Novel and efficient method for immobilization and stab covalent attachment onto magnetic Fe3O4–chitosan i

Journal of Molecular Catalysis B: Enzymatic 61, 208-215 DOI: 10.1016/j.molcatb.2009.07.003

Citation Report

#	Article	IF	CITATIONS
1	Facile preparation of magnetic carbonaceous nanoparticles for Pb2+ ions removal. Journal of Hazardous Materials, 2010, 183, 853-858.	6.5	58
2	Potential Applications of Immobilized <i>β</i> -Galactosidase in Food Processing Industries. Enzyme Research, 2010, 2010, 1-16.	1.8	192
3	Enzymes as Additives or Processing Aids in Food Biotechnology. Enzyme Research, 2010, 2010, 1-2.	1.8	16
4	The Characterization and Thermal Investigation of Chitosan-Fe ₃ O ₄ Nanoparticles Synthesized Via A Novel One-step Modifying Process. Journal of Macromolecular Science - Pure and Applied Chemistry, 2010, 48, 57-64.	1.2	37
5	Carbonaceous Materials Passivation on Amine Functionalized Magnetic Nanoparticles and Its Application for Metal Affinity Isolation of Recombinant Protein. ACS Applied Materials & Interfaces, 2011, 3, 3342-3349.	4.0	13
6	Studies of Fe3O4-chitosan nanoparticles prepared by co-precipitation under the magnetic field for lipase immobilization. Catalysis Communications, 2011, 12, 717-720.	1.6	126
7	Designing and surface modification of zinc oxide nanoparticles for biomedical applications. Food and Chemical Toxicology, 2011, 49, 2107-2115.	1.8	84
8	Immobilization of Kluyveromyces lactis β galactosidase on concanavalin A layered aluminium oxide nanoparticles—Its future aspects in biosensor applications. Journal of Molecular Catalysis B: Enzymatic, 2011, 70, 119-126.	1.8	86
9	Hemoglobin (Hb) immobilized on amino-modified magnetic nanoparticles for the catalytic removal of bisphenol A. Chemosphere, 2011, 83, 255-264.	4.2	64
10	Synthesis and properties of nanocomposites based on magnetite and biocompatible polymers. Russian Journal of Applied Chemistry, 2011, 84, 847-853.	0.1	2
11	Electroenzymatic catalyzed oxidation of bisphenol-A using HRP immobilized on magnetic silk fibroin nanoparticles. Process Biochemistry, 2011, 46, 1160-1165.	1.8	33
12	Electrochemical behaviour of Sudan I at Fe3O4 nanoparticles modified glassy carbon electrode and its determination in food samples. Food Chemistry, 2011, 127, 1348-1353.	4.2	100
13	A novel platform of hemoglobin on core–shell structurally Fe3O4@Au nanoparticles and its direct electrochemistry. Electrochimica Acta, 2011, 56, 3238-3247.	2.6	56
14	Synthesis of galacto-oligosaccharides at very high lactose concentrations with immobilized β-galactosidases from Aspergillus oryzae. Process Biochemistry, 2011, 46, 245-252.	1.8	107
15	Whey upgrading by enzyme biocatalysis. Electronic Journal of Biotechnology, 2011, 14, .	1.2	67
16	Food related applications of magnetic iron oxide nanoparticles: Enzyme immobilization, protein purification, and food analysis. Trends in Food Science and Technology, 2012, 27, 47-56.	7.8	192
17	Chitosan-Coated Magnetic Nanoparticles with Low Chitosan Content Prepared in One-Step. Journal of Nanomaterials, 2012, 2012, 1-7.	1.5	55
18	Chemical modification of lactase for immobilization on carboxylic acid-functionalized microspheres. Biocatalysis and Biotransformation, 2012, 30, 446-454.	1.1	7

#	Article	IF	CITATIONS
19	One-Step Method for Preparation of Magnetic Nanoparticles Coated with Chitosan. Journal of Nanomaterials, 2012, 2012, 1-8.	1.5	118
20	Immobilization of β-d-galactosidase from Kluyveromyces lactis on functionalized silicon dioxide nanoparticles: Characterization and lactose hydrolysis. International Journal of Biological Macromolecules, 2012, 50, 432-437.	3.6	110
21	Synthesis of galactooligosaccharides by CBD fusion β-galactosidase immobilized on cellulose. Bioresource Technology, 2012, 116, 327-333.	4.8	46
22	Immobilization of Pseudomonas fluorescens Lipase onto Magnetic Nanoparticles for Resolution of 2-Octanol. Applied Biochemistry and Biotechnology, 2012, 168, 697-707.	1.4	39
23	Galacto-oligosaccharides Synthesis from Lactose and Whey by β-Galactosidase Immobilized in PVA. Applied Biochemistry and Biotechnology, 2012, 168, 1197-1211.	1.4	41
24	Optimization of the immobilization process of β-galatosidade by combined entrapment-cross-linking and the kinetics of lactose hydrolysis. Brazilian Journal of Chemical Engineering, 2012, 29, 15-24.	0.7	28
25	Covalent immobilization of βâ€galactosidase onto aminoâ€functionalized PVC microspheres. Journal of Applied Polymer Science, 2012, 125, 1724-1735.	1.3	16
26	Polysaccharides Route: A New Green Strategy for Metal Oxides Synthesis. Environmental Chemistry for A Sustainable World, 2012, , 119-169.	0.3	16
27	Effect of the Support Size on the Properties of β-Galactosidase Immobilized on Chitosan: Advantages and Disadvantages of Macro and Nanoparticles. Biomacromolecules, 2012, 13, 2456-2464.	2.6	131
28	Optimum conditions for lipase immobilization on chitosan-coated Fe3O4 nanoparticles. Carbohydrate Polymers, 2012, 87, 2538-2545.	5.1	187
29	A new hydrogen peroxide biosensor based on synergy of Au@Au2S2O3 core–shell nanomaterials and multi-walled carbon nanotubes towards hemoglobin. Electrochimica Acta, 2012, 74, 280-286.	2.6	19
30	A green peptide synthesis—Using a magnetic biocatalyst in a stirred-tank bioreactor. Biocatalysis and Agricultural Biotechnology, 2012, 1, 20-24.	1.5	3
31	Immobilized lipase on magnetic chitosan microspheres for transesterification of soybean oil. Biomass and Bioenergy, 2012, 36, 373-380.	2.9	172
32	Potential applications of enzymes immobilized on/in nano materials: A review. Biotechnology Advances, 2012, 30, 512-523.	6.0	967
33	Chitosan-tethered microspheres for lactase immobilization. Journal of Molecular Catalysis B: Enzymatic, 2012, 78, 78-84.	1.8	10
34	Two-step preparation of nano-scaled magnetic chitosan particles using Triton X-100 reversed-phase water-in-oil microemulsion system. Journal of Alloys and Compounds, 2013, 581, 843-848.	2.8	51
35	A gold electrode modified with hemoglobin and the chitosan@Fe3O4 nanocomposite particles for direct electrochemistry of hydrogen peroxide. Mikrochimica Acta, 2013, 180, 659-667.	2.5	40
36	Preparation, characterization and targeted delivery of serratiopeptidase immobilized on amino-functionalized magnetic nanoparticles. European Journal of Pharmaceutics and Biopharmaceutics, 2013, 85, 413-426.	2.0	43

