A Strategy for Identifying Locomotion Modes Using Sur

IEEE Transactions on Biomedical Engineering 56, 65-73 DOI: 10.1109/tbme.2008.2003293

Citation Report

#	Article	IF	CITATIONS
1	Toward the development of a neural interface for lower limb prosthesis control. , 2009, 2009, 2111-4.		13
2	Adaptive control and signal processing literature survey (No. 11). International Journal of Adaptive Control and Signal Processing, 2009, 23, 541-546.	4.1	0
3	Spatial Filtering Improves EMG Classification Accuracy Following Targeted Muscle Reinnervation. Annals of Biomedical Engineering, 2009, 37, 1849-1857.	2.5	48
4	Promise of embedded system with GPU in artificial leg control: Enabling time-frequency feature extraction from electromyography. , 2009, 2009, 6926-9.		11
5	Preliminary Evaluation of Myoelectric Control of an Active Transfemoral Prosthesis During Stair Ascent. , 2010, , .		6
6	Multiclass Real-Time Intent Recognition of a Powered Lower Limb Prosthesis. IEEE Transactions on Biomedical Engineering, 2010, 57, 542-551.	4.2	354
7	Quantifying Pattern Recognition—Based Myoelectric Control of Multifunctional Transradial Prostheses. IEEE Transactions on Neural Systems and Rehabilitation Engineering, 2010, 18, 185-192.	4.9	366
8	Study of stability of time-domain features for electromyographic pattern recognition. Journal of NeuroEngineering and Rehabilitation, 2010, 7, 21.	4.6	413
9	Design of a robust EMG sensing interface for pattern classification. Journal of Neural Engineering, 2010, 7, 056005.	3.5	71
10	The influence of walking speed on muscle activity of thigh and application in prostheses control. , 2010, , .		0
11	Myoelectric control of a powered knee prosthesis for volitional movement during non-weight-bearing activities. , 2010, 2010, 3515-8.		7
12	Design and implementation of a special purpose embedded system for neural machine interface. , 2010, , \cdot		4
13	Locomotion classification using EMG signal. , 2010, , .		6
14	Active Knee Prosthesis Control With Electromyography. , 2010, , .		8
15	A study on control mechanism of above knee robotic prosthesis based on CPG model. , 2010, , .		10
16	SVM classification of locomotion modes using surface electromyography for applications in rehabilitation robotics. , 2010, , .		22
17	Design and implementation of an embedded system for neural-controlled artificial legs. , 2010, , .		3
18	A neuromusculoskeletal model of the human lower limb: Towards EMG-driven actuation of multiple joints in powered orthoses. , 2011, 2011, 5975441.		25

TITATION REDORT

<u> </u>		D	_
(ΙΤΔΤ	ION	Repor	Т
CITAL			

#	Article	IF	CITATIONS
19	Continuous Locomotion-Mode Identification for Prosthetic Legs Based on Neuromuscular–Mechanical Fusion. IEEE Transactions on Biomedical Engineering, 2011, 58, 2867-2875.	4.2	425
20	A configuration dependent muscle model for the myoelectric control of a transfemoral prosthesis. , 2011, 2011, 5975480.		12
21	A Novel CPS System for Evaluating a Neural-Machine Interface for Artificial Legs. , 2011, , .		19
22	SVM-based classification of EMG signals for enhanced interfaces in lower extremities exoskeletons. Gait and Posture, 2011, 33, S30-S31.	1.4	3
23	Myoelectric Torque Control of an Active Transfemoral Prosthesis During Stair Ascent. , 2011, , .		3
24	Volitional Control of a Prosthetic Knee Using Surface Electromyography. IEEE Transactions on Biomedical Engineering, 2011, 58, 144-151.	4.2	164
25	ANFIS based knee angle prediction: An approach to design speed adaptive contra lateral controlled AK prosthesis. Applied Soft Computing Journal, 2011, 11, 4757-4765.	7.2	30
26	Electromyography-based control of active above-knee prostheses. Control Engineering Practice, 2011, 19, 875-882.	5.5	38
27	Preliminary design of a terrain recognition system. , 2011, 2011, 5452-5.		41
28	Sensor-fault tolerant control of a powered lower limb prosthesis by mixing mode-specific adaptive Kalman filters. , 2011, 2011, 3696-9.		10
29	Real-time implementation of an intent recognition system for artificial legs. , 2011, 2011, 2997-3000.		17
30	A Prototype for Smart Prosthetic Legs-Analysis and Mechanical Design. Advanced Materials Research, 0, 403-408, 1999-2006.	0.3	15
31	A special purpose embedded system for neural machine interface for artificial legs. , 2011, 2011, 5207-10.		3
32	A method to determine the optimal features for control of a powered lower-limb prostheses. , 2011, 2011, 6041-6.		19
33	Preliminary Evaluation of a Knee-Ankle-Foot Orthosis for the Emulation of Transfemoral Prosthesis Socket Loads. , 2011, , .		1
34	Trust sensor interface for improving reliability of EMG-based user intent recognition. , 2011, 2011, 7516-20.		6
35	Improving the performance of a neural-machine interface for artificial legs using prior knowledge of walking environment. , 2011, 2011, 4255-8.		9
36	Implementing an FPGA system for real-time intent recognition for prosthetic legs. , 2012, , .		9

#	Article	IF	CITATIONS
37	A biomechanical model for encoding joint dynamics: applications to transfemoral prosthesis control. Journal of Applied Physiology, 2012, 112, 1600-1611.	2.5	6
38	Preliminary study of the effect of user intent recognition errors on volitional control of powered lower limb prostheses. , 2012, 2012, 2768-71.		17
39	Promise of a low power mobile CPU based embedded system in artificial leg control. , 2012, 2012, 5250-3.		8
40	Performance of pattern recognition myoelectric control using a generic electrode grid with Targeted Muscle Reinnervation patients. , 2012, 2012, 4319-23.		4
41	A wearable capacitive sensing system with phase-dependent classifier for locomotion mode recognition. , 2012, , .		4
42	An automatic and user-driven training method for locomotion mode recognition for artificial leg control. , 2012, 2012, 6116-9.		5
43	The Design and Initial Experimental Validation of an Active Myoelectric Transfemoral Prosthesis. Journal of Medical Devices, Transactions of the ASME, 2012, 6, .	0.7	55
44	Targeted Reinnervation in the Transfemoral Amputee. Plastic and Reconstructive Surgery, 2012, 129, 187-194.	1.4	66
45	Design and Development of EMG Controlled Prosthetics Limb. Procedia Engineering, 2012, 38, 3547-3551.	1.2	44
46	Toward Design of an Environment-Aware Adaptive Locomotion-Mode-Recognition System. IEEE Transactions on Biomedical Engineering, 2012, 59, 2716-2725.	4.2	53
47	Intelligent bionic leg motion estimation based on interjoint coordination using PCA and RBF neural networks. , 2012, , .		1
48	Co-contraction patterns of trans-tibial amputee ankle and knee musculature during gait. Journal of NeuroEngineering and Rehabilitation, 2012, 9, 29.	4.6	35
49	On Design and Implementation of Neural-Machine Interface for Artificial Legs. IEEE Transactions on Industrial Informatics, 2012, 8, 418-429.	11.3	54
51	Man to Machine, Applications in Electromyography. , 0, , .		6
52	Non-weight-bearing neural control of a powered transfemoral prosthesis. Journal of NeuroEngineering and Rehabilitation, 2013, 10, 62.	4.6	60
53	BioPatRec: A modular research platform for the control of artificial limbs based on pattern recognition algorithms. Source Code for Biology and Medicine, 2013, 8, 11.	1.7	150
54	Intention detection of gait initiation using EMG and kinematic data. Gait and Posture, 2013, 37, 223-228.	1.4	47
55	Real-time implementation of a self-recovery EMG pattern recognition interface for artificial arms. , 2013, 2013, 5926-9.		11

