Magnetic nanoparticles supported ionic liquids for lipas in catalyzing esterification

Journal of Molecular Catalysis B: Enzymatic 58, 103-109 DOI: 10.1016/j.molcatb.2008.12.001

Citation Report

#	Article	IF	CITATIONS
3	Lipase immobilization on O-propargyl and O-pentynyl dextrans and its application for the synthesis of click beetle pheromones. Process Biochemistry, 2009, 44, 1276-1283.	3.7	13
4	Activation and stabilization of enzymes in ionic liquids. Organic and Biomolecular Chemistry, 2010, 8, 2887.	2.8	210
5	Synthesis and Catalytic Abilities of Silica-coated Fe3O4 Nanoparticle Bonded Metalloporphyrins with Different Saturation Magnetization. Catalysis Letters, 2010, 138, 96-103.	2.6	22
7	Methods for stabilizing and activating enzymes in ionic liquids—a review. Journal of Chemical Technology and Biotechnology, 2010, 85, 891-907.	3.2	327
8	Stability of responsive polymer–protein bioconjugates. Progress in Polymer Science, 2010, 35, 459-486.	24.7	94
9	Surface functionalization of chitosan-coated magnetic nanoparticles for covalent immobilization of yeast alcohol dehydrogenase from Saccharomyces cerevisiae. Journal of Magnetism and Magnetic Materials, 2010, 322, 3862-3868.	2.3	53
10	Effect of solvents and precipitant on the properties of chitosan nanoparticles in a water-in-oil microemulsion and its lipase immobilization performance. Bioresource Technology, 2010, 101, 841-844.	9.6	18
11	New Trends in the Recycling of NAD(P)H for the Design of Sustainable Asymmetric Reductions Catalyzed by Dehydrogenases. Current Organic Chemistry, 2010, 14, 1000-1021.	1.6	67
12	Enzymes in neoteric solvents: From one-phase to multiphase systems. Green Chemistry, 2010, 12, 555.	9.0	172
13	Preparation and characterization of novel magnetic nanocomposite-bonded metalloporphyrins as biomimetic nanocatalysts. Journal of Porphyrins and Phthalocyanines, 2010, 14, 825-831.	0.8	15
15	Effect of ionic liquids as additives in the catalytic properties of different immobilized preparations of Rhizomucor miehei lipase in the hydrolysis of peracetylated lactal. Green Chemistry, 2010, 12, 1365.	9.0	16
16	Suzuki Reaction of Aryl Bromides Using a Phosphine-Free Magnetic Nanoparticle-Supported Palladium Catalyst. Chinese Journal of Catalysis, 2011, 32, 1667-1676.	14.0	17
17	Magnetic microsphere confined ionic liquid as a novel sorbent for the determination of chlorophenols in environmental water samples by liquid chromatography. Journal of Environmental Monitoring, 2011, 13, 440-445.	2.1	41
18	Gold nanoparticles in an ionic liquid phase supported in a biopolymeric matrix applied in the development of a rosmarinic acid biosensor. Analyst, The, 2011, 136, 2495.	3.5	31
19	(Bio)Catalytic Continuous Flow Processes in scCO2 and/or ILs: Towards Sustainable (Bio)Catalytic Synthetic Platforms. Current Organic Synthesis, 2011, 8, 810-823.	1.3	0
20	Surface Modification of Ferromagnetic <i>L</i> 10 FePt Nanoparticles Using Biotin–Avidin as Biomolecular Recognition Probes. Bulletin of the Chemical Society of Japan, 2011, 84, 873-877.	3.2	0
21	Comparison of Superparamagnetic Fe ₃ O ₄ ‣upported Nâ€Heterocyclic Carbeneâ€Based Catalysts for Enantioselective Allylation. ChemCatChem, 2011, 3, 1889-1891.	3.7	62