#	Article	IF	CITATIONS
37	Immobilization of βâ€galactosidase from <i>Escherichia coli</i> onto modified natural silk fibers. Journal of Applied Polymer Science, 2013, 130, 2923-2931.	1.3	16
38	Comperative study of catalase immobilization on chitosan, magnetic chitosan and chitosan-clay composite beads. Artificial Cells, Nanomedicine and Biotechnology, 2013, 41, 408-413.	1.9	9
39	Superparamagnetic nanoparticles as versatile carriers and supporting materials for enzymes. Journal of Molecular Catalysis B: Enzymatic, 2013, 85-86, 71-92.	1.8	262
40	Nanobiotechnology as a novel paradigm for enzyme immobilisation and stabilisation with potential applications in biodiesel production. Applied Microbiology and Biotechnology, 2013, 97, 23-39.	1.7	244
41	Sputtering deposition of magnetic Ni nanoparticles directly onto an enzyme surface: a novel method to obtain a magnetic biocatalyst. Chemical Communications, 2013, 49, 1273.	2.2	55
42	Enhanced stability of Kluyveromyces lactis β galactosidase immobilized on glutaraldehyde modified multiwalled carbon nanotubes. Journal of Molecular Catalysis B: Enzymatic, 2013, 97, 258-263.	1.8	42
43	Influence of nanoparticle diameter on conjugated enzyme activity. Food and Bioproducts Processing, 2013, 91, 693-699.	1.8	22
44	Reversible immobilization of glucoamylase onto magnetic chitosan nanocarriers. Applied Microbiology and Biotechnology, 2013, 97, 681-692.	1.7	84
45	Calcium alginate beads encapsulated PMMA-g-CS nano-particles for α-chymotrypsin immobilization. Carbohydrate Polymers, 2013, 92, 2095-2102.	5.1	22
46	Immobilization of catalase on chitosan and amino acid- modified chitosan beads. Artificial Cells, Nanomedicine and Biotechnology, 2013, 41, 269-275.	1.9	8
47	Characterization of lactase-conjugated magnetic nanoparticles. Process Biochemistry, 2013, 48, 656-662.	1.8	31
48	Optimization and modeling of lactose hydrolysis in a packed bed system using immobilized β-galactosidase from Aspergillus oryzae. Journal of Molecular Catalysis B: Enzymatic, 2013, 85-86, 178-186.	1.8	22
49	The effect of ultrasonication on the size and morphology of iron oxide - chitosan nano and microparticles. , 2013, , .		1
50	Preparation of Novel Poly(hydroxyethyl methacrylate-co-glycidyl methacrylate)-Grafted Core-Shell Magnetic Chitosan Microspheres and Immobilization of Lactase. International Journal of Molecular Sciences, 2013, 14, 12073-12089.	1.8	19
51	Chitosan-Coated Magnetic Nanoparticles Prepared in One Step by Reverse Microemulsion Precipitation. International Journal of Molecular Sciences, 2013, 14, 19636-19650.	1.8	55
52	Immobilisation of lipase on the surface of magnetic nanoparticles and nonâ€porous glass beads for regioselective acetylation of prednisolone. IET Nanobiotechnology, 2013, 7, 100-108.	1.9	16
53	Preparation of Antihypertensive Peptide from Hydrolyzing Peanut Protein by Trypsin Covalently Immobilized on Chemically Modified Chitosan-coated Fe3O4 Particles. Advance Journal of Food Science and Technology, 2013, 5, 361-369.	0.1	2
54	Immobilization of β-glucosidase onto Magnetic Nanoparticles and Evaluation of the Enzymatic Properties. BioResources, 2013, 8, .	0.5	21

