How unique is the Udachnaya-East kimberlite? Compar Craton (Canada) and SW Greenland

Lithos 112, 334-346 DOI: 10.1016/j.lithos.2009.03.032

Citation Report

#	Article	IF	CITATIONS
1	High-Mg carbonatitic microinclusions in some Yakutian diamonds—a new type of diamond-forming fluid. Lithos, 2009, 112, 648-659.	0.6	181
2	Experimental model for alkalic chloride-rich liquids in the upper mantle. Lithos, 2009, 112, 260-273.	0.6	33
3	Can pyroxenes be liquidus minerals in the kimberlite magma?. Lithos, 2009, 112, 213-222.	0.6	71
4	Distribution of kimberlite and aillikite in the Diamond Province of southern West Greenland: A regional perspective based on groundmass mineral chemistry and bulk compositions. Lithos, 2009, 112, 358-371.	0.6	54
5	Geochemistry of hypabyssal kimberlites from Lac de Gras, Canada: Comparisons to a global database and applications to the parent magma problem. Lithos, 2009, 112, 236-248.	0.6	211
6	Chlorine from the mantle: Magmatic halides in the Udachnaya-East kimberlite, Siberia. Earth and Planetary Science Letters, 2009, 285, 96-104.	1.8	70
7	Origin of Cl-bearing silica-rich melt inclusions in diamonds: Experimental evidence for an eclogite connection. Geology, 2010, 38, 1131-1134.	2.0	29
8	Nitrogenâ€Rich Compounds of the Lanthanoids: Highlights and Summary. Helvetica Chimica Acta, 2010, 93, 183-202.	1.0	26
9	High-Mg carbonatitic melts in diamonds, kimberlites and the sub-continental lithosphere. Earth and Planetary Science Letters, 2011, 309, 337-347.	1.8	61
10	Links between Carbonatite and Kimberlite Melts in Chloride–Carbonate–Silicate Systems: Experiments and Application to Natural Assemblages. Journal of Petrology, 2011, 52, 1307-1331.	1.1	40
11	Fairchildite K2Ca(CO3)2 in phoscorites from Phalaborwa, South Africa: the first occurrence in alkaline carbonatite complexes. Russian Geology and Geophysics, 2011, 52, 208-219.	0.3	20
12	New Identity of the Kimberlite Melt: Constraints from Unaltered Diamondiferous Udachnaya –East Pipe Kimberlite, Russia. , 0, , .		2
13	A Raman microprobe study of melt inclusions in kimberlites from Siberia, Canada, SW Greenland and South Africa. Spectrochimica Acta - Part A: Molecular and Biomolecular Spectroscopy, 2011, 80, 82-87.	2.0	40
14	Djerfisherite in xenoliths of sheared peridotite in the Udachnaya-East pipe (<i>Yakutia</i>): origin and relationship with kimberlitic magmatism. Russian Geology and Geophysics, 2012, 53, 247-261.	0.3	32
15	Ultrafresh salty kimberlite of the Udachnaya–East pipe (Yakutia, Russia): A petrological oddity or fortuitous discovery?. Lithos, 2012, 152, 173-186.	0.6	92
16	Parental carbonatitic melt of the Koala kimberlite (Canada): Constraints from melt inclusions in olivine and Cr-spinel, and groundmass carbonate. Chemical Geology, 2013, 353, 96-111.	1.4	72
17	Melting and subsolidus phase relations in the system Na2CO3-MgCO3ÂH2O at 6 GPa and the stability of Na2Mg(CO3)2 in the upper mantle. American Mineralogist, 2013, 98, 2172-2182.	0.9	47
18	New experimental data on phase relations for the system Na2CO3-CaCO3 at 6 GPa and 900-1400 ÂC. American Mineralogist, 2013, 98, 2164-2171.	0.9	42

#	Article	IF	CITATIONS
19	Melting and Phase Relations of Carbonated Eclogite at 9-21 GPa and the Petrogenesis of Alkali-Rich Melts in the Deep Mantle. Journal of Petrology, 2013, 54, 1555-1583.	1.1	127