22	Separation of lysozyme using superparamagnetic carboxymethyl chitosan nanoparticles. Journal of Chromatography B: Analytical Technologies in the Biomedical and Life Sciences, 2011, 879, 2194-2200.	2.3	68

ARTICLE IF CITATIONS # A facile technique to prepare cross-linked enzyme aggregates using p-benzoquinone as cross-linking 23 2.7 27 agent. Korean Journal of Chemical Engineering, 2011, 28, 1090-1095. Facile, high efficiency immobilization of lipase enzyme on magnetic iron oxide nanoparticles via a biomimetic coating. BMC Biotechnology, 2011, 11, 63. 24 3.3 242 Polymerâ€Supported Ionicâ€Liquidâ€Like Phases (SILLPs): Transferring Ionic Liquid Properties to Polymeric 25 3.3 83 Matrices. Chemistry - A European Journal, 2011, 17, 1894-1906. Superparamagnetic nanoparticles-supported phosphine-free palladium catalyst for the Sonogashira 4.8 coupling reaction. Journal of Molecular Catalysis A, 2011, 334, 130-138. Application of Lipases from Candida rugosa in the Enantioselective Esterification of (R,S)-lbuprofen. 30 1.6 14 Current Organic Chemistry, 2012, 16, 972-977. Supported ionic liquids on non-porous and porous inorganic materials—A topical review. Applied Catalysis A: General, 2012, 445-446, 92-101. 4.3 190 Immobilization of Burkholderia sp. lipase on a ferric silica nanocomposite for biodiesel production. 33 3.8 154 Journal of Biotechnology, 2012, 158, 112-119. Peroxometalates Immobilized on Magnetically Recoverable Catalysts for Epoxidation. ChemPlusChem, 34 2.8 38 2012, 77, 1128-1138. Improving the Stability of Immobilized Penicillin G Acylase via the Modification of Supports With Ionic 35 3.7 28 Liquids. Industrial & amp; Engineering Chemistry Research, 2012, 51, 4582-4590. Multi-Layer Functionalized Poly(Ionic Liquid) Coated Magnetic Nanoparticles: Highly Recoverable and 11.2 148 Magnetically Separable BrAnsted Acid Catalyst. ACS Catalysis, 2012, 2, 1259-1266. Enzyme immobilization on carbon nanomaterials: Loading density investigation and zeta potential 37 1.8 53 analysis. Journal of Molecular Catalysis B: Enzymatic, 2012, 83, 87-93. Silica-encapsulated magnetic nanoparticles: Enzyme immobilization and cytotoxic study. International 38 Journal of Biological Macromolecules, 2012, 50, 1063-1069. Direct binding glucoamylase onto carboxyl-functioned magnetic nanoparticles. Biochemical 39 3.6 42 Engineering Journal, 2012, 67, 120-125. Stability and Activity of Enzymes in Ionic Liquids., 2012, 235-273. Acidic ionic liquid immobilized on magnetic mesoporous silica: Preparation and catalytic performance 4.3 49 41 in esterification. Applied Catalysis A: General, 2012, 445-446, 239-245. Immobilization of Burkholderia cepacia lipase on functionalized ionic liquids modified mesoporous 42 silica SBA-15. Process Biochemistry, 2012, 47, 2291-2299. Immobilizing Penicillin G Acylase Using Silica-Supported Ionic Liquids: The Effects of Ionic Liquid 43 3.7 17 Loadings. Industrial & amp; Engineering Chemistry Research, 2012, 51, 13173-13181. Iron Oxide Filled Magnetic Carbon Nanotube–Enzyme Conjugates for Recycling of Amyloglucosidase: 44 Toward Useful Applications in Biofuel Production Process. Langmuir, 2012, 28, 16864-16873.

