Ultrathin Silicon Circuits With Strainâ€Isolation Layers Highâ€Performance Electronics on Fabric, Vinyl, Leath

Advanced Materials 21, 3703-3707 DOI: 10.1002/adma.200900405

Citation Report

#	Article	IF	CITATIONS
1	Stretchable Silicon Electronics and Their Integration with Rubber, Plastic, Paper, Vinyl, Leather and Fabric Substrates. Materials Research Society Symposia Proceedings, 2009, 1196, 1.	0.1	0
2	Highly conductive paper for energy-storage devices. Proceedings of the National Academy of Sciences of the United States of America, 2009, 106, 21490-21494.	3.3	1,138
3	A strain-isolation design for stretchable electronics. Acta Mechanica Sinica/Lixue Xuebao, 2010, 26, 881-888.	1.5	34
4	Stretchable, Curvilinear Electronics Based on Inorganic Materials. Advanced Materials, 2010, 22, 2108-2124.	11.1	525
5	Arrays of Ultracompliant Electrochemical Dry Gel Cells for Stretchable Electronics. Advanced Materials, 2010, 22, 2065-2067.	11.1	151
6	Polymerâ€Embedded Carbon Nanotube Ribbons for Stretchable Conductors. Advanced Materials, 2010, 22, 3027-3031.	11.1	277
7	A Spiderâ€Webâ€Like Highly Expandable Sensor Network for Multifunctional Materials. Advanced Materials, 2010, 22, 4643-4648.	11.1	96
8	Direct Growth of Aligned Zinc Oxide Nanorods on Paper Substrates for Lowâ€Cost Flexible Electronics. Advanced Materials, 2010, 22, 4059-4063.	11.1	344
9	Anisotropic Motion of Electroactive Papers Coated with PEDOT/PSS. Macromolecular Materials and Engineering, 2010, 295, 671-675.	1.7	36
10	Environmentally sustainable organic field effect transistors. Organic Electronics, 2010, 11, 1974-1990.	1.4	129
11	Mechanics analysis of two-dimensionally prestrained elastomeric thin film for stretchable electronics. Acta Mechanica Solida Sinica, 2010, 23, 592-599.	1.0	11
12	Ultrathin compound semiconductor on insulator layers for high-performance nanoscale transistors. Nature, 2010, 468, 286-289.	13.7	373
13	Waterproof AlInGaP optoelectronics on stretchable substrates with applications in biomedicine andÂrobotics. Nature Materials, 2010, 9, 929-937.	13.3	557
14	Flexible logic circuits composed of chalcogenide-nanocrystal-based thin film transistors. Nanotechnology, 2010, 21, 235204.	1.3	17
15	Thin, Flexible Secondary Li-Ion Paper Batteries. ACS Nano, 2010, 4, 5843-5848.	7.3	785
16	Printable magnetite and pyrrole treated magnetite based electrodes for supercapacitors. Journal of Materials Chemistry, 2010, 20, 7637.	6.7	102
17	Flexible Electronics: What can it do? What should it do?. , 2010, , .		7
18	Printed energy storage devices by integration of electrodes and separators into single sheets of paper. Applied Physics Letters, 2010, 96, .	1.5	184

#	Article	IF	CITATIONS
19	Fabrication and characterization of flexible and high capacitance supercapacitors based on MnO2/CNT/papers. Synthetic Metals, 2010, 160, 2510-2514.	2.1	92
20	Reduction of Electrical Hysteresis in Cyclically Bent Organic Field Effect Transistors by Incorporating Multistack Hybrid Gate Dielectrics. Journal of the Electrochemical Society, 2010, 157, H1046.	1.3	13
21	Microfluidic stretchable RF electronics. Lab on A Chip, 2010, 10, 3227.	3.1	166
22	Air Plasma Assisting Microcontact Deprinting and Printing for Gold Thin Film and PDMS Patterns. ACS Applied Materials & Interfaces, 2010, 2, 1324-1330.	4.0	34
23	Fabrication of Nanowire Electronics on Nonconventional Substrates by Water-Assisted Transfer Printing Method. Nano Letters, 2011, 11, 3435-3439.	4.5	98
24	Exotic materials for bio-organic electronics. Journal of Materials Chemistry, 2011, 21, 1350-1361.	6.7	157
25	Paperâ€Based Piezoelectric Nanogenerators with High Thermal Stability. Small, 2011, 7, 2577-2580.	5.2	91
26	Stretchable GaAs Photovoltaics with Designs That Enable High Areal Coverage. Advanced Materials, 2011, 23, 986-991.	11.1	285
27	Paper Electronics. Advanced Materials, 2011, 23, 1935-1961.	11.1	1,141
28	Silver Nanowires: From Scalable Synthesis to Recyclable Foldable Electronics. Advanced Materials, 2011, 23, 3052-3056.	11.1	297
29	Stretchable Conductors with Ultrahigh Tensile Strain and Stable Metallic Conductance Enabled by Prestrained Polyelectrolyte Nanoplatforms. Advanced Materials, 2011, 23, 3090-3094.	11.1	196
30	Nanoscale Semiconductor "X―on Substrate "Y―– Processes, Devices, and Applications. Advanced Materials, 2011, 23, 3115-3127.	11.1	42
31	An analytical model of strain isolation for stretchable and flexible electronics. Applied Physics Letters, 2011, 98, .	1.5	45
32	Strain engineering of epitaxially transferred, ultrathin layers of III-V semiconductor on insulator. Applied Physics Letters, 2011, 98, 012111.	1.5	23
33	Microscale, printed LEDs for unusual lighting and display systems. , 2011, , .		0
34	Wearable tactile keypad with stretchable artificial skin. , 2011, , .		108
35	Dynamically tunable hemispherical electronic eye camera system with adjustable zoom capability. Proceedings of the National Academy of Sciences of the United States of America, 2011, 108, 1788-1793.	3.3	242
36	Mechanics of stretchable electronics and soft machines. MRS Bulletin, 2012, 37, 218-225.	1.7	185