#	Article	IF	CITATIONS
55	Chitosan-Coated Magnetic Nanoparticles Prepared in One-Step by Precipitation in a High-Aqueous Phase Content Reverse Microemulsion. Molecules, 2014, 19, 9273-9287.	1.7	24
56	Current Trends in Nanomaterial-Based Amperometric Biosensors. Sensors, 2014, 14, 23439-23461.	2.1	100
57	Immobilization of SA-α-2,6-Gal Receptors Related to Influenza on Magnetic Nanoparticles Coated with Chitosan. Advanced Materials Research, 2014, 976, 19-24.	0.3	0
58	Production of fructooligosaccharides using β-fructofuranosidase immobilized onto chitosan-coated magnetic nanoparticles. Journal of the Taiwan Institute of Chemical Engineers, 2014, 45, 1105-1110.	2.7	34
59	Covalent Immobilization of βâ€Galactosidase onto Aminoâ€Functionalized Polyvinyl Chloride Microspheres: Enzyme Immobilization and Characterization. Advances in Polymer Technology, 2014, 33,	0.8	9
60	Extraction and Immobilization of SA-α-2,6-Gal Receptors on Magnetic Nanoparticles to Study Receptor Stability and Interaction with Sambucus nigra Lectin. Applied Biochemistry and Biotechnology, 2014, 172, 3721-3735.	1.4	14
61	Synthesis, characterization of CH-α-Fe2O3 nanocomposite and coating on cotton, silk for antibacterial and UV spectral studies. Journal of Industrial Textiles, 2014, 44, 275-287.	1.1	14
62	Glutaraldehyde in bio-catalysts design: a useful crosslinker and a versatile tool in enzyme immobilization. RSC Advances, 2014, 4, 1583-1600.	1.7	669
63	Biocatalytic polymer nanofibers for stabilization and delivery of enzymes. Journal of Molecular Catalysis B: Enzymatic, 2014, 110, 16-22.	1.8	25
64	A novel method for pullulanase immobilized onto magnetic chitosan/Fe3O4 composite nanoparticles by in situ preparation and evaluation of the enzyme stability. Journal of Molecular Catalysis B: Enzymatic, 2014, 109, 53-61.	1.8	42
65	Microencapsulation of β-galactosidase with different biopolymers by a spray-drying process. Food Research International, 2014, 64, 134-140.	2.9	82
66	Optimized immobilization of peracetic acid producing recombinant acetyl xylan esterase on chitosan coated-Fe3O4 magnetic nanoparticles. Process Biochemistry, 2014, 49, 1920-1928.	1.8	23
67	Bio and Nanomaterials Based on Fe3O4. Molecules, 2014, 19, 21506-21528.	1.7	146
68	Application of Iron Magnetic Nanoparticles in Protein Immobilization. Molecules, 2014, 19, 11465-11486.	1.7	215
69	Novel grafted agar disks for the covalent immobilization of βâ€Dâ€galactosidase. Biopolymers, 2015, 103, 675-684.	1.2	27
70	Fabrication of a Chitosan oated Magnetic Nanobiocatalyst for Starch Hydrolysis. Chemical Engineering and Technology, 2015, 38, 1444-1451.	0.9	16
71	Production of Galactooligosaccharides Using β-Galactosidase Immobilized on Chitosan-Coated Magnetic Nanoparticles with Tris(hydroxymethyl)phosphine as an Optional Coupling Agent. International Journal of Molecular Sciences, 2015, 16, 12499-12512.	1.8	28
72	Increase of stability of oleate hydratase by appropriate immobilization technique and conditions. Journal of Molecular Catalysis B: Enzymatic, 2015, 119, 40-47.	1.8	17

#	Article	IF	Citations
73	Differential pulse stripping voltammetric determination of the antipsychotic medication olanzapine at a magnetic nano-composite with a core/shell structure. RSC Advances, 2015, 5, 46095-46103.	1.7	24
74	Effects of surface modification and activation of magnetic nanoparticles on the formation of amylase immobilization bonds under different ionic strength conditions. Journal of Molecular Catalysis B: Enzymatic, 2015, 119, 1-11.	1.8	20
75	Synthesis and dose interval dependent hepatotoxicity evaluation of intravenously administered polyethylene glycol-8000 coated ultra-small superparamagnetic iron oxide nanoparticle on Wistar rats. Environmental Toxicology and Pharmacology, 2015, 39, 727-735.	2.0	15
76	Fabrication of graphene oxide decorated with Fe3O4@SiO2 for immobilization of cellulase. Journal of Nanoparticle Research, 2015, 17, 1.	0.8	60
77	Nanobiocatalyst advancements and bioprocessing applications. Journal of the Royal Society Interface, 2015, 12, 20140891.	1.5	197
78	Preparation Fe3O4@chitosan magnetic particles for covalent immobilization of lipase from Thermomyces lanuginosus. International Journal of Biological Macromolecules, 2015, 75, 44-50.	3.6	111
79	Immobilization of pullulanase onto activated magnetic chitosan/Fe3O4 nanoparticles prepared by in situ mineralization and effect of surface functional groups on the stability. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2015, 472, 69-77.	2.3	31
80	Synthesis of Magnetic Fe ₃ O ₄ -Chitosan Nanoparticles by Ionic Gelation and Their Dye Removal Ability. Water Environment Research, 2015, 87, 425-436.	1.3	17
81	Novel hollow α-Fe2O3 nanofibers via electrospinning for dye adsorption. Nanoscale Research Letters, 2015, 10, 176.	3.1	50
82	Vibrational Spectroscopy as a Promising Tool to Study Enzyme-Carrier Interactions: A Review. Applied Spectroscopy Reviews, 2015, 50, 797-821.	3.4	14
83	Magnetic separation of nanobiostructured systems for innovation of biocatalytic processes in food industry. , 2016, , 67-96.		1
84	Nanotechnology Applications for Food and Bioprocessing Industries. Biology and Medicine (Aligarh), 2016, 08, .	0.3	25
85	Modified iron oxide nanomaterials: Functionalization and application. Journal of Magnetism and Magnetic Materials, 2016, 416, 117-133.	1.0	85
86	Novel β-galactosidase nanobiocatalyst systems for application in the synthesis of bioactive galactosides. RSC Advances, 2016, 6, 97216-97225.	1.7	24
87	Immobilized lipase catalyzing glucose stearate synthesis and their surfactant properties analysis. 3 Biotech, 2016, 6, 184.	1.1	14
88	Preparation and characterization of a green nano-support for the covalent immobilization of glucoamylase from Neurospora sitophila. Journal of Photochemistry and Photobiology B: Biology, 2016, 162, 309-317.	1.7	10
89	Enzymatic Production of Galacto-Oligosaccharides. , 2016, , 111-189.		4
90	Magnetic nanoparticles (Fe3O4 & Co3O4) and their applications in urea biosensing. Russian Journal of Applied Chemistry, 2016, 89, 517-534.	0.1	3