#	Article	IF	CITATIONS
45	Highly cross-linked imidazolium salt entrapped magnetic particles – preparation and applications. Journal of Materials Chemistry, 2012, 22, 20728.	6.7	33
47	Magnetic Catechol-Chitosan with Bioinspired Adhesive Surface: Preparation and Immobilization of ï‰-Transaminase. PLoS ONE, 2012, 7, e41101.	2.5	28
48	Improvement of Thermostability and Activity of Firefly Luciferase Through [TMG][Ac] Ionic Liquid Mediator. Applied Biochemistry and Biotechnology, 2012, 168, 604-615.	2.9	16
49	Regulation of catalytic behaviour of hydrolases through interactions with functionalized carbon-based nanomaterials. Journal of Nanoparticle Research, 2012, 14, 1.	1.9	68
50	Preparation of Magnetic Nanoparticles and Their Use for Immobilization of C-Terminally Lysine-Tagged Bacillus sp. TS-23 ݱ-Amylase. Applied Biochemistry and Biotechnology, 2012, 166, 1711-1722.	2.9	19
51	Stability of lipase immobilized on O-pentynyl dextran. Bioprocess and Biosystems Engineering, 2012, 35, 535-544.	3.4	11
52	Immobilization of Candida rugosa lipase onto magnetic beads for kinetic resolution of (R,S)-ibuprofen. Catalysis Communications, 2012, 24, 80-84.	3.3	45
53	Ionic liquids for biofuel production: Opportunities and challenges. Applied Energy, 2012, 92, 406-414.	10.1	196
54	Immobilization of Penicillin G Acylase on Magnetic Nanoparticles Modified by Ionic Liquids. Chinese Journal of Chemical Engineering, 2012, 20, 146-151.	3.5	29
55	Enzyme–magnetic nanoparticle hybrids: new effective catalysts for the production of high value chemicals. Journal of Chemical Technology and Biotechnology, 2012, 87, 583-594.	3.2	84
56	Novel magnetic nanoparticles for the hydrolysis of starch with <i>Bacillus licheniformis</i> αâ€amylase. Journal of Applied Polymer Science, 2012, 123, 2574-2581.	2.6	35
57	Magnetic Removal of Reactive Black 5 from Wastewater Using Ionic Liquid Graftedâ€Magnetic Nanoparticles. Clean - Soil, Air, Water, 2013, 41, 1208-1215.	1.1	30
58	Analytical model of batch magnetophoretic separation. Physical Review E, 2013, 87, 062308.	2.1	2
59	Preparation, characterization and targeted delivery of serratiopeptidase immobilized on amino-functionalized magnetic nanoparticles. European Journal of Pharmaceutics and Biopharmaceutics, 2013, 85, 413-426.	4.3	43
60	Immobilization of pectinase from Penicillium oxalicum F67 onto magnetic cornstarch microspheres: Characterization and application in juice production. Journal of Molecular Catalysis B: Enzymatic, 2013, 97, 137-143.	1.8	45
62	From the dissolution to the extraction of carbohydrates using ionic liquids. RSC Advances, 2013, 3, 20219.	3.6	24
63	Rapid screening and analysis of alcohol dehydrogenase binders from <i>Glycyrrhiza uralensis</i> root extract using functionalized magnetic nanoparticles coupled with HPLCâ^'MS/MS. Canadian Journal of Chemistry, 2013, 91, 1147-1154.	1.1	12
64	Transesterification of glycerol trioleate catalyzed by basic ionic liquids immobilized on magnetic nanoparticles: Influence of pore diffusion effect. Applied Catalysis A: General, 2013, 453, 327-333.	4.3	38

ARTICLE IF CITATIONS # Superparamagnetic nanoparticles as versatile carriers and supporting materials for enzymes. Journal 1.8 262 65 of Molecular Čatalysis B: Enzymatic, 2013, 85-86, 71-92. Nanobiotechnology as a novel paradigm for enzyme immobilisation and stabilisation with potential applications in biodiesel production. Applied Microbiology and Biotechnology, 2013, 97, 23-39. 