20	Evidence for the alkaline nature of parental carbonatite melts at Oka complex in Canada. Nature Communications, 2013, 4, 2687.	5.8	58
21	Two episodes of fluid migration in the Kaapvaal Craton lithospheric mantle associated with Cretaceous kimberlite activity: Evidence from a harzburgite containing a unique assemblage of metasomatic zirconium-phases. Lithos, 2013, 182-183, 165-184.	0.6	38
22	Mantle oddities: A sulphate fluid preserved in a MARID xenolith from the Bultfontein kimberlite (Kimberley, South Africa). Earth and Planetary Science Letters, 2013, 376, 74-86.	1.8	31
23	Salts in southern Yakutian kimberlites and the problem of primary alkali kimberlite melts. Earth-Science Reviews, 2013, 119, 1-16.	4.0	32
24	Melting experiments on the Udachnaya kimberlite at 6.3–7.5GPa: Implications for the role of H2O in magma generation and formation of hydrous olivine. Geochimica Et Cosmochimica Acta, 2013, 101, 133-155.	1.6	47
25	Chemical abrasion of zircon and ilmenite megacrysts in the Monastery kimberlite: Implications for the composition of kimberlite melts. Chemical Geology, 2014, 383, 76-85.	1.4	42
26	The role of water in generation of group II kimberlite magmas: Constraints from multiple saturation experiments. American Mineralogist, 2014, 99, 2292-2302.	0.9	10
27	Water content in minerals of mantle xenoliths from the Udachnaya pipe kimberlites (<i>Yakutia</i>). Russian Geology and Geophysics, 2014, 55, 428-442.	0.3	21
28	Petrogenesis of Mantle Polymict Breccias: Insights into Mantle Processes Coeval with Kimberlite Magmatism. Journal of Petrology, 2014, 55, 831-858.	1.1	86
29	Volatiles in Earth's Mantle. , 2014, , 355-391.		17
30	Towards a new model for kimberlite petrogenesis: Evidence from unaltered kimberlites and mantle minerals. Earth-Science Reviews, 2014, 139, 145-167.	4.0	126
31	Halogens (F, Cl and Br) at Oldoinyo Lengai volcano (Tanzania): Effects of magmatic differentiation, silicate–natrocarbonatite melt separation and surface alteration of natrocarbonatite. Chemical Geology, 2014, 365, 43-53.	1.4	28
32	Stable isotope (C, O, S) compositions of volatile-rich minerals in kimberlites: A review. Chemical Geology, 2014, 374-375, 61-83.	1.4	81
33	Conditions of kimberlite magma generation: experimental constraints. Russian Geology and Geophysics, 2015, 56, 245-259.	0.3	14
34	<i>In situ</i> ambient and highâ€ŧemperature Raman spectroscopic studies of nyerereite (Na,K) ₂ Ca(CO ₃) ₂ : can hexagonal zemkorite be stable at earthâ€surface conditions?. Journal of Raman Spectroscopy, 2015, 46, 904-912.	1.2	13
35	Change in the viscosity of kimberlite and basaltic magmas during their origin and evolution (prediction). Russian Geology and Geophysics, 2015, 56, 885-892.	0.3	10
36	Na-Ca carbonates synthesized under upper-mantle conditions: Raman spectroscopic and X-ray diffraction studies. European Journal of Mineralogy, 2015, 27, 175-184.	0.4	27

#	Article	IF	CITATIONS
37	Carbonatite metasomatism of peridotite lithospheric mantle: implications for diamond formation and carbonatite-kimberlite magmatism. Russian Geology and Geophysics, 2015, 56, 280-295.	0.3	53
38	Conditions of diamond crystallization in kimberlite melt: experimental data. Russian Geology and Geophysics, 2015, 56, 196-210.	0.3	42
39	Paragenesis and complex zoning of olivine macrocrysts from unaltered kimberlite of the Udachnaya-East pipe, Yakutia: relationship with the kimberlite formation conditions and evolution. Russian Geology and Geophysics, 2015, 56, 260-279.	0.3	63