#	Article	IF	CITATIONS
91	Determination of optimum conditions for glucose-6-phosphate dehydrogenase immobilization on chitosan-coated magnetic nanoparticles and its characterization. Journal of Molecular Catalysis B: Enzymatic, 2016, 133, S25-S33.	1.8	18
92	Synthesis and purification of galacto-oligosaccharides: state of the art. World Journal of Microbiology and Biotechnology, 2016, 32, 197.	1.7	104
93	Chemical Modification in the Design of Immobilized Enzyme Biocatalysts: Drawbacks and Opportunities. Chemical Record, 2016, 16, 1436-1455.	2.9	183
94	Electrochemical study of Magnetite-CH composite carbon paste modified electrode. Korean Journal of Chemical Engineering, 2016, 33, 1948-1953.	1.2	2
95	Nanobiocatalysis: Nanostructured materials – a minireview. Biocatalysis, 2016, 2, 1-24.	2.3	46
96	Treated calcium pectinate beads for the covalent immobilization of β- d -galactosidase. International Journal of Biological Macromolecules, 2016, 91, 877-886.	3.6	36
97	Immobilization of ω-transaminase by magnetic PVA-Fe3O4 nanoparticles. Biotechnology Reports (Amsterdam, Netherlands), 2016, 10, 49-55.	2.1	30
98	<i>In vitro</i> study on apoptotic cell death by effective magnetic hyperthermia with chitosan-coated MnFe ₂ O ₄ . Nanotechnology, 2016, 27, 115101.	1.3	71
99	Synthesis, characterization and kinetic analysis of chitosan coated magnetic nanobiocatalyst and its application on glucose oleate ester synthesis. Journal of Molecular Catalysis B: Enzymatic, 2016, 128, 1-9.	1.8	12
100	A novel glucose sensor based on immobilization of glucose oxidase on the chitosan-coated Fe 3 O 4 nanoparticles and the luminol–H 2 O 2 –gold nanoparticle chemiluminescence detection system. Sensors and Actuators B: Chemical, 2016, 223, 713-722.	4.0	121
101	Development of an enzyme-immobilized support using a polyester woven fabric. Textile Reseach Journal, 2017, 87, 3-14.	1.1	12
102	Multifunctional Liposomes. Methods in Molecular Biology, 2017, 1530, 41-61.	0.4	27
103	Ethyl esters (biodiesel) production by Pseudomonas fluorescens lipase immobilized on chitosan with magnetic properties in a bioreactor assisted by electromagnetic field. Fuel, 2017, 196, 481-487.	3.4	54
104	Core–shell drug carrier from folate conjugated chitosan obtained from prawn shell for targeted doxorubicin delivery. Journal of Materials Science: Materials in Medicine, 2017, 28, 55.	1.7	36
105	Sol–gel encapsulation of pullulanase in the presence of hybrid magnetic (Fe3O4–chitosan) nanoparticles improves thermal and operational stability. Bioprocess and Biosystems Engineering, 2017, 40, 821-831.	1.7	19
106	Ultrasonic hyperactivation of cellulase immobilized on magnetic nanoparticles. Bioresource Technology, 2017, 239, 117-126.	4.8	103
107	Decontamination of arsenic(V)-contained liquid phase utilizing Fe3O4/bone char nanocomposite encapsulated in chitosan biopolymer. Environmental Science and Pollution Research, 2017, 24, 15157-15166.	2.7	26
108	A tri-enzyme magnetic nanobiocatalyst with one pot starch hydrolytic activity. Chemical Engineering Journal, 2017, 325, 80-90.	6.6	71

# 109	ARTICLE Biocompatible hyperbranched polyester magnetic nanocarrier for stimuli-responsive drug release. Journal of Biomaterials Science, Polymer Edition, 2017, 28, 616-628	IF 1.9	CITATIONS
110	Efficient immobilization of agarase using carboxyl-functionalized magnetic nanoparticles as support. Electronic Journal of Biotechnology, 2017, 25, 13-20.	1.2	15
111	Screening of enzyme inhibitors from traditional Chinese medicine by magnetic immobilized α-glucosidase coupled with capillary electrophoresis. Talanta, 2017, 164, 548-555.	2.9	78
112	Immobilization of β-galactosidase on surface modified cobalt/multiwalled carbon nanotube nanocomposite improves enzyme stability and resistance to inhibitor. International Journal of Biological Macromolecules, 2017, 105, 693-701.	3.6	49
113	Biosensors based on β-galactosidase enzyme: Recent advances and perspectives. Analytical Biochemistry, 2017, 535, 1-11.	1.1	49
114	α-Glucosidase immobilization on chitosan-enriched magnetic composites for enzyme inhibitors screening. International Journal of Biological Macromolecules, 2017, 105, 308-316.	3.6	56
115	Immobilization of A. oryzae β-galactosidase on Silica Nanoparticles: Development of an Effective Biosensor for Determination of Lactose in Milk Whey. , 2017, , 3-18.		2
116	Boronate-affinity based magnetic molecularly imprinted nanoparticles for the efficient extraction of the model glycoprotein horseradish peroxidase. Mikrochimica Acta, 2017, 184, 3729-3737.	2.5	28
117	Effective synthesis of theaflavin-3,3′-digallate with epigallocatechin-3- O -gallate and epicatechin gallate as substrates by using immobilized pear polyphenol oxidase. International Journal of Biological Macromolecules, 2017, 94, 709-718.	3.6	15
118	Development of enzyme-loaded PVA microspheres by membrane emulsification. Journal of Membrane Science, 2017, 524, 79-86.	4.1	40
119	Characterization and immobilization of arylsulfatase on modified magnetic nanoparticles for desulfation of agar. International Journal of Biological Macromolecules, 2017, 94, 576-584.	3.6	13
120	A Novel Strategy for Synthesis of Polystyrene/Fe ₃ O ₄ Nanocomposite: RAFT Polymerization, Functionalization, and Coordination Techniques. Polymer-Plastics Technology and Engineering, 2017, 56, 873-882.	1.9	16
121	Role of Glutaraldehyde in Imparting Stability to Immobilized β-Galactosidase Systems. Brazilian Archives of Biology and Technology, 2017, 60, .	0.5	6
122	Pd(II)/Pd(0) anchored to magnetic nanoparticles (Fe3O4) modified with biguanidine-chitosan polymer as a novel nanocatalyst for Suzuki-Miyaura coupling reactions. International Journal of Biological Macromolecules, 2018, 113, 186-194.	3.6	132
123	Synthesis of photo-responsive chitosan-cinnamate for efficient entrapment of β-galactosidase enzyme. Reactive and Functional Polymers, 2018, 124, 129-138.	2.0	29
124	Biocatalytic strategies in the production of galacto-oligosaccharides and its global status. International Journal of Biological Macromolecules, 2018, 111, 667-679.	3.6	51
125	Hyper-activation of ß-galactosidase from Aspergillus oryzae via immobilization onto amino-silane and chitosan magnetic maghemite nanoparticles. Journal of Cleaner Production, 2018, 179, 225-234.	4.6	24
126	Co-immobilization of lipases and β- d -galactosidase onto magnetic nanoparticle supports: Biochemical characterization. Molecular Catalysis, 2018, 453, 12-21.	1.0	25

