CITATION REPORT List of articles citing

Genomic and epigenetic evidence for oxytocin receptor deficiency in autism

DOI: 10.1186/1741-7015-7-62 BMC Medicine, 2009, 7, 62.

Source: https://exaly.com/paper-pdf/45877905/citation-report.pdf

Version: 2024-04-25

This report has been generated based on the citations recorded by exaly.com for the above article. For the latest version of this publication list, visit the link given above.

The third column is the impact factor (IF) of the journal, and the fourth column is the number of citations of the article.

#	Paper	IF	Citations
445	Defective oxytocin function: a clue to understanding the cause of autism?. <i>BMC Medicine</i> , 2009 , 7, 63	11.4	20
444	Recent advances in research on early detection, causes, biology, and treatment of autism spectrum disorders. 2010 , 23, 95-6		19
443	Early communication development in socially deprived children Isimilar to autism?. 2010, 1,		
442	Autism and oxytocin: new developments in translational approaches to therapeutics. 2010 , 7, 250-7		93
441	No association between oxytocin or prolactin gene variants and childhood-onset mood disorders. <i>Psychoneuroendocrinology</i> , 2010 , 35, 1422-8	5	14
440	Rethinking schizophrenia. 2010 , 468, 187-93		1163
439	Neuroscience: In their nurture. 2010 , 467, 146-8		24
438	Oxytocin: recent developments. 2010 , 1, 367-80		3
437	The contribution of oxytocin and vasopressin to mammalian social behavior: potential role in autism spectrum disorder. 2010 , 18, 82-97		49
436	Global methylation profiling of lymphoblastoid cell lines reveals epigenetic contributions to autism spectrum disorders and a novel autism candidate gene, RORA, whose protein product is reduced in autistic brain. 2010 , 24, 3036-51		265
435	Two genetic variants of CD38 in subjects with autism spectrum disorder and controls. 2010 , 67, 181-91		151
434	Evidence that genetic variation in the oxytocin receptor (OXTR) gene influences social cognition in ADHD. 2010 , 34, 697-702		63
433	The challenge of translation in social neuroscience: a review of oxytocin, vasopressin, and affiliative behavior. 2010 , 65, 768-79		814
432	Autism spectrum disorders and epigenetics. 2010 , 49, 794-809		152
431	D-cycloserine facilitates socially reinforced learning in an animal model relevant to autism spectrum disorders. 2011 , 70, 298-304		36
430	A complicated picture of oxytocin action in the central nervous system revealed. 2011 , 69, 818-9		10
429	Oxytocin and social motivation. <i>Developmental Cognitive Neuroscience</i> , 2011 , 1, 471-93	5.5	118

428	Oxytocin receptor gene (OXTR) is related to psychological resources. 2011 , 108, 15118-22	190
427	Increasing oxytocin receptor expression in the nucleus accumbens of pre-pubertal female prairie voles enhances alloparental responsiveness and partner preference formation as adults. 2011 , 60, 498-504	90
426	Oxytocin and autism: a hypothesis to research. Can perinatal oxitocinergic manipulation facilitate autism?. 2011 , 4, 38-41	1
425	Sensorimotor integration and psychopathology: motor control abnormalities related to psychiatric disorders. 2011 , 12, 560-73	19
424	All-trans retinoic acid upregulates reduced CD38 transcription in lymphoblastoid cell lines from Autism spectrum disorder. 2011 , 17, 799-806	58
423	A maternal influence on Reading the mind in the Eyes mediated by executive function: differential parental influences on full and half-siblings. 2011 , 6, e23236	15
422	Genetic basis of autism: is there a way forward?. 2011 , 24, 226-36	56
421	Annual Research Review: Transgenic mouse models of childhood-onset psychiatric disorders. 2011 , 52, 442-75	25
420	Prosocial effects of oxytocin and clinical evidence for its therapeutic potential. 2011 , 32, 426-50	214
419	Male predominance in autism: neuroendocrine influences on arousal and social anxiety. 2011 , 4, 163-76	61
418	Approach to epigenetic analysis in language disorders. 2011 , 3, 356-64	11
417	Progress in understanding autism: 2007-2010. 2011 , 41, 395-404	49
416	Association of oxytocin receptor (OXTR) gene variants with multiple phenotype domains of autism spectrum disorder. 2011 , 3, 101-12	119
415	Potential for oxytocin use in children and adolescents with mental illness. 2011 , 26, 271-81	11
414	A candidate circuit approach to investigating autism. 2011 , 294, 1671-84	2
413	Absence of preference for social novelty and increased grooming in integrin B knockout mice: initial studies and future directions. 2011 , 4, 57-67	80
412	Oxytocin and autism: a hypothesis to research. Can perinatal oxitocinergic manipulation facilitate autism?. 2011 , 4, 38-41	5
411	Epigenetics meets endocrinology. 2011 , 46, R11-32	189

410	A genomic point-of-view on environmental factors influencing the human brain methylome. 2011 , 6, 862-9		71
409	Pentapeptide sharing between Corynebacterium diphtheria toxin and the human neural protein network. 2011 , 33, 360-72		7
408	Large-scale methylation domains mark a functional subset of neuronally expressed genes. 2011 , 21, 158.	3-91	72
407	Transgenerational impact of intimate partner violence on methylation in the promoter of the glucocorticoid receptor. <i>Translational Psychiatry</i> , 2011 , 1, e21	8.6	364
406	Gene-environment interactions and epigenetic pathways in autism: the importance of one-carbon metabolism. 2012 , 53, 322-40		42
405	Effects of a common variant in the CD38 gene on social processing in an oxytocin challenge study: possible links to autism. 2012 , 37, 1474-82		72
404	The Systems Theory of Autistogenesis: Putting the Pieces Together. 2012 , 2, 215824401244428		3
403	Triggers for autism: genetic and environmental factors. 2012 , 4, 27-36		9
402	Analysing adverse effects of epidural analgesia in labour. 2012 , 20, 704-708		3
401	Dynamic changes in DNA methylation of stress-associated genes (OXTR, BDNF) after acute psychosocial stress. <i>Translational Psychiatry</i> , 2012 , 2, e150	8.6	180
401 400		8.6	180
	psychosocial stress. <i>Translational Psychiatry</i> , 2012 , 2, e150 Loss of Maged1 results in obesity, deficits of social interactions, impaired sexual behavior and	8.6	
400	psychosocial stress. <i>Translational Psychiatry</i> , 2012 , 2, e150 Loss of Maged1 results in obesity, deficits of social interactions, impaired sexual behavior and severe alteration of mature oxytocin production in the hypothalamus. 2012 , 21, 4703-17 Integrative approaches utilizing oxytocin to enhance prosocial behavior: from animal and human	8.6	46
400 399	Loss of Maged1 results in obesity, deficits of social interactions, impaired sexual behavior and severe alteration of mature oxytocin production in the hypothalamus. 2012 , 21, 4703-17 Integrative approaches utilizing oxytocin to enhance prosocial behavior: from animal and human social behavior to autistic social dysfunction. 2012 , 32, 14109-17	8.6	107
400 399 398	Loss of Maged1 results in obesity, deficits of social interactions, impaired sexual behavior and severe alteration of mature oxytocin production in the hypothalamus. 2012, 21, 4703-17 Integrative approaches utilizing oxytocin to enhance prosocial behavior: from animal and human social behavior to autistic social dysfunction. 2012, 32, 14109-17 DNA methylation as a biomarker for neuropsychiatric diseases. 2012, 122, 165-76	8.6	46 107 27
400 399 398 397	Loss of Maged1 results in obesity, deficits of social interactions, impaired sexual behavior and severe alteration of mature oxytocin production in the hypothalamus. 2012, 21, 4703-17 Integrative approaches utilizing oxytocin to enhance prosocial behavior: from animal and human social behavior to autistic social dysfunction. 2012, 32, 14109-17 DNA methylation as a biomarker for neuropsychiatric diseases. 2012, 122, 165-76 Role of endocrine factors in autistic spectrum disorders. 2012, 59, 75-88, x Oxytocin receptor knockout mice display deficits in the expression of autism-related behaviors.	8.6	46 107 27
400 399 398 397 396	Loss of Maged1 results in obesity, deficits of social interactions, impaired sexual behavior and severe alteration of mature oxytocin production in the hypothalamus. 2012, 21, 4703-17 Integrative approaches utilizing oxytocin to enhance prosocial behavior: from animal and human social behavior to autistic social dysfunction. 2012, 32, 14109-17 DNA methylation as a biomarker for neuropsychiatric diseases. 2012, 122, 165-76 Role of endocrine factors in autistic spectrum disorders. 2012, 59, 75-88, x Oxytocin receptor knockout mice display deficits in the expression of autism-related behaviors. 2012, 61, 436-44 The oxytocin system in drug discovery for autism: animal models and novel therapeutic strategies.	8.6	46 107 27 12 99