#	Article	IF	CITATIONS
37	Materials for stretchable electronics in bioinspired and biointegrated devices. MRS Bulletin, 2012, 37, 226-235.	1.7	184
38	Inkjet-printed silver nanoparticles on nano-engineered cellulose films for electrically conducting structures and organic transistors: concept and challenges. Journal of Nanoparticle Research, 2012, 14, 1.	0.8	45
39	Opportunities with Fabric Composites as Unique Flexible Substrates. ACS Applied Materials & Interfaces, 2012, 4, 6640-6645.	4.0	16
40	Printable ultrathin substrates formed on a concave–convex underlayer for highly flexible membrane-type electrode stickers. Soft Matter, 2012, 8, 7598.	1.2	4
41	Solution Processed Aluminum Paper for Flexible Electronics. Langmuir, 2012, 28, 13127-13135.	1.6	61
42	Transfer Printing Techniques for Materials Assembly and Micro/Nanodevice Fabrication. Advanced Materials, 2012, 24, 5284-5318.	11.1	727
43	Straining Nanomembranes <i>via</i> Highly Mismatched Heteroepitaxial Growth: InAs Islands on Compliant Si Substrates. ACS Nano, 2012, 6, 10287-10295.	7.3	20
44	Flexible and Transparent Paper-Based Ionic Diode Fabricated from Oppositely Charged Microfibrillated Cellulose. Journal of Physical Chemistry C, 2012, 116, 9227-9234.	1.5	59
47	Fabrication and electromechanical characterization of near-field electrospun composite fibers. Nanotechnology, 2012, 23, 105305.	1.3	17
49	Elastomeric Electronics: A Microfluidic Approach. , 2012, , .		0
50	A flexible and highly sensitive strain-gauge sensor using reversible interlocking of nanofibres. Nature Materials, 2012, 11, 795-801.	13.3	1,453
51	Paperâ€Based, Capacitive Touch Pads. Advanced Materials, 2012, 24, 2850-2856.	11.1	186
52	Highâ€Performance Nonâ€Volatile Organic Ferroelectric Memory on Banknotes. Advanced Materials, 2012, 24, 2165-2170.	11.1	138
53	Highly Stretchable Alkaline Batteries Based on an Embedded Conductive Fabric. Advanced Materials, 2012, 24, 5071-5076.	11.1	232
54	Flexible and Stretchable Electronics for Biointegrated Devices. Annual Review of Biomedical Engineering, 2012, 14, 113-128.	5.7	631
55	Microfluidic electronics. Lab on A Chip, 2012, 12, 2782.	3.1	254
56	Small-size biofuel cell on paper. Biosensors and Bioelectronics, 2012, 35, 155-159.	5.3	113
57	Topographic substrates as strain relief features in stretchable organic thin film transistors. Organic Electronics, 2013, 14, 1636-1642.	1.4	55

	Сітатіо	CITATION REPORT	
#	Article	IF	Citations
58	Ultrathin, highly flexible and stretchable PLEDs. Nature Photonics, 2013, 7, 811-816.	15.6	832
59	Recyclable, Flexible, Lowâ€Power Oxide Electronics. Advanced Functional Materials, 2013, 23, 2153-2161.	7.8	124
60	Controlled Hydrophobic Functionalization of Natural Fibers through Selfâ€Assembly of Amphiphilic Diblock Copolymer Micelles. ChemSusChem, 2013, 6, 1203-1208.	3.6	9
61	Wearable Textile Battery Rechargeable by Solar Energy. Nano Letters, 2013, 13, 5753-5761.	4.5	400
63	Paper-based solid-state supercapacitors with pencil-drawing graphite/polyaniline networks hybrid electrodes. Nano Energy, 2013, 2, 1071-1078.	8.2	348
64	Buckling in serpentine microstructures and applications in elastomer-supported ultra-stretchable electronics with high areal coverage. Soft Matter, 2013, 9, 8062.	1.2	248
65	Paper-based nanosilver conductive ink. Journal of Materials Science: Materials in Electronics, 2013, 24, 628-634.	1.1	26
66	Hybrid nanostructured materials for high-performance electrochemical capacitors. Nano Energy, 2013, 2, 213-234.	8.2	976
67	Transparent, stretchable, carbon-nanotube-inlaid conductors enabled by standard replication technology for capacitive pressure, strain and touch sensors. Journal of Materials Chemistry A, 2013, 1, 3580.	5.2	123
68	Electronic and optoelectronic materials and devices inspired by nature. Reports on Progress in Physics, 2013, 76, 034501.	8.1	174
69	Paper as a novel material platform for devices. MRS Bulletin, 2013, 38, 299-305.	1.7	62
70	Piezoelectric rubber films for highly sensitive impact measurement. Journal of Micromechanics and Microengineering, 2013, 23, 075009.	1.5	15
71	Natural Materials for Organic Electronics. Springer Series in Materials Science, 2013, , 295-318.	0.4	9
72	Free-standing and bendable carbon nanotubes/TiO2 nanofibres composite electrodes for flexible lithium ion batteries. Electrochimica Acta, 2013, 104, 41-47.	2.6	64
74	Highly Conductive Aluminum Textile and Paper for Flexible and Wearable Electronics. Angewandte Chemie - International Edition, 2013, 52, 7718-7723.	7.2	101
75	Field effect transistors and RC filters from pencil-trace on paper. Physical Chemistry Chemical Physics, 2013, 15, 8367.	1.3	81
76	Pencil-on-paper: electronic devices. Lab on A Chip, 2013, 13, 2866.	3.1	181
77	Laser-assisted ultrathin bare die packaging: a route to a new class of microelectronic devices. Proceedings of SPIE, 2013, , .	0.8	7

	CITATION R	EPORT	
# 78	ARTICLE 25th Anniversary Article: The Evolution of Electronic Skin (Eâ€Skin): A Brief History, Design Considerations, and Recent Progress. Advanced Materials, 2013, 25, 5997-6038.	IF 11.1	Citations 2,001
79	Stretchable copper interconnects with three-dimensional coiled structures. Journal of Micromechanics and Microengineering, 2013, 23, 127002.	1.5	10
80	Wearable Electrochemical Sensors and Biosensors: A Review. Electroanalysis, 2013, 25, 29-46.	1.5	568
81	Recent advances in flexible sensors for wearable and implantable devices. Journal of Applied Polymer Science, 2013, 130, 1429-1441.	1.3	382
82	LEGO-like assembly of peelable, deformable components for integrated devices. NPG Asia Materials, 2013, 5, e66-e66.	3.8	12
83	Transfer of functional memory devices to any substrate. Physica Status Solidi - Rapid Research Letters, 2013, 7, 326-331.	1.2	7
84	Design of paper mechatronics: Towards a fully printed robot. , 2014, , .		12
85	A stretchable and flexible system for skin-mounted measurement of motion tracking and physiological signals. , 2014, 2014, 5772-5.		0
86	Skin-inspired electronic devices. Materials Today, 2014, 17, 321-331.	8.3	487
87	Integrated silicon and silicon nitride photonic circuits on flexible substrates. Optics Letters, 2014, 39, 3449.	1.7	13
88	Printable and foldable electrodes based on a carbon nanotube-polymer composite. Physica Status Solidi (A) Applications and Materials Science, 2014, 211, 2631-2634.	0.8	11
89	Inkjet Printing of Conductive Inks with High Lateral Resolution on Omniphobic "R ^F Paper― for Paperâ€Based Electronics and MEMS. Advanced Materials, 2014, 26, 4677-4682.	11.1	216
90	Screen Printed Asymmetric Supercapacitors based on LiCoO ₂ and Graphene Oxide*. Zeitschrift Fur Anorganische Und Allgemeine Chemie, 2014, 640, 2852-2857.	0.6	23
91	An electrothermochromic paper display based on colorimetrically reversible polydiacetylenes. Nanotechnology, 2014, 25, 094011.	1.3	36
92	Effect of post-deposition annealing on transverse piezoelectric coefficient and vibration sensing performance of ZnO thin films. Applied Surface Science, 2014, 296, 169-176.	3.1	27
93	Fabrication of well-controlled wavy metal interconnect structures on stress-free elastomeric substrates. Microelectronic Engineering, 2014, 113, 55-60.	1.1	25
94	Highly Stretchable Transistors Using a Microcracked Organic Semiconductor. Advanced Materials, 2014, 26, 4253-4259.	11.1	200
95	Supercapacitors Based on Flexible Substrates: An Overview. Energy Technology, 2014, 2, 325-341.	1.8	172

#	Article	IF	CITATIONS
96	25th Anniversary Article: Scalable Multiscale Patterned Structures Inspired by Nature: the Role of Hierarchy. Advanced Materials, 2014, 26, 675-700.	11.1	212
97	Piezoelectric rubber films for autonomous physiological monitoring systems. Sensors and Actuators A: Physical, 2014, 215, 176-183.	2.0	18
98	Flexible and Stretchable Electronics Paving the Way for Soft Robotics. Soft Robotics, 2014, 1, 53-62.	4.6	436
99	Transparent paper: fabrications, properties, and device applications. Energy and Environmental Science, 2014, 7, 269-287.	15.6	457
100	Nanowire Field Effect Transistors: Principles and Applications. , 2014, , .		17
101	The influence of fibril composition and dimension on the performance of paper gated oxide transistors. Nanotechnology, 2014, 25, 094007.	1.3	58
102	Reliable Peeling of Ultrathin Die With Multineedle Ejector. IEEE Transactions on Components, Packaging and Manufacturing Technology, 2014, 4, 1545-1554.	1.4	25
103	Material transfer controlled by elastomeric layer thickness. Materials Horizons, 2014, 1, 507.	6.4	17
104	Graphene-Based Conformal Devices. ACS Nano, 2014, 8, 7655-7662.	7.3	86
105	Magnetically responsive photonic watermarks on banknotes. Journal of Materials Chemistry C, 2014, 2, 3695.	2.7	134
106	Robust and transparent membrane of crystalline silicone via a melt-drawing technique. Journal of Materials Chemistry C, 2014, 2, 373-381.	2.7	10
107	A monolithic functional film of nanotubes/cellulose/ionic liquid for high performance supercapacitors. Journal of Power Sources, 2014, 271, 589-596.	4.0	8
108	Cobalt nano-sheet supported on graphite modified paper as a binder free electrode for peroxide electrooxidation. Electrochimica Acta, 2014, 139, 250-255.	2.6	28
109	Evaluation of Transverse Piezoelectric Coefficient of ZnO Thin Films Deposited on Different Flexible Substrates: A Comparative Study on the Vibration Sensing Performance. ACS Applied Materials & Interfaces, 2014, 6, 7108-7116.	4.0	32
110	Multipurpose Ultra and Superhydrophobic Surfaces Based on Oligodimethylsiloxane-Modified Nanosilica. ACS Applied Materials & Interfaces, 2014, 6, 18998-19010.	4.0	36
111	Long-Term Sustainable Aluminum Precursor Solution for Highly Conductive Thin Films on Rigid and Flexible Substrates. ACS Applied Materials & Interfaces, 2014, 6, 15480-15487.	4.0	23
112	Flexible paper-based ZnO nanorod light-emitting diodes induced multiplexed photoelectrochemical immunoassay. Chemical Communications, 2014, 50, 1417-1419.	2.2	166
113	Fiberâ€Based Wearable Electronics: A Review of Materials, Fabrication, Devices, and Applications. Advanced Materials, 2014, 26, 5310-5336.	11.1	1,689

#	Article	IF	CITATIONS
114	Optimization of primary printed batteries based on Zn/MnO2. Journal of Power Sources, 2014, 261, 356-362.	4.0	32
115	Flexible Energy‣torage Devices: Design Consideration and Recent Progress. Advanced Materials, 2014, 26, 4763-4782.	11.1	1,153
116	Disposable chemical sensors and biosensors made on cellulose paper. Nanotechnology, 2014, 25, 092001.	1.3	98
117	Embedded 3D Printing of Strain Sensors within Highly Stretchable Elastomers. Advanced Materials, 2014, 26, 6307-6312.	11.1	1,314
118	Buckling of a stiff thin film on a pre-strained bi-layer substrate. International Journal of Solids and Structures, 2014, 51, 3113-3118.	1.3	52
120	Recent Progress in Electronic Skin. Advanced Science, 2015, 2, 1500169.	5.6	789
121	Conformal 3D Printing of Sensors. , 2015, , .		0
122	Transfer Printing of Stretchable Electronics on Conformal Surfaces. , 2015, , .		Ο
123	A Self‣tanding and Flexible Electrode of Yolk–Shell CoS ₂ Spheres Encapsulated with Nitrogenâ€Doped Graphene for Highâ€Performance Lithiumâ€Ion Batteries. Chemistry - A European Journal, 2015, 21, 4359-4367.	1.7	128
124	Flexible and Stretchable Gold Microstructures on Extra Soft Poly(dimethylsiloxane) Substrates. Advanced Materials, 2015, 27, 6664-6669.	11.1	25
125	Wrinkleâ€based Measurement of the Elastic Modulus of Au Thin Film with Fabricated Nanotransfer Printing. Bulletin of the Korean Chemical Society, 2015, 36, 1539-1542.	1.0	4
126	Engineered cellulose fibers as dielectric for oxide field effect transistors. Physica Status Solidi C: Current Topics in Solid State Physics, 2015, 12, 1421-1426.	0.8	7
127	Highly Stretchable and Sensitive Strain Sensors Using Fragmentized Graphene Foam. Advanced Functional Materials, 2015, 25, 4228-4236.	7.8	560
128	Soft Core/Shell Packages for Stretchable Electronics. Advanced Functional Materials, 2015, 25, 3698-3704.	7.8	116
129	Waferâ€6cale Coplanar Electrodes for 3D Conformal Organic Singleâ€Crystal Circuits. Advanced Electronic Materials, 2015, 1, 1500239.	2.6	26
130	Scalable Microfabrication Procedures for Adhesive-Integrated Flexible and Stretchable Electronic Sensors. Sensors, 2015, 15, 23459-23476.	2.1	38
132	Nonlinear characteristics in fracture strength test of ultrathin silicon die. Semiconductor Science and Technology, 2015, 30, 045005.	1.0	22
133	Fabrication of three-dimensional micro-Rogowski coil based on femtosecond laser micromachining. Applied Physics A: Materials Science and Processing, 2015, 120, 669-674.	1.1	3

#	Article	IF	CITATIONS
134	Mechanics of curvilinear electronics and optoelectronics. Current Opinion in Solid State and Materials Science, 2015, 19, 171-189.	5.6	36
135	Hyperelastically stretchable strain gauges based on liquid metals and platinum-catalyzed silicone elastomers. , 2015, , .		1
136	Mechanics for stretchable sensors. Current Opinion in Solid State and Materials Science, 2015, 19, 149-159.	5.6	70
137	Flexible organic field-effect transistors on biodegradable cellulose paper with efficient reusable ion gel dielectrics. RSC Advances, 2015, 5, 14567-14574.	1.7	49
138	Sprayable Elastic Conductors Based on Block Copolymer Silver Nanoparticle Composites. ACS Nano, 2015, 9, 336-344.	7.3	81
139	Flexible, stretchable, and patchable organic devices integrated on freestanding polymeric substrates. Journal of Polymer Science, Part B: Polymer Physics, 2015, 53, 453-460.	2.4	42
140	Catalytic behavior of a palladium doped binder free paper based cobalt electrode in electroreduction of hydrogen peroxide. Journal of Power Sources, 2015, 273, 1142-1147.	4.0	13
141	Carbon nanotubes on paper: Flexible and disposable chemiresistors. Sensors and Actuators B: Chemical, 2015, 220, 1178-1185.	4.0	36
142	Processing and characterisation of Il–VI ZnCdMgSe thin film gain structures. Thin Solid Films, 2015, 590, 84-89.	0.8	7
143	Capacitive Soft Strain Sensors via Multicore–Shell Fiber Printing. Advanced Materials, 2015, 27, 2440-2446.	11.1	372
145	Thin Film Silicon Photovoltaic Cells on Paper for Flexible Indoor Applications. Advanced Functional Materials, 2015, 25, 3592-3598.	7.8	101
146	Nonplanar Nanoscale Fin Field Effect Transistors on Textile, Paper, Wood, Stone, and Vinyl <i>via</i> Soft Material-Enabled Double-Transfer Printing. ACS Nano, 2015, 9, 5255-5263.	7.3	26
147	Recent Progress on Printed Flexible Batteries: Mechanical Challenges, Printing Technologies, and Future Prospects. Energy Technology, 2015, 3, 305-328.	1.8	154
148	Mechanical and electrical stability of PEDOT:PTS and Au source/drain electrodes for bottom contact OTFTs on plastic films under bending conditions. Organic Electronics, 2015, 26, 8-14.	1.4	7
149	Paper-based devices for energy applications. Renewable and Sustainable Energy Reviews, 2015, 52, 1453-1472.	8.2	92
150	Facile metal transfer method for fabricating unconventional metamaterial devices. Optical Materials Express, 2015, 5, 733.	1.6	6
151	Dynamic spatial pulse shaping via a digital micromirror device for patterned laser-induced forward transfer of solid polymer films. Optical Materials Express, 2015, 5, 1129.	1.6	31
152	Synthesis of highly permeable Fe2O3/ZnO hollow spheres for printable photocatalysis. RSC Advances, 2015, 5, 88277-88286.	1.7	28

#	Article	IF	CITATIONS
153	Allâ€Printed, Foldable Organic Thinâ€Film Transistors on Glassine Paper. Advanced Materials, 2015, 27, 7058-7064.	11.1	133
154	High concentration Ag nano-particles ink preparation and related writing system for paper-based writing electronics. , 2015, , .		1
155	Piezoresistive behavior of a stretchable carbon nanotube-interlayered poly(dimethylsiloxane) sheet with a wrinkled structure. RSC Advances, 2015, 5, 73162-73168.	1.7	5
156	Self-powered flexible inorganic electronic system. Nano Energy, 2015, 14, 111-125.	8.2	110
157	Toward Flexible and Wearable Humanâ€Interactive Healthâ€Monitoring Devices. Advanced Healthcare Materials, 2015, 4, 487-500.	3.9	289
158	A High Areal Capacity Flexible Lithiumâ€lon Battery with a Strainâ€Compliant Design. Advanced Energy Materials, 2015, 5, 1401389.	10.2	174
159	49-3L:Late-News Paper: Flexible and Stretchable Hybrid Electronics Systems for Wearable Applications. Digest of Technical Papers SID International Symposium, 2016, 47, 668-671.	0.1	2
160	Mechanical and Electronic Properties of Thinâ€Film Transistors on Plastic, and Their Integration in Flexible Electronic Applications. Advanced Materials, 2016, 28, 4266-4282.	11.1	218
161	Towards flexible sheet cameras: Deformable lens arrays with intrinsic optical adaptation. , 2016, , .		2
162	Dispensing of high concentration Ag nano-particles ink for ultra-low resistivity paper-based writing electronics. Scientific Reports, 2016, 6, 21398.	1.6	43
163	Atomic layer deposition on polymer fibers and fabrics for multifunctional and electronic textiles. Journal of Vacuum Science and Technology A: Vacuum, Surfaces and Films, 2016, 34, .	0.9	64
164	Shapeable magnetoelectronics. Applied Physics Reviews, 2016, 3, 011101.	5.5	141
165	Printed flexible and stretchable hybrid electronic systems for wearable applications. , 2016, , .		1
166	Polycrystalline silicon TFTs on a paper substrate using solution-processed silicon. , 2016, , .		1
167	Stretchable Bioelectronics for Medical Devices and Systems. Microsystems and Nanosystems, 2016, , .	0.1	90
168	Sensor Skins: An Overview. Microsystems and Nanosystems, 2016, , 173-191.	0.1	10
169	A flexible future for paper-based electronics. Proceedings of SPIE, 2016, , .	0.8	9
171	Piezoresistive Sensor with High Elasticity Based on 3D Hybrid Network of Sponge@CNTs@Ag NPs. ACS Applied Materials & Interfaces, 2016, 8, 22374-22381.	4.0	176

#	Article	IF	CITATIONS
172	Flexible and Stretchable Piezoelectric Sensor with Thickness-Tunable Configuration of Electrospun Nanofiber Mat and Elastomeric Substrates. ACS Applied Materials & Interfaces, 2016, 8, 24773-24781.	4.0	175
173	A Novel Approach to Integrating 3D/4D Printing and Stretchable Conductive Adhesive Technologies for High Frequency Packaging Applications. , 2016, , .		0
174	Ironâ€Based Supercapacitor Electrodes: Advances and Challenges. Advanced Energy Materials, 2016, 6, 1601053.	10.2	358
175	Wrinkles in Electronics. IEEE Transactions on Electron Devices, 2016, 63, 3372-3384.	1.6	9
176	Robust and stretchable indium gallium zinc oxide-based electronic textiles formed by cilia-assisted transfer printing. Nature Communications, 2016, 7, 11477.	5.8	73
178	Optical vortex pulse illumination to create chiral monocrystalline silicon nanostructures. Physica Status Solidi (A) Applications and Materials Science, 2016, 213, 1063-1068.	0.8	28
179	Recent Advances in Stretchable and Transparent Electronic Materials. Advanced Electronic Materials, 2016, 2, 1500407.	2.6	245
180	Lightâ€Controlled Simultaneous Resistive and Ferroelectricity Switching Effects of BiFeO ₃ Film for a Flexible Multistate Highâ€Storage Memory Device. ChemElectroChem, 2016, 3, 896-901.	1.7	34
181	Photolithography-Based Patterning of Liquid Metal Interconnects for Monolithically Integrated Stretchable Circuits. ACS Applied Materials & amp; Interfaces, 2016, 8, 15459-15465.	4.0	103
182	Study of Dielectric Behavior and Charge Conduction Mechanism of Poly(Vinyl Alcohol) (PVA)-Copper (Cu) and Gold (Au) Nanocomposites as a Bio-resorbable Material for Organic Electronics. Journal of Electronic Materials, 2016, 45, 5418-5426.	1.0	11
183	Graphene-Enabled Optoelectronics on Paper. ACS Photonics, 2016, 3, 964-971.	3.2	56
184	Poly(ionic liquid) hydrogels exhibiting superior mechanical and electrochemical properties as flexible electrolytes. Journal of Materials Chemistry A, 2016, 4, 1112-1118.	5.2	72
185	Fully-drawn pencil-on-paper sensors for electroanalysis of dopamine. Journal of Electroanalytical Chemistry, 2016, 769, 72-79.	1.9	59
186	Designed Construction of a Graphene and Iron Oxide Freestanding Electrode with Enhanced Flexible Energy-Storage Performance. ACS Applied Materials & Interfaces, 2016, 8, 6972-6981.	4.0	47
187	A singular flexible cathode for room temperature sodium/sulfur battery. Journal of Power Sources, 2016, 307, 31-37.	4.0	102
188	Preparation of cotton cellulose nanofibers/ZnO/CdS nanocomposites and its photocatalytic activity. Journal of Materials Science: Materials in Electronics, 2016, 27, 1479-1484.	1.1	14
189	Extreme Light Management in Mesoporous Wood Cellulose Paper for Optoelectronics. ACS Nano, 2016, 10, 1369-1377.	7.3	161
190	Understanding geometric instabilities in thin films via a multi-layer model. Soft Matter, 2016, 12, 806-816.	1.2	46