#	Article	IF	CITATIONS
127	Design of epoxy-functionalized Fe3O4@MCM-41 core–shell nanoparticles for enzyme immobilization. International Journal of Biological Macromolecules, 2018, 115, 1122-1130.	3.6	53
128	Tannase immobilisation by amino-functionalised magnetic Fe3O4-chitosan nanoparticles and its application in tea infusion. International Journal of Biological Macromolecules, 2018, 114, 1134-1143.	3.6	36
129	Fabrication and hemocompatibility of carboxy-chitosan stabilized magnetite nanoparticles. Microsystem Technologies, 2018, 24, 669-681.	1.2	12
130	Cellulose as a template to fabricate a cellulase-immobilized composite with high bioactivity and reusability. New Journal of Chemistry, 2018, 42, 1665-1672.	1.4	17
131	Preparation of Chitosan/Bone Char/\$\$hbox {Fe}_{3}hbox {O}_{4}\$\$Fe3O4 Nanocomposite for Adsorption of Hexavalent Chromium in Aquatic Environments. Arabian Journal for Science and Engineering, 2018, 43, 5799-5808.	1.7	5
132	Magnetic-propelled Fe ₃ O ₄ –chitosan carriers enhance <scp> </scp> -asparaginase catalytic activity: a promising strategy for enzyme immobilization. RSC Advances, 2018, 8, 36063-36075.	1.7	62
133	Nitrogen Doped Graphene-Core/shell CdS@TiO2 for Direct Electrochemistry of Hemoglobin and Hydrogen Peroxide Biosensor Application. International Journal of Electrochemical Science, 2018, 13, 11225-11237.	0.5	2
134	Recovery and reuse of immobilized α-amylase during desizing of cotton fabric. Research Journal of Textile and Apparel, 2018, 22, 271-290.	0.6	6
135	Facile Preparation of Magnetic Chitosan Coprecipitated by Ethanol/NH3·H2O for Highly Efficient Removal toward Cr(VI). ACS Omega, 2018, 3, 5725-5734.	1.6	16
136	Synergistic effect of ultrasonication and co-immobilized enzymes on tomato peels for lycopene extraction. Ultrasonics Sonochemistry, 2018, 48, 453-462.	3.8	63
137	New Generation Hybrid Nanobiocatalysts. , 2018, , 217-231.		8
138	Lactose-Free Milk Preparation by Immobilized Lactase in Glass Microsphere Bed Reactor. Food Biophysics, 2018, 13, 353-361.	1.4	12
139	Carbon dioxide/methanol conversion cycle based on cascade enzymatic reactions supported on superparamagnetic nanoparticles. Anais Da Academia Brasileira De Ciencias, 2018, 90, 593-606.	0.3	25
140	Oxo-vanadium complex immobilized on chitosan coated-magnetic nanoparticles (Fe3O4): A heterogeneous and recyclable nanocatalyst for the chemoselective oxidation of sulfides to sulfoxides with H2O2. Polyhedron, 2018, 153, 240-247.	1.0	30
141	Application of Nanotechnology in the Food Industry: Present Status and Future Prospects. , 2018, , 1-27.		10
142	Facile Immobilization of Enzyme via Co-Electrospinning: A Simple Method for Enhancing Enzyme Reusability and Monitoring an Activity-Based Organic Semiconductor. ACS Omega, 2018, 3, 6346-6350.	1.6	17
143	Carbon nanotubes molybdenum disulfide 3D nanocomposite as novel nanoscaffolds to immobilize Lens culinaris β-galactosidase (Lsbgal): Robust stability, reusability, and effective bioconversion of lactose in whey. Food Chemistry, 2019, 297, 125005.	4.2	18
144	Ameliorating the activity and stability of Î ² galactosidase by tailoring potential nanobiocatalyst on functionalized nanographene: Headway to lactose hydrolysis. LWT - Food Science and Technology, 2019, 112, 108260.	2.5	8