# 56	ARTICLE Comparison of muscle activity patterns of transfemoral amputees and control subjects during walking. Journal of NeuroEngineering and Rehabilitation, 2013, 10, 87.	IF 4.6	Citations 65
57	Stair Ascent With a Powered Transfemoral Prosthesis Under Direct Myoelectric Control. IEEE/ASME Transactions on Mechatronics, 2013, 18, 1191-1200.	5.8	98
58	An Adaptive Algorithm for the Determination of the Onset and Offset of Muscle Contraction by EMG Signal Processing. IEEE Transactions on Neural Systems and Rehabilitation Engineering, 2013, 21, 65-73.	4.9	67
59	Robotic Leg Control with EMG Decoding in an Amputee with Nerve Transfers. New England Journal of Medicine, 2013, 369, 1237-1242.	27.0	211
60	Non-contact capacitance sensing for continuous locomotion mode recognition: Design specifications and experiments with an amputee. , 2013, 2013, 6650410.		8
61	EMG control of a bionic knee prosthesis: Exploiting muscle co-contractions for improved locomotor function. , 2013, 2013, 6650389.		41
62	Source Selection for Real-Time User Intent Recognition Toward Volitional Control of Artificial Legs. IEEE Journal of Biomedical and Health Informatics, 2013, 17, 907-914.	6.3	82
63	An intent recognition strategy for transfemoral amputee ambulation across different locomotion modes. , 2013, 2013, 1587-90.		35
64	Locomotion Mode Classification Using a Wearable Capacitive Sensing System. IEEE Transactions on Neural Systems and Rehabilitation Engineering, 2013, 21, 744-755.	4.9	74
65	Towards policy and guidelines for the selection of computational engines. , 2013, , .		1
66	State detection from electromyographic signals towards the control of prosthetic limbs. , 2013, , .		4
67	Compact human-machine interface using surface electromyography. , 2013, , .		3
68	Terrain recognition improves the performance of neural-machine interface for locomotion mode recognition. , 2013, , .		11
69	Electromyography-Based Locomotion Pattern Recognition and Personal Positioning Toward Improved Context-Awareness Applications. IEEE Transactions on Systems, Man, and Cybernetics: Systems, 2013, 43, 1216-1227.	9.3	26
70	Myoelectric neural interface enables accurate control of a virtual multiple degree-of-freedom foot-ankle prosthesis. , 2013, 2013, 6650499.		17
71	Bilateral electromyogram response latency following platform perturbation in unilateral transtibial prosthesis users: Influence of weight distribution and limb position. Journal of Rehabilitation Research and Development, 2013, 50, 531.	1.6	6
72	Muscle activity during stance phase of walking: Comparison of males with transfemoral amputation with osseointegrated fixations to nondisabled male volunteers. Journal of Rehabilitation Research and Development, 2013, 50, 499.	1.6	16
73	Lower Limb Wearable Capacitive Sensing and Its Applications to Recognizing Human Gaits. Sensors, 2013, 13, 13334-13355.	3.8	24

#	Article	IF	CITATIONS
74	Myoelectric Walking Mode Classification for Transtibial Amputees. IEEE Transactions on Biomedical Engineering, 2013, 60, 2745-2750.	4.2	76
75	Leg amputees motion pattern recognition based on principal component analysis and BP network. , 2013, , .		3
76	Evaluation of a coordinated control system for a pair of powered transfemoral prostheses. , 2013, , .		13
77	A fuzzy logic based terrain identification approach to prosthesis control using multi-sensor fusion. , 2013, , .		9
78	Design and implementation of a low power mobile CPU based embedded system for artificial leg control. , 2013, 2013, 5769-72.		6
79	The effect of involuntary motor activity on myoelectric pattern recognition: a case study with chronic stroke patients. Journal of Neural Engineering, 2013, 10, 046015.	3.5	17
80	Improving the performance of a neural-machine interface for prosthetic legs using adaptive pattern classifiers. , 2013, 2013, 1571-4.		10
81	Real-Time Locomotion Mode Recognition Employing Correlation Feature Analysis Using EMG Pattern. ETRI Journal, 2014, 36, 99-105.	2.0	31
82	Analysis of using EMG and mechanical sensors to enhance intent recognition in powered lower limb prostheses. Journal of Neural Engineering, 2014, 11, 056021.	3.5	156
83	A Noncontact Capacitive Sensing System for Recognizing Locomotion Modes of Transtibial Amputees. IEEE Transactions on Biomedical Engineering, 2014, 61, 2911-2920.	4.2	72
84	Novel wearable EMG sensors based on nanowire technology. , 2014, 2014, 1674-7.		4
85	A Locomotion Intent Prediction System Based on Multi-Sensor Fusion. Sensors, 2014, 14, 12349-12369.	3.8	52
86	Recovery strategy identification throughout swing phase using kinematic data from the tripped leg. , 2014, 2014, 6199-202.		7
87	Feature dimensionality reduction for myoelectric pattern recognition: A comparison study of feature selection and feature projection methods. Medical Engineering and Physics, 2014, 36, 1716-1720.	1.7	23
88	Motion control of a robotic transtibial prosthesis during transitions between level ground and stairs. , 2014, , .		3
89	A strategy for labeling data for the neural adaptation of a powered lower limb prosthesis. , 2014, 2014, 3090-3.		9
90	Locomotion mode identification for lower limbs using neuromuscular and joint kinematic signals. , 2014, 2014, 4071-4.		7
91	A portable system with sample rate of 250ÂHz for characterization of knee and hip angles in the sagittal plane during gait. BioMedical Engineering OnLine, 2014, 13, 34.	2.7	3

	Сітатіоі	n Report	
#	Article	IF	CITATIONS
92	Gait cadence detection based on surface electromyography (sEMG) of lower limb muscles. , 2014, , .		1
93	Activity recognition of the torso based on surface electromyography for exoskeleton control. Biomedical Signal Processing and Control, 2014, 10, 281-288.	5.7	12
94	Intent Recognition in a Powered Lower Limb Prosthesis Using Time History Information. Annals of Biomedical Engineering, 2014, 42, 631-641.	2.5	131
95	A Training Method for Locomotion Mode Prediction Using Powered Lower Limb Prostheses. IEEE Transactions on Neural Systems and Rehabilitation Engineering, 2014, 22, 671-677.	4.9	120
96	Finite-state control of a robotic transtibial prosthesis with motor-driven nonlinear damping behaviors for level ground walking. , 2014, , .		6
97	Multiple gait phase recognition using boosted classifiers based on sEMG signal and classification matrix. , 2014, , .		9
98	Towards limb position invariant myoelectric pattern recognition using time-dependent spectral features. Neural Networks, 2014, 55, 42-58.	5.9	153
99	Engineering Platform and Experimental Protocol for Design and Evaluation of a Neurally-controlled Powered Transfemoral Prosthesis. Journal of Visualized Experiments, 2014, , .	0.3	11
100	On the Design of a Wearable Multi-sensor System for Recognizing Motion Modes and Sit-to-stand Transition. International Journal of Advanced Robotic Systems, 2014, 11, 30.	2.1	27
101	Multiple sensor outputs and computational intelligence towards estimating state and speed for control of lower limb prostheses. , 2014, , .		0
102	A realtime locomotion mode recognition method for an active pelvis orthosis. , 2015, , .		10
103	Human-Centered Design of Wearable Neuroprostheses and Exoskeletons. Al Magazine, 2015, 36, 12-22.	1.6	22
104	Bioelectronic interfaces for artificially driven human movements. , 0, , 281-293.		0
105	Intuitive Control of a Powered Prosthetic Leg During Ambulation. JAMA - Journal of the American Medical Association, 2015, 313, 2244.	7.4	124
106	Adaptive myoelectric pattern recognition toward improved multifunctional prosthesis control. Medical Engineering and Physics, 2015, 37, 424-430.	1.7	44
107	Electromyographic assessment on transfemoral amputees to possibly control artificial lower limbs. International Journal of Biomedical Engineering and Technology, 2015, 17, 72.	0.2	2
108	Detection of critical errors of locomotion mode recognition for volitional control of powered transfemoral prostheses. , 2015, 2015, 1128-31.		2
109	Electromyographic movement pattern recognition based on random forest algorithm. , 2015, , .		2

#	ARTICLE	IF	CITATIONS
110	Integration of surface electromyographic sensors with the transfemoral amputee socket. Prosthetics and Orthotics International, 2015, 39, 166-173.	1.0	26
111	Towards Autonomous Robotic Systems. Lecture Notes in Computer Science, 2015, , .	1.3	2
112	Effect of additional mechanical sensor data on an EMG-based pattern recognition system for a powered leg prosthesis. , 2015, , .		30
113	Towards ubiquitous mobile-computing-based artificial leg control. , 2015, , .		1
114	Effect of different terrains on onset timing, duration and amplitude of tibialis anterior activation. Biomedical Signal Processing and Control, 2015, 19, 115-121.	5.7	6
115	High energy spectrogram with integrated prior knowledge for EMG-based locomotion classification. Medical Engineering and Physics, 2015, 37, 518-524.	1.7	44
116	Control strategies for active lower extremity prosthetics and orthotics: a review. Journal of NeuroEngineering and Rehabilitation, 2015, 12, 1.	4.6	773
117	A real-time, practical sensor fault-tolerant module for robust EMG pattern recognition. Journal of NeuroEngineering and Rehabilitation, 2015, 12, 18.	4.6	52
118	HHT Based Features for Discrimination of EMG Signals. Advances in Intelligent Systems and Computing, 2015, , 95-103.	0.6	8
119	A foot-wearable interface for locomotion mode recognition based on discrete contact force distribution. Mechatronics, 2015, 32, 12-21.	3.3	55
121	Intention recognition method for sit-to-stand and stand-to-sit from electromyogram signals for overground lower-limb rehabilitation robots. , 2015, , .		2
122	Effects of Locomotion Mode Recognition Errors on Volitional Control of Powered Above-Knee Prostheses. IEEE Transactions on Neural Systems and Rehabilitation Engineering, 2015, 23, 64-72.	4.9	58
123	A new strategy for parameter optimization to improve phase-dependent locomotion mode recognition. Neurocomputing, 2015, 149, 585-593.	5.9	25
124	Nonnegative Matrix Factorization for the Identification of EMG Finger Movements: Evaluation Using Matrix Analysis. IEEE Journal of Biomedical and Health Informatics, 2015, 19, 478-485.	6.3	107
125	Fuzzy-Logic-Based Terrain Identification with Multisensor Fusion for Transtibial Amputees. IEEE/ASME Transactions on Mechatronics, 2015, 20, 618-630.	5.8	77
126	A survey of sensor fusion methods in wearable robotics. Robotics and Autonomous Systems, 2015, 73, 155-170.	5.1	190
127	PSO-SVM-Based Online Locomotion Mode Identification for Rehabilitation Robotic Exoskeletons. Sensors, 2016, 16, 1408.	3.8	55
128	Tolerance of neural decoding errors for powered artificial legs: A pilot study. , 2016, 2016, 4630-4633.		1

#	Article	IF	CITATIONS
129	MYOELECTRIC ACTIVATION DIFFERENCES IN TRANSFEMORAL AMPUTEES DURING LOCOMOTOR STATE TRANSITIONS. Biomedical Engineering - Applications, Basis and Communications, 2016, 28, 1650041.	0.6	3
130	User intent prediction with a scaled conjugate gradient trained artificial neural network for lower limb amputees using a powered prosthesis. , 2016, 2016, 6405-6408.		15
131	Learning Probabilistic Features from EMG Data for Predicting Knee Abnormalities. IFMBE Proceedings, 2016, , 668-672.	0.3	3
132	Gait recognition based on EMG with different individuals and sample sizes. , 2016, , .		14
133	Continuous estimation of ankle joint angular position based on the myoelectric signals. , 2016, , .		6
134	Development and preliminary testing of a flexible control system for powered knee-ankle prostheses. , 2016, , .		2
135	Corticomuscular coherence variation throughout the gait cycle during overground walking and ramp ascent: A preliminary investigation. , 2016, 2016, 4634-4637.		11
136	Classification of non-weight bearing lower limb movements: Towards a potential treatment for phantom limb pain based on myoelectric pattern recognition. , 2016, 2016, 5457-5460.		5
137	Delaying ambulation mode transitions in a powered knee-ankle prosthesis. , 2016, 2016, 5079-5082.		3
138	Development of an Environment-Aware Locomotion Mode Recognition System for Powered Lower Limb Prostheses. IEEE Transactions on Neural Systems and Rehabilitation Engineering, 2016, 24, 434-443.	4.9	111
139	Review of Control Strategies for Lower Limb Prostheses. Advances in Intelligent Systems and Computing, 2016, , 209-220.	0.6	16
140	Optimizing Support Vector Machine withÂGenetic Algorithm for Capacitive Sensing-Based Locomotion Mode Recognition. Advances in Intelligent Systems and Computing, 2016, , 1035-1047.	0.6	0
141	Terrain and Direction Classification of Locomotion Transitions Using Neuromuscular and Mechanical Input. Annals of Biomedical Engineering, 2016, 44, 1275-1284.	2.5	39
142	A Classification Method for User-Independent Intent Recognition for Transfemoral Amputees Using Powered Lower Limb Prostheses. IEEE Transactions on Neural Systems and Rehabilitation Engineering, 2016, 24, 217-225.	4.9	99
143	Detection of and Compensation for EMG Disturbances for Powered Lower Limb Prosthesis Control. IEEE Transactions on Neural Systems and Rehabilitation Engineering, 2016, 24, 226-234.	4.9	80
144	Noncontact Capacitive Sensing-Based Locomotion Transition Recognition for Amputees With Robotic Transtibial Prostheses. IEEE Transactions on Neural Systems and Rehabilitation Engineering, 2017, 25, 161-170.	4.9	62
145	Toward an Enhanced Human–Machine Interface for Upper-Limb Prosthesis Control With Combined EMG and NIRS Signals. IEEE Transactions on Human-Machine Systems, 2017, 47, 564-575.	3.5	81
146	A murine model of a novel surgical architecture for proprioceptive muscle feedback and its potential application to control of advanced limb prostheses. Journal of Neural Engineering, 2017, 14, 036002.	3.5	40

#	ARTICLE Delaying Ambulation Mode Transition Decisions Improves Accuracy of a Flexible Control System for Powered Knee-Ankle Prosthesis. IEEE Transactions on Neural Systems and Rehabilitation Engineering,	IF 4.9	CITATIONS
147	2017, 25, 1164-1171. Kinematic-based locomotion mode recognition for power augmentation exoskeleton. International Journal of Advanced Robotic Systems, 2017, 14, 172988141773032.	2.1	15
150	Volitional Control Research. , 2017, , 137-150.		2
151	Gait Recognition Using GA-SVM Method Based on Electromyography Signal. Lecture Notes in Computer Science, 2017, , 313-322.	1.3	5
152	Real-Time Hybrid Locomotion Mode Recognition for Lower Limb Wearable Robots. IEEE/ASME Transactions on Mechatronics, 2017, 22, 2480-2491.	5.8	63
153	A Method for Locomotion Mode Identification Using Muscle Synergies. IEEE Transactions on Neural Systems and Rehabilitation Engineering, 2017, 25, 608-617.	4.9	41
154	Human falling recognition system design with wearable pressure sensing shoes. , 2017, , .		3
155	Preliminary study of online gait recognizer for lower limb exoskeletons. , 2017, , .		11
156	Intent pattern recognition of lower-limb motion based on mechanical sensors. IEEE/CAA Journal of Automatica Sinica, 2017, 4, 651-660.	13.1	51
157	Prediction of lower-limb joint kinematics from surface EMG during overground locomotion. , 2017, , .		12
158	Navigating features: a topologically informed chart of electromyographic features space. Journal of the Royal Society Interface, 2017, 14, 20170734.	3.4	55
159	Locomotion mode classification using force myography. , 2017, , .		4
160	A combined Adaptive Neuro-Fuzzy and Bayesian strategy for recognition and prediction of gait events using wearable sensors. , 2017, , .		6
161	Recognition of locomotion patterns based on BP neural network during different walking speeds. , 2017, , .		5
162	Cortical features of locomotion-mode transitions via non-invasive EEG. , 2017, , .		3
163	Prediction of gait events in walking activities with a Bayesian perception system. , 2017, 2017, 13-18.		3
164	Prediction of EMG envelopes of multiple terrains over-ground walking from EEG signals using an unscented Kalman filter. , 2017, , .		7
165	Using bilateral lower limb kinematic and myoelectric signals to predict locomotor activities: A pilot study. , 2017, , .		7

#	Article	IF	CITATIONS
166	Usability Comparison of Conventional Direct Control Versus Pattern Recognition Control of Transradial Prostheses. IEEE Transactions on Human-Machine Systems, 2017, 47, 1146-1157.	3.5	36
167	Effects of output speed threshold on real-time continuous emg human-machine interface control. , 2017, , .		1
168	An Adaptive Classification Strategy for Reliable Locomotion Mode Recognition. Sensors, 2017, 17, 2020.	3.8	57
169	Early Detection of the Initiation of Sit-to-Stand Posture Transitions Using Orthosis-Mounted Sensors. Sensors, 2017, 17, 2712.	3.8	12
170	Research on Lower Limb Motion Recognition Based on Fusion of sEMG and Accelerometer Signals. Symmetry, 2017, 9, 147.	2.2	37
171	Whole Body Awareness for Controlling a Robotic Transfemoral Prosthesis. Frontiers in Neurorobotics, 2017, 11, 25.	2.8	23
172	Real-time Classification of Non-Weight Bearing Lower-Limb Movements Using EMG to Facilitate Phantom Motor Execution: Engineering and Case Study Application on Phantom Limb Pain. Frontiers in Neurology, 2017, 8, 470.	2.4	25
173	Low-Cost 2-Channel Electromyography Telemeter using a Personal Computer Microphone Port. International Journal of Physical Medicine & Rehabilitation, 2017, 05, .	0.5	2
174	Voluntary Control of Residual Antagonistic Muscles in Transtibial Amputees: Feedforward Ballistic Contractions and Implications for Direct Neural Control of Powered Lower Limb Prostheses. IEEE Transactions on Neural Systems and Rehabilitation Engineering, 2018, 26, 894-903.	4.9	19
175	Continuous-Phase Control of a Powered Knee–Ankle Prosthesis: Amputee Experiments Across Speeds and Inclines. IEEE Transactions on Robotics, 2018, 34, 686-701.	10.3	181
176	Electromyographic Signal-Driven Continuous Locomotion Mode Identification Module Design for Lower Limb Prosthesis Control. Arabian Journal for Science and Engineering, 2018, 43, 7817-7835.	3.0	20
177	An ICA-EBM-Based sEMG Classifier for Recognizing Lower Limb Movements in Individuals With and Without Knee Pathology. IEEE Transactions on Neural Systems and Rehabilitation Engineering, 2018, 26, 675-686.	4.9	55
178	Simultaneous Bayesian Recognition of Locomotion and Gait Phases With Wearable Sensors. IEEE Sensors Journal, 2018, 18, 1282-1290.	4.7	51
179	Evaluation of EMC pattern recognition for upper limb prosthesis control: a case study in comparison with direct myoelectric control. Journal of NeuroEngineering and Rehabilitation, 2018, 15, 23.	4.6	104
180	Adaptive Bayesian inference system for recognition of walking activities and prediction of gait events using wearable sensors. Neural Networks, 2018, 102, 107-119.	5.9	74
181	Translational Motion Tracking of Leg Joints for Enhanced Prediction of Walking Tasks. IEEE Transactions on Biomedical Engineering, 2018, 65, 763-769.	4.2	46
182	Turn Intent Detection For Control of a Lower Limb Prosthesis. IEEE Transactions on Biomedical Engineering, 2018, 65, 789-796.	4.2	15
183	Optimal Mixed Tracking/Impedance Control With Application to Transfemoral Prostheses With Energy Regeneration. IEEE Transactions on Biomedical Engineering, 2018, 65, 894-910.	4.2	24

ARTICLE IF CITATIONS # Continuous human locomotion identification for lower limb prosthesis control. CSI Transactions on 184 1.0 22 ICT, 2018, 6, 17-31. Design, Control and Implementation of a Powered Prosthetic Leg., 2018, , . Implementing a SoC-FPGA Based Acceleration System for On-Board SVM Training for Robotic 186 5 Transtibial Prostheses., 2018,,. Real-Time On-Board Recognition of Locomotion Modes for an Active Pelvis Orthosis., 2018,,. Evaluation of Activation Function Capability for Intent Recognition and Development of a 188 1 Computerized Prosthetic Knee., 2018,,. Performance analysis of hardware acceleration for locomotion mode recognition in robotic prosthetic control., 2018,,. 190 Gait Type Classification Using Smart Insole Sensors., 2018,,. 3 Evaluation of a Visual Localization System for Environment Awareness in Assistive Devices. , 2018, 2018, 5135-5141. 192 Real-Time Onboard Human Motion Recognition Based on Inertial Measurement Units., 2018, , . 6 Gait Phase Recognition Based on A Wearable Depth Camera., 2018,,. Lower Limb Movement Intent Recognition Based on Grid Search Random Forest Algorithm., 2018,,. 194 7 An Investigation of Temporally Inspired Time Domain Features for Electromyographic Pattern Recognition. , 2018, 2018, 5236-5240. Human Motion Classification Based on Multi-Modal Sensor Data for Lower Limb Exoskeletons., 2018, 196 20 Implementation issues of EMG-based motion intention detection for exoskeletal robots., 2018, ... Predicting Walking Intentions using sEMG and Mechanical sensors for various environment., 2018, 198 6 2018, 4414-4417. Real-Time On-Board Recognition of Continuous Locomotion Modes for Amputees With Robotic Transtibial Prostheses. IEEE Transactions on Neural Systems and Rehabilitation Engineering, 2018, 26, 2015-2025. Subject-Independent Data Pooling in Classification of Gait Intent Using Mechanomyography on a 200 2 Transtibial Amputee., 2018,,. A Conceptual High Level Controller to Walk with Active Foot Prostheses/Orthoses., 2018,,.

ARTICLE IF CITATIONS # A wearable comprehensive data sampling system for gait analysis. Journal of Medical Engineering and 202 1.4 8 Technology, 2018, 42, 335-343. Estimating the Relationship Between Multivariable Standing Ankle Impedance and Lower Extremity Muscle Activation., 2018, , 204 State-of-the-Art., 2018, , 11-32. 6 Proprioception from a neurally controlled lower-extremity prosthesis. Science Translational 145 Medicine, 2018, 10, . Force Myography Based Novel Strategy for Locomotion Classification. IEEE Transactions on 206 3.5 35 Human-Machine Systems, 2018, 48, 648-657. Evaluation of Pattern Recognition in Myoelectric Signal Using Netlab GLM., 2018, , . Autonomy in Rehabilitation Robotics: An Intersection. Annual Review of Control, Robotics, and 208 11.8 28 Autonomous Systems, 2018, 1, 441-463. Fast Gait Mode Detection and Assistive Torque Control of an Exoskeletal Robotic Orthosis for 209 10.3 Walking Assistance. IEEE Transactions on Robotics, 2018, , 1-18. Identifying classifier input signals to predict a cross-slope during transtibial amputee walking. PLoS 210 2.5 3 ONE, 2018, 13, e0192950. Preliminary Design of an Environment Recognition System for Controlling Robotic Lower-Limb Prostheses and Exoskeletons. , 2019, 2019, 868-873. A Support Vector Regression Approach for Continuous Prediction of Ankle Angle and Moment During 212 Walking: An Implication for Developing a Control Strategy for Active Ankle Prostheses. , 2019, 2019, 16 727-733. Locomotion Mode Recognition With Robotic Transtibial Prosthesis in Inter-Session and Inter-Day Applications. IEEE Transactions on Neural Systems and Rehabilitation Engineering, 2019, 27, 1836-1845. Design of a Purely Mechanical Sensor-Controller Integrated System for Walking Assistance on an 214 3.8 17 Ankle-Foot Exoskeleton. Sensors, 2019, 19, 3196. Proportional Myoelectric Control of a Virtual Inverted Pendulum Using Residual Antagonistic Muscles: Toward Voluntary Postural Control. IEEE Transactions on Neural Systems and Rehabilitation Engineering, 2019, 27, 1473-1482. 216 Human Locomotion Activity and Speed Recognition Using Electromyography Based Features., 2019,,. 5 Electromyography (EMG) Signal Contributions in Speed and Slope Estimation Using Robotic 217 Exoskeletons. , 2019, 2019, 548-553. User Identification from Gait Analysis Using Multi-Modal Sensors in Smart Insole. Sensors, 2019, 19, 218 3.8 22 3785. A strain gauge based locomotion mode recognition method using convolutional neural network. 219 1.8 Advanced Robotics, 2019, 33, 254-263.

#	Article	IF	CITATIONS
220	Environmental Features Recognition for Lower Limb Prostheses Toward Predictive Walking. IEEE Transactions on Neural Systems and Rehabilitation Engineering, 2019, 27, 465-476.	4.9	88
221	Common spatial-spectral analysis of EMG signals for multiday and multiuser myoelectric interface. Biomedical Signal Processing and Control, 2019, 53, 101572.	5.7	24
222	Daily Motion Recognition System by a Triaxial Accelerometer Usable in Different Positions. IEEE Sensors Journal, 2019, 19, 7543-7552.	4.7	22
223	Recognition of walking environments and gait period by surface electromyography. Frontiers of Information Technology and Electronic Engineering, 2019, 20, 342-352.	2.6	48
224	A CNN-Based Method for Intent Recognition Using Inertial Measurement Units and Intelligent Lower Limb Prosthesis. IEEE Transactions on Neural Systems and Rehabilitation Engineering, 2019, 27, 1032-1042.	4.9	97
225	A Two-Dimensional Feature Space-Based Approach for Human Locomotion Recognition. IEEE Sensors Journal, 2019, 19, 4271-4282.	4.7	20
226	Toward the Development of Knee Prostheses: Review of Current Active Devices. Applied Mechanics Reviews, 2019, 71, .	10.1	16
227	Analysis of force myography based locomotion patterns. Measurement: Journal of the International Measurement Confederation, 2019, 140, 497-503.	5.0	14
228	Performance evaluation of various classifiers for predicting knee angle from electromyography signals. Expert Systems, 2019, 36, e12381.	4.5	28
229	Capacitive Sensing Based Recognition of Ankle Movement Imagery in Patients after Amputation Surgery. , 2019, , .		0
230	Gait Phase Discrimination during Kinematically Constrained Walking on Slackline. , 2019, , .		6
231	SVM for Decoding the Human Activity Mode from sEMG Signals. , 2019, , .		0
232	An Automatic Labeling Strategy for Locomotion Mode Recognition with Robotic Transtibial Prosthesis. , 2019, , .		2
233	Gaze Fixation Comparisons Between Amputees and Able-bodied Individuals in Approaching Stairs and Level-ground Transitions: A Pilot Study. , 2019, 2019, 3163-3166.		10
234	Subject- and Environment-Based Sensor Variability for Wearable Lower-Limb Assistive Devices. Sensors, 2019, 19, 4887.	3.8	29
235	Techniques for Improving the Reliability of Prosthesis Wearer Muscle Signals Using Pressure and EMG Sensors. , 2019, 2019, 5882-5885.		1
236	Intent Prediction of Multi-axial Ankle Motion Using Limited EMG Signals. Frontiers in Bioengineering and Biotechnology, 2019, 7, 335.	4.1	15
237	Caprine Models of the Agonist-Antagonist Myoneural Interface Implemented at the Above- and Below-Knee Amputation Levels. Plastic and Reconstructive Surgery, 2019, 144, 218e-229e.	1.4	15

ARTICLE IF CITATIONS # Gradient-Based Multi-Objective Feature Selection for Gait Mode Recognition of Transfemoral 238 3.8 17 Amputees. Sensors, 2019, 19, 253. Synergy-Based Gaussian Process Estimation of Ankle Angle and Torque: Conceptualization for High Level Controlling of Active Robotic Foot Prostheses/Orthoses. Journal of Biomechanical Engineering, 1.3 2019, 141, . Voluntary Control of Residual Antagonistic Muscles in Transtibial Amputees: Reciprocal Activation, Coactivation, and Implications for Direct Neural Control of Powered Lower Limb Prostheses. IEEE 240 4.9 16 Transactions on Neural Systems and Rehabilitation Engineering, 2019, 27, 85-95. A Comparison of Control Strategies in Commercial and Research Knee Prostheses. IEEE Transactions 241 on Biomedical Engineering, 2020, 67, 277-290. A Geometry Recognition-Based Strategy for Locomotion Transitions Early Prediction of Prosthetic 242 4.7 10 Devices. IEEE Transactions on Instrumentation and Measurement, 2020, 69, 1259-1267. Sensory Systems in Micro-Processor Controlled Prosthetic Leg: A Review. IEEE Sensors Journal, 2020, 20, 4544-4554. 4.7 Lower limb active prosthetic systemsâ€"overview., 2020, , 469-486. 244 8 A Review of Gait Phase Detection Algorithms for Lower Limb Prostheses. Sensors, 2020, 20, 3972. 245 3.8 67 Machine Learning Approaches for Activity Recognition and/or Activity Prediction in Locomotion 246 3.8 26 Assistive Devicesâ€"A Systematic Review. Sensors, 2020, 20, 6345. 247 Continuous locomotion mode classification using a robotic hip exoskeleton., 2020, 2020, 376-381. EEG-Based EMG Estimation of Shoulder Joint for the Power Augmentation System of Upper Limbs. 248 2.2 5 Symmetry, 2020, 12, 1851. Evaluation of Activities of Daily Living Tesbeds for Assessing Prosthetic Device Usability., 2020, , . 249 EMG-Centered Multisensory Based Technologies for Pattern Recognition in Rehabilitation: State of 250 4.7 74 the Art and Challenges. Biosensors, 2020, 10, 85. Motion Planning for Active Prosthetic Knees., 2020, , . Use of Sonomyography for Continuous Estimation of Hip, Knee and Ankle Moments During Multiple 252 10 Ambulation Tasks. , 2020, , . Towards a context-based Bayesian recognition of transitions in locomotion activities. , 2020, , . Gait Control of Robotic Leg Prosthesis Based on Motion Predictive System., 2020,,. 254 1 Locomotion Prediction for Lower Limb Prostheses in Complex Environments via sEMG and Inertial Sensors. Complexity, 2020, 2020, 1-12.

		CITATION REPORT		
#	Article		IF	CITATIONS
256	Feature Analysis of Smart Shoe Sensors for Classification of Gait Patterns. Sensors, 20	20, 20, 6253.	3.8	17
257	Unsupervised Cross-Subject Adaptation for Predicting Human Locomotion Intent. IEEE Neural Systems and Rehabilitation Engineering, 2020, 28, 646-657.	Transactions on	4.9	25
258	Evoking haptic sensations in the foot through high-density transcutaneous electrical n stimulations. Journal of Neural Engineering, 2020, 17, 036020.	erve	3.5	15
259	IMU-Based Locomotion Mode Identification for Transtibial Prostheses, Orthoses, and E IEEE Transactions on Neural Systems and Rehabilitation Engineering, 2020, 28, 1334-1	xoskeletons. 343.	4.9	36
260	An Infrared Sensor-Based Instrumented Shoe for Gait Events Detection on Different Te Transitions. IEEE Sensors Journal, 2020, 20, 10779-10791.	rrains and	4.7	12
261	Neural control in prostheses and exoskeletons. , 2020, , 153-178.			12
262	Intent based recognition of walking and ramp activities for amputee using sEMG based prostheses. Biocybernetics and Biomedical Engineering, 2020, 40, 1110-1123.	l lower limb	5.9	27
263	Wearer-Prosthesis Interaction for Symmetrical Gait: A Study Enabled by Reinforcement Prosthesis Control. IEEE Transactions on Neural Systems and Rehabilitation Engineerin 904-913.	Learning g, 2020, 28,	4.9	28
264	BPNN-Based Real-Time Recognition of Locomotion Modes for an Active Pelvis Orthosis Assistive Strategies. International Journal of Humanoid Robotics, 2020, 17, 2050004.	with Different	1.1	15
265	Novel Activity Detection Algorithm to Characterize Spontaneous Stepping During Mult Neuromodulation After Mid-Thoracic Spinal Cord Injury in Rats. Frontiers in Systems Ne 2019, 13, 82.		2.5	2
266	Real-Time Interface Algorithm for Ankle Kinematics and Stiffness From Electromyograp Transactions on Neural Systems and Rehabilitation Engineering, 2020, 28, 1416-1427.	hic Signals. IEEE	4.9	8
267	A Smart Terrain Identification Technique Based on Electromyography, Ground Reactior Machine Learning for Lower Limb Rehabilitation. Applied Sciences (Switzerland), 2020,		2.5	19
268	Environmental Context Prediction for Lower Limb Prostheses With Uncertainty Quanti Transactions on Automation Science and Engineering, 2021, 18, 458-470.	fication. IEEE	5.2	43
269	Optimal Force Myography Placement For Maximizing Locomotion Classification Accura Transfemoral Amputees: A Pilot Study. IEEE Journal of Biomedical and Health Informatio 959-968.	icy in cs, 2021, 25,	6.3	3
270	A shoe-mounted infrared sensor-based instrumentation for locomotion identification u learning methods. Measurement: Journal of the International Measurement Confederat 108458.		5.0	7
271	Smart healthcare-oriented online prediction of lower-limb kinematics and kinetics base data-driven neural signal decoding. Future Generation Computer Systems, 2021, 114,		7.5	19
272	Toward an Integrated Multi-Modal sEMG/MMG/NIRS Sensing System for Human–Ma Robust to Muscular Fatigue. IEEE Sensors Journal, 2021, 21, 3702-3712.	chine Interface	4.7	25
273	Ultrasound Sensing Can Improve Continuous Classification of Discrete Ambulation Mo to Surface Electromyography. IEEE Transactions on Biomedical Engineering, 2021, 68,		4.2	18

\sim		<u>_</u>	
		Repo	DT
\sim	IIAI	KLPU	ALC L

#	Article	IF	CITATIONS
274	Toward Minimal-Sensing Locomotion Mode Recognition for a Powered Knee-Ankle Prosthesis. IEEE Transactions on Biomedical Engineering, 2021, 68, 967-979.	4.2	14
275	Real-time detection and processing of electromyography signal. , 2021, , 83-109.		0
276	Advancements, Trends and Future Prospects of Lower Limb Prosthesis. IEEE Access, 2021, 9, 85956-85977.	4.2	22
277	Efficient Environmental Context Prediction for Lower Limb Prostheses. IEEE Transactions on Systems, Man, and Cybernetics: Systems, 2022, 52, 3980-3994.	9.3	17
278	Selection of EMG Sensors Based on Motion Coordinated Analysis. Sensors, 2021, 21, 1147.	3.8	3
279	Accurate Heuristic Terrain Prediction in Powered Lower-Limb Prostheses Using Onboard Sensors. IEEE Transactions on Biomedical Engineering, 2021, 68, 384-392.	4.2	15
281	A Control Method With Terrain Classification and Recognition for Lower Limb Soft Exosuit. , 2021, , .		1
282	Online Adaptive Prediction of Human Motion Intention Based on sEMG. Sensors, 2021, 21, 2882.	3.8	13
283	Locomotion Mode Recognition for Walking on Three Terrains Based on sEMG of Lower Limb and Back Muscles. Sensors, 2021, 21, 2933.	3.8	1
284	Gesture Recognition Using Surface Electromyography and Deep Learning for Prostheses Hand: State-of-the-Art, Challenges, and Future. Frontiers in Neuroscience, 2021, 15, 621885.	2.8	60
285	Toward higher-performance bionic limbs for wider clinical use. Nature Biomedical Engineering, 2023, 7, 473-485.	22.5	104
286	A Machine Learning Strategy for Locomotion Classification and Parameter Estimation Using Fusion of Wearable Sensors. IEEE Transactions on Biomedical Engineering, 2021, 68, 1569-1578.	4.2	30
287	Noninvasive Human-Prosthesis Interfaces for Locomotion Intent Recognition: A Review. Cyborg and Bionic Systems, 2021, 2021, .	7.9	22
288	SA-SVM-Based Locomotion Pattern Recognition for Exoskeleton Robot. Applied Sciences (Switzerland), 2021, 11, 5573.	2.5	12
290	Terrain environment classification and recognition for soft lower-limb exosuit. , 2021, , .		2
291	Myoelectric control of robotic lower limb prostheses: a review of electromyography interfaces, control paradigms, challenges and future directions. Journal of Neural Engineering, 2021, 18, 041004.	3.5	75
292	Neuromechanical Signal-Based Parallel and Scalable Model for Lower Limb Movement Recognition. IEEE Sensors Journal, 2021, 21, 16213-16221.	4.7	7
293	A Terrain-based Gait Self-adjusting Planning for Powered Prostheses. , 2021, , .		0

#	Article	IF	Citations
294	Sensor Fusion of Vision, Kinetics, and Kinematics for Forward Prediction During Walking With a Transfemoral Prosthesis. IEEE Transactions on Medical Robotics and Bionics, 2021, 3, 813-824.	3.2	16
295	Continuous Myoelectric Prediction of Future Ankle Angle and Moment Across Ambulation Conditions and Their Transitions. Frontiers in Neuroscience, 2021, 15, 709422.	2.8	8
296	Adaptive Ankle Exoskeleton Control: Validation Across Diverse Walking Conditions. IEEE Transactions on Medical Robotics and Bionics, 2021, 3, 801-812.	3.2	25
297	Design and Trajectory Tracking Control of a Magnetorheological Prosthetic Knee Joint. Applied Sciences (Switzerland), 2021, 11, 8305.	2.5	6
298	The Role of Surface Electromyography in Data Fusion with Inertial Sensors to Enhance Locomotion Recognition and Prediction. Sensors, 2021, 21, 6291.	3.8	15
299	Estimation of knee and ankle angles during walking using thigh and shank angles. Bioinspiration and Biomimetics, 2021, 16, .	2.9	4
300	Gaussian-guided feature alignment for unsupervised cross-subject adaptation. Pattern Recognition, 2022, 122, 108332.	8.1	5
301	Continuous Prediction of Lower-Limb Kinematics From Multi-Modal Biomedical Signals. IEEE Transactions on Circuits and Systems for Video Technology, 2022, 32, 2592-2602.	8.3	18
302	Generating an Adaptive and Robust Walking Pattern for a Prosthetic Ankle–Foot by Utilizing a Nonlinear Autoregressive Network With Exogenous Inputs. IEEE Transactions on Neural Networks and Learning Systems, 2022, 33, 6297-6305.	11.3	5
303	A Muscle Synergy-Inspired Method of Detecting Human Movement Intentions Based on Wearable Sensor Fusion. IEEE Transactions on Neural Systems and Rehabilitation Engineering, 2021, 29, 1089-1098.	4.9	16
304	Direct continuous electromyographic control of a powered prosthetic ankle for improved postural control after guided physical training: A case study. Wearable Technologies, 2021, 2, .	3.1	14
305	Classifier Selection for Locomotion Mode Recognition Using Wearable Capacitive Sensing Systems. Advances in Intelligent Systems and Computing, 2014, , 763-774.	0.6	1
306	A Wearable Plantar Pressure Measurement System: Design Specifications and First Experiments with an Amputee. Advances in Intelligent Systems and Computing, 2013, , 273-281.	0.6	18
307	Force Myography and Its Application to Human Locomotion. Series in Bioengineering, 2020, , 49-70.	0.6	4
308	Gesture recognition for transhumeral prosthesis control using EMG and NIR. IET Cyber-Systems and Robotics, 2020, 2, 122-131.	1.8	51
310	Integrating neuromuscular and cyber systems for neural control of artificial legs. , 2010, , .		24
311	Future Research Directions. Series in Medical Physics and Biomedical Engineering, 2013, , 165-184.	0.1	1
312	Investigation of Timing to Switch Control Mode in Powered Knee Prostheses during Task Transitions. PLoS ONE, 2015, 10, e0133965.	2.5	30

# 313	ARTICLE Biologically Inspired Algorithms Applied to Prosthetic Control. , 2012, , .	IF	Citations
314	Gait Phase Recognition based on EMG Signal for Stairs Ascending and Stairs Descending. Journal of the Institute of Electronics and Information Engineers, 2015, 52, 181-189.	0.0	1
315	An investigation into the bilateral functional differences of the lower limb muscles in standing and walking. PeerJ, 2016, 4, e2315.	2.0	8
316	Gait Percent Estimation during Walking and Running using Sagittal Shank or Thigh Angles. , 2021, , .		0
317	Learning architecture for the recognition of walking and prediction of gait period using wearable sensors. Neurocomputing, 2022, 470, 1-10.	5.9	3
318	Walking Speed Recognition System for Transfemoral Amputee Based on Accelerometer and Gyroscopes. Communications in Computer and Information Science, 2012, , 383-389.	0.5	1
320	The research on motion recognition based on EMG of residual thigh. , 2015, , 445-450.		0
321	A Heterogeneous Clustering Approach for Human Activity Recognition. Lecture Notes in Computer Science, 2016, , 68-81.	1.3	3
322	Electromyogram and Inertial Sensor Signal Processing in Locomotion and Transition Classification. Advances in Bioinformatics and Biomedical Engineering Book Series, 2017, , 195-211.	0.4	0
323	A Fuzzy sequential locomotion mode recognition system for lower limb prosthesis control. , 2017, , .		4
324	Identifying the Dynamics of Leg Muscle Activation During Human Gait Using Neural Oscillator and Fuzzy Compensator. International Clinical Neuroscience Journal, 2018, 5, 106-112.	0.1	0
325	Correlation Between Ankle Impedance and EMG Signals. Biosystems and Biorobotics, 2019, , 627-631.	0.3	1
326	A real-time walking pattern recognition method for soft knee power assist wear. International Journal of Advanced Robotic Systems, 2020, 17, 172988142092529.	2.1	5
327	Artificial Intelligence-based Approach for Gait Pattern Identification Using Surface Electromyography (SEMG). , 2020, , .		1
328	Electromyogram and Inertial Sensor Signal Processing in Locomotion and Transition Classification. , 2020, , 762-778.		0
329	Real-Time Locomotion Mode Recognition Employing Correlation Feature Analysis Using EMG Pattern. ETRI Journal, 2014, 36, 99-105.	2.0	0
331	Challenges and solutions for application and wider adoption of wearable robots. Wearable Technologies, 2021, 2, .	3.1	23
332	Motion Intent Recognition in Intelligent Lower Limb Prosthesis Using One-Dimensional Dual-Tree Complex Wavelet Transforms. Computational Intelligence and Neuroscience, 2021, 2021, 1-15.	1.7	2

#	Article	IF	CITATIONS
333	Locomotion Mode Transition Prediction Based on Gait-Event Identification Using Wearable Sensors and Multilayer Perceptrons. Sensors, 2021, 21, 7473.	3.8	6
334	Feature Identification with a Heuristic Algorithm and an Unsupervised Machine Learning Algorithm for Prior Knowledge of Gait Events. IEEE Transactions on Neural Systems and Rehabilitation Engineering, 2021, PP, 1-1.	4.9	2
335	Performance of Sonomyographic and Electromyographic Sensing for Continuous Estimation of Joint Torque During Ambulation on Multiple Terrains. IEEE Transactions on Neural Systems and Rehabilitation Engineering, 2021, 29, 2635-2644.	4.9	10
336	Estimation of Knee Angles Based on Thigh Motion: A Functional Approach and Implications for High-Level Controlling of Active Prosthetic Knees. IEEE Control Systems, 2020, 40, 49-61.	0.8	14
337	Real Time Level Ground Walking vs Stair-Climbing Locomotion Mode Detection. , 2020, , .		0
338	Mapping Thigh Motion to Knee Motion: Implications for Motion Planning of Active Prosthetic Knees. , 2020, , .		6
339	Comparison of Cognitive Workload Assessment Techniques in EMG-based Prosthetic Device Studies. , 2020, , .		4
340	Evaluation of the offline classification error of human locomotion modes using virtual force-sensing resistor data. , 2020, , .		0
341	Locomotion Modes and Environmental Features Recognition Using Laser Distance Sensors. IEEE Sensors Journal, 2022, 22, 4625-4633.	4.7	2
343	Application of control strategies and machine learning techniques in prosthetic knee: a systematic review. Advances in Computational Intelligence, 2022, 2, 1.	1.1	Ο
344	Subject-Independent Continuous Locomotion Mode Classification for Robotic Hip Exoskeleton Applications. IEEE Transactions on Biomedical Engineering, 2022, 69, 3234-3242.	4.2	11
345	Binary Particle Swarm Optimization-Based Feature Selection for Predicting the Class of the Knee Angle from EMG Signals in Lower Limb Movements. Neurophysiology, 2022, 53, 109-119.	0.3	5
346	Surface Electromyography Characteristics for Motion Intention Recognition and Implementation Issues in Lower-limb Exoskeletons. International Journal of Control, Automation and Systems, 2022, 20, 1018-1028.	2.7	20
347	Gait Recognition for Lower Limb Exoskeletons Based on Interactive Information Fusion. Applied Bionics and Biomechanics, 2022, 2022, 1-19.	1.1	7
348	Incrementally Classifying Different Walking Activities Based on Wearable Sensors. , 2021, , .		2
349	Design of a stepwise safety protocol for lower limb prosthetic risk management in a clinical investigation. , 2021, 2021, 1362-1365.		1
350	Continuous Prediction of Leg Kinematics During Ambulation using Peripheral Sensing of Muscle Activity and Morphology. , 2021, , .		1
351	Optimization of Data Quality Related EMG Feature Extraction Parameters to Increase Hand Movement Classification Accuracy. , 2021, 2021, 612-615.		0

#	Article	IF	CITATIONS
352	Design of an open-source transfemoral, bypass socket. , 2021, 2021, 4578-4582.		1
353	A Mode-Specific Classification Based on sEMG for User-Independent Locomotion Transition Recognition. , 2021, , .		2
354	From sensing to control of lower limb exoskeleton: a systematic review. Annual Reviews in Control, 2022, 53, 83-96.	7.9	42
360	Fusion of Human Gaze and Machine Vision for Predicting Intended Locomotion Mode. IEEE Transactions on Neural Systems and Rehabilitation Engineering, 2022, 30, 1103-1112.	4.9	11
361	Continuous and Unified Modeling of Joint Kinematics for Multiple Activities. IEEE Access, 2022, 10, 47509-47523.	4.2	3
362	Optimization of immune receptor-related hypersensitive cell death response assay using agrobacterium-mediated transient expression in tobacco plants. Plant Methods, 2022, 18, 57.	4.3	4
363	EMG-driven control in lower limb prostheses: a topic-based systematic review. Journal of NeuroEngineering and Rehabilitation, 2022, 19, 43.	4.6	23
364	Application of One Dimensional Convolutional Neural Networks in Gait Phase Recognition Based on Surface Electromyography Signals. SSRN Electronic Journal, 0, , .	0.4	0
365	FSM-HSVM-Based Locomotion Mode Recognition for Exoskeleton Robot. Applied Sciences (Switzerland), 2022, 12, 5483.	2.5	3
366	A Novel Method for Detecting Misclassifications of the Locomotion Mode in Lower-Limb Exoskeleton Robot Control. IEEE Robotics and Automation Letters, 2022, 7, 7779-7785.	5.1	4
367	Characterizing Prosthesis Control Fault During Human-Prosthesis Interactive Walking Using Intrinsic Sensors. IEEE Robotics and Automation Letters, 2022, 7, 8307-8314.	5.1	3
368	Integral Real-time Locomotion Mode Recognition Based on GA-CNN for Lower Limb Exoskeleton. Journal of Bionic Engineering, 2022, 19, 1359-1373.	5.0	41
369	Human Motion Pattern Recognition and Feature Extraction: An Approach Using Multi-Information Fusion. Micromachines, 2022, 13, 1205.	2.9	8
370	Joint Kinematics, Kinetics and Muscle Synergy Patterns During Transitions Between Locomotion Modes. IEEE Transactions on Biomedical Engineering, 2023, 70, 1062-1071.	4.2	4
371	Toward Safe Wearer-Prosthesis Interaction: Evaluation of Gait Stability and Human Compensation Strategy Under Faults in Robotic Transfemoral Prostheses. IEEE Transactions on Neural Systems and Rehabilitation Engineering, 2022, 30, 2773-2782.	4.9	4
373	Ground-Reaction-Force-Based Gait Analysis and Its Application to Gait Disorder Assessment: New Indices for Quantifying Walking Behavior. Sensors, 2022, 22, 7558.	3.8	1
374	A Deep CNN Framework for Neural Drive Estimation From HD-EMG Across Contraction Intensities and Joint Angles. IEEE Transactions on Neural Systems and Rehabilitation Engineering, 2022, 30, 2950-2959.	4.9	7
375	A fuzzy convolutional attention-based GRU network for human activity recognition. Engineering Applications of Artificial Intelligence, 2023, 118, 105702.	8.1	17

#	Article	IF	CITATIONS
376	Offline Evaluation Matters: Investigation of the Influence of Offline Performance on Real-Time Operation of Electromyography-Based Neural-Machine Interfaces. IEEE Transactions on Neural Systems and Rehabilitation Engineering, 2023, 31, 680-689.	4.9	3
377	Comparison of machine learning and deep learning-based methods for locomotion mode recognition using a single inertial measurement unit. Frontiers in Neurorobotics, 0, 16, .	2.8	1
378	Locomotion mode recognition method based on inertial measurement units in exoskeleton robot. , 2022, , .		0
379	Ambulation Mode Classification of Individuals with Transfemoral Amputation through A-Mode Sonomyography and Convolutional Neural Networks. Sensors, 2022, 22, 9350.	3.8	6
380	Toward a generalizable deep CNN for neural drive estimation across muscles and participants. Journal of Neural Engineering, 2023, 20, 016006.	3.5	3
381	Human-in-the-loop layered architecture for control of a wearable ankle–foot robot. Robotics and Autonomous Systems, 2023, 161, 104353.	5.1	3
382	Design of EMG-driven Musculoskeletal Model for Volitional Control of a Robotic Ankle Prosthesis. , 2022, , .		1
383	Online Human Intention Detection through Machine-learning based Algorithm for the Control of Lower-limbs Wearable Robot. , 2022, , .		0
385	Artificial Neural Network-Based Activities Classification, Gait Phase Estimation, and Prediction. Annals of Biomedical Engineering, 2023, 51, 1471-1484.	2.5	3
386	The Influence of Gait Phase on Predicting Lower-Limb Joint Angles. IEEE Transactions on Medical Robotics and Bionics, 2023, 5, 343-352.	3.2	2
387	A quantitative lower limb function assessment method based on fusion of surface EMG and inertial data in stroke patients during cycling task. Biomedical Signal Processing and Control, 2023, 85, 104880.	5.7	2
388	ViT-based Terrain Recognition System for wearable soft exosuit. Biomimetic Intelligence and Robotics, 2023, 3, 100087.	2.0	4
389	Metrological Aspects of SEMG Signal Acquisition, Processing, and Application Design. , 2023, , 1-45.		0
390	Silent Speech Recognition Based on Surface Electromyography Using a Few Electrode Sites Under the Guidance From High-Density Electrode Arrays. IEEE Transactions on Instrumentation and Measurement, 2023, 72, 1-11.	4.7	1
391	Lower Limb Motion Classification Using Energy Density Features of Surface Electromyography Signals' Activation Region and Dynamic Ensemble Model. IEEE Transactions on Instrumentation and Measurement, 2023, 72, 1-16.	4.7	0
392	Early decoding of walking tasks with minimal set of EMG channels. Journal of Neural Engineering, 2023, 20, 026038.	3.5	7
393	A review of current state-of-the-art control methods for lower-limb powered prostheses. Annual Reviews in Control, 2023, 55, 142-164.	7.9	17
394	Taking Locomotion Mode as Prior: One Algorithm-Enabled Gait Events and Kinematics Prediction on Various Terrains. IEEE Sensors Journal, 2023, 23, 13072-13083.	4.7	2

#	Article	IF	CITATIONS
395	Recent trends and challenges of surface electromyography in prosthetic applications. Biomedical Engineering Letters, 2023, 13, 353-373.	4.1	4
396	Motion Pattern Recognition of Lower Limb Exoskeleton Based on SAPSO-SVM. , 2022, , .		0
397	On Predicting Transitions to Compliant Surfaces in Human Gait via Neural and Kinematic Signals. IEEE Transactions on Neural Systems and Rehabilitation Engineering, 2023, 31, 2214-2223.	4.9	1
398	The Recognition of Ankle Movement Patterns Using LDA. Lecture Notes in Mechanical Engineering, 2023, , 2233-2251.	0.4	0
399	Vision-Based Recognition of Human Motion Intent during Staircase Approaching. Sensors, 2023, 23, 5355.	3.8	1
400	Electromyography-Based Control of Lower Limb Prostheses: A Systematic Review. IEEE Transactions on Medical Robotics and Bionics, 2023, 5, 547-562.	3.2	4
401	Development of an Ankle Assistive Robot with Instantly Gait-Adaptive Method. Journal of Robotics and Mechatronics, 2023, 35, 669-683.	1.0	3
402	Finite-State Impedance and Direct Myoelectric Control for Robotic Ankle Prostheses: Comparing Their Performance and Exploring Their Combination. IEEE Transactions on Neural Systems and Rehabilitation Engineering, 2023, 31, 2778-2788.	4.9	1
403	An efficient attention-driven deep neural network approach for continuous estimation of knee joint kinematics via sEMG signals during running. Biomedical Signal Processing and Control, 2023, 86, 105103.	5.7	0
404	An Improved Feature Extraction Method for Surface Electromyography Based on Muscle Activity Regions. IEEE Access, 2023, 11, 68410-68420.	4.2	1
405	The use of nonnormalized surface EMG and feature inputs for LSTM-based powered ankle prosthesis control algorithm development. Frontiers in Neuroscience, 0, 17, .	2.8	0
406	Review of adaptive control for stroke lower limb exoskeleton rehabilitation robot based on motion intention recognition. Frontiers in Neurorobotics, 0, 17, .	2.8	4
407	A comparative analysis of global optimization algorithms for surface electromyographic signal onset detection. Decision Analytics Journal, 2023, 8, 100294.	4.8	1
408	Highly Stable Ladderâ€Type Conjugated Polymer Based Organic Electrochemical Transistors for Low Power and Signal Processingâ€Free Surface Electromyogram Triggered Robotic Hand Control. Advanced Functional Materials, 2024, 34, .	14.9	0
409	An Optimization System for Intent Recognition Based on an Improved KNN Algorithm with Minimal Feature Set for Powered Knee Prosthesis. Journal of Bionic Engineering, 2023, 20, 2619-2632.	5.0	1
410	Metrological Aspects of SEMG Signal Acquisition, Processing, and Application Design. , 2023, , 1919-1962.		0
411	Locomotion Decoding (LocoD) – an Open-Source and Modular Platform for Researching Control of Lower Limb Assistive Devices. SSRN Electronic Journal, 0, , .	0.4	0
412	Neural prosthesis control restores near-normative neuromechanics in standing postural control. Science Robotics, 2023, 8, .	17.6	1

#	Article	IF	CITATIONS
413	User- and Speed-Independent Slope Estimation for Lower-Extremity Wearable Robots. Annals of Biomedical Engineering, 2024, 52, 487-497.	2.5	0
414	Design trends in actuated lower-limb prosthetic systems: a narrative review. Expert Review of Medical Devices, 2023, 20, 1157-1172.	2.8	0
415	Human Lower Limb Motion Intention Recognition for Exoskeletons: A Review. IEEE Sensors Journal, 2023, 23, 30007-30036.	4.7	0
416	Ankle Torque Estimation With Motor Unit Discharges in Residual Muscles Following Lower-Limb Amputation. IEEE Transactions on Neural Systems and Rehabilitation Engineering, 2023, 31, 4821-4830.	4.9	0
417	On Intuitive Control of Ankle-Foot Prostheses: A Sensor Fusion-Based Algorithm for Real-Time Prediction of Transitions to Compliant Surfaces. , 2023, , .		0
418	Offline Evaluation Matters: Investigation of the Influence of Offline Performance of EMG-Based Neural-Machine Interfaces on User Adaptation, Cognitive Load, and Physical Efforts in a Real-Time Application. IEEE Transactions on Neural Systems and Rehabilitation Engineering, 2023, 31, 3055-3063.	4.9	0
419	Terrain-Adaptive Exoskeleton Control With Predictive Gait Mode Recognition: A Pilot Study During Level Walking and Stair Ascent. IEEE Transactions on Medical Robotics and Bionics, 2024, 6, 281-291.	3.2	0
421	Locomotion transition prediction at Anticipatory Locomotor Adjustment phase with SHAP feature selection. Biomedical Signal Processing and Control, 2024, 92, 106105.	5.7	0
422	Non-invasive Techniques for Muscle Fatigue Monitoring: A Comprehensive Survey. ACM Computing Surveys, 2024, 56, 1-40.	23.0	0