(2012-2012)

392	Genes associated with autism spectrum disorder. 2012 , 88, 543-52	70
391	Social 'wanting' dysfunction in autism: neurobiological underpinnings and treatment implications. 2012 , 4, 10	120
390	Social attention: a possible early indicator of efficacy in autism clinical trials. 2012, 4, 11	92
389	Intranasal oxytocin versus placebo in the treatment of adults with autism spectrum disorders: a randomized controlled trial. 2012 , 3, 16	223
388	Evidence of novel fine-scale structural variation at autism spectrum disorder candidate loci. 2012 , 3, 2	32
387	Brain transcriptional and epigenetic associations with autism. 2012 , 7, e44736	110
386	Epigenetic Epidemiology of Autism and Other Neurodevelopmental Disorders. 2012, 321-342	2
385	Elevated transcription factor specificity protein 1 in autistic brains alters the expression of autism candidate genes. 2012 , 71, 410-8	35
384	Balance of brain oxytocin and vasopressin: implications for anxiety, depression, and social behaviors. 2012 , 35, 649-59	611
383	Validation of proposed DSM-5 criteria for autism spectrum disorder. 2012 , 51, 28-40.e3	228
382	Examining autism spectrum disorders by biomarkers: example from the oxytocin and serotonin systems. 2012 , 51, 712-721.e1	52
381	The effects of birth order and birth interval on the phenotypic expression of autism spectrum disorder. 2012 , 7, e51049	12
380	Association between oxytocin receptor gene polymorphisms and self-rated 'empathic concern' in schizophrenia. 2012 , 7, e51882	59
379	Imaging-genetics in autism spectrum disorder: advances, translational impact, and future directions. 2012 , 3, 46	29
378	DNA methylation of the oxytocin receptor gene predicts neural response to ambiguous social stimuli. 2012 , 6, 280	132
377	Etiology. 145-178	
376	Epigenetic Modulation of Human Neurobiological Disorders. 2012 , 193-203	
375	Cognitive dysfunction in psychiatric disorders: characteristics, causes and the quest for improved	

374	Working up autism: the practical role of medical genetics. 2012 , 160C, 104-10	21
373	Metabolic imbalance associated with methylation dysregulation and oxidative damage in children with autism. 2012 , 42, 367-77	167
372	Non-synonymous single-nucleotide variations of the human oxytocin receptor gene and autism spectrum disorders: a case-control study in a Japanese population and functional analysis. 2013 , 4, 22	28
371	The expanding genomic landscape of autism: discovering the 'forest' beyond the 'trees'. 2013 , 8, 29-42	15
370	Antiaggressive activity of central oxytocin in male rats. 2013 , 229, 639-51	69
369	An epigenetic framework for neurodevelopmental disorders: from pathogenesis to potential therapy. 2013 , 68, 2-82	159
368	The role of maternal care in shaping CNS function. 2013 , 47, 371-8	29
367	Investigation of an F-18 oxytocin receptor selective ligand via PET imaging. 2013, 23, 5415-20	23
366	Molecular analysis of parturition via oxytocin receptor expression. 2013 , 52, 165-70	13
365	The EPIIC hypothesis: intrapartum effects on the neonatal epigenome and consequent health outcomes. 2013 , 80, 656-62	63
364	Oxytocin and vasopressin in rodent behaviors related to social dysfunctions in autism spectrum disorders. 2013 , 251, 85-94	95
363	Mice heterozygous for the oxytocin receptor gene (Oxtr(+/-)) show impaired social behaviour but not increased aggression or cognitive inflexibility: evidence of a selective haploinsufficiency gene effect. 2013 , 25, 107-18	74
362	From genes to environment: using integrative genomics to build a "systems-level" understanding of autism spectrum disorders. 2013 , 84, 89-103	31
361	Research review: Social motivation and oxytocin in autismimplications for joint attention development and intervention. 2013 , 54, 603-18	57
360	Epigenomic strategies at the interface of genetic and environmental risk factors for autism. 2013 , 58, 396-401	61
359	Carbon-11 N-methyl alkylation of L-368,899 and in vivo PET imaging investigations for neural oxytocin receptors. 2013 , 23, 902-6	19
358	Autism as early neurodevelopmental disorder: evidence for an sAPPEmediated anabolic pathway. 2013 , 7, 94	45
357	The role of oxytocin in psychiatric disorders: a review of biological and therapeutic research findings. 2013 , 21, 219-47	164

356	Autisms. 2013 , 651-694		8
355	Epigenetics and autism. 2013 , 2013, 826156		15
354	Comprehensive gene expression analyses of the rat prefrontal cortex after oxysterol treatment. 2013 , 124, 770-81		6
353	Complex epigenetic regulation of engrailed-2 (EN-2) homeobox gene in the autism cerebellum. <i>Translational Psychiatry</i> , 2013 , 3, e232	8.6	75
352	VP/OT. 2013 , 975-981		2
351	DNA methylation of specific CpG sites in the promoter region regulates the transcription of the mouse oxytocin receptor. 2013 , 8, e56869		75
350	Age-dependent decrease and alternative splicing of methionine synthase mRNA in human cerebral cortex and an accelerated decrease in autism. 2013 , 8, e56927		49
349	Performance comparison of bench-top next generation sequencers using microdroplet PCR-based enrichment for targeted sequencing in patients with autism spectrum disorder. 2013 , 8, e74167		24
348	Mothers of autistic children: lower plasma levels of oxytocin and Arg-vasopressin and a higher level of testosterone. 2013 , 8, e74849		27
347	Epigenetic regulation of the oxytocin receptor gene: implications for behavioral neuroscience. 2013 , 7, 83		124
346	Nonsocial functions of hypothalamic oxytocin. 2013 , 2013, 179272		53
345	Genome-wide analysis of DNA methylation in human amnion. 2013 , 2013, 678156		19
344	Association of Copy Number Variations in Autism Spectrum Disorders: A Systematic Review. 2014 , 2014, 1-9		10
343	Early involvement in friendships predicts later plasma concentrations of oxytocin and vasopressin in juvenile rhesus macaques (Macaca mulatta). 2014 , 8, 295		18
342	Genetic variation in the oxytocin receptor (OXTR) gene is associated with Asperger Syndrome. 2014 , 5, 48		41
341	ACOG Committee Opinion no. 597: Committee on Obstetric Practice: Labor induction or augmentation and autism. 2014 , 123, 1140-1142		6
340	Methylomic analysis of monozygotic twins discordant for autism spectrum disorder and related behavioural traits. 2014 , 19, 495-503		236
339	Polymorphisms in the oxytocin receptor gene are associated with the development of psychopathy. 2014 , 26, 21-31		92

338 Genetic predisposition of behavioral response. **2014**, 111, 1672-3

337	Depression during pregnancy: molecular regulations of mothers' and children's behaviour. 2014 , 42, 582-6		14
336	Biomarkers in autism. 2014 , 5, 100		109
335	Methylation of the oxytocin receptor gene and oxytocin blood levels in the development of psychopathy. 2014 , 26, 33-40		138
334	Common DNA methylation alterations in multiple brain regions in autism. 2014, 19, 862-71		219
333	Evidence for alterations in stimulatory G proteins and oxytocin levels in children with autism. <i>Psychoneuroendocrinology</i> , 2014 , 40, 159-69	5	33
332	Brain region-specific methylation in the promoter of the murine oxytocin receptor gene is involved in its expression regulation. <i>Psychoneuroendocrinology</i> , 2014 , 39, 121-131	5	44
331	Nasal oxytocin for social deficits in childhood autism: a randomized controlled trial. 2014 , 44, 521-31		168
330	Glutamatergic candidate genes in autism spectrum disorder: an overview. 2014 , 121, 1081-106		22
329	Can Oxytocin Improve Core Brain and Behavioral Features of Autism Spectrum Disorders in Children?. 2014 , 189-199		1
328	Association between the oxytocin receptor (OXTR) gene and mesolimbic responses to rewards. 2014 , 5, 7		37
327	Cumulative risk on the oxytocin receptor gene (OXTR) underpins empathic communication difficulties at the first stages of romantic love. 2014 , 9, 1524-9		66
326	A deletion involving CD38 and BST1 results in a fusion transcript in a patient with autism and asthma. 2014 , 7, 254-63		29
325	Using genetic findings in autism for the development of new pharmaceutical compounds. 2014 , 231, 1063-78		15
324	Novel region discovery method for Infinium 450K DNA methylation data reveals changes associated with aging in muscle and neuronal pathways. 2014 , 13, 142-55		59
323	Environmental risk, Oxytocin Receptor Gene (OXTR) methylation and youth callous-unemotional traits: a 13-year longitudinal study. 2014 , 19, 1071-7		161
322	Autism, oxytocin and interoception. 2014 , 47, 410-30		230
321	Epigenetic Regulation of Infant Neurobehavioral Outcomes. 2014 , 2, 71-79		31

320	Epigenetic dysregulation of SHANK3 in brain tissues from individuals with autism spectrum disorders. 2014 , 23, 1563-78	94
319	Beyond labor: the role of natural and synthetic oxytocin in the transition to motherhood. 2014 , 59, 35-42: quiz 108	64
318	5-Methycytosine and 5-Hydroxymethylcytosine in Psychiatric Epigenetics. 2014 , 209-240	1
317	Is oxytocin a maternal-foetal signalling molecule at birth? Implications for development. 2014 , 26, 739-49	44
316	The contribution of epigenetics to understanding genetic factors in autism. 2014, 18, 872-81	29
315	Implications of prenatal steroid perturbations for neurodevelopment, behavior, and autism. 2014 , 35, 961-91	96
314	Variation in the oxytocin receptor gene is associated with increased risk for anxiety, stress and depression in individuals with a history of exposure to early life stress. 2014 , 59, 93-100	68
313	Epigenetic mechanisms in autism spectrum disorder. 2014 , 115, 203-44	34
312	The role of oxytocin and vasopressin in emotional and social behaviors. 2014 , 124, 53-68	33
311	Oxytocin plasma concentrations in children and adolescents with autism spectrum disorder: correlation with autistic symptomatology. 2014 , 6, 231-9	39
310	The Brave New World of Epigenetics: Embracing Complexity in the Study of Speech and Language Disorders. 2014 , 1, 207-214	5
309	A twin study of heritable and shared environmental contributions to autism. 2014 , 44, 2013-25	69
308	Aerosolized oxytocin increases cerebrospinal fluid oxytocin in rhesus macaques. **Psychoneuroendocrinology**, 2014 , 45, 49-57	112
307	Schizophrenia and alcohol dependence: diverse clinical effects of oxytocin and their evolutionary origins. 2014 , 1580, 102-23	8
306	Oxytocin pathways and the evolution of human behavior. 2014 , 65, 17-39	361
305	Intranasal oxytocin in the treatment of autism spectrum disorders: a review of literature and early safety and efficacy data in youth. 2014 , 1580, 188-98	108
304	Pathological aggression. 86-96	
303	Autism. 113-133	1

302 Is Autism Associated With Induced or Augmented Labor?. **2014**, 31, 4-4

301	Autism spectrum disorder model mice: Focus on copy number variation and epigenetics. 2015 , 58, 976-84	5
300	Early social environment affects the endogenous oxytocin system: a review and future directions. 2015 , 6, 32	28
299	Interaction between oxytocin receptor DNA methylation and genotype is associated with risk of postpartum depression in women without depression in pregnancy. 2015 , 6, 243	70
298	Toward a radically embodied neuroscience of attachment and relationships. 2015, 9, 266	36
297	Oxytocin and vasopressin: linking pituitary neuropeptides and their receptors to social neurocircuits. 2015 , 9, 335	95
296	Is Oxytocin Application for Autism Spectrum Disorder Evidence-Based?. 2015 , 24, 312-24	20
295	Genetics of Autism Spectrum Disorder: Current Status and Possible Clinical Applications. 2015 , 24, 257-72	88
294	Gene-environment interaction between the oxytocin receptor (OXTR) gene and parenting behaviour on children's theory of mind. 2015 , 10, 1749-57	18
293	Perinatal programming of neurodevelopment: epigenetic mechanisms and the prenatal shaping of the brain. 2015 , 10, 335-61	22
292	References. 2015 , 301-339	
291	Oxytocin-augmented labor and risk for autism in males. 2015 , 284, 207-12	51
290	Oxytocin receptor gene sequences in owl monkeys and other primates show remarkable interspecific regulatory and protein coding variation. 2015 , 91, 160-77	10
289	Methylation of the oxytocin receptor gene in clinically depressed patients compared to controls: The role of OXTR rs53576 genotype. 2015 , 65, 9-15	59
288	Shortened Telomeres in Families With a Propensity to Autism. 2015 , 54, 588-94	17
287	Genetic modulation of oxytocin sensitivity: a pharmacogenetic approach. <i>Translational Psychiatry</i> , 8.6 2015 , 5, e664	41
286	Epigenetic modification of the oxytocin receptor gene influences the perception of anger and fear in the human brain. 2015 , 112, 3308-13	141
285	Are ASD and ADHD a Continuum? A Comparison of Pathophysiological Similarities Between the Disorders. 2015 , 19, 805-27	39

(2015-2015)

284	Oxytocin receptor gene methylation: converging multilevel evidence for a role in social anxiety. 2015 , 40, 1528-38		118
283	Childhood maternal care is associated with DNA methylation of the genes for brain-derived neurotrophic factor (BDNF) and oxytocin receptor (OXTR) in peripheral blood cells in adult men and women. 2015 , 18, 451-61		115
282	The Role of Epigenetic Change in Autism Spectrum Disorders. 2015 , 6, 107		138
281	Severity of eating disorder symptoms related to oxytocin receptor polymorphisms in anorexia nervosa. 2015 , 228, 641-8		29
280	New opportunities in vasopressin and oxytocin research: a perspective from the amygdala. 2015 , 38, 369-88		38
279	Oxytocin, vasopressin, and Williams syndrome: epigenetic effects on abnormal social behavior. 2015 , 6, 28		13
278	Sevoflurane-induced down-regulation of hippocampal oxytocin and arginine vasopressin impairs juvenile social behavioral abilities. <i>Journal of Molecular Neuroscience</i> , 2015 , 56, 70-7	3.3	15
277	RNAi knockdown of oxytocin receptor in the nucleus accumbens inhibits social attachment and parental care in monogamous female prairie voles. 2015 , 10, 561-70		80
276	Advances in therapeutic interventions for neurodevelopmental disorders. 2015 , 28, 73-5		1
275	Fetal DNA methylation of autism spectrum disorders candidate genes: association with spontaneous preterm birth. 2015 , 212, 533.e1-9		38
274	Epigenetic mechanisms: A possible link between autism spectrum disorders and fetal alcohol spectrum disorders. 2015 , 102, 71-80		10
273	An integrative model of autism spectrum disorder: ASD as a neurobiological disorder of experienced environmental deprivation, early life stress and allostatic overload. 2015 , 17, 81-119		19
272	Causal effects on child language development: A review of studies in communication sciences and disorders. 2015 , 57, 3-15		15
271	Oxytocin, Vasopressin, and the Motivational Forces that Drive Social Behaviors. 2016 , 27, 51-103		79
270	ZNF277 microdeletions, specific language impairment and the meiotic mismatch methylation (3M) hypothesis. 2015 , 23, 1113		4
269	Autism Spectrum Disorder. 2015 , 78-97		2
268	Novel interactive partners of neuroligin 3: new aspects for pathogenesis of autism. <i>Journal of Molecular Neuroscience</i> , 2015 , 56, 89-101	3.3	14
267	Peripartum depression and anxiety as an integrative cross domain target for psychiatric preventative measures. 2015 , 276, 32-44		17

266	Developmental perspectives on oxytocin and vasopressin. 2015 , 40, 24-42	113
265	Epigenetic Effect of Environmental Factors on Autism Spectrum Disorders. 2016 , 13,	26
264	From Autism to Eating Disorders and More: The Role of Oxytocin in Neuropsychiatric Disorders. 2015 , 9, 497	59
263	Implications of Oxytocin in Human Linguistic Cognition: From Genome to Phenome. 2016 , 10, 271	10
262	From Genetics to Epigenetics: New Perspectives in Tourette Syndrome Research. 2016 , 10, 277	25
261	Plasma Oxytocin in Children with Autism and Its Correlations with Behavioral Parameters in Children and Parents. 2016 , 13, 174-83	43
260	Hypothesis on supine sleep, sudden infant death syndrome reduction and association with increasing autism incidence. 2016 , 5, 330-42	2
259	Genetic and epigenetic methylation defects and implication of the ERMN gene in autism spectrum disorders. <i>Translational Psychiatry</i> , 2016 , 6, e855	22
258	Comparative Perspectives on Oxytocin and Vasopressin Receptor Research in Rodents and Primates: Translational Implications. 2016 , 28,	106
257	DNA Methylation Analysis of HTR2A Regulatory Region in Leukocytes of Autistic Subjects. 2016 , 9, 204-9	12
257256	DNA Methylation Analysis of HTR2A Regulatory Region in Leukocytes of Autistic Subjects. 2016 , 9, 204-9 Meta-analysis and association of two common polymorphisms of the human oxytocin receptor gene in autism spectrum disorder. 2016 , 9, 1036-1045	30
	Meta-analysis and association of two common polymorphisms of the human oxytocin receptor	
256	Meta-analysis and association of two common polymorphisms of the human oxytocin receptor gene in autism spectrum disorder. 2016 , 9, 1036-1045	30
256 255	Meta-analysis and association of two common polymorphisms of the human oxytocin receptor gene in autism spectrum disorder. 2016 , 9, 1036-1045 Epigenetic Research in Neuropsychiatric Disorders: the "Tissue Issue". 2016 , 3, 264-274 Comparing oxytocin and cortisol regulation in a double-blind, placebo-controlled, hydrocortisone	30 70
256255254	Meta-analysis and association of two common polymorphisms of the human oxytocin receptor gene in autism spectrum disorder. 2016, 9, 1036-1045 Epigenetic Research in Neuropsychiatric Disorders: the "Tissue Issue". 2016, 3, 264-274 Comparing oxytocin and cortisol regulation in a double-blind, placebo-controlled, hydrocortisone challenge pilot study in children with autism and typical development. 2016, 8, 32	30 70 6
256255254253	Meta-analysis and association of two common polymorphisms of the human oxytocin receptor gene in autism spectrum disorder. 2016, 9, 1036-1045 Epigenetic Research in Neuropsychiatric Disorders: the "Tissue Issue". 2016, 3, 264-274 Comparing oxytocin and cortisol regulation in a double-blind, placebo-controlled, hydrocortisone challenge pilot study in children with autism and typical development. 2016, 8, 32 Placental methylome analysis from a prospective autism study. 2016, 7, 51 Merging data from genetic and epigenetic approaches to better understand autistic spectrum	30 70 6 35
256255254253252	Meta-analysis and association of two common polymorphisms of the human oxytocin receptor gene in autism spectrum disorder. 2016, 9, 1036-1045 Epigenetic Research in Neuropsychiatric Disorders: the "Tissue Issue". 2016, 3, 264-274 Comparing oxytocin and cortisol regulation in a double-blind, placebo-controlled, hydrocortisone challenge pilot study in children with autism and typical development. 2016, 8, 32 Placental methylome analysis from a prospective autism study. 2016, 7, 51 Merging data from genetic and epigenetic approaches to better understand autistic spectrum disorder. Epigenomics, 2016, 8, 85-104 Maternal adversities during pregnancy and cord blood oxytocin receptor (OXTR) DNA methylation.	30 70 6 35 29

248	Oxytocin Receptor Genetic and Epigenetic Variations: Association With Child Abuse and Adult Psychiatric Symptoms. 2016 , 87, 122-34	91
247	The Neurobiology and Genetics of Affiliation and Social Bonding in Animal Models. 2016 , 101-134	7
246	Rodent Models of Autism, Epigenetics, and the Inescapable Problem of Animal Constraint. 2016 , 265-301	5
245	Oxytocin Receptor Methylation and Cognition in Psychotic Disorders. 2016 , 2, 151-160	13
244	Lower neighborhood quality in adolescence predicts higher mesolimbic sensitivity to reward anticipation in adulthood. <i>Developmental Cognitive Neuroscience</i> , 2016 , 22, 48-57	28
243	The emerging roles of MicroRNAs in autism spectrum disorders. 2016 , 71, 729-738	29
242	Epigenetic evidence for involvement of the oxytocin receptor gene in obsessive-compulsive disorder. 2016 , 17, 79	39
241	Autism-relevant behaviors are minimally impacted by conditional deletion of Pten in oxytocinergic neurons. 2016 , 9, 1248-1262	12
240	Elevated plasma oxytocin levels in children with Prader-Willi syndrome compared with healthy unrelated siblings. 2016 , 170, 594-601	39
239	Toward a Mechanistic Understanding of How Variation in the Oxytocin Receptor Gene Shapes Individual Differences in Brain and Social Behavior. 2016 , 80, e7-e9	1
238	The altered promoter methylation of oxytocin receptor gene in autism. 2016 , 30, 280-284	30
237	The interplay between DNA methylation, folate and neurocognitive development. <i>Epigenomics</i> , 2016 , 8, 863-79	44
236	Oxytocin, testosterone, and human social cognition. 2016 , 91, 390-408	88
235	Variation in the Oxytocin Receptor Gene Predicts Brain Region-Specific Expression and Social Attachment. 2016 , 80, 160-169	100
234	Sex and diagnosis specific associations between DNA methylation of the oxytocin receptor gene with emotion processing and temporal-limbic and prefrontal brain volumes in psychotic disorders. 2016 , 1, 141-151	33
233	The two fold role of oxytocin in social developmental disorders: A cause and a remedy?. 2016 , 63, 168-76	32
232	Oxytocin Pathway Genes: Evolutionary Ancient System Impacting on Human Affiliation, Sociality, and Psychopathology. 2016 , 79, 174-84	225
231	Natural variation in maternal care and cross-tissue patterns of oxytocin receptor gene methylation in rats. 2016 , 77, 42-52	52

230	The endocrinology of human caregiving and its intergenerational transmission. 2017, 29, 971-999	39
229	Epigenetic regulation of RELN and GAD1 in the frontal cortex (FC) of autism spectrum disorder (ASD) subjects. 2017 , 62, 63-72	27
228	Localization of oxytocin receptors in the prairie vole (Microtus ochrogaster) neocortex. 2017, 348, 201-211	13
227	Genes Related to Oxytocin and Arginine-Vasopressin Pathways: Associations with Autism Spectrum Disorders. 2017 , 33, 238-246	42
226	A part of patients with autism spectrum disorder has haploidy of HPC-1/syntaxin1A gene that possibly causes behavioral disturbance as in experimentally gene ablated mice. 2017 , 644, 5-9	12
225	Epigenetics of Autism Spectrum Disorder. 2017 , 978, 63-90	73
224	DNA methylation patterns of behavior-related gene promoter regions dissect the gray wolf from domestic dog breeds. 2017 , 292, 685-697	11
223	Analysis of estrogen receptor Igene methylation in autistic males in a Chinese Han population. 2017 , 32, 1033-1042	2
222	A neuroendocrine account of facial mimicry and its dynamic modulation. 2017 , 77, 98-106	25
221	Oxytocin pathways in the intergenerational transmission of maternal early life stress. 2017 , 73, 293-308	62
220	Methylation of the oxytocin receptor gene mediates the effect of adversity on negative schemas and depression. 2017 , 29, 725-736	31
219	The potential role of oxytocin and perinatal factors in the pathogenesis of autism spectrum disorders - review of the literature. 2017 , 247, 288-290	10
218	Epigenetic regulators sculpt the plastic brain. 2017 , 12, 317-332	
217	Oxytocin and Animal Models for Autism Spectrum Disorder. 2018 , 35, 213-237	14
216	Overview of Human Oxytocin Research. 2018 , 35, 321-348	37
215	Oxytocin Receptor Polymorphisms are Differentially Associated with Social Abilities across Neurodevelopmental Disorders. 2017 , 7, 11618	23
214	Perinatal depression and DNA methylation of oxytocin-related genes: a study of mothers and their children. 2017 , 96, 84-94	48
213	Epigenetics of human diseases and scope in future therapeutics. 2017 , 12, 205-211	11

(2017-2017)

212	early life adversity, and childhood trajectories of anxiousness. 2017 , 7, 7446	51
211	Oxytocin and Human Evolution. 2018 , 35, 291-319	12
2 10	Variation in DNA methylation of the oxytocin receptor gene predicts children's resilience to prenatal stress. 2017 , 29, 1663-1674	42
209	Bio-collections in autism research. 2017 , 8, 34	15
208	Intranasal oxytocin treatment for social deficits and biomarkers of response in children with autism. 2017 , 114, 8119-8124	148
207	Exaggerated CpH methylation in the autism-affected brain. 2017 , 8, 6	22
206	Prenatal stress exposure, oxytocin receptor gene (OXTR) methylation, and child autistic traits: The moderating role of OXTR rs53576 genotype. 2017 , 10, 430-438	54
205	Pharmaceuticals and Stem Cells in Autism Spectrum Disorders: Wishful Thinking?. 2017 , 98, 659-672	5
204	[Epigenetics' implication in autism spectrum disorders: A review]. 2017, 43, 374-381	16
203	Beyond the hype and hope: Critical considerations for intranasal oxytocin research in autism spectrum disorder. 2017 , 10, 25-41	44
202	Oxytocin, a main breastfeeding hormone, prevents hypertension acquired in utero: A therapeutics preview. 2017 , 1861, 3071-3084	5
201	Epigenetic silencing of genomic structural variations. 2017 , 53, 1072-1079	3
200	Oxytocin Modulation of Neural Circuits. 2018 , 35, 31-53	20
199	Social Behavior of Pet Dogs Is Associated with Peripheral OXTR Methylation. 2017 , 8, 549	17
198	Oxytocin: Control of Secretion by the Brain and Central Roles?. 2017,	6
197	Epigenetic and Neural Circuitry Landscape of Psychotherapeutic Interventions. 2017 , 2017, 5491812	6
196	The Neurobiology of Social Affiliation and Pair Bonding. 2017 , 117-143	4
195	The Oxytocin-Vasopressin Pathway in the Context of Love and Fear. 2017 , 8, 356	59

194	Social Cognition in Individuals With Intellectual and Developmental Disabilities: Recent Advances and Trends in Research. 2017 , 53, 91-161		3
193	Melanocortin 4 receptor stimulation improves social deficits in mice through oxytocin pathway. 2018 , 133, 366-374		12
192	Maternal depression, antidepressant use and placental oxytocin receptor DNA methylation: Findings from the MPEWS study. <i>Psychoneuroendocrinology</i> , 2018 , 90, 1-8	5	15
191	Epigenetics and cerebral organoids: promising directions in autism spectrum disorders. <i>Translational Psychiatry</i> , 2018 , 8, 14	8.6	31
190	Interactions Between Oxytocin Receptor Gene Methylation and Callous-Unemotional Traits Impact Socioaffective Brain Systems in Conduct-Disordered Offenders. 2018 , 3, 379-391		8
189	Biomarker discovery for disease status and symptom severity in children with autism. <i>Psychoneuroendocrinology</i> , 2018 , 89, 39-45	5	23
188	How do hypothalamic nonapeptides shape youth's sociality? A systematic review on oxytocin, vasopressin and human socio-emotional development. 2018 , 90, 309-331		23
187	The impact of atypical sensory processing on social impairments in autism spectrum disorder. <i>Developmental Cognitive Neuroscience</i> , 2018 , 29, 151-167	5.5	158
186	Oxytocin receptors (OXTR) and early parental care: An interaction that modulates psychiatric disorders. 2018 , 82, 27-38		34
185	Chronic Intranasal Oxytocin has Dose-dependent Effects on Central Oxytocin and Vasopressin Systems in Prairie Voles (Microtus ochrogaster). 2018 , 369, 292-302		24
184	The effects of DNA methylation on human psychology. 2018 , 346, 47-65		39
183	Neuroimaging Epigenetics: Challenges and Recommendations for Best Practices. 2018 , 370, 88-100		9
182	Fifty Years of Advances in Neuroendocrinology. 2018 , 2, 2398212818812014		7
181	The late positive potential and subjective arousal ratings evoked by negative images vary as a function of oxytocin receptor genotype SNP rs53576. 2018 , 29, 1145-1150		2
180	Epigenetic dysregulation of Oxtr in Tet1-deficient mice has implications for neuropsychiatric disorders. 2018 , 3,		13
179	Moderating effect of mode of delivery on the genetics of intelligence: Explorative genome-wide analyses in ALSPAC. <i>Brain and Behavior</i> , 2018 , 8, e01144	3.4	3
178	Molecular Pathology and Pharmacological Treatment of Autism Spectrum Disorder-Like Phenotypes Using Rodent Models. 2018 , 12, 422		19
177	Effect of age and autism spectrum disorder on oxytocin receptor density in the human basal forebrain and midbrain. <i>Translational Psychiatry</i> , 2018 , 8, 257	8.6	36

176	rodents and primates. 2018 , 109, 1-8		14
175	DNA methylation of OXTR is associated with parasympathetic nervous system activity and amygdala morphology. 2018 , 13, 1155-1162		12
174	The role of oxytocin receptor gene (OXTR) DNA methylation (DNAm) in human social and emotional functioning: a systematic narrative review. 2018 , 18, 154		59
173	A Review of Oxytocin and Arginine-Vasopressin Receptors and Their Modulation of Autism Spectrum Disorder. 2018 , 11, 27		47
172	Case-control meta-analysis of blood DNA methylation and autism spectrum disorder. 2018, 9, 40		48
171	Epigenetic regulation of the oxytocin receptor is associated with neural response during selective social attention. <i>Translational Psychiatry</i> , 2018 , 8, 116	8.6	30
170	DNA methylation analysis from saliva samples for epidemiological studies. 2018 , 13, 352-362		13
169	Linking genetics to epigenetics: The role of folate and folate-related pathways in neurodevelopmental disorders. 2019 , 95, 241-252		15
168	Prenatal stress disrupts social behavior, cortical neurobiology and commensal microbes in adult male offspring. 2019 , 359, 886-894		44
167	DNA Methylation and Hydroxymethylation and Behavior. 2019 , 42, 51-82		6
166	Trauma exposure, posttraumatic stress disorder and oxytocin: A meta-analytic investigation of endogenous concentrations and receptor genotype. 2019 , 107, 560-601		10
165	A Mathematical Model Relating Pitocin Use during Labor with Offspring Autism Development in terms of Oxytocin Receptor Desensitization in the Fetal Brain. 2019 , 2019, 8276715		5
164	Interaction between polymorphisms of the oxytocinergic system genes and emotion perception in inpatients with anorexia nervosa. 2019 , 27, 481-494		7
163	Childhood Adversity, Socioeconomic Instability, Oxytocin-Receptor-Gene Methylation, and Romantic-Relationship Support Among Young African American Men. 2019 , 30, 1234-1244		11
162	Association of oxytocin levels and oxytocin receptor gene polymorphism (rs2254298) with cardiovascular risk factors in Brazilian elderly from Primary Health Care. 2019 , 84, 103903		2
161	Vasopressin in the Amelioration of Social Functioning in Autism Spectrum Disorder. 2019 , 8,		10
160	The importance of the epigenome for social-related neural circuits. <i>Epigenomics</i> , 2019 , 11, 1557-1560	4.4	
159	The psychopharmacology of autism spectrum disorder and Rett syndrome. 2019 , 165, 391-414		9

158	Epigenetic dynamics in infancy and the impact of maternal engagement. 2019 , 5, eaay0680	25
157	DNA Methylation and Susceptibility to Autism Spectrum Disorder. 2019 , 70, 151-166	45
156	Maternal High Fat Diet-Induced Obesity Modifies Histone Binding and Expression of in Offspring Hippocampus in a Sex-Specific Manner. 2019 , 20,	32
155	Epigenetic modification of the oxytocin receptor gene is associated with emotion processing in the infant brain. <i>Developmental Cognitive Neuroscience</i> , 2019 , 37, 100648	29
154	Mechanisms for the Approach/Avoidance Decision Applied to Autism. 2019 , 42, 448-457	11
153	The epigenetics of autism. 2019 , 285-302	2
152	Toward a transdiagnostic model of common and unique processes leading to the major disorders of childhood: The REAL model of attention, responsiveness and learning. 2019 , 119, 103410	14
151	Oxytocin receptor DNA methylation and alterations of brain volumes in maltreated children. 2019 , 44, 2045-2053	26
150	Epigenetic Regulation of the Social Brain. 2019 , 42, 471-484	22
149	A randomized placebo-controlled pilot trial shows that intranasal vasopressin improves social deficits in children with autism. 2019 , 11,	51
148	The oxytocin receptor gene predicts brain activity during an emotion recognition task in autism. 2019 , 10, 12	17
147	Reduced DNA Methylation of the Oxytocin Receptor Gene Is Associated With Anhedonia-Asociality in Women With Recent-Onset Schizophrenia and Ultra-high Risk for Psychosis. 2019 , 45, 1279-1290	14
146	The Oxytocin System: Single Gene Effects on Social Behavior Across Species. 2019 , 250-258	
145	Oxytocin alleviates cellular senescence through oxytocin receptor-mediated extracellular signal-regulated kinase/Nrf2 signalling. 2019 , 181, 1216-1225	12
144	Genetic association of DNMT variants can play a critical role in defining the methylation patterns in autism. 2019 , 71, 901-907	8
143	Mathematical Models for Possible Roles of Oxytocin and Oxytocin Receptors in Autism. 2019 , 2019, 7308197	1
142	Early nurture epigenetically tunes the oxytocin receptor. <i>Psychoneuroendocrinology</i> , 2019 , 99, 128-136 5	42
141	Assessing risk of neurodevelopmental disorders after birth with oxytocin: a systematic review and meta-analysis. 2019 , 49, 881-890	10

(2020-2019)

140	Oxytocin receptor gene methylation in male and female PTSD patients and trauma-exposed controls. 2019 , 29, 147-155		11
139	Epigenetic variability in the human oxytocin receptor (OXTR) gene: A possible pathway from early life experiences to psychopathologies. 2019 , 96, 127-142		23
138	Targeting the Oxytocin System: New Pharmacotherapeutic Approaches. 2019, 40, 22-37		28
137	Genetic and epigenetic regulatory mechanisms of the oxytocin receptor gene (OXTR) and the (clinical) implications for social behavior. 2019 , 108, 84-93		17
136	Associations between oxytocin receptor gene (OXTR) methylation, plasma oxytocin, and attachment across adulthood. 2019 , 136, 22-32		37
135	OXTR methylation modulates exogenous oxytocin effects on human brain activity during social interaction. 2020 , 19, e12555		12
134	The interaction between oxytocin receptor gene methylation and maternal behavior on children's early theory of mind abilities. 2020 , 32, 511-519		4
133	Epigenomic Convergence of Neural-Immune Risk Factors in Neurodevelopmental Disorder Cortex. 2020 , 30, 640-655		14
132	Methylation of the OXTR gene in women with anorexia nervosa: Relationship to social behavior. 2020 , 28, 79-86		10
131	Oxytocin Receptor Signaling in Vascular Function and Stroke. 2020 , 14, 574499		6
130	Social Cognition in a Research Domain Criteria Perspective: A Bridge Between Schizophrenia and Autism Spectra Disorders. 2020 , 11, 806		11
129	Sperm DNA methylation altered by THC and nicotine: Vulnerability of neurodevelopmental genes with bivalent chromatin. 2020 , 10, 16022		12
128	Rationale, design, and methods of the Autism Centers of Excellence (ACE) network Study of Oxytocin in Autism to improve Reciprocal Social Behaviors (SOARS-B). 2020 , 98, 106103		5
127	Pathways linking adverse environments to emerging adults' substance abuse and depressive symptoms: A prospective analysis of rural African American men. 2021 , 33, 1496-1506		3
126	The Generalized Adaptation Account of Autism. 2020 , 14, 534218		2
125	Methylation of OXT and OXTR genes, central oxytocin, and social behavior in female macaques. 2020 , 126, 104856		3
124	Is Oxytocin "Nature's Medicine"?. 2020 , 72, 829-861		72
123	Epigenetic tuning of brain signal entropy in emergent human social behavior. <i>BMC Medicine</i> , 2020 , 18, 244	11.4	4

Epigenetics in Developmental Disorders. 2020, 75-81

121	DNA methylation and brain structure and function across the life course: A systematic review. 2020 , 113, 133-156	21
120	Autisms. 2020 , 35-77	5
119	Attenuated relationship between salivary oxytocin levels and attention to social information in adolescents and adults with autism spectrum disorder: a comparative study. 2020 , 19, 38	5
118	Reduced DNA methylation of the oxytocin receptor gene is associated with obsessive-compulsive disorder. <i>Clinical Epigenetics</i> , 2020 , 12, 101	12
117	Intranasal oxytocin modulates brain responses to voice-identity recognition in typically developing individuals, but not in ASD. <i>Translational Psychiatry</i> , 2020 , 10, 221	1
116	Dysregulation of the oxytocin receptor gene in Williams syndrome. <i>Psychoneuroendocrinology</i> , 2020 , 115, 104631	6
115	Epigenetic modification of the oxytocin receptor gene: implications for autism symptom severity and brain functional connectivity. 2020 , 45, 1150-1158	26
114	Genetic and Epigenetic Etiology Underlying Autism Spectrum Disorder. 2020 , 9,	29
113	Brain oxytocin: how puzzle stones from animal studies translate into psychiatry. 2021 , 26, 265-279	49
112	Oxytocin-MCH circuit regulates monosynaptic inputs to MCH neurons and modulates social recognition memory. 2021 , 184, 108423	4
111	Genetic and epigenetic modulation of the oxytocin receptor and implications for autism. 2021 , 46, 241-242	4
110	The promiscuity of the oxytocin-vasopressin systems and their involvement in autism spectrum disorder. 2021 , 182, 121-140	2
109	Encyclopedia of Autism Spectrum Disorders. 2021 , 1814-1818	
108	Genetic, epigenetic, and environmental factors controlling oxytocin receptor gene expression. Clinical Epigenetics, 2021, 13, 23	6
107	Examining the effect of chronic intranasal oxytocin administration on the neuroanatomy and behavior of three autism-related mouse models.	2
106	DNA Methylation of the Oxytocin Receptor Across Neurodevelopmental Disorders. 2021 , 51, 3610-3623	10
105	Long-term epigenetic effects of parental caregiving. 2021 , 105-117	1

5-Methylcytosine and 5-hydroxymethylcytosine in psychiatric epigenetics. **2021**, 275-308

103	Maternal Diabetes-Induced Suppression of Oxytocin Receptor Contributes to Social Deficits in Offspring. 2021 , 15, 634781		4
102	Genetic and molecular biology of autism spectrum disorder among Middle East population: a review. 2021 , 15, 17		2
101	Differential DNA Methylation of the IMMP2L Gene in Families with Maternally Inherited 7q31.1 Microdeletions is Associated with Intellectual Disability and Developmental Delay. 2021 , 161, 105-119		3
100	An Epigenetically Distinct Subset of Children With Autism Spectrum Disorder Resulting From Differences in Blood Cell Composition. 2021 , 12, 612817		2
99	The role of oxytocin signaling in depression and suicidality in returning war veterans. Psychoneuroendocrinology, 2021 , 126, 105085	5	5
98	Neuroimaging and DNA Methylation: An Innovative Approach to Study the Effects of Early Life Stress on Developmental Plasticity. 2021 , 12, 672786		2
97	The epigenetic regulation of synaptic genes contributes to the etiology of autism. 2021 , 32, 791-802		1
96	Oxytocin Receptor Exon III Methylation in the Umbilical Cord Blood of Newborns With Prenatal Exposure to Crack Cocaine. 2021 , 9, 639287		О
95	Randomized clinical trial shows no substantial modulation of empathy-related neural activation by intranasal oxytocin in autism. 2021 , 11, 15056		1
94	Oxytocin receptor gene (OXTR) DNA methylation is associated with autism and related social traits [A systematic review. 2021 , 85, 101785		3
93	Hypermethylation of the oxytocin receptor gene (OXTR) in obsessive-compulsive disorder: further evidence for a biomarker of disease and treatment response. 2021 , 1-11		3
92	Oxytocin: A citation network analysis of 10000 papers. 2021 , 33, e13014		2
91	Review of eating disorders and oxytocin receptor polymorphisms. 2021 , 9, 85		O
90	Oxytocin receptor is a promising therapeutic target of malignant mesothelioma. 2021 , 112, 3520-3532		3
89	DNA methylation signatures in autism spectrum disorders. 1		О
88	Effects of Prenatal Phthalate Exposure and Childhood Exercise on Maternal Behaviors in Female Rats at Postpartum: A Role of Methylation in the Hypothalamus. 2021 , 22,		O
87	The Importance of Experimental Investigation of the CNS Oxytocin System. 2022 , 2384, 53-65		

86	[Genetic risk factors and their influence on neural development in autism spectrum disorders]. 2021 , 1-16		O
85	Associations between childhood maltreatment and DNA methylation of the oxytocin receptor gene in immune cells of mother-newborn dyads. <i>Translational Psychiatry</i> , 2021 , 11, 449	8.6	3
84	Intrapartum transfer of oxytocin across the human placenta: An ex vivo perfusion experiment. 2021 , 112, 105-110		1
83	Evaluating Methylation of the Oxytocin Receptor Gene and the Oxytocin Intergenic Region. 2022 , 2384, 81-103		
82	Obese status is associated with accelerated DNA methylation change in peripheral blood of senior dogs. 2021 , 139, 193-199		1
81	Serum Oxytocin Level Correlates With Gut Microbiome Dysbiosis in Children With Autism Spectrum Disorder. 2021 , 15, 721884		O
80	Human induced pluripotent stem cell-based studies; a new route toward modeling autism spectrum disorders. 2021 , 37-81		
79	Failure to approach, autism. 2021 , 177-203		
78	Neurobiology of sociability. 2012 , 739, 187-205		35
77	Functional Magnetic Resonance Imaging in Developmental Psychopathology: The Brain as a Window into the Development and Treatment of Psychopathology. 2014 , 265-286		1
76	The Strategies of the Genes: Genomic Conflicts, Attachment Theory, and Development of the Social Brain. 2011 , 143-167		6
75	Epigenetics at the Interface of Genetics and Environmental Factors in Autism. 2013, 97-114		2
74	Oxytocin, Vasopressin and Related Peptides in the Regulation of Behavior. 56-72		6
73	Oxytocin, Vasopressin and Related Peptides in the Regulation of Behavior. 309-330		1
72	Oxytocin, Vasopressin and Related Peptides in the Regulation of Behavior. 367-378		1
71	Pathways linking childhood trauma to rural, unmarried, African American father involvement through oxytocin receptor gene methylation. 2020 , 56, 1496-1508		6
70	High-risk Autism Spectrum Disorder Utah pedigrees: a novel Shared Genomic Segments analysis.		2
69	Oxytocin and vasopressin are dysregulated in Williams Syndrome, a genetic disorder affecting social behavior. 2012 , 7, e38513		74

Differential methylation of the oxytocin receptor gene in patients with anorexia nervosa: a pilot study. 2014 , 9, e88673	58
Toward a Radically Embodied Neuroscience of Attachment and Relationships?.	4
Engineered probiotic and prebiotic nutraceutical supplementations in combating non-communicable disorders: A review. 2020 ,	1
and Autism in The Isfahan Population: Is There An Epigenetic Relationship. 2017 , 18, 540-546	8
Clinical and Neurobiological Relevance of Current Animal Models of Autism Spectrum Disorders. 2016 , 24, 207-43	21
Intranasal Oxytocin in Children and Adolescents with Autism Spectrum Disorder. 2021 , 385, 1462-1473	18
Analysis of Global and Local DNA Methylation Patterns in Blood Samples of Patients With Autism Spectrum Disorder. 2021 , 9, 685310	3
[Pathways of research in autism]. 2011 , 39, 73-7	1
Role of microRNAs in Autism Spectrum Disorder. 215-235	
Genome-Wide Analysis of DNA Methylation in Human Amnion. 2013, 65-88	
Autism and Increased Paternal Age. 2014 , 1525-1541	
Oxytocin Receptors and Neurobehavior. 2016 , 209-226	
3: Epigenetics. 2016 , 39-52	
Exaggerated CpH Methylation in the Autism-Affected Brain.	
Epigenetic and Birth. 2017 , 4,	
Integrative Nutrition. 2017 , 541-554	
Oxytocin for labour induction or augmentation as a risk factor for autism: systematic literature review. 2017 , 51,	
Epigenomic convergence of genetic and immune risk factors in neurodevelopmental disorder cortex.	2
	Toward a Radically Embodied Neuroscience of Attachment and Relationships?. Engineered probiotic and prebiotic nutraceutical supplementations in combating non-communicable disorders: A review. 2020, and Autism in The Isfahan Population: Is There An Epigenetic Relationship. 2017, 18, 540-546 Clinical and Neurobiological Relevance of Current Animal Models of Autism Spectrum Disorders. 2016, 24, 207-43 Intranasal Oxytocin in Children and Adolescents with Autism Spectrum Disorder. 2021, 385, 1462-1473 Analysis of Global and Local DNA Methylation Patterns in Blood Samples of Patients With Autism Spectrum Disorder. 2021, 9, 685310 [Pathways of research in autism]. 2011, 39, 73-7 Role of microRNAs in Autism Spectrum Disorder. 215-235 Genome-Wide Analysis of DNA Methylation in Human Amnion. 2013, 65-88 Autism and Increased Paternal Age. 2014, 1525-1541 Oxytocin Receptors and Neurobehavior. 2016, 209-226 3: Epigenetics. 2016, 39-52 Exaggerated CpH Methylation in the Autism-Affected Brain. Epigenetic and Birth. 2017, 4, Integrative Nutrition. 2017, 541-554 Oxytocin for labour induction or augmentation as a risk factor for autism: systematic literature review. 2017, 51, Epigenomic convergence of genetic and immune risk factors in neurodevelopmental disorder

50	Peripheral blood DNA methylation and autism spectrum disorder.		1
49	A Mathematical Model Relating Pitocin Use During Labor with Offspring Autism Development in Terms of Oxytocin Receptor Desensitization in the Fetal Brain.		
48	Transcriptome Profiling of Dysregulated GPCRs Reveals Overlapping Patterns across Psychiatric Disorders and Age-Disease Interactions. 2021 , 10,		3
47	Epigenetic protection: maternal touch and DNA-methylation in early life. 2022, 43, 111-117		3
46	The early overgrowth theory of autism spectrum disorder: Insight into convergent mechanisms from valproic acid exposure and translational models. 2020 , 173, 275-300		1
45	Social Communication is an Emerging Target for Pharmacotherapy in Autism Spectrum Disorder - A Review of the Literature on Potential Agents. <i>Journal of the Canadian Academy of Child and Adolescent Psychiatry</i> , 2014 , 23, 20-30	0.7	10
44	Oxytocin receptor expression and epigenetic regulation in the anterior cingulate cortex of individuals with a history of severe childhood abuse. <i>Psychoneuroendocrinology</i> , 2021 , 136, 105600	5	1
43	An epigenetic rheostat of experience: DNA methylation of OXTR as a mechanism of early life allostasis. <i>Comprehensive Psychoneuroendocrinology</i> , 2021 , 8, 100098	1.1	3
42	OXTR-Related Markers in Clinical Depression: a Longitudinal Case-Control Psychotherapy Study. Journal of Molecular Neuroscience, 2021 , 72, 695	3.3	
41	Oxytocin system gene methylation is associated with empathic responses towards children <i>Psychoneuroendocrinology</i> , 2021 , 137, 105629	5	O
40	The Relationship of Serum Oxytocin Levels with Sexual Function and Depression: A Cross-Sectional Study. <i>Current Women's Health Reviews</i> , 2022 , 18,	0.2	
39	Correlation among maternal risk factors, gene methylation and disease severity in females with autism spectrum disorder <i>Epigenomics</i> , 2022 ,	4.4	1
38	Associations between alcohol use and peripheral, genetic, and epigenetic markers of oxytocin in a general sample of young and older adults <i>Brain and Behavior</i> , 2022 , e2425	3.4	1
37	Neuroepigenetic impact on mentalizing in childhood <i>Developmental Cognitive Neuroscience</i> , 2022 , 54, 101080	5.5	O
36	The Role of Epigenetic Mechanisms in Autoimmune, Neurodegenerative, Cardiovascular, and Imprinting Disorders <i>Mini-Reviews in Medicinal Chemistry</i> , 2022 ,	3.2	
35	Regulation of oxytocin receptor gene expression in obsessive-compulsive disorder: a possible role for the microbiota-host epigenetic axis <i>Clinical Epigenetics</i> , 2022 , 14, 47	7.7	O
34	Distinct promoter regions of the oxytocin receptor gene are hypomethylated in Prader-Willi syndrome and in Prader-Willi syndrome associated psychosis.		
33	Epigenetic Epidemiology of Autism and Other Neurodevelopmental Disorders. 2022, 405-426		

32 Oxytocin and vasopressin in human sociality and social psychopathologies. 343-366

31	Oxytocin and Oxytocin Receptor Gene Regulation in Williams Syndrome: A Systematic Review <i>Yale Journal of Biology and Medicine</i> , 2021 , 94, 623-635	2.4	
30	Wahrnehmungsschwellen und Stflungen der Tastsinneswahrnehmung. 2022 , 91-134		1
29	Examining the effect of chronic intranasal oxytocin administration on the neuroanatomy and behavior of three autism-related mouse models <i>NeuroImage</i> , 2022 , 257, 119243	7.9	О
28	Genetic and epigenetic signatures associated with plasma oxytocin levels in children and adolescents with autism spectrum disorder.		0
27	Epigenetic Interface of Autism Spectrum Disorders (ASDs): Implications of Chromosome 15q11텹13 Segment. <i>ACS Chemical Neuroscience</i> ,	5.7	О
26	The Role of Genetics, Epigenetics, and the Environment in ASD: A Mini Review. <i>Epigenomes</i> , 2022 , 6, 15	2.3	2
25	Distinct promoter regions of the oxytocin receptor gene are hypomethylated in Prader-Willi syndrome and in Prader-Willi syndrome associated psychosis. <i>Translational Psychiatry</i> , 2022 , 12,	8.6	
24	Signalling pathways in autism spectrum disorder: mechanisms and therapeutic implications. <i>Signal Transduction and Targeted Therapy</i> , 2022 , 7,	21	2
23	Oxytocin and microglia in the development of social behaviour. <i>Philosophical Transactions of the Royal Society B: Biological Sciences</i> , 2022 , 377,	5.8	O
22	Autism spectrum disorder. 2023 , 69-88		
21	Oxytocin: An Old Hormone, A Novel Psychotropic Drug And Possible Use In Treating Psychiatric Disorders <i>Current Medicinal Chemistry</i> , 2022 , 29,	4.3	1
20	From Genes to Therapy in Autism Spectrum Disorder. 2022 , 13, 1377		1
19	Autism detection based on multiple time scale model.		
18	Advances in human oxytocin measurement: challenges and proposed solutions.		1
17	Genome-wide methylation analysis of post-mortem cerebellum samples supports the role of peroxisomes in autism spectrum disorder.		О
16	Sex-dependent association between variability in infantsIDXTR methylation at birth and negative affectivity at 3 months. 2022 , 145, 105920		О
15	Artificial neural networks reveal sex differences in gene methylation, and connections between maternal risk factors and symptom severity in autism spectrum disorder.		3

14	Affective touch in the context of development, oxytocin signaling, and autism. 13,	O
13	Social attention during object engagement: toward a cross-species measure of preferential social orienting. 2022 , 14,	O
12	Epigenomic signatures reveal mechanistic clues and predictive markers for autism spectrum disorder.	О
11	Genetic and epigenetic signatures associated with plasma oxytocin levels in children and adolescents with autism spectrum disorder.	O
10	Oxytocin receptor DNA methylation is associated with exogenous oxytocin needs during parturition and postpartum hemorrhage. 2023 , 3,	О
9	Epigenetic regulation of gene expression: an overview of classical and recently discovered novel players. 2023 , 3-45	O
8	Machine Learning-Based Blood RNA Signature for Diagnosis of Autism Spectrum Disorder. 2023 , 24, 2082	0
7	The Chemistry of Creative Intelligence. 2016 , 259-286	O
7	The Chemistry of Creative Intelligence. 2016 , 259-286 Vasopressin, and not oxytocin, receptor gene methylation is associated with individual differences in receptive joint attention in chimpanzees (Pan troglodytes).	0
	Vasopressin, and not oxytocin, receptor gene methylation is associated with individual differences	
6	Vasopressin, and not oxytocin, receptor gene methylation is associated with individual differences in receptive joint attention in chimpanzees (Pan troglodytes).	O
6 5	Vasopressin, and not oxytocin, receptor gene methylation is associated with individual differences in receptive joint attention in chimpanzees (Pan troglodytes). Microbes, oxytocin and stress: Converging players regulating eating behavior. An epigenetic mechanism for differential maturation of amygdalaBrefrontal connectivity in	0
6 5 4	Vasopressin, and not oxytocin, receptor gene methylation is associated with individual differences in receptive joint attention in chimpanzees (Pan troglodytes). Microbes, oxytocin and stress: Converging players regulating eating behavior. An epigenetic mechanism for differential maturation of amygdalaprefrontal connectivity in childhood socio-emotional development. 2023, 13, Differentiated Approach to Pharmacotherapy of Autism Spectrum Disorders: Biochemical Aspects.	0 0