Distributed Opportunistic Scheduling for Ad Hoc Netwo Optimal Stopping Approach

IEEE Transactions on Information Theory 55, 205-222 DOI: 10.1109/tit.2008.2008137

Citation Report

#	Article	IF	CITATIONS
1	Distributed opportunistic scheduling for ad hoc communications with imperfect channel information. IEEE Transactions on Wireless Communications, 2008, 7, 5450-5460.	9.2	25
2	Threshold structure of channel aware distributed scheduling in ad-hoc networks: An optimal stopping view. , 2008, , .		3
3	Cognitive Radio: How to Maximally Utilize Spectrum Opportunities in Sequential Sensing. , 2008, , .		18
4	Channel Sensing-Order Setting in Cognitive Radio Networks: A Two-User Case. IEEE Transactions on Vehicular Technology, 2009, 58, 4997-5008.	6.3	85
5	Optimal selection of channel sensing order in cognitive radio. IEEE Transactions on Wireless Communications, 2009, 8, 297-307.	9.2	255
6	Adaptive distributed algorithms for optimal random access channels. , 2010, , .		7
7	The role of channel distribution information in the cross-layer design of opportunistic scheduler for MIMO networks. , 2010, , .		0
8	Multi-round contention in wireless LANs with multipacket reception. IEEE Transactions on Wireless Communications, 2010, 9, 1503-1513.	9.2	40
9	Opportunistic multi-channel CSMA protocol for OFDMA systems. IEEE Transactions on Wireless Communications, 2010, 9, 1552-1557.	9.2	37
10	Distributed Opportunistic Scheduling With Two-Level Probing. IEEE/ACM Transactions on Networking, 2010, 18, 1464-1477.	3.8	17
11	Distributed Opportunistic Scheduling for Ad-Hoc Communications Under Delay Constraints. , 2010, , .		32
12	Finite horizon scheduling in wireless ad hoc networks. , 2010, , .		1
13	SecDCF: An Optimized Cross-Layer Scheduling Scheme Based on Physical Layer Security. , 2011, , .		2
14	Joint Channel Probing and Proportional Fair Scheduling in Wireless Networks. IEEE Transactions on Wireless Communications, 2011, 10, 3496-3505.	9.2	5
15	Distributed Opportunistic Scheduling for Cooperative Networking. , 2011, , .		0
16	Distributed Medium Access and Opportunistic Scheduling for Ad-Hoc Networks: An Analysis of the Constant Access Time Problem. , 2011, , .		0
17	Optimal Time-Frequency Diversity Exploitation for Multichannel System under Rayleigh Fading. , 2011, , .		3
18	Optimal random access for wireless networks in the presence of fading. , 2011, , .		1

#	Article	IF	CITATIONS
19	Knowing when to act: an optimal stopping method for smart grid demand response. IEEE Network, 2011, 25, 44-49.	6.9	37
20	Building Automation Networks for Smart Grids. International Journal of Digital Multimedia Broadcasting, 2011, 2011, 1-12.	0.6	11
21	Distributed Opportunistic Scheduling in Power Systems – An Optimal Stopping Approach. IFAC Postprint Volumes IPPV / International Federation of Automatic Control, 2011, 44, 3690-3694.	0.4	3
22	Randomized Spectrum Access in Cognitive Radio Networks with a Large Number of Cognitive Users. , 2011, , .		1
23	Adaptive Distributed Algorithms for Optimal Random Access Channels. IEEE Transactions on Wireless Communications, 2011, 10, 2703-2715.	9.2	32
24	Distributed Opportunistic Scheduling: A control theoretic approach. , 2012, , .		16
25	Optimal Wireless Networks Based on Local Channel State Information. IEEE Transactions on Signal Processing, 2012, 60, 4913-4929.	5.3	16
26	Distributed Opportunistic Channel Access in Wireless Relay Networks. IEEE Journal on Selected Areas in Communications, 2012, 30, 1675-1683.	14.0	14
27	Opportunistic Spectrum Access in Unknown Dynamic Environment: A Game-Theoretic Stochastic Learning Solution. IEEE Transactions on Wireless Communications, 2012, 11, 1380-1391.	9.2	229
28	Energy efficiency driven random access in WLAN system. , 2012, , .		0
28 29	Energy efficiency driven random access in WLAN system. , 2012, , . Optimal Frequency-Temporal Opportunity Exploitation for Multichannel Ad Hoc Networks. IEEE Transactions on Parallel and Distributed Systems, 2012, 23, 2289-2302.	5.6	0
28 29 30	Energy efficiency driven random access in WLAN system. , 2012, , . Optimal Frequency-Temporal Opportunity Exploitation for Multichannel Ad Hoc Networks. IEEE Transactions on Parallel and Distributed Systems, 2012, 23, 2289-2302. Exploring opportunistic scheduling in ad-hoc network with physical layer security. , 2012, , .	5.6	0 14 2
28 29 30 31	Energy efficiency driven random access in WLAN system. , 2012, , . Optimal Frequency-Temporal Opportunity Exploitation for Multichannel Ad Hoc Networks. IEEE Transactions on Parallel and Distributed Systems, 2012, 23, 2289-2302. Exploring opportunistic scheduling in ad-hoc network with physical layer security. , 2012, ,. Opportunistic Cooperative Networking: To Relay or Not To Relay?. IEEE Journal on Selected Areas in Communications, 2012, 30, 307-314.	5.6 14.0	0 14 2 34
28 29 30 31 32	Energy efficiency driven random access in WLAN system., 2012,, Optimal Frequency-Temporal Opportunity Exploitation for Multichannel Ad Hoc Networks. IEEE Transactions on Parallel and Distributed Systems, 2012, 23, 2289-2302. Exploring opportunistic scheduling in ad-hoc network with physical layer security., 2012,,. Opportunistic Cooperative Networking: To Relay or Not To Relay?. IEEE Journal on Selected Areas in Communications, 2012, 30, 307-314. On the Achievable Degrees-of-Freedom by Distributed Scheduling in (N,K)-User Interference Channels.	5.6 14.0 7.8	0 14 2 34 6
28 29 30 31 32 33	Energy efficiency driven random access in WLAN system. , 2012, , . Optimal Frequency-Temporal Opportunity Exploitation for Multichannel Ad Hoc Networks. IEEE Transactions on Parallel and Distributed Systems, 2012, 23, 2289-2302. Exploring opportunistic scheduling in ad-hoc network with physical layer security. , 2012, , . Opportunistic Cooperative Networking: To Relay or Not To Relay?. IEEE Journal on Selected Areas in Communications, 2012, 30, 307-314. On the Achievable Degrees-of-Freedom by Distributed Scheduling in (N,K)-User Interference Channels. IEEE Transactions on Communications, 2013, 61, 2568-2579. Distributed Opportunistic Scheduling for Wireless Ad-Hoc Networks with Block-Fading Model. IEEE Journal on Selected Areas in Communications, 2013, 31, 2324-2337.	5.6 14.0 7.8 14.0	0 14 2 34 6 10
28 29 30 31 32 33 33	Energy efficiency driven random access in WLAN system., 2012, , .Optimal Frequency-Temporal Opportunity Exploitation for Multichannel Ad Hoc Networks. IEEE Transactions on Parallel and Distributed Systems, 2012, 23, 2289-2302.Exploring opportunistic scheduling in ad-hoc network with physical layer security., 2012, , .Opportunistic Cooperative Networking: To Relay or Not To Relay?. IEEE Journal on Selected Areas in Communications, 2012, 30, 307-314.On the Achievable Degrees-of-Freedom by Distributed Scheduling in (N,K)-User Interference Channels. IEEE Transactions on Communications, 2013, 61, 2568-2579.Distributed Opportunistic Scheduling for Wireless Ad-Hoc Networks with Block-Fading Model. IEEE Journal on Selected Areas in Communications, 2013, 31, 2324-2337.Opportunistic Channel-Aware Spectrum Access for Cognitive Radio Networks with Interleaved Transmission and Sensing. IEEE Transactions on Wireless Communications, 2013, 12, 2376-2388.	5.6 14.0 7.8 14.0 9.2	0 14 2 34 6 10
28 29 30 31 32 33 33 34	Energy efficiency driven random access in WLAN system., 2012, ,. Optimal Frequency-Temporal Opportunity Exploitation for Multichannel Ad Hoc Networks. IEEE Transactions on Parallel and Distributed Systems, 2012, 23, 2289-2302. Exploring opportunistic scheduling in ad-hoc network with physical layer security., 2012, ,. Opportunistic Cooperative Networking: To Relay or Not To Relay?. IEEE Journal on Selected Areas in Communications, 2012, 30, 307-314. On the Achievable Degrees-of-Freedom by Distributed Scheduling in (N,K)-User Interference Channels. IEEE Transactions on Communications, 2013, 61, 2568-2579. Distributed Opportunistic Scheduling for Wireless Ad-Hoc Networks with Block-Fading Model. IEEE Journal on Selected Areas in Communications, 2013, 31, 2324-2337. Opportunistic Channel-Aware Spectrum Access for Cognitive Radio Networks with Interleaved Transmission and Sensing. IEEE Transactions on Wireless Communications, 2013, 12, 2376-2388. To stay or to switch: Multiuser dynamic channel access., 2013,,.	5.6 14.0 7.8 14.0 9.2	0 14 2 34 6 10 16 9