40	The olivine macrocryst problem: New insights from minor and trace element compositions of olivine from Lac de Gras kimberlites, Canada. Lithos, 2015, 220-223, 238-252.	0.6	104
41	Carbonate–silicate liquid immiscibility in the mantle propels kimberlite magma ascent. Geochimica Et Cosmochimica Acta, 2015, 158, 48-56.	1.6	92
42	Phase relations in carbonate systems at pressures and temperatures of lithospheric mantle: review of experimental data. Russian Geology and Geophysics, 2015, 56, 113-142.	0.3	51
43	Unique compositional peculiarities of olivine phenocrysts from the post flood basalt diamondiferous Malokuonapskaya kimberlite pipe, Yakutia. Doklady Earth Sciences, 2015, 463, 828-832.	0.2	16
44	Composition of primary kimberlite magma: constraints from melting and diamond dissolution experiments. Contributions To Mineralogy and Petrology, 2015, 170, 1.	1.2	20
45	Melting phase relations of the Udachnaya-East Group-I kimberlite at 3.0–6.5 GPa: Experimental evidence for alkali-carbonatite composition of primary kimberlite melts and implications for mantle plumes. Gondwana Research, 2015, 28, 1391-1414.	3.0	62
46	Comment on: "The ascent of kimberlite: Insights from olivine―by Brett R.C. et al. [Earth Planet. Sci. Lett. 424 (2015) 119–131]. Earth and Planetary Science Letters, 2016, 440, 187-189.	1.8	11
47	Origin of salts and alkali carbonates in the Udachnaya East kimberlite: Insights from petrography of kimberlite phases and their carbonate and evaporite xenoliths. Journal of Volcanology and Geothermal Research, 2016, 327, 116-134.	0.8	19
48	Hydrothermal Synthesis and Structure Solution of Na ₂ Ca(CO ₃) ₂ : "Synthetic Analogue―of Mineral Nyerereite. Crystal Growth and Design, 2016, 16, 1893-1902.	1.4	36
49	Carbonatite melt–peridotite interaction at 5.5–7.0 GPa: Implications for metasomatism in lithospheric mantle. Lithos, 2016, 248-251, 66-79.	0.6	49
50	Composition of primary kimberlite melt in a garnet lherzolite mantle source: constraints from melting phase relations in anhydrous Udachnaya-East kimberlite with variable CO2 content at 6.5 GPa. Gondwana Research, 2017, 45, 208-227.	3.0	42
51	Raman spectra of nyerereite, gregoryite, and synthetic pure <scp>N</scp> a ₂ <scp>C</scp> a(<scp>CO</scp> ₃) ₂ : diversity and application for the study micro inclusions. Journal of Raman Spectroscopy, 2017, 48, 1559-1565.	1.2	20
52	Stability of phlogopite in ultrapotassic kimberlite-like systems at 5.5–7.5 GPa. Contributions To Mineralogy and Petrology, 2017, 172, 1.	1.2	19
53	The application of Raman spectroscopy to djerfisherite identification. Journal of Raman Spectroscopy, 2017, 48, 1574-1582.	1.2	17
54	Viscosity of hydrous kimberlite and basaltic melts at high pressures. Russian Geology and Geophysics, 2017, 58, 1093-1100.	0.3	21

#	Article	IF	CITATIONS
55	Heterogeneous distribution of water in the mantle beneath the central Siberian Craton: Implications from the Udachnaya Kimberlite Pipe. Gondwana Research, 2017, 47, 249-266.	3.0	19
56	Origin of alkaline carbonates in kimberlites of the Siberian craton: Evidence from melt inclusions in mantle olivine of the Udachnaya-East pipe. Chemical Geology, 2017, 455, 357-375.	1.4	46
57	Petrographic and melt-inclusion constraints on the petrogenesis of a magmaclast from the Venetia kimberlite cluster, South Africa. Chemical Geology, 2017, 455, 331-341.	1.4	43
58	Experimental constraints on orthopyroxene dissolution in alkali-carbonate melts in the lithospheric mantle: Implications for kimberlite melt composition and magma ascent. Chemical Geology, 2017, 455, 44-56.	1.4	37
59	Metasomatic origin of garnet xenocrysts from the V. Grib kimberlite pipe, Arkhangelsk region, NW Russia. Geoscience Frontiers, 2017, 8, 641-651.	4.3	34
60	The final stages of kimberlite petrogenesis: Petrography, mineral chemistry, melt inclusions and Sr-C-O isotope geochemistry of the Bultfontein kimberlite (Kimberley, South Africa). Chemical Geology, 2017, 455, 342-356.	1.4	78
61	The Role of Halogens in the Lithospheric Mantle. Springer Geochemistry, 2018, , 805-845.	0.1	6
62	Alkali-carbonate melts from the base of cratonic lithospheric mantle: Links to kimberlites. Chemical Geology, 2018, 483, 261-274.	1.4	73
63	Significance of halogens (F, Cl) in kimberlite melts: Insights from mineralogy and melt inclusions in the Roger pipe (Ekati, Canada). Chemical Geology, 2018, 478, 148-163.	1.4	19
64	Monticellite in group-I kimberlites: Implications for evolution of parental melts and post-emplacement CO2 degassing. Chemical Geology, 2018, 478, 76-88.	1.4	35
65	Trioctahedral Micas from the Catalão Carbonatite intrusions (Alto ParanaÃba, Brazil): Crystal chemistry and Petrogenetic implications. American Mineralogist, 2018, , .	0.9	1
66	Kuliginite, a new hydroxychloride mineral from the Udachnaya kimberlite pipe, Yakutia: Implications for low-temperature hydrothermal alteration of the kimberlites. American Mineralogist, 2018, 103, 1435-1444.	0.9	5
67	Prospects of search for diamondiferous kimberlites in the northeastern Siberian Platform. Russian Geology and Geophysics, 2018, 59, 1365-1379.	0.3	36
68	Phase Relations in the Harzburgite–Hydrous Carbonate Melt at 5.5–7.5 GPa and 1200–1350°Ðį. Petrolog 2018, 26, 575-587.	^y 0.2	5
69	Highâ€Pressure/Temperature Behavior of the Alkali/Calcium Carbonate Shortite (Na ₂ Ca ₂ (CO ₃) ₃): Implications for Carbon Sequestration in Earth's Transition Zone. Journal of Geophysical Research: Solid Earth, 2018, 123, 6574-6591.	1.4	16
70	Was Crustal Contamination Involved in the Formation of the Serpentine-Free Udachnaya-East Kimberlite? New Insights into Parental Melts, Liquidus Assemblage and Effects of Alteration. Journal of Petrology, 2018, 59, 1467-1492.	1.1	38
71	The system Na2CO3–CaCO3 at 3ÂGPa. Physics and Chemistry of Minerals, 2018, 45, 773-787.	0.3	19
72	Insights into kimberlite petrogenesis and mantle metasomatism from a review of the compositional zoning of olivine in kimberlites worldwide. Lithos. 2018, 312-313, 322-342.	0.6	91

#	Article	IF	CITATIONS
73	Primary petrology, mineralogy and age of the Letšeng-la-Terae kimberlite (Lesotho, Southern Africa) and parental magmas of Group-I kimberlites. Contributions To Mineralogy and Petrology, 2018, 173, 1.	1.2	11
74	Viscosity of haplokimberlitic and basaltic melts at high pressures: Experimental and theoretical studies. Chemical Geology, 2018, 497, 54-63.	1.4	9
75	A Reply to the Comment by Kostrovitsky, S. and Yakovlev, D. on â€Was Crustal Contamination Involved in the Formation of the Serpentine-free Udachnaya-East Kimberlite? New Insights into Parental Melts, Liquidus Assemblage and Effects of Alteration' by Abersteiner et al. (J. Petrology, 59, 1467–1492, 2018). Journal of Petrology, 2019, 60, 1841-1847.	1.1	1