#	Article	IF	CITATIONS
145	Enhancement of catalytic activity of lipase-immobilized Fe3O4-chitosan microsphere for enantioselective acetylation of racemic 1-phenylethylamine. Korean Journal of Chemical Engineering, 2019, 36, 729-739.	1.2	14
146	Technological Aspects of the Production of Fructo and Galacto-Oligosaccharides. Enzymatic Synthesis and Hydrolysis. Frontiers in Nutrition, 2019, 6, 78.	1.6	116
147	Immobilization of Î ² -galactosidase on chitosan-coated magnetic nanoparticles and its application for synthesis of lactulose-based galactooligosaccharides. Process Biochemistry, 2019, 84, 30-38.	1.8	29
148	Nanoimmobilization of β-Galactosidase for Lactose-Free Product Development. Environmental Chemistry for A Sustainable World, 2019, , 199-223.	0.3	1
149	Synthesis of Imatinibâ€loaded chitosanâ€modified magnetic nanoparticles as an antiâ€cancer agent for pH responsive targeted drug delivery. Applied Organometallic Chemistry, 2019, 33, e4833.	1.7	46
151	Enzyme self-assembly on naked iron oxide nanoparticles for aminoaldehyde biosensing. Amino Acids, 2019, 51, 679-690.	1.2	9
152	Magnetic Particles-Based Analytical Platforms for Food Safety Monitoring. Magnetochemistry, 2019, 5, 63.	1.0	15
154	Immobilization of microbial cells for the biotreatment of wastewater: A review. Environmental Chemistry Letters, 2019, 17, 241-257.	8.3	222
155	Immobilization of horseradish peroxidase on electrospun magnetic nanofibers for phenol removal. Ecotoxicology and Environmental Safety, 2019, 170, 716-721.	2.9	78
156	A co-immobilization of pectinase and cellulase onto magnetic nanoparticles for antioxidant extraction from waste fruit peels. Biocatalysis and Agricultural Biotechnology, 2019, 17, 470-479.	1.5	54
157	Lipase-immobilized chitosan-crosslinked magnetic nanoparticle as a biocatalyst for ring opening esterification of itaconic anhydride. Biochemical Engineering Journal, 2019, 143, 141-150.	1.8	46
158	SiO2 microparticles with carbon nanotube-derived mesopores as an efficient support for enzyme immobilization. Chemical Engineering Journal, 2019, 359, 1252-1264.	6.6	154
159	α-Glucosidase immobilization on chitosan-modified cellulose filter paper: Preparation, property and application. International Journal of Biological Macromolecules, 2019, 122, 298-305.	3.6	25
160	Nanoparticles decorated carbon nanotubes as novel matrix: A comparative study of influences of immobilization on the catalytic properties of Lens culinaris β-galactosidase (Lcβ-gal). International Journal of Biological Macromolecules, 2020, 144, 770-780.	3.6	8
161	Electrocatalytic nanostructured ferric tannate as platform for enzyme conjugation: Electrochemical determination of phenolic compounds. Bioelectrochemistry, 2020, 132, 107418.	2.4	13
162	Chitosan-based hydrogel for magnetic particle coating. Reactive and Functional Polymers, 2020, 146, 104431.	2.0	18
163	Enhanced enzymatic activity and stability by in situ entrapment of α-Glucosidase within super porous p(HEMA) cryogels during synthesis. Biotechnology Reports (Amsterdam, Netherlands), 2020, 28, e00534.	2.1	9
164	Preparation and assessment of cross-linked enzyme aggregates (CLEAs) of β-galactosidase from Lactobacillus leichmannii 313. Food and Bioproducts Processing, 2020, 124, 82-96.	1.8	9

#	Article	IF	CITATIONS
165	Fe ₃ O ₄ â€Lignin@Pdâ€NPs: A highly efficient, magnetically recoverable and recyclable catalyst for Mizorokiâ€Heck reaction under solventâ€free conditions. Applied Organometallic Chemistry, 2020, 34, e5837.	1.7	21
166	Graphene Oxide-based Magnetic Boronate-affinity Adsorbent for Extraction of Horseradish Peroxidase. Chinese Journal of Analytical Chemistry, 2020, 48, e20158-e20164.	0.9	7
167	Role of carboxylic group pattern on protein surface in the recognition of iron oxide nanoparticles: A key for protein corona formation. International Journal of Biological Macromolecules, 2020, 164, 1715-1728.	3.6	17
168	Immobilization of pectinase on Zrâ€treated pumice for fruit juice industry. Journal of Food Processing and Preservation, 2020, 44, e14661.	0.9	4
169	Bioactive properties of chitosan stabilized magnetic nanoparticles – Focus on hyperthermic and anti-amyloid activities. Journal of Magnetism and Magnetic Materials, 2020, 513, 167056.	1.0	12
170	Fabrication of Pd NPs on pectin-modified Fe3O4 NPs: A magnetically retrievable nanocatalyst for efficient C–C and C–N cross coupling reactions and an investigation of its cardiovascular protective effects. International Journal of Biological Macromolecules, 2020, 160, 1252-1262.	3.6	59
171	Structural, morphological and optical properties of multifunctional magnetic-luminescent ZnO@Fe3O4 nanocomposite. Physica E: Low-Dimensional Systems and Nanostructures, 2020, 124, 114291.	1.3	41
172	Immobilization of bromelain on cobalt-iron magnetic nanoparticles (CoFe2O4) for casein hydrolysis. Revista Colombiana De Quimica, 2020, 49, 3-10.	0.2	6
173	Recent advances in β-galactosidase and fructosyltransferase immobilization technology. Critical Reviews in Food Science and Nutrition, 2021, 61, 2659-2690.	5.4	30
174	Fructo-oligosaccharides production by an Aspergillus aculeatus commercial enzyme preparation with fructosyltransferase activity covalently immobilized on Fe3O4–chitosan-magnetic nanoparticles. International Journal of Biological Macromolecules, 2020, 150, 922-929.	3.6	51
175	Organophosphonate functionalized Au/Si@Fe3O4: Versatile carrier for enzyme immobilization. Methods in Enzymology, 2020, 630, 199-214.	0.4	2
176	Immobilization of Î2-Glucosidase from Thermatoga maritima on Chitin-functionalized Magnetic Nanoparticle via a Novel Thermostable Chitin-binding Domain. Scientific Reports, 2020, 10, 1663.	1.6	36
177	Covalent immobilization of thioglucosidase from radish seeds for continuous preparation of sulforaphene. Chemical Engineering Research and Design, 2020, 155, 146-155.	2.7	4
178	Study on preparation and recovery of magnetic BiOl/rGO/Fe3O4 composite photocatalyst. Results in Physics, 2020, 16, 102931.	2.0	9
179	Optimal immobilization of Trichoderma asperellum laccase on polymer coated Fe3O4@SiO2 nanoparticles for enhanced biohydrogen production from delignified lignocellulosic biomass. Fuel, 2020, 273, 117777.	3.4	97
180	Enzyme Immobilization on Maghemite Nanoparticles with Improved Catalytic Activity: An Electrochemical Study for Xanthine. Materials, 2020, 13, 1776.	1.3	6
181	One-pot biocatalytic conversion of lactose to gluconic acid and galacto-oligosaccharides using immobilized β-galactosidase and glucose oxidase. Catalysis Today, 2021, 366, 202-211.	2.2	16
182	Biohythane production from organic waste: Recent advancements, technical bottlenecks and prospects. International Journal of Hydrogen Energy, 2021, 46, 11201-11216.	3.8	22