#	Article	IF	CITATIONS
37	Sequential opportunistic spectrum access with imperfect channel sensing. Ad Hoc Networks, 2013, 11, 778-797.	5.5	5
38	A Survey on Opportunistic Scheduling in Wireless Communications. IEEE Communications Surveys and Tutorials, 2013, 15, 1671-1688.	39.4	143
39	Channel-Aware Opportunistic Transmission Scheduling for Energy-Efficient Wireless Links. IEEE Transactions on Vehicular Technology, 2013, 62, 192-204.	6.3	28
40	Decision-Theoretic Distributed Channel Selection for Opportunistic Spectrum Access: Strategies, Challenges and Solutions. IEEE Communications Surveys and Tutorials, 2013, 15, 1689-1713.	39.4	196
41	Pricing-Based Decentralized Spectrum Access Control in Cognitive Radio Networks. IEEE/ACM Transactions on Networking, 2013, 21, 522-535.	3.8	62
42	Opportunistic Spectrum Access for Cognitive Radio Networks withMultiple Secondary Users. IEEE Transactions on Wireless Communications, 2013, 12, 6214-6227.	9.2	7
43	Optimal channel selection in multi-user multi-channel secondary networks. , 2013, , .		0
44	Channel quality prediction based on Bayesian inference in cognitive radio networks. , 2013, , .		81
45	Opportunistic channel-aware spectrum access for cognitive radio networks with periodic sensing. , 2013, , .		3
46	QoS-oriented distributed opportunistic scheduling for wireless networks with hybrid links. , 2013, , .		2
47	Achievable degrees-of-freedom by distributed scheduling in an (n, K)-user interference channel. , 2013, ,		0
48	Collaborative Opportunistic Scheduling in Heterogeneous Networks: A Distributed Approach. Mathematical Problems in Engineering, 2014, 2014, 1-12.	1.1	1
49	Stochastic adaptive eventâ€ŧriggered control and network scheduling protocol coâ€design for distributed networked systems. IET Control Theory and Applications, 2014, 8, 2253-2265.	2.1	20
50	Optimal Spectrum Sensing for Cognitive Radio with Imperfect Detector. , 2014, , .		3
51	Grand challenges for constraint programming. Constraints, 2014, 19, 150-162.	0.7	10
52	Diversity-Multiplexing Tradeoff for Opportunistic Access Systems. IEEE Wireless Communications Letters, 2014, 3, 185-188.	5.0	1
53	A Dual-Threshold Policy for Opportunistic Spectrum Access in Fading Channels. IEEE Communications Letters, 2014, 18, 2229-2232.	4.1	0
54	Distributed opportunistic scheduling for wireless networks powered by renewable energy sources. , 2014, , .		9

			0
#	ARTICLE	IF	CITATIONS
55	Energy-Efficient Optimization for Distributed Opportunistic Scheduling. IEEE Communications Letters, 2014, 18, 1083-1086.	4.1	9
56	Service Centric Scheduling with Strict Deadlines. , 2014, , .		0
57	Service Centric Scheduling with Strict Deadlines. , 2015, , .		3
58	Optimal relay selection with non-negligible probing time. , 2015, , .		0
59	Two-Level Distributed Opportunistic Scheduling in DF Relay Networks. IEEE Wireless Communications Letters, 2015, 4, 477-480.	5.0	3
60	Opportunistic Transmission Scheduling for Secure Wireless Links: An Optimal Stopping Approach. , 2015, , .		0
61	Opportunistic Channel Scheduling for Ad Hoc Networks with Queue Stability. Frequenz, 2015, 69, .	0.9	0
62	Adaptive Mechanism for Distributed Opportunistic Scheduling. IEEE Transactions on Wireless Communications, 2015, 14, 3494-3508.	9.2	2
63	To Stay or To Switch: Multiuser Multi-Channel Dynamic Access. IEEE Transactions on Mobile Computing, 2015, 14, 858-871.	5.8	9
64	An Online Approach to Dynamic Channel Access and Transmission Scheduling. , 2015, , .		16
65	Opportunistic Cooperative Channel Access in Distributed Wireless Networks With Decode-and-Forward Relays. IEEE Communications Letters, 2015, 19, 1778-1781.	4.1	5
66	Residential Demand Response Algorithms: State-of-the-Art, Key Issues and Challenges. Lecture Notes of the Institute for Computer Sciences, Social-Informatics and Telecommunications Engineering, 2015, , 18-32.	0.3	15
67	Energy-Efficient Transmission Strategy by Using Optimal Stopping Approach for Mobile Networks. Mobile Information Systems, 2016, 2016, 1-16.	0.6	5
68	Optimal opportunistic transmissions over directional mm wave channels. , 2016, , .		0
69	Optimal relay selection strategies in heterogeneous cooperative relaying networks. , 2016, , .		0
70	The performance of random CSMA networks with threshold scheduling. Transactions on Emerging Telecommunications Technologies, 2016, 27, 1550-1562.	3.9	1
71	Delay-Energy Tradeoff in Multicast Scheduling for Green Cellular Systems. IEEE Journal on Selected Areas in Communications, 2016, 34, 1235-1249.	14.0	25
72	DOâ€Fast: a roundâ€robin opportunistic scheduling protocol for deviceâ€toâ€device communications. Wireless Communications and Mobile Computing, 2016, 16, 519-537.	1.2	1

#	Article	IF	CITATIONS
73	Autonomous-Vehicle Public Transportation System: Scheduling and Admission Control. IEEE Transactions on Intelligent Transportation Systems, 2016, 17, 1210-1226.	8.0	108
74	Distributed Opportunistic Scheduling With <roman>QoS</roman> Constraints for Wireless Networks With Hybrid Links. IEEE Transactions on Vehicular Technology, 2016, 65, 8511-8527.	6.3	1
75	"Friend is Treasure― Exploring and Exploiting Mobile Social Contacts for Efficient Task Offloading. IEEE Transactions on Vehicular Technology, 2016, 65, 5485-5496.	6.3	21
76	Distributed Opportunistic Scheduling for Energy Harvesting Based Wireless Networks: A Two-Stage Probing Approach. IEEE/ACM Transactions on Networking, 2016, 24, 1618-1631.	3.8	22
77	On Opportunistic mmWave Networks With Blockage. IEEE Journal on Selected Areas in Communications, 2017, 35, 2137-2147.	14.0	12
78	Regret Benefit Ratio Link Scheduler for Wireless Backhaul With Directional Antennas. IEEE Transactions on Vehicular Technology, 2017, 66, 10220-10232.	6.3	5
79	Practical distributed scheduling for QoS-aware small cell mmWave mesh backhaul network. Ad Hoc Networks, 2017, 55, 62-71.	5.5	11
80	A Channel-Aware Expected Energy Consumption Minimization Strategy in Wireless Networks. , 2017, , .		0
81	Joint Listening, Probing, and Transmission Strategies for the Frame-Based Equipment in Unlicensed Spectrum. IEEE Transactions on Vehicular Technology, 2018, 67, 1750-1764.	6.3	4
82	A Cache Placement Strategy for Energy Savings in CCN. , 2018, , .		0
84	Optimal Energy Efficiency Data Dissemination Strategy Based on Optimal Stopping Theory in Mobile Network. Lecture Notes in Computer Science, 2018, , 41-52.	1.3	1
85	Decentralized Opportunistic Access for D2D Underlaid Cellular Networks. IEEE Transactions on Communications, 2018, , 1-1.	7.8	22
86	Optimal Wireless Service Within Average Delay. IEEE Transactions on Wireless Communications, 2018, 17, 5494-5505.	9.2	0
87	Delay and Energy Efficiency Tradeoff for Information Pushing System. IEEE Transactions on Green Communications and Networking, 2018, 2, 1027-1040.	5.5	9
88	A channel-aware expected energy consumption minimization strategy in wireless networks. Soft Computing, 2019, 23, 6051-6063.	3.6	1
89	An Optimal Stopping Approach to Cell Selection in 5G Networks. IEEE Access, 2019, 7, 116094-116106.	4.2	1
90	Sequential Learning and Decision-Making in Dynamic Channel Access and Transmission Scheduling. , 2019, , 869-897.		0
91	A Data Transmission Strategy with Energy Minimization Based on Optimal Stopping Theory in Mobile Cloud Computing. Wireless Communications and Mobile Computing, 2019, 2019, 1-11.	1.2	0