76	The System K2CO3–CaCO3–MgCO3 at 3 GPa: Implications for Carbonatite Melt Compositions in the Shallow Continental Lithosphere. Minerals (Basel, Switzerland), 2019, 9, 296.	0.8	20
77	New data on the system Na2CO3–CaCO3–MgCO3 at 6â€ ⁻ GPa with implications to the composition and stability of carbonatite melts at the base of continental lithosphere. Chemical Geology, 2019, 515, 50-60.	1.4	20
78	Polymineralic inclusions in kimberlite-hosted megacrysts: Implications for kimberlite melt evolution. Lithos, 2019, 336-337, 310-325.	0.6	25
79	Phase relations in the system Na2CO3–CaCO3–MgCO3 at 3 GPa with implications for carbonatite genesis and evolution. Lithos, 2019, 330-331, 74-89.	0.6	17
80	Djerfisherite in kimberlites and their xenoliths: implications for kimberlite melt evolution. Contributions To Mineralogy and Petrology, 2019, 174, 1.	1.2	16
81	New constraints on archetypal South African kimberlite petrogenesis from quenched glass-rich melt inclusions in olivine megacrysts. Gondwana Research, 2019, 68, 116-126.	3.0	22
82	Can primitive kimberlite melts be alkaliâ€carbonate liquids: Composition of the melt snapshots preserved in deepest mantle xenoliths. Journal of Raman Spectroscopy, 2020, 51, 1849-1867.	1.2	34
83	Carbonate melt interaction with natural eclogite at 6ÂGPa and 1100–1200°C: Implications for metasomatic melt composition in subcontinental lithospheric mantle. Chemical Geology, 2020, 558, 119915.	1.4	13
84	A genetic story of olivine crystallisation in the Mark kimberlite (Canada) revealed by zoning and melt inclusions. Lithos, 2020, 358-359, 105405.	0.6	7
85	Evolution of kimberlite magmas in the crust: A case study of groundmass and mineral-hosted inclusions in the Mark kimberlite (Lac de Gras, Canada). Lithos, 2020, 372-373, 105690.	0.6	11
86	Metasomatic interaction of the eutectic Na- and K-bearing carbonate melts with natural garnet lherzolite at 6ÂGPa and 1100–1200°C: Toward carbonatite melt composition in SCLM. Lithos, 2020, 374-375, 105725.	0.6	10
87	Types of Xenogenic Olivine from Siberian Kimberlites. Minerals (Basel, Switzerland), 2020, 10, 302.	0.8	5
89	Tracking halogen recycling and volatile loss in kimberlite magmatism from Greenland: Evidence from combined F-Cl-Br and δ37Cl systematics. Lithos, 2021, 384-385, 105976.	0.6	9
90	Pyroxene-carbonate reactions in the CaMgSi2O6 ± NaAlSi2O6 + MgCO3 ± Na2CC Implications for partial melting of carbonated peridotite. Contributions To Mineralogy and Petrology, 2021, 176, 1.	3 ±a 1.2	K2CO3 17
91	Role of CO2 in the evolution of Kimberlite Magma: Experimental constraints at 5.5ÂGPa and 1200–1450 °C. Lithos, 2021, 386-387, 106042.	0.6	6

	CITATION REF	PORT	
			_
#	Article	IF	CITATIONS
92	Phase relations in carbonate component of carbonatized eclogite and peridotite along subduction and continental geotherms. Gondwana Research, 2021, 94, 186-200.	3.0	11
93	Confocal Raman spectroscopic study of melt inclusions in olivine of mantle xenoliths from the Bultfontein kimberlite pipe (Kimberley cluster, South Africa): Evidence for alkaliâ€rich carbonate melt in the mantle beneath Kaapvaal Craton. Journal of Raman Spectroscopy, 0, , .	1.2	16
94	NIR-MID Reflectance and Emissivity Study at Different Temperatures of Sodium Carbonate Minerals: Spectra Characterization and Implication for Remote Sensing Identification. Minerals (Basel,) Tj ETQq0 0 0 rgBT/C	Weeklock 1	03⊺f 50 657
95	Dissolution of mantle orthopyroxene in kimberlitic melts: Petrographic, geochemical and melt inclusion constraints from an orthopyroxenite xenolith from the Udachnaya-East kimberlite (Siberian) Tj ETQq1 1 () ø.& 4314	rgBT /Overle
96	Kimberlite: Rapid Ascent of Lithospherically Modified Carbonatitic Melts. , 2013, , 195-210.		5
97	The "Exceptionally Fresh―Udachnaya-East Kimberlite: Evidence for Brine and Evaporite Contamination. , 2013, , 75-91.		2
98	Interaction of model peridotite with (Ca, Na2)CO3-KCl melts and H2O-KCl fluids at 1.0-2.5 GPa. Vestnik Otdelenia Nauk O Zemle RAN, 2011, 3, 1-7.	0.5	1
99	Geology, Structure, and Radiometric Age Determination of the Murowa Kimberlites, Zimbabwe*. , 2018, , 379-402.		0
100	The nyerereite crystal structure: a possible messenger from the deep Earth. American Mineralogist, 2022, , .	0.9	3
101	Towards composition of carbonatite melts in peridotitic mantle. Earth and Planetary Science Letters, 2022, 581, 117395.	1.8	8
102	Experimental Modeling of Diamond Resorption during Mantle Metasomatism. Minerals (Basel,) Tj ETQq0 0 0 rgBT	Overlock 0.8	10 Tf 50 34
103	The NaCl–CaCO3 and NaCl–MgCO3 systems at 6 GPa: Link between saline and carbonatitic diamond forming melts. American Mineralogist, 2022, , .	0.9	4
104	Dissolution of Peridotite in a Volatile-Rich Carbonate Melt as a Mechanism of the Formation of Kimberlite-like Melts (Experimental Constraints). Doklady Earth Sciences, 2022, 503, 157-163.	0.2	0
105	Experimental Study of the Multicomponent Chemical Diffusion of Major Components (SiO2, Al2O3,) Tj ETQq1 1 0 Kimberlite Melts under a Moderate Pressure. Petrology, 2022, 30, 325-335.	0.784314 (0.2	rgBT /Overlo 2
106	The system KClâ^'CaCO3â^'MgCO3 at 6ÂGPa: A link between saline and carbonatitic diamond-forming fluids. Chemical Geology, 2022, 604, 120931.	1.4	3
107	Melt Inclusions in Chromium Spinel of Kimberlites of the Zapolyarnaya Pipe, Upper Muna Field, Siberian Craton. Doklady Earth Sciences, 2022, 504, 271-275.	0.2	3
108	Olivine in Kimberlites: Magma Evolution from Deep Mantle to Eruption. Journal of Petrology, 2022, 63,	1.1	11
109	Genetic link between saline and carbonatitic mantle fluids: The system NaCl-CaCO3-MgCO3±ÂH2O±ÂFeO at 6 GPa. Geoscience Frontiers, 2022, 13, 101431.	4.3	4

#	Article	IF	CITATIONS
110	Raman study of quench products of alkaline carbonate melt at 3 and 6 GPa: Link to the pressure of origin. Journal of Raman Spectroscopy, 2022, 53, 2110-2122.	1.2	2
111	Change in carbonate budget and composition during subduction below metal saturation boundary. Geoscience Frontiers, 2023, 14, 101463.	4.3	2
112	Degassing Mechanisms of Kimberlite Magma at Its Initial Ascent: Experimental Data at 5.5 and 3.0 GPa. Geochemistry International, 2022, 60, 1087-1102.	0.2	0
113	Melt Composition and Phase Equilibria in the Eclogite-Carbonate System at 6 GPa and 900–1500 °C. Minerals (Basel, Switzerland), 2023, 13, 82.	0.8	3
114	Inverse Modeling to Constrain Composition of CO2-Rich Parental Melt of Kimberlite: Model Development and Application to the Majuagaa Dyke, Southern West Greenland. Journal of Petrology, 0, , .	1.1	0
115	The System KCl–CaCO3–MgCO3 at 3 GPa. Minerals (Basel, Switzerland), 2023, 13, 248.	0.8	1
116	The evolution of diamond-forming fluids indicating a pre-kimberlitic metasomatic event in the mantle beneath the Mirny field (Siberian craton). Contributions To Mineralogy and Petrology, 2023, 178, .	1.2	0