#	Article	IF	CITATIONS
183	Dispersive micro solid-phase extraction with gas chromatography for determination of Diazinon and Ethion residues in biological, vegetables and cereal grain samples, employing D-optimal mixture design. Microchemical Journal, 2021, 160, 105680.	2.3	37
184	Identification and characterization of proteinase B as an unstable factor for neutral lactase in the enzyme preparation from Kluyveromyces lactis. Journal of Bioscience and Bioengineering, 2021, 131, 20-26.	1.1	1
185	Characterization of TEMPO-oxidized chitin nanofibers with various oxidation times and its application as an enzyme immobilization support. Marine Life Science and Technology, 2021, 3, 85-93.	1.8	6
186	Soluble and Cross-Linked Aggregated Forms of α-Galactosidase from Vigna mungo Immobilized on Magnetic Nanocomposites: Improved Stability and Reusability. Applied Biochemistry and Biotechnology, 2021, 193, 238-256.	1.4	8
187	Chitosan-coated magnetic nanoparticles; exploring their potentialities for DNA and Cu(II) recovery. Inorganic and Nano-Metal Chemistry, 2021, 51, 1098-1107.	0.9	6
188	Chitosan Nanoparticle: Alternative for Sustainable Agriculture. Materials Horizons, 2021, , 95-132.	0.3	6
189	Magnetic graphene oxide nanocomposites as an effective support for lactase immobilization with improved stability and enhanced photothermal enzymatic activity. New Journal of Chemistry, 2021, 45, 5939-5948.	1.4	6
190	Preparation of Streptavidin-Coated Magnetic Nanoparticles for Specific Immobilization of Enzymes with High Activity and Enhanced Stability. Industrial & Engineering Chemistry Research, 2021, 60, 1542-1552.	1.8	14
191	Current and future trends on polymer-based enzyme immobilization. , 2021, , 1-25.		0
192	Drug Delivery in Respiratory Diseases: Current Opportunities, Molecular and Cellular Mechanism, and Future Challenges. , 2021, , 847-902.		0
193	Stabilization of β-Galactosidase on Modified Gold Nanoparticles: A Preliminary Biochemical Study to Obtain Lactose-Free Dairy Products for Lactose-Intolerant Individuals. Molecules, 2021, 26, 1226.	1.7	9
194	Cross-linked Enzyme Aggregates of Fibrinolytic Protease BC1 Immobilized on Magnetic Chitosan Nanoparticles (CLEAs-Fib-mChi): Synthesis, Purification, and Characterization. Applied Biochemistry and Biotechnology, 2021, 193, 2004-2027.	1.4	5
195	Ionic Liquid-Modified Gold Nanoparticles for Enhancing Antimicrobial Activity and Thermal Stability of Enzymes. ACS Applied Nano Materials, 2021, 4, 3185-3196.	2.4	23
196	Optimizing the immobilization conditions of βâ€galactosidase on UVâ€cured epoxyâ€based polymeric film using response surface methodology. Journal of Food Biochemistry, 2021, 45, e13699.	1.2	6
197	Superporous neutral, anionic, and cationic cryogel reactors to improved enzymatic activity and stability of α-Glucosidase enzyme via entrapment method. Chemical Engineering Journal, 2021, 409, 128233.	6.6	14
198	Validation and Optimization of Polyvinyl Alcohol-Functionalized Gold Nanoparticles for Producing Lactose-Free Dairy Products. Oriental Journal of Chemistry, 2021, 37, 643-647.	0.1	1
199	Modified magnetite nanoparticle as biocatalytic support for magnetically stabilized fluidized bed reactors. Journal of Materials Research and Technology, 2021, 14, 1112-1125.	2.6	9
200	Efficiency of Immobilized Enzymes on Bacterial Magnetosomes. Applied Biochemistry and Microbiology, 2021, 57, 603-610.	0.3	3

#	Article	IF	Citations
201	Ginsenoside CK production by commercial snailase immobilized onto carboxylated chitosan-coated magnetic nanoparticles. Biochemical Engineering Journal, 2021, 174, 108119.	1.8	6
202	Hybrid chitosan-coated manganese ferrite nanoparticles for electrochemical sensing of bifenox herbicide. Journal of Environmental Chemical Engineering, 2021, 9, 106298.	3.3	8
203	Decorated silver nanoparticles on biodegradable magnetic chitosan/starch composite: Investigation of its cytotoxicity, antioxidant and anti-human breast cancer properties. Journal of Environmental Chemical Engineering, 2021, 9, 106393.	3.3	12
204	Immobilization of lipase on β-cyclodextrin grafted and aminopropyl-functionalized chitosan/Fe3O4 magnetic nanocomposites: An innovative approach to fruity flavor esters esterification. Food Chemistry, 2022, 366, 130616.	4.2	27
206	Iron Oxide Magnetic Nanoparticles (NPs) Tailored for Biomedical Applications. Nanomedicine and Nanotoxicology, 2020, , 57-102.	0.1	6
207	Magnetic Nanoparticles for InÂVitro Biological andÂMedical Applications. , 2012, , 215-242.		9
208	Enzyme Engineering and Protein Modifications. , 2015, , 115-130.		2
209	Grafted Pectin with Glycidyl Methacrylate for Multi-Sites Urease Immobilization. Journal of Composites and Biodegradable Polymers, 2019, 5, 62-73.	0.3	2
210	SIMPLE ECO-FRIENDLY BETA-GALACTOSIDASE IMMOBILIZATION ON FUNCTIONALIZED MAGNETIC PARTICLES FOR LACTOSE HYDROLYSIS. Environmental Engineering and Management Journal, 2015, 14, 631-638.	0.2	1
211	Lactobacillus brevis Lipase: Purification, Immobilization onto Magnetic Florosil NPs, Characterization and Application as a Detergent Additive. Tenside, Surfactants, Detergents, 2017, 54, 194-205.	0.5	6
212	Overviewing the Application of β-Galactosidase "Immobilized on Nanoparticles―in Dairy Industries. Brazilian Archives of Biology and Technology, 0, 64, .	0.5	2
213	Kinetic and Thermal Studies of Adsorption of Allura Red Dye by Surface Functionalized Magnetite Nanoparticles. Asian Journal of Chemistry, 2021, 33, 2675-2684.	0.1	0
214	PREPARATION AND CHARACTERIZATION OF CHITOSAN COATED MAGNETIC NANOPARTICLES AND THEIR BSA ADSORPTION PROPERTIES. Acta Polymerica Sinica, 2013, 013, 1369-1375.	0.0	2
215	Enzyme Engineering and Protein Modifications. , 2015, , 99-113.		0
216	Chitosan-Based Supports: Enzyme Immobilization. , 0, , 1593-1634.		0
217	Modulation of cancer cell proliferation by unusually produced β(1-6) linked Mannan-oligosaccharides and β(1-6) linked Galactooligosaccharides using β–galactosidase from Aspergillus oryzae. International Journal of Advanced and Applied Sciences, 2018, 5, 30-41.	0.2	0
218	Enzyme activity and stability of lactase immobilized on two different supports: Calcium alginate and magnetic chitosan. Malaysian Journal of Fundamental and Applied Sciences, 2020, 16, 413-417.	0.4	2
219	Large batch production of Galactooligosaccharides using βâ€glucosidase immobilized on chitosanâ€functionalized magnetic nanoparticle. Journal of Food Biochemistry, 2021, 45, e13589.	1.2	7