#	Article	IF	CITATIONS
191	A graphene meta-interface for enhancing the stretchability of brittle oxide layers. Nanoscale, 2016, 8, 4961-4968.	2.8	16
192	Wet microelectronic technologies on paper substrate for flexible electronic applications. Sensors and Actuators A: Physical, 2016, 240, 118-125.	2.0	10
193	A washable, stretchable, and self-powered human-machine interfacing Triboelectric nanogenerator for wireless communications and soft robotics pressure sensor arrays. Extreme Mechanics Letters, 2017, 13, 25-35.	2.0	78
194	High Performance MgO-barrier Magnetic Tunnel Junctions for Flexible and Wearable Spintronic Applications. Scientific Reports, 2017, 7, 42001.	1.6	70
195	Fe ₂ O ₃ Nanoneedles on Ultrafine Nickel Nanotube Arrays as Efficient Anode for Highâ€Performance Asymmetric Supercapacitors. Advanced Functional Materials, 2017, 27, 1606728.	7.8	284
196	Ultrafast Paper Thermometers Based on a Green Sensing Ink. ACS Sensors, 2017, 2, 449-454.	4.0	37
197	Recent advances in wearable tactile sensors: Materials, sensing mechanisms, and device performance. Materials Science and Engineering Reports, 2017, 115, 1-37.	14.8	557
198	Collapse of liquid-overfilled strain-isolation substrates in wearable electronics. International Journal of Solids and Structures, 2017, 117, 137-142.	1.3	18
199	Design and application of â€J-shaped' stress–strain behavior in stretchable electronics: a review. Lab on A Chip, 2017, 17, 1689-1704.	3.1	140
200	Controlled multiple neutral planes by low elastic modulus adhesive for flexible organic photovoltaics. Nanotechnology, 2017, 28, 194002.	1.3	38
201	Spontaneous Buckling of Multiaxially Flexible and Stretchable Interconnects Using PDMS/Fibrous Composite Substrates. Advanced Materials Interfaces, 2017, 4, 1600946.	1.9	13
202	Dry writing of highly conductive electrodes on papers by using silver nanoparticle–graphene hybrid pencils. Nanoscale, 2017, 9, 555-561.	2.8	19
203	Threadâ€Like CMOS Logic Circuits Enabled by Reelâ€Processed Singleâ€Walled Carbon Nanotube Transistors via Selective Doping. Advanced Materials, 2017, 29, 1701822.	11.1	37
204	Roughâ€Surfaceâ€Enabled Capacitive Pressure Sensors with 3D Touch Capability. Small, 2017, 13, 1700368.	5.2	142
205	The recyclable cotton cellulose nanofibers/ZnO/CuS nanocomposites with enhanced visible light photocatalytic activity. Journal of Materials Science: Materials in Electronics, 2017, 28, 4669-4675.	1.1	12
206	Review of Flexible Temperature Sensing Networks for Wearable Physiological Monitoring. Advanced Healthcare Materials, 2017, 6, 1601371.	3.9	217
207	Paperâ€Based Electrodes for Flexible Energy Storage Devices. Advanced Science, 2017, 4, 1700107.	5.6	361
208	Soft-Matter Printed Circuit Board with UV Laser Micropatterning. ACS Applied Materials & Interfaces, 2017, 9, 22055-22062.	4.0	81

#	Article	IF	CITATIONS
209	Ultra-flexible lithium ion batteries fabricated by electrodeposition and solvothermal synthesis. Electrochimica Acta, 2017, 237, 119-126.	2.6	16
210	In situ thermomechanical testing methods for micro/nano-scale materials. Nanoscale, 2017, 9, 2666-2688.	2.8	39
211	Nature-Inspired Structural Materials for Flexible Electronic Devices. Chemical Reviews, 2017, 117, 12893-12941.	23.0	578
212	Largeâ€Area Allâ€Textile Pressure Sensors for Monitoring Human Motion and Physiological Signals. Advanced Materials, 2017, 29, 1703700.	11.1	558
213	A flexible and highly effective paper based gold electrode for sodium borohydride electrocatalysis. International Journal of Hydrogen Energy, 2017, 42, 22814-22820.	3.8	10
214	Direct fabrication of electrochromic devices with complex patterns on three-dimensional substrates using polymeric stencil films. RSC Advances, 2017, 7, 43283-43288.	1.7	12
215	Rubbery electronics and sensors from intrinsically stretchable elastomeric composites of semiconductors and conductors. Science Advances, 2017, 3, e1701114.	4.7	229
216	Flexible polycaprolactone (PCL) supercapacitor based on reduced graphene oxide (rGO)/single-wall carbon nanotubes (SWNTs) composite electrodes. Journal of Alloys and Compounds, 2017, 727, 721-727.	2.8	16
217	High-gain monolithic 3D CMOS inverter using layered semiconductors. Applied Physics Letters, 2017, 111, .	1.5	8
218	Conformal transistor arrays based on solution-processed organic crystals. Scientific Reports, 2017, 7, 15367.	1.6	14
219	Photolithography-compatible conformal electrodes for high-performance bottom-contact organic single-crystal transistors. Journal of Materials Chemistry C, 2017, 5, 12699-12706.	2.7	21
220	Multiaxial wavy top-emission organic light-emitting diodes on thermally prestrained elastomeric substrates. Organic Electronics, 2017, 48, 314-322.	1.4	14
221	Solution-based polycrystalline silicon transistors produced on a paper substrate. Npj Flexible Electronics, 2017, 1, .	5.1	11
222	Rapid prototyping of paper-based electronics by robotic printing and micromanipulation. , 2017, , .		1
223	The Boom in 3D-Printed Sensor Technology. Sensors, 2017, 17, 1166.	2.1	235
224	Review of Batteryless Wireless Sensors Using Additively Manufactured Microwave Resonators. Sensors, 2017, 17, 2068.	2.1	4
225	Optoelectronics and Bio Devices on Paper Powered by Solar Cells. , 0, , .		9
226	3D printed stretchable capacitive sensors for highly sensitive tactile and electrochemical sensing. Nanotechnology, 2018, 29, 185501.	1.3	57

		CITATION REPORT		
#	Article		IF	Citations
227	Paper in Electronic and Optoelectronic Devices. Advanced Electronic Materials, 2018, 4	4, 1700593.	2.6	70
228	Multifunctional cellulose-paper for light harvesting and smart sensing applications. Jou Materials Chemistry C, 2018, 6, 3143-3181.	rnal of	2.7	147
229	Development of extremely low temperature processed oxide thin film transistors via at steam reforming treatment: Interface, surface, film curing. Journal of Alloys and Compo 744, 23-33.	mospheric ounds, 2018,	2.8	6
230	High-Performance Carbon Nanotube Complementary Electronics and Integrated Senso Ultrathin Plastic Foil. ACS Nano, 2018, 12, 2773-2779.	or Systems on	7.3	90
231	Composite poly(ethylene carbonate) electrolytes with electrospun silica nanofibers. Pc Advanced Technologies, 2018, 29, 820-824.	olymers for	1.6	12
232	Calix[4]pyrrole-decorated carbon nanotubes on paper for sensing acetone vapor. Sens Actuators B: Chemical, 2018, 258, 484-491.	ors and	4.0	22
233	Theoretical and Experimental Studies of Competing Fracture for Flexible Chip-Adhesive Composite Structure. IEEE Transactions on Components, Packaging and Manufacturin 2018, 8, 57-64.	-Substrate g Technology,	1.4	12
234	Stretchable sensors don't feel the strain. Nature Electronics, 2018, 1, 156-157.		13.1	3
235	Materials and Structures toward Soft Electronics. Advanced Materials, 2018, 30, e180	1368.	11.1	445
236	Flexible Strain Sensor Using Additive Manufacturing and Conductive Liquid Metal: Desi and Characterization. , 2018, , .	ign, Fabrication,		1
237	Geometric influence of cylindrical surface curvature on the electrostatics of thin film tr Flexible and Printed Electronics, 2018, 3, 045006.	ansistors.	1.5	4
238	Tunnel Encapsulation Technology for Durability Improvement in Stretchable Electronic Micromachines, 2018, 9, 519.	s Fabrication.	1.4	8
239	Intrinsically recyclable and self-healable conductive supramolecular polymers for custor electronic sensors. Journal of Materials Chemistry C, 2018, 6, 12992-12999.	mizable	2.7	29
240	Stretchable active matrix of oxide thin-film transistors with monolithic liquid metal inte Applied Physics Express, 2018, 11, 126501.	erconnects.	1.1	17
241	Novel MnO2/cobalt composites nanosheets array as efficient anode for asymmetric su Electrochimica Acta, 2018, 292, 39-46.	percapacitor.	2.6	25
242	Direct Fabrication of Stretchable Electronics on a Polymer Substrate with Processâ€Int Programmable Rigidity. Advanced Functional Materials, 2018, 28, 1804604.	egrated	7.8	63
243	Rapid Fabrication of Epidermal Paper-Based Electronic Devices Using Razor Printing. M 2018, 9, 420.	icromachines,	1.4	22
244	TiO2–B nanofibrils reinforced graphene paper for multifunctional flexible electrode. J Power Sources, 2018, 394, 131-139.	ournal of	4.0	14

#	Article	IF	Citations
 245	High- <i>k</i> Gate Dielectrics for Emerging Flexible and Stretchable Electronics. Chemical Reviews, 2018, 118, 5690-5754.	23.0	530
246	Carbon nanotube-based flexible electronics. Journal of Materials Chemistry C, 2018, 6, 7714-7727.	2.7	77
247	High energy flexible supercapacitors formed via bottom-up infilling of gel electrolytes into thick porous electrodes. Nature Communications, 2018, 9, 2578.	5.8	121
248	Wearable Sensors for Upper Limb Monitoring. , 2018, , 113-134.		5
249	Flexible Electronics Based on Micro/Nanostructured Paper. Advanced Materials, 2018, 30, e1801588.	11.1	249
250	An intelligent partitioning approach of the system-on-chip for flexible and stretchable systems. Science China Information Sciences, 2018, 61, 1.	2.7	2
251	Stretchable array of high-performance micro-supercapacitors charged with solar cells for wireless powering of an integrated strain sensor. Nano Energy, 2018, 49, 644-654.	8.2	146
252	CMOS-Compatible Wearable Sensors Fabricated Using Controlled Spalling. IEEE Sensors Journal, 2019, 19, 7868-7874.	2.4	2
253	Flexible and Stretchable Electronic Skin with High Durability and Shock Resistance via Embedded 3D Printing Technology for Human Activity Monitoring and Personal Healthcare. Advanced Materials Technologies, 2019, 4, 1900315.	3.0	64
254	Accessing Difluoromethylated and Trifluoromethylated <i>cis</i> â€Cycloalkanes and Saturated Heterocycles: Preferential Hydrogen Addition to the Substitution Sites for Dearomatization. Angewandte Chemie - International Edition, 2019, 58, 16785-16789.	7.2	44
255	An Improved Design of the Substrate of Stretchable Gallium Arsenide Photovoltaics. Journal of Applied Mechanics, Transactions ASME, 2019, 86, .	1.1	10
256	Leatherâ€Based Strain Sensor with Hierarchical Structure for Motion Monitoring. Advanced Materials Technologies, 2019, 4, 1900442.	3.0	37
257	Low-temperature sintering of silver nanoparticles on paper by surface modification. Nanotechnology, 2019, 30, 505303.	1.3	5
258	Core-Shell Fiber-Based 2D Woven Triboelectric Nanogenerator for Effective Motion Energy Harvesting. Nanoscale Research Letters, 2019, 14, 311.	3.1	19
259	Softening gold for elastronics. Chemical Society Reviews, 2019, 48, 1668-1711.	18.7	138
260	Stimuli-responsive materials: a web themed collection. Materials Chemistry Frontiers, 2019, 3, 10-11.	3.2	21
261	Self-Powered Flexible Blood Oxygen Monitoring System Based on a Triboelectric Nanogenerator. Nanomaterials, 2019, 9, 778.	1.9	17
262	Transient thermomechanical analysis of epidermal electronic devices on human skin. Mechanics of Materials, 2019, 137, 103097.	1.7	3

#	Article	IF	Citations
263	Paper-Based Mechanical Sensors Enabled by Folding and Stacking. ACS Applied Materials & Interfaces, 2019, 11, 26339-26345.	4.0	37
264	Contact patterning by laser printing for flexible electronics on paper. Npj Flexible Electronics, 2019, 3,	5.1	19
265	Computational Mechanics for Flexible and Wearable Electronics. , 2019, , .		0
266	Integrating Flexible Filament Circuits for Eâ€Textile Applications. Advanced Materials Technologies, 2019, 4, 1900176.	3.0	74
267	Advanced Electronic Packaging. , 2019, , 1-27.		1
268	Influence of Self-Heating Effect on Interface Trap Generation in Highly Flexible Single-Crystalline Si Nanomembrane Transistors. Journal of Nanoscience and Nanotechnology, 2019, 19, 6481-6486.	0.9	1
269	Assembly and applications of 3D conformal electronics on curvilinear surfaces. Materials Horizons, 2019, 6, 642-683.	6.4	141
270	Nanomeshed Si nanomembranes. Npj Flexible Electronics, 2019, 3, .	5.1	12
271	Flexible and Stretchable Photonic Sensors Based on Modulation of Light Transmission. Advanced Optical Materials, 2019, 7, 1900329.	3.6	49
272	Flexible Hydrogel Electrolyte with Superior Mechanical Properties Based on Poly(vinyl alcohol) and Bacterial Cellulose for the Solid-State Zinc–Air Batteries. ACS Applied Materials & Interfaces, 2019, 11, 15537-15542.	4.0	113
273	Soft Elastomers with Programmable Stiffness as Strain-Isolating Substrates for Stretchable Electronics. ACS Applied Materials & amp; Interfaces, 2019, 11, 14340-14346.	4.0	72
274	Wearable Leather-Based Electronics for Respiration Monitoring. ACS Applied Bio Materials, 2019, 2, 1427-1431.	2.3	39
275	Transfer Printing and its Applications in Flexible Electronic Devices. Nanomaterials, 2019, 9, 283.	1.9	78
276	Multilayered Ag NP–PEDOT–Paper Composite Device for Human–Machine Interfacing. ACS Applied Materials & Interfaces, 2019, 11, 10380-10388.	4.0	51
277	Double-sided printed circuit textiles based on stencil-type layer-by-layer coating with PEDOT:PSS:Ag nanowires and chitosan for electrothermochromic displays. Journal of Materials Chemistry C, 2019, 7, 14525-14534.	2.7	19
278	Facile Wearable Vapor/Liquid Amphibious Methanol Sensor. ACS Sensors, 2019, 4, 152-160.	4.0	41
279	Invited Article: Emerging soft bioelectronics for cardiac health diagnosis and treatment. APL Materials, 2019, 7, 031301.	2.2	37
280	All-Inorganic Flexible Embedded Thin-Film Capacitors for Dielectric Energy Storage with High Performance. ACS Applied Materials & Interfaces, 2019, 11, 5247-5255.	4.0	81

