHANK3</i> de novo mutations in neurodevelopmental disorders. American Journal of Medical Genetics, Part A, 2018, 176, 2668-2676.	0.7	25
187	Using mouse transgenic and human stem cell technologies to model genetic mutations associated with schizophrenia and autism. Philosophical Transactions of the Royal Society B: Biological Sciences, 2018, 373, 20170037.	1.8	20
188	Dysbiosis of microbiome and probiotic treatment in a genetic model of autism spectrum disorders. Brain, Behavior, and Immunity, 2018, 73, 310-319.	2.0	130
189	Association analysis of two synapse-related gene mutations with autism spectrum disorder in a Chinese population. Research in Autism Spectrum Disorders, 2018, 53, 67-72.	0.8	0
190	Solution structures of the SH 3 domains from Shank scaffold proteins and their interactions with Cav1.3 calcium channels. FEBS Letters, 2018, 592, 2786-2797.	1.3	7
191	Prospects of Zinc Supplementation in Autism Spectrum Disorders and Shankopathies Such as Phelan McDermid Syndrome. Frontiers in Synaptic Neuroscience, 2018, 10, 11.	1.3	33
192	Stem Cells to Inform the Neurobiology of Mental Illness. Current Topics in Behavioral Neurosciences, 2018, 40, 13-43.	0.8	4
193	USP8 Deubiquitinates SHANK3 to Control Synapse Density and SHANK3 Activity-Dependent Protein Levels. Journal of Neuroscience, 2018, 38, 5289-5301.	1.7	41
194	Functional Relevance of Missense Mutations Affecting the N-Terminal Part of Shank3 Found in Autistic Patients. Frontiers in Molecular Neuroscience, 2018, 11, 268.	1.4	15
195	Mouse models as a tool for discovering new neurological diseases. Neurobiology of Learning and Memory, 2019, 165, 106902.	1.0	17
196	Juvenile Shank3b deficient mice present with behavioral phenotype relevant to autism spectrum disorder. Behavioural Brain Research, 2019, 356, 137-147.	1.2	23
197	An integrated transcriptomic analysis of autism spectrum disorder. Scientific Reports, 2019, 9, 11818.	1.6	26
198	Anterior cingulate cortex dysfunction underlies social deficits in Shank3 mutant mice. Nature Neuroscience, 2019, 22, 1223-1234.	7.1	168
199	Enhanced Glutamatergic Currents at Birth in Shank3 KO Mice. Neural Plasticity, 2019, 2019, 1-11.	1.0	5
200	<i>SHANK1</i> polymorphisms and SNP–SNP interactions among <i>SHANK</i> family: A possible cue for recognition to autism spectrum disorder in infant age. Autism Research, 2019, 12, 375-383.	2.1	10
201	Efficient generation of Knock-in/Knock-out marmoset embryo via CRISPR/Cas9 gene editing. Scientific Reports, 2019, 9, 12719.	1.6	42

		LFORT	
#	Article	IF	CITATIONS
202	Epigenetic Regulations in Neuropsychiatric Disorders. Frontiers in Genetics, 2019, 10, 268.	1.1	116
203	Uncovering the Functional Link Between SHANK3 Deletions and Deficiency in Neurodevelopment Using iPSC-Derived Human Neurons. Frontiers in Neuroanatomy, 2019, 13, 23.	0.9	33
204	Molecular Dynamics Simulations of Wild Type and Mutants of SAPAP in Complexed with Shank3. International Journal of Molecular Sciences, 2019, 20, 224.	1.8	43
205	Application of Humanâ€Induced Pluripotent Stem Cells (hiPSCs) to Study Synaptopathy of Neurodevelopmental Disorders. Developmental Neurobiology, 2019, 79, 20-35.	1.5	14
206	Shank3 mutation in a mouse model of autism leads to changes in the S-nitroso-proteome and affects key proteins involved in vesicle release and synaptic function. Molecular Psychiatry, 2020, 25, 1835-1848.	4.1	82
207	Shank3 Binds to and Stabilizes the Active Form of Rap1 and HRas GTPases via Its NTD-ANK Tandem with Distinct Mechanisms. Structure, 2020, 28, 290-300.e4.	1.6	18
208	Targeting of δ-catenin to postsynaptic sites through interaction with the Shank3 N-terminus. Molecular Autism, 2020, 11, 85.	2.6	12
209	Investigating the influence of perinatal nicotine and alcohol exposure on the genetic profiles of dopaminergic neurons in the VTA using miRNA–mRNA analysis. Scientific Reports, 2020, 10, 15016.	1.6	17