3.6 244 Sputtering deposition of magnetic Ni nanoparticles directly onto an enzyme surface: a novel method 67 4.1 55 to obtain a magnetic biocatalyst. Chemical Communications, 2013, 49, 1273. A surfactant-coated lipase immobilized in magnetic nanoparticles for multicycle ethyl isovalerate enzymatic production. Biochemical Engineering Journal, 2013, 73, 72-79. Immobilization of trypsin via reactive polymer grafting from magnetic nanoparticles for 69 5.8 56 microwave-assisted digestion. Journal of Materials Chemistry B, 2013, 1, 2260. Lipase-immobilized magnetic chitosan nanoparticles for kinetic resolution of (R,S)-ibuprofen. Journal of Molecular Catalysis B: Enzymatic, 2013, 94, 7-14. 1.8 56 Poly(basic ionic liquid) coated magnetic nanoparticles: High-loaded supported basic ionic liquid 71 0.5 24 catalyst. Comptes Rendus Chimie, 2013, 16, 906-911. Ionically modified magnetic nanomaterials for arsenic and chromium removal from water. Chemical 12.7 Engineering Journal, 2013, 225, 607-615. Synthesis and characterization of heteropolytungstate-ionic liquid supported on the surface of silica 73 2.3 35 coated magnetite nanoparticles. Journal of Magnetism and Magnetic Materials, 2013, 327, 58-63. Characterization of immobilized phospholipase A1 on magnetic nanoparticles for oil degumming 74 5.2 application. LWT - Food Science and Technology, 2013, 50, 519-525. lonic liquids as novel surfactants for potential use in enhanced oil recovery. Korean Journal of 75 2.7 82 Chemical Engineering, 2013, 30, 2108-2117. 1-Methyl-3-(2-(sulfooxy)ethyl)-1H-imidazol-3-ium Chloride as a New and Green Ionic Liquid Catalyst for One-Pot Synthesis of Dihydropyrimidinones under Solvent-Free Condition. Journal of Chemistry, 2013, 2013, 1-6. Immobilization of cyclodextrin glucanotransferase on aminopropyl-functionalized silica-coated 77 2.2 14 superparamagnetic nanoparticles. Electronic Journal of Biotechnology, 2013, 16, . Immobilisation of lipase on the surface of magnetic nanoparticles and nonâ€porous glass beads for regioselective acetylation of prednisolone. IET Nanobiotechnology, 2013, 7, 100-108. 3.8 16 Biodiesel production from butter factory effluent. African Journal of Biotechnology, 2014, 13, 897-904. 79 0.6 3 Preparation and characterization of magnetic chlorochromate hybrid nanomaterials with triphenylphosphine surface-modified iron oxide nanoparticles. Journal of Nanostructure in 9.1 Chemistry, 2014, 4, 153-160. Highly selective isolation and purification of heme proteins in biological samples using 81 2.515 multifunctional magnetic nanospheres. Journal of Separation Science, 2014, 37, 3745-3752. Compatibility of Ionic Liquids with Enzymes. Biofuels and Biorefineries, 2014, , 257-273.

#	Article	IF	CITATIONS
83	Lipolytic biocatalyst based on recyclable magnetite-polysiloxane nanoparticles. Applied Surface Science, 2014, 292, 898-905.	6.1	12
84	Ni2+ supported on hydroxyapatite-core-shell γ-Fe2O3 nanoparticles: a novel, highly efficient and reusable lewis acid catalyst for the regioselective azidolysis of epoxides in water. Journal of the Iranian Chemical Society, 2014, 11, 335-340.	2.2	22
85	Synthesis and characterization of magnetic dichromate hybrid nanomaterials with triphenylphosphine surface modified iron oxide nanoparticles (Fe3O4@SiO2@PPh3@Cr2O72â^'). Solid State Sciences, 2014, 28, 9-13.	3.2	48
86	Immobilisation of acid pectinase on graphene oxide nanosheets. Chemical Papers, 2014, 68, .	2.2	10
87	Carbodiimide-mediated immobilization of serratiopeptidase on amino-, carboxyl-functionalized magnetic nanoparticles and characterization for target delivery. Journal of Nanoparticle Research, 2014, 16, 1.	1.9	27
88	Preparation of magnetic fluorochromate hybrid nanomaterials with triphenylphosphine surface modified iron oxide nanoparticles and their characterization. Journal of Magnetism and Magnetic Materials, 2014, 355, 300-305.	2.3	11