#	Article	IF	CITATIONS
281	Biaxially Stretchable Ultrathin Si Enabled by Serpentine Structures on Prestrained Elastomers. Advanced Materials Technologies, 2019, 4, 1800489.	3.0	27
282	Nylon Fabric Enabled Tough and Flaw Insensitive Stretchable Electronics. Advanced Materials Technologies, 2019, 4, 1800466.	3.0	4
283	Repurposed Leather with Sensing Capabilities for Multifunctional Electronic Skin. Advanced Science, 2019, 6, 1801283.	5.6	119
284	Manufacturing bioinspired flexible materials using ultrasound directed self-assembly and 3D printing. Materials and Design, 2020, 185, 108243.	3.3	29
285	Recent Advances in 1D Stretchable Electrodes and Devices for Textile and Wearable Electronics: Materials, Fabrications, and Applications. Advanced Materials, 2020, 32, e1902532.	11.1	219
286	Flexible Hybrid Sensors for Health Monitoring: Materials and Mechanisms to Render Wearability. Advanced Materials, 2020, 32, e1902133.	11.1	232
287	Spatially modulated stiffness on hydrogels for soft and stretchable integrated electronics. Materials Horizons, 2020, 7, 203-213.	6.4	70
288	Flexible low-voltage paper transistors harnessing ion gel/cellulose fiber composites. Journal of Materials Research, 2020, 35, 940-948.	1.2	10
289	Flexible and Adaptable Fuel Cell Pack with High Energy Density Realized by a Bifunctional Catalyst. ACS Applied Materials & Interfaces, 2020, 12, 4473-4481.	4.0	19
290	Transfer Printing of Electronic Functions on Arbitrary Complex Surfaces. ACS Nano, 2020, 14, 12-20.	7.3	47
291	Study of inkjet-printed serpentine structure on flexible substrates deformed over sculptured surfaces. Flexible and Printed Electronics, 2020, 5, 015010.	1.5	9
292	A review on stretchable magnetic field sensorics. Journal Physics D: Applied Physics, 2020, 53, 083002.	1.3	37
293	Buckling of a stiff thin film on a bi-layer compliant substrate of finite thickness. International Journal of Solids and Structures, 2020, 188-189, 133-140.	1.3	26
294	Mulberry paper-based graphene strain sensor for wearable electronics with high mechanical strength. Sensors and Actuators A: Physical, 2020, 301, 111697.	2.0	48
295	Stretchable, ultrasensitive, and low-temperature NO2 sensors based on MoS2@rGO nanocomposites. Materials Today Physics, 2020, 15, 100265.	2.9	40
296	Flexible Integrated Circuits Based on Carbon Nanotubes. Accounts of Materials Research, 2020, 1, 88-99.	5.9	18
297	Flexible energy generation and storage devices: focus on key role of heterocyclic solid-state organic ionic conductors. Chemical Society Reviews, 2020, 49, 7819-7844.	18.7	27
298	3D Polyaniline Nanofibers Anchored on Carbon Paper for High-Performance and Light-Weight Supercapacitors. Polymers, 2020, 12, 2705.	2.0	20

#	Article	IF	CITATIONS
299	Effects of substrates on the performance of optoelectronic devices: A review. Cogent Engineering, 2020, 7, 1829274.	1.1	9
300	Evaluating deformation modes of sandwich serpentine structures for high stretchability. Thin-Walled Structures, 2020, 157, 107087.	2.7	6
301	Hybrid Polymer/Metal Oxide Thin Films for High Performance, Flexible Transistors. Micromachines, 2020, 11, 264.	1.4	18
302	An ultra-thin, flexible, low-cost and scalable gas diffusion layer composed of carbon nanotubes for high-performance fuel cells. Journal of Materials Chemistry A, 2020, 8, 5986-5994.	5.2	43
303	Microneedle structuring of Si(111) by irradiation with picosecond optical vortex pulses. Applied Physics Express, 2020, 13, 062006.	1.1	6
304	Soft implantable drug delivery device integrated wirelessly with wearable devices to treat fatal seizures. Science Advances, 2021, 7, .	4.7	107
305	Thermal Release Transfer of Organic Semiconducting Film for High-Performance Flexible Organic Electronics. ACS Applied Electronic Materials, 2021, 3, 988-998.	2.0	3
306	Wireless skin sensors for physiological monitoring of infants in low-income and middle-income countries. The Lancet Digital Health, 2021, 3, e266-e273.	5.9	31
307	Cellulose: A Contribution for the Zero eâ \in Waste Challenge. Advanced Materials Technologies, 2021, 6, .	3.0	56
308	A size-dependent model for predicting the mechanical behaviors of adhesively bonded layered structures based on strain gradient elasticity. International Journal of Mechanical Sciences, 2021, 198, 106348.	3.6	7
309	Stick-and-play system based on interfacial adhesion control enhanced by micro/nanostructures. Nano Research, 2021, 14, 3143-3158.	5.8	10
310	A recyclable triboelectric nanogenerator integrated into insole for sensing human motion. Materials Technology, 2022, 37, 1486-1493.	1.5	13
311	Stable epidermal electronic device with strain isolation induced by in situ Joule heating. Microsystems and Nanoengineering, 2021, 7, 56.	3.4	6
312	Present status of electric-double-layer thin-film transistors and their applications. Flexible and Printed Electronics, 2021, 6, 043001.	1.5	9
313	A New Pixel Circuit Compensating for Strain-Induced Luminance Reduction in Stretchable Active-Matrix Organic Light Emitting Diode Displays. IEEE Electron Device Letters, 2021, 42, 1350-1353.	2.2	6
314	Recent advances in 3D printing technologies for wearable (bio)sensors. Additive Manufacturing, 2021, 46, 102088.	1.7	66
315	Direct Fabrication of Stretchable Electronics on a Programmable Stiffness Substrate With 100% Strain Isolation. IEEE Electron Device Letters, 2021, 42, 1484-1487.	2.2	6
316	Soft mechanical and biochemical sensors. , 2021, , 107-132.		0

#	Article	IF	CITATIONS
317	Effect of packing density on maximum stretch ratio of stretchable wavy circuit. Mechanics of Advanced Materials and Structures, 0, , 1-7.	1.5	1
318	Skinâ€Like Electronics for Perception and Interaction: Materials, Structural Designs, and Applications. Advanced Intelligent Systems, 2021, 3, 2000108.	3.3	10
319	A unified model for determining fracture strain of metal films on flexible substrates. Journal of Materials Science and Technology, 2020, 54, 87-94.	5.6	3
320	3D-conductive pathway written on leather for highly sensitive and durable electronic whisker. Journal of Materials Chemistry C, 2020, 8, 9748-9754.	2.7	15
321	SOFT ROBOTICS WITH COMPLIANCE AND ADAPTATION FOR BIOMEDICAL APPLICATIONS AND FORTHCOMING CHALLENGES. International Journal of Robotics and Automation, 2018, 33, .	0.1	34
322	ADVANCED FUNCTIONAL MATERIALS BASED ON CELLULOSE. Acta Polymerica Sinica, 2010, 00, 1376-1398.	0.0	23
323	Embedded Flexible Hybrid Electronics for the Internet of Things. International Symposium on Microelectronics, 2015, 2015, 000006-000013.	0.3	3
324	Review on stretchable and flexible inorganic electronics. Wuli Xuebao/Acta Physica Sinica, 2014, 63, 014201.	0.2	11
325	A sub-150-nanometre-thick and ultraconformable solution-processed all-organic transistor. Nature Communications, 2021, 12, 5842.	5.8	34
326	Fabrication of Nanowires and Their Applications. , 2014, , 89-128.		0
327	Recent Progress in Flexible/Wearable Electronics. Journal of Welding and Joining, 2014, 32, 34-42.	0.6	3
328	Fully rubbery stretchable electronics, sensors, and smart skins. , 2019, , .		0
329	Wearable Antenna Materials. Advances in Mechatronics and Mechanical Engineering, 2020, , 139-162.	1.0	0
330	Biodegradable all-polymer field-effect transistors printed on Mater-Bi. Journal of Information Display, 2021, 22, 247-256.	2.1	8
331	A novel thermal-mechanical model and the characteristics of interfacial stress in the laminated structure for flexible electronics. Journal Physics D: Applied Physics, 2022, 55, 074004.	1.3	3
332	Hybridâ€type stretchable interconnects with doubleâ€layered liquid metalâ€onâ€polyimide serpentine structure. ETRI Journal, 2022, 44, 147-154.	1.2	5
334	A Flexible Pressure Sensor Based on Composite Piezoresistive Layer. IEEE Sensors Journal, 2022, 22, 405-411.	2.4	8
335	A modulus-engineered multi-layer polymer film with mechanical robustness for the application to highly deformable substrate platform in stretchable electronics. Chemical Engineering Journal, 2022, 431, 134074.	6.6	8

	CITATION	CITATION REPORT	
#	Article	IF	CITATIONS
336	A Spring Structure Triboelectric Nanogenerator for Human Gait Monitoring System. Nano, 2022, 17, .	0.5	3
337	A New Class of Electronic Devices Based on Flexible Porous Substrates. Advanced Science, 2022, 9, e2105084.	5.6	40
338	Paper-based substrates for sustainable (opto)electronic devices. , 2022, , 339-390.		1
339	Wrinkling of a compressible trilayer domain under large plane deformations. International Journal of Solids and Structures, 2022, 241, 111465.	1.3	3
340	Soft–Hard Segment Combined Carbonized Polymer Dots for Flexible Optical Film with Superhigh Surface Hardness. ACS Applied Materials & Interfaces, 2022, 14, 14504-14512.	4.0	9
341	Materials with Tunable Optical Properties for Wearable Epidermal Sensing in Health Monitoring. Advanced Materials, 2022, 34, e2109055.	11.1	74
342	A Triboelectric Nanogenerator Array for a Self-Powered Boxing Sensor System. Journal of Electronic Materials, 2022, 51, 3308-3316.	1.0	2
343	Highly stretchable organic electrochemical transistors with strain-resistant performance. Nature Materials, 2022, 21, 564-571.	13.3	86
344	Self-driven directional dehydration enabled eco-friendly manufacture of chrome-free leather. Journal of Leather Science and Engineering, 2022, 4, .	2.7	6
345	Understanding the role of interfacial mechanics on the wrinkling behavior of compressible bilayer structures under large plane deformations. Mathematics and Mechanics of Solids, 2023, 28, 748-772.	1.5	2
346	Theoretical predictions and evolutions of wrinkles in the film-intermediate layer-substrate structure under compression. International Journal of Solids and Structures, 2022, 250, 111699.	1.3	4
347	Biomaterials and Electroactive Bacteria for Biodegradable Electronics. Frontiers in Microbiology, 0, 13, .	1.5	3
348	Performance of Ag/CdS/Au Schottky diode fabricated on free-standing cellulose paper. Materials Science in Semiconductor Processing, 2022, 149, 106862.	1.9	3
349	One-step to prepare high-performance gas diffusion layer (GDL) with three different functional layers for proton exchange membrane fuel cells (PEMFCs). International Journal of Hydrogen Energy, 2022, 47, 25769-25779.	3.8	12
350	Pâ€7: <i>Student Poster:</i> AMOLED Pixel Circuit for Strain Compensation in Stretchable Display. Digest of Technical Papers SID International Symposium, 2022, 53, 1063-1065.	0.1	0
351	Bending of a nanoplate with strain-dependent surface stress containing two collinear through cracks. Meccanica, 2022, 57, 1937-1954.	1.2	3
352	Design Strategies for Strainâ€Insensitive Wearable Healthcare Sensors and Perspective Based on the Seebeck Coefficient. Advanced Electronic Materials, 2023, 9, .	2.6	2
353	Lowâ€Temperature Plasma Sintering of Inkjetâ€Printed Metal Salt Decomposition Inks on Flexible Substrates. Advanced Engineering Materials, 2023, 25, .	1.6	2

#	Article	IF	CITATIONS
354	Recent progress in flexible Znâ€ion hybrid supercapacitors: Fundamentals, fabrication designs, and applications. , 2023, 5, .		26
355	Advances in Materials, Sensors, and Integrated Systems for Monitoring Eye Movements. Biosensors, 2022, 12, 1039.	2.3	4
356	Elasto-Plastic Design of Ultrathin Interlayer for Enhancing Strain Tolerance of Flexible Electronics. ACS Nano, 2023, 17, 3921-3930.	7.3	12
357	Gel Polymer-Based Composite Solid-State Electrolyte for Long-Cycle-Life Rechargeable Zinc–Air Batteries. ACS Sustainable Chemistry and Engineering, 2023, 11, 3732-3739.	3.2	15
358	Technology Roadmap for Flexible Sensors. ACS Nano, 2023, 17, 5211-5295.	7.3	238
359	Recent Advances in Biodegradable Green Electronic Materials and Sensor Applications. Advanced Materials, 2023, 35, .	11.1	11
364	An Introductory View About Supercapacitors. Materials Horizons, 2024, , 25-63.	0.3	0