210	Mechanistic Insights into the Interactions of Ras Subfamily <scp>GTPases</scp> with the <scp>SPN</scp> Domain of Autismâ€associated <scp>SHANK3</scp> ^{â€} . Chinese Journal of Chemistry, 2020, 38, 1635-1641.	2.6	2
211	Genetic and Epigenetic Etiology Underlying Autism Spectrum Disorder. Journal of Clinical Medicine, 2020, 9, 966.	1.0	78
212	CaMKIIα-driven, phosphatase-checked postsynaptic plasticity via phase separation. Cell Research, 2021, 31, 37-51.	5.7	39
213	Increased rates of cerebral protein synthesis in Shank3 knockout mice: Implications for a link between synaptic protein deficit and dysregulated protein synthesis in autism spectrum disorder/intellectual disability. Neurobiology of Disease, 2021, 148, 105213.	2.1	8
214	Perinatal Exposure to Diesel Exhaust-Origin Secondary Organic Aerosol Induces Autism-Like Behavior in Rats. International Journal of Molecular Sciences, 2021, 22, 538.	1.8	8
216	Dendritic Integration Dysfunction in Neurodevelopmental Disorders. Developmental Neuroscience, 2021, 43, 201-221.	1.0	14
217	Postnatal therapeutic approaches in genetic neurodevelopmental disorders. Neural Regeneration Research, 2021, 16, 414.	1.6	5
218	Association of SHANK Family with Neuropsychiatric Disorders: An Update on Genetic and Animal Model Discoveries. Cellular and Molecular Neurobiology, 2022, 42, 1623-1643.	1.7	7
220	Interneuron development and dysfunction. FEBS Journal, 2022, 289, 2318-2336.	2.2	23
222	Autism-associated SHANK3 missense point mutations impact conformational fluctuations and protein turnover at synapses. ELife, 2021, 10, .	2.8	14

#	Article	IF	CITATIONS
223	Truncating variants in the SHANK1 gene are associated with a spectrum of neurodevelopmental disorders. Genetics in Medicine, 2021, 23, 1912-1921.	1.1	5
224	Genetic Findings as the Potential Basis of Personalized Pharmacotherapy in Phelan-McDermid Syndrome. Genes, 2021, 12, 1192.	1.0	9
225	Posttranslational modifications & lithium's therapeutic effect—Potential biomarkers for clinical responses in psychiatric & neurodegenerative disorders. Neuroscience and Biobehavioral Reviews, 2021, 127, 424-445.	2.9	7
226	Social Deficits and Repetitive Behaviors Are Improved by Early Postnatal Low-Dose VPA Intervention in a Novel shank3-Deficient Zebrafish Model. Frontiers in Neuroscience, 2021, 15, 682054.	1.4	9
227	Neurodevelopmental malformations of the cerebellum and neocortex in the Shank3 and Cntnap2 mouse models of autism. Neuroscience Letters, 2021, 765, 136257.	1.0	6
228	Genetic influences of autism candidate genes on circuit wiring and olfactory decoding. Cell and Tissue Research, 2021, 383, 581-595.	1.5	4
229	Modelling Autistic Neurons with Induced Pluripotent Stem Cells. Advances in Anatomy, Embryology and Cell Biology, 2017, 224, 49-64.	1.0	5
230	Unravelling the genetics of autism spectrum disorders. , 2011, , 53-111.		5
231	Striatopallidal dysfunction underlies repetitive behavior in Shank3-deficient model of autism. Journal of Clinical Investigation, 2017, 127, 1978-1990.	3.9	151
232	Communication Impairments in Mice Lacking Shank1: Reduced Levels of Ultrasonic Vocalizations and Scent Marking Behavior. PLoS ONE, 2011, 6, e20631.	1.1	196
233	High Proportion of 22q13 Deletions and SHANK3 Mutations in Chinese Patients with Intellectual Disability. PLoS ONE, 2012, 7, e34739.	1.1	43
234	Lack of Association between NLGN3, NLGN4, SHANK2 and SHANK3 Gene Variants and Autism Spectrum Disorder in a Chinese Population. PLoS ONE, 2013, 8, e56639.	1.1	36
235	Sam Domains in Multiple Diseases. Current Medicinal Chemistry, 2020, 27, 450-476.	1.2	12
236	Common Mechanisms of Excitatory and Inhibitory Imbalance in Schizophrenia and Autism Spectrum Disorders. Current Molecular Medicine, 2015, 15, 146-167.	0.6	404
237	The Role of Ionotropic Glutamate Receptors in Childhood Neurodevelopmental Disorders: Autism Spectrum Disorders and Fragile X Syndrome. Current Neuropharmacology, 2014, 12, 71-98.	1.4	65
238	Multiple rare variants in the etiology of autism spectrum disorders. Dialogues in Clinical Neuroscience, 2009, 11, 35-43.	1.8	115
239	Autism risk factors: genes, environment, and gene-environment interactions. Dialogues in Clinical Neuroscience, 2012, 14, 281-292.	1.8	542
240	Mutant mouse models of autism spectrum disorders. Disease Markers, 2012, 33, 225-39.	0.6	20

	Сп	tation Report	
# 241	ARTICLE Glutamatergic Dysfunction and Synaptic Ultrastructural Alterations in Schizophrenia and Autism Spectrum Disorder: Evidence from Human and Rodent Studies. International Journal of Molecular Sciences, 2021, 22, 59.	IF 1.8	Citations 29
242	The Development of the Mesoprefrontal Dopaminergic System in Health and Disease. Frontiers in Neural Circuits, 2021, 15, 746582.	1.4	17
243	Cell Adhesion Molecules in Synaptopathies. , 2009, , 141-158.		1
244	Autism Spectrum Disorders: The Role of Genetics in Diagnosis and Treatment. , 2011, , .		0
245	Construction of a Genetic Classifier for ASD Using Gene Pathway Analysis. , 2014, , 119-143.		0
247	Social Endophenotypes in Mouse Models of Psychiatric Disease. , 2016, , 231-264.		0
248	The specific role of zinc in autism spectrum disorders. , 2020, , 115-130.		0
251	Case Report: Lennox–Gastaut Epileptic Encephalopathy Responsive to Cannabidiol Treatment Associated With a Novel de novo Mosaic SHANK1 Variant. Frontiers in Genetics, 2021, 12, 735292.	1.1	1
252	Comparison of SHANK3 deficiency in animal models: phenotypes, treatment strategies, and translational implications. Journal of Neurodevelopmental Disorders, 2021, 13, 55.	1.5	40
253	Mutations affecting the N-terminal domains of SHANK3 point to different pathomechanisms in neurodevelopmental disorders. Scientific Reports, 2022, 12, 902.	1.6	9
254	Absence of familiarity triggers hallmarks of autism in mouse model through aberrant tail-of-striatum and prelimbic cortex signaling. Neuron, 2022, 110, 1468-1482.e5.	3.8	13
255	Autism Spectrum Disorder: Focus on Glutamatergic Neurotransmission. International Journal of Molecular Sciences, 2022, 23, 3861.	1.8	28
256	The Cerebellar Involvement in Autism Spectrum Disorders: From the Social Brain to Mouse Models. International Journal of Molecular Sciences, 2022, 23, 3894.	1.8	40
257	Reconsidering animal models used to study autism spectrum disorder: Current state and optimizing future. Genes, Brain and Behavior, 2022, 21, e12803.	1.1	55
272	Variability in Phelan-McDermid Syndrome in a Cohort of 210 Individuals. Frontiers in Genetics, 2022, 1 652454.	.3, 1.1	27
273	Prenatal Zinc Deficient Mice as a Model for Autism Spectrum Disorders. International Journal of Molecular Sciences, 2022, 23, 6082.	1.8	9
275	Shank postsynaptic scaffolding proteins in autism spectrum disorder: Mouse models and their dysfunctions in behaviors, synapses, and molecules. Pharmacological Research, 2022, 182, 106340.	3.1	12
276	Prefrontal circuits guiding social preference: Implications in autism spectrum disorder. Neuroscience and Biobehavioral Reviews, 2022, 141, 104803.	2.9	8

#	Article	IF	CITATIONS
277	Age, brain region, and gene dosage-differential transcriptomic changes in Shank3-mutant mice. Frontiers in Molecular Neuroscience, 0, 15, .	1.4	9
278	Structural deficits in key domains of Shank2 lead to alterations in postsynaptic nanoclusters and to a neurodevelopmental disorder in humans. Molecular Psychiatry, 0, , .	4.1	3
279	Targeting Shank3 deficiency and paresthesia in autism spectrum disorder: A brief review. Frontiers in Molecular Neuroscience, 0, 16, .	1.4	2