89	Immobilization of lipase on Fe3O4/ZnO core/shell magnetic nanoparticles and catalysis of Michael-type addition to chalcone derivatives. Journal of Molecular Catalysis B: Enzymatic, 2014, 100, 121-128.	1.8	41
90	Chitosan-assisted immobilization of serratiopeptidase on magnetic nanoparticles, characterization and its target delivery. Journal of Drug Targeting, 2014, 22, 123-137.	4.4	34
91	Poly(2-Vinyl-4,4-dimethylazlactone)-Functionalized Magnetic Nanoparticles as Carriers for Enzyme Immobilization and Its Application. ACS Applied Materials & Interfaces, 2014, 6, 21346-21354.	8.0	86
92	BrÃ,nsted acidic ionic liquid based magnetic nanoparticles: a new promoter for the Biginelli synthesis of 3,4-dihydropyrimidin-2(1H)-ones/thiones. New Journal of Chemistry, 2014, 38, 358-365.	2.8	95
93	Penicillium expansum lipase-coated magnetic Fe3O4–polymer hybrid hollow nanoparticles: a highly recoverable and magnetically separable catalyst for the synthesis of 1,3-dibutylurea. RSC Advances, 2014, 4, 25983-25992.	3.6	15
94	Magnetic solid-phase extraction of proteins based on hydroxy functional ionic liquid-modified magnetic nanoparticles. Analytical Methods, 2014, 6, 8358-8367.	2.7	27
95	Investigation of Surface Properties and Solubility of 1-Vinyl-3-alkyl/Esterimidazolium Halide Ionic Liquids by Density Functional Methods. Journal of Chemical & Engineering Data, 2014, 59, 2464-2471.	1.9	8
96	Pentynyl dextran as a support matrix for immobilization of serine protease subtilisin Carlsberg and its use for transesterification of N-acetyl-l-phenylalanine ethyl ester in organic media. Bioprocess and Biosystems Engineering, 2014, 37, 687-695.	3.4	4
97	Synthesis and characterization of magnetic bromochromate hybrid nanomaterials with triphenylphosphine surface-modified iron oxide nanoparticles and their catalytic application in multicomponent reactions. RSC Advances, 2014, 4, 29765.	3.6	44
98	Cyclodextrin glucanotransferase immobilization onto functionalized magnetic double mesoporous core–shell silica nanospheres. Electronic Journal of Biotechnology, 2014, 17, 55-64.	2.2	31
100	Poly(L-lactide) nanofibers containing trypsin for gelatin digestion. Fibers and Polymers, 2015, 16, 867-874.	2.1	2
101	Use of ionic liquids as additives for the immobilization of lipase from <i>Bacillus sp</i> Journal of Chemical Technology and Biotechnology, 2015, 90, 1308-1316.	3.2	11

#	Article	IF	CITATIONS
102	Characterization and immobilization of trypsin on tannic acid modified Fe3O4 nanoparticles. Colloids and Surfaces B: Biointerfaces, 2015, 128, 227-236.	5.0	85
103	Hydrolysis of Hydrophobic Esters in a Bicontinuous Microemulsion Catalysed by Lipaseâ€B from <i>Candida antarctica</i> . Chemistry - A European Journal, 2015, 21, 2691-2700.	3.3	19
104	Intrinsic therapeutic and biocatalytic roles of ionic liquid mediated self-assembled platinum–phytase nanospheres. RSC Advances, 2015, 5, 62871-62881.	3.6	13
105	Silica-coated Mn3O4 nanoparticles coated with an ionic liquid for use in solid phase extraction of silver(I) ions prior to their determination by AAS. Mikrochimica Acta, 2015, 182, 1447-1456.	5.0	20
106	Immobilization of Alkaline Protease on Amino-Functionalized Magnetic Nanoparticles and Its Efficient Use for Preparation of Oat Polypeptides. Industrial & Engineering Chemistry Research, 2015, 54, 4689-4698.	3.7	48
107	Key factors affecting the activity and stability of enzymes in ionic liquids and novel applications in biocatalysis. Biochemical Engineering Journal, 2015, 99, 67-84.	3.6	106
108	Magnetic multiwall carbon nanotubes modified with dual hydroxy functional ionic liquid for the solid-phase extