Automatic Segmentation and Classification of Multiple

IEEE Transactions on Biomedical Engineering 56, 2461-2469 DOI: 10.1109/tbme.2008.926671

Citation Report

#	Article	IF	CITATIONS
1	Optimizing the Use of Radiologist Seed Points for Improved Multiple Sclerosis Lesion Segmentation. IEEE Transactions on Biomedical Engineering, 2010, 57, 2689-2698.	2.5	36
3	Statistical Texture Analysis of MRI Images to Classify Patients Affected by Multiple Sclerosis. IFMBE Proceedings, 2010, , 272-275.	0.2	8
4	Unsupervised segmentation of MR images for brain dock examinations. , 2010, , .		0
5	Voxel classification of periprosthetic tissues in clinical computed tomography of loosened hip prostheses. , 2010, , .		1
6	Filtering false detections of small multiple sclerosis lesions using fuzzy regional analysis. , 2010, , .		0
7	An evolutionary-fuzzy approach for supporting diagnosis and monitoring of Multiple Sclerosis. , 2010, , .		4
8	Interpreting fuzzy set operations and Multi Level Agreement in a Computing with Words context. , 2011, , .		1
9	Trimmed-Likelihood Estimation for Focal Lesions and Tissue Segmentation in Multisequence MRI for Multiple Sclerosis. IEEE Transactions on Medical Imaging, 2011, 30, 1455-1467.	5.4	62
10	An evolutionary-fuzzy DSS for assessing health status in multiple sclerosis disease. International Journal of Medical Informatics, 2011, 80, e245-e254.	1.6	34
11	A review of atlas-based segmentation for magnetic resonance brain images. Computer Methods and Programs in Biomedicine, 2011, 104, e158-e177.	2.6	336
12	An ontology-based fuzzy decision support system for multiple sclerosis. Engineering Applications of Artificial Intelligence, 2011, 24, 1340-1354.	4.3	36
13	Fuzzy approach toward reducing false positives in the detection of small multiple sclerosis lesions in magnetic resonance images. , 2011, 2011, 5694-7.		3
14	Classification of Magnetic Resonance brain images by using weighted radial basis function kernels. , 2011, , .		1
15	Detection of hyperintense regions on MR brain images using a Mamdani type Fuzzy Rule-Based System: Application to the detection of small multiple sclerosis lesions. , 2011, , .		2
16	An automated tool for detection of FLAIR-hyperintense white-matter lesions in Multiple Sclerosis. NeuroImage, 2012, 59, 3774-3783.	2.1	972
18	Segmentation of multiple sclerosis lesions in brain MRI: A review of automated approaches. Information Sciences, 2012, 186, 164-185.	4.0	182
19	Automated detection of multiple sclerosis candidate regions in MR images: false-positive removal with use of an ANN-controlled level-set method. Radiological Physics and Technology, 2012, 5, 105-113.	1.0	11
20	Semi-automatic Segmentation of Brain Tumors Using Population and Individual Information. Journal of Digital Imaging, 2013, 26, 786-796.	1.6	21

#	Article	IF	CITATIONS
21	FLAIR lesion segmentation: Application in patients with brain tumors and acute ischemic stroke. European Journal of Radiology, 2013, 82, 1512-1518.	1.2	42
22	A comprehensive approach to the segmentation of multichannel three-dimensional MR brain images in multiple sclerosis. NeuroImage: Clinical, 2013, 2, 184-196.	1.4	35
23	Review of automatic segmentation methods of multiple sclerosis white matter lesions on conventional magnetic resonance imaging. Medical Image Analysis, 2013, 17, 1-18.	7.0	280
24	Accurate white matter lesion segmentation by k nearest neighbor classification with tissue type priors (kNN-TTPs). NeuroImage: Clinical, 2013, 3, 462-469.	1.4	177
25	Compatible abnormality detection technique for CT and MRI brain images. Imaging Science Journal, 2013, 61, 568-578.	0.2	0
26	Spatially Adaptive Random Forests. , 2013, , .		34
27	Increasing the Contrast of the Brain MR FLAIR Images Using Fuzzy Membership Functions and Structural Similarity Indices in Order to Segment MS Lesions. PLoS ONE, 2013, 8, e65469.	1.1	7
28	Automated Brain Tissue Classification by Multisignal Wavelet Decomposition and Independent Component Analysis. ISRN Biomedical Imaging, 2013, 2013, 1-10.	0.9	5
29	SELF-SUPERVISED MRI TISSUE SEGMENTATION BY DISCRIMINATIVE CLUSTERING. International Journal of Neural Systems, 2014, 24, 1450004.	3.2	28
30	Application of variable threshold intensity to segmentation for white matter hyperintensities in fluid attenuated inversion recovery magnetic resonance images. Neuroradiology, 2014, 56, 265-281.	1.1	35
31	Automatic multiple sclerosis lesion detection in brain MRI by FLAIR thresholding. Computer Methods and Programs in Biomedicine, 2014, 115, 147-161.	2.6	39
32	Materials-based 3D segmentation of unknown objects from dual-energy computed tomography imagery in baggage security screening. Pattern Recognition, 2015, 48, 1961-1978.	5.1	34
33	Automatic segmentation of brain MRI through stationary wavelet transform and random forests. Pattern Analysis and Applications, 2015, 18, 829-843.	3.1	11
34	FCM Clustering Algorithms for Segmentation of Brain MR Images. Advances in Fuzzy Systems, 2016, 2016, 1-14.	0.6	42
35	Volumetric and fiber-tracing MRI methods for gray and white matter. Handbook of Clinical Neurology / Edited By P J Vinken and G W Bruyn, 2016, 135, 39-60.	1.0	13
36	An automated MRI segmentation framework for brains with tumors and multiple sclerosis lesions. , $2016,$, .		3
37	Multimodal Correlative Preclinical Whole Body Imaging and Segmentation. Scientific Reports, 2016, 6, 27940.	1.6	12
38	Combining Unsupervised and Supervised Methods for Lesion Segmentation. Lecture Notes in Computer Science, 2016, , 45-56.	1.0	8

CITATION REPORT

CITATION REPORT

#	Article	IF	CITATIONS
39	Stratified mixture modeling for segmentation of white-matter lesions in brain MR images. Neurolmage, 2016, 124, 1031-1043.	2.1	17
40	MRI images classification based on software agent. , 2017, , .		3
41	Performance comparison of 10 different classification techniques in segmenting white matter hyperintensities in aging. Neurolmage, 2017, 157, 233-249.	2.1	79
42	Scale-adaptive supervoxel-based random forests for liver tumor segmentation in dynamic contrast-enhanced CT scans. International Journal of Computer Assisted Radiology and Surgery, 2017, 12, 223-233.	1.7	46
43	An energy minimization method for MS lesion segmentation from T1-w and FLAIR images. Magnetic Resonance Imaging, 2017, 39, 1-6.	1.0	14
44	Feasibility study of machine vision for diagnosis of multiple sclerosis. , 2017, , .		0
45	Classification of multiple sclerosis and non-specific white matter lesions using spherical harmonics descriptors. , 2018, , .		0
46	A level set method for multiple sclerosis lesion segmentation. Magnetic Resonance Imaging, 2018, 49, 94-100.	1.0	19
47	Brain Tumor Type Detection Using Texture Features in MR Images. , 2018, , .		2
48	Voxel-Wise Logistic Regression and Leave-One-Source-Out Cross Validation for white matter hyperintensity segmentation. Magnetic Resonance Imaging, 2018, 54, 119-136.	1.0	6
49	Brain tissue segmentation based on MP2RAGE multi-contrast images in 7 T MRI. PLoS ONE, 2019, 14, e0210803.	1.1	23
50	Classifying intracranial stenosis disease severity from functional MRI data using machine learning. Journal of Cerebral Blood Flow and Metabolism, 2020, 40, 705-719.	2.4	21
51	Review of advanced computational approaches on multiple sclerosis segmentation and classification. IET Signal Processing, 2020, 14, 333-341.	0.9	39
52	Automatic brain lesion segmentation on standard magnetic resonance images: a scoping review. BMJ Open, 2021, 11, e042660.	0.8	14
53	A Robust Energy Minimization Algorithm for MS-Lesion Segmentation. Lecture Notes in Computer Science, 2015, 9474, 521-530.	1.0	1
55	Automated Segmentation of Abnormal Tissues in Medical Images. Journal of Biomedical Physics and Engineering, 2021, 11, 415-424.	0.5	4
56	Detection of Multiple Sclerosis using Deep Learning. , 2021, , .		6
57	An Advanced DSS for Classification of Multiple-Sclerosis Lesions in MR Images. Lecture Notes in Electrical Engineering, 2013, , 391-402.	0.3	1

#	Article	IF	CITATIONS
58	A Real-Time Analysis of Traumatic Brain Injury from T2 Weighted Magnetic Resonance Images Using a Symmetry-Based Algorithm. Computational Biology, 2015, , 99-117.	0.1	0
59	Semi-Automatic Segmentation of Multiple Sclerosis Lesion in 4D Modality. International Journal of Signal Processing Systems, 2017, 5, 28-33.	0.5	0
60	Semisupervised white matter hyperintensities segmentation on MRI. Human Brain Mapping, 2023, 44, 1344-1358.	1.9	2
61	Lesions Detection of Multiple Sclerosis in 3D Brian MR Images by Using Artificial Immune Systems and Support Vector Machines. , 2022, , 671-685.		0
62	Multichannel EEG Pattern Acknowledgment Feature Assortment Using T-Test Ranking and Principal Component Analysis. , 2023, , .		1