#	Article	IF	CITATIONS
220	Appraisal of Chitosan-Based Nanomaterials in Enzyme Immobilization and Probiotics Encapsulation. Nanotechnology in the Life Sciences, 2020, , 163-188.	0.4	0
221	α-Glucosidase enzyme entrapped superporous poly(amphoteric) cryogel reactor with improved enzymatic activity and stability over wide pH ranges. Chemical Engineering Research and Design, 2022, 177, 670-681.	2.7	3
222	Combined effect of enzyme co-immobilized magnetic nanoparticles (MNPs) and ultrasound for effective extraction and purification of curcuminoids from Curcuma longa. Industrial Crops and Products, 2022, 177, 114385.	2.5	18
223	Nanosupport immobilized \hat{l}^2 -galactosidases, their stabilization, and applications. , 2022, , 661-688.		3
224	Thermoâ€responsive macroporous p(<scp>NIPAM</scp>) cryogel affords enhanced thermal stability and activity for É'â€glucosidase enzyme by entrapping in situ. Canadian Journal of Chemical Engineering, 2022, 100, 3575-3587.	0.9	3
225	Electrochemical Sensing of Tryptophan and Tyrosine in Chronic Kidney Disease Patients Using Magnetic Core/Ag Nanoparticles Shell Nanocomposite Modified Electrode. Journal of Analytical Chemistry, 2022, 77, 235-245.	0.4	0
226	Urease-Immobilized PEI Cryogels for the Enzymatic Hydrolysis of Urea and Carbon Dioxide Uptake. Industrial & Engineering Chemistry Research, 2022, 61, 2771-2782.	1.8	8
227	Ag NPs supported chitosan-agarose modified Fe3O4 nanocomposite catalyzed synthesis of indazolo[2,1-b]phthalazines and anticancer studies against liver and lung cancer cells. International Journal of Biological Macromolecules, 2022, 208, 20-28.	3.6	23
228	Evaluation of antioxidant, cytotoxicity, and anti-ovarian cancer properties of the Fe3O4@CS-Starch/Cu bio-nanocomposite. Inorganic Chemistry Communication, 2022, 140, 109452.	1.8	4
229	Beneficial properties of the biosynthesized silver/chitosan nanoparticles mediated by Mentha piperita in rats with heart failure following myocardial infarction. Inorganic Chemistry Communication, 2022, 141, 109581.	1.8	5
230	Cellulase immobilized onto amino-functionalized magnetic Fe3O4@SiO2 nanoparticle for poplar deconstruction. Chemical Papers, 2022, 76, 5807-5817.	1.0	6
231	Designing robust nano-biocatalysts using nanomaterials as multifunctional carriers - expanding the application scope of bio-enzymes. Topics in Catalysis, 2023, 66, 625-648.	1.3	7
232	Reusability of immobilized β-glucosidase on sodium alginate-coated magnetic nanoparticles and high productivity applications. Journal of Saudi Chemical Society, 2022, 26, 101517.	2.4	10
233	Immobilization of Chitosanase on Magnetic Nanoparticles: Preparation, Characterization and Properties. Journal of Ocean University of China, 2022, 21, 1381-1388.	0.6	1
234	Galactooligosaccharides: Physiological benefits, production strategies, and industrial application. Journal of Biotechnology, 2022, 359, 116-129.	1.9	7
235	Off-line and on-line liquid chromatography-mass spectrometry methods with immobilized bio-macromolecules for drug screening from natural sources. Journal of Chromatography A, 2022, 1683, 463538.	1.8	6
236	Acidic Shift of Optimum pH of Bovine Serum Amine Oxidase upon Immobilization onto Nanostructured Ferric Tannates. International Journal of Molecular Sciences, 2022, 23, 12172.	1.8	4
237	Enhanced Stability of β-Agarase Immobilized on Streptavidin-Coated Fe ₃ O ₄ Nanoparticles: Effect of Biotin Linker Length. Industrial & Engineering Chemistry Research, 2022, 61, 18646-18662.	1.8	2

#	Article	IF	CITATIONS
238	Design and synthesis of Ag NPs/chitosan-starch nano-biocomposite as a modern anti-human malignant melanoma drug. International Journal of Biological Macromolecules, 2023, 236, 123823.	3.6	0
239	Hafnium-doped nano-magnetite/poly(N-vinylcaprolactam) composites for doxorubicin release. Materials Chemistry and Physics, 2023, 301, 127670.	2.0	2
240	Indoleamine 2,3 dioxygenase 1 immobilization on magnetic nanoparticles for screening inhibitors from coffee. Food Chemistry: X, 2023, 17, 100591.	1.8	1
241	Application of nanochitosan inÂenzymeÂimmobilization. , 2023, , 235-272.		2
242	Decorated gold nanoparticles on hydroxymethylated lignin modified magnetic composite: Introducing a novel therapeutic drug for the treatment of renal anemia. Inorganic Chemistry Communication, 2023, 153, 110686.	1.8	0