#	Article	IF	CITATIONS
92	Throughput optimal random medium access control for relay networks with time-varying channels. Computer Communications, 2019, 133, 129-141.	5.1	4
93	Efficient broadcast in opportunistic networks using optimal stopping theory. Ad Hoc Networks, 2019, 88, 5-17.	5.5	21
94	OEDDBOS: An Efficient Data Distributing Strategy with Energy Saving in Sensor-Cloud Systems. Wireless Communications and Mobile Computing, 2020, 2020, 1-14.	1.2	0
95	Distributed Opportunistic Scheduling in Cooperative Networks With RF Energy Harvesting. IEEE/ACM Transactions on Networking, 2020, 28, 2257-2270.	3.8	2
96	Distributed Scheduling in Wireless Multiple Decode-and-forward Relay Networks. Mobile Networks and Applications, 2020, 25, 1886-1899.	3.3	0
97	Dynamic Hierarchical Caching Resource Allocation for 5G-ICN Slice. IEEE Access, 2021, 9, 134972-134983.	4.2	2
99	Multiuser Scheduling via Dynamic Optimization. Lecture Notes in Computer Science, 2010, , 95-106.	1.3	0
100	Distributed Adaptive Scheduling for Finite Horizon in Wireless Ad hoc Networks. Journal of Communications, 2012, 7, .	1.6	2
101	Denser Networks for the Future Internet, the CROWD Approach. Lecture Notes of the Institute for Computer Sciences, Social-Informatics and Telecommunications Engineering, 2013, , 28-41.	0.3	4
102	Distributed Joint Optimal Network Scheduling and Controller Design for Wireless Networks. Lecture Notes in Electrical Engineering, 2013, , 147-162.	0.4	2
103	Power Minimization Through Packet Retention in Cognitive Radio Sensor Networks Under Interference and Delay Constraints: An Optimal Stopping Approach. Lecture Notes of the Institute for Computer Sciences, Social-Informatics and Telecommunications Engineering, 2015, , 211-222.	0.3	0
104	Dynamic Spectrum Access with Spatial Reuse. International Journal of Multimedia and Ubiquitous Engineering, 2016, 11, 327-336.	0.4	0
105	Game-Theoretic Opportunistic Spectrum Sharing. , 2016, , 319-348.		0
106	Sequential Learning and Decision-Making in Dynamic Channel Access and Transmission Scheduling. , 2017, , 1-29.		0
107	MAC Protocols for Energy-Efficient Wireless Sensor Networks. Computer Communications and Networks, 2019, , 141-159.	0.8	2
108	Distributed Scheduling in Wireless Multiple Decode-and-Forward Relay Networks. Lecture Notes of the Institute for Computer Sciences, Social-Informatics and Telecommunications Engineering, 2020, , 278-295.	0.3	0
109	DOS/SP: Distributed Opportunistic Channel Access with Smart Probing in Wireless Cooperative Networks. Lecture Notes of the Institute for Computer Sciences, Social-Informatics and Telecommunications Engineering, 2020, , 209-227.	0.3	0
110	DOS by Dynamic Groups: a Coalition Formation Game Perspective. Mobile Networks and Applications, 0, , 1.	3.3	0

#	Article	IF	CITATIONS
111	Opportunities and Challenges for Constraint Programming. Proceedings of the AAAI Conference on Artificial Intelligence, 2012, 26, 2148-2152.	4.9	2
112	On Dynamic Node Cooperation Strategy Design for Energy Efficiency in Hierarchical Federated Learning. Electronics (Switzerland), 2023, 12, 2362.	3.1	0
113	Optimal Stopping Problems in Low-Dimensional Feature Spaces: Lossless Conditions and Approximations. , 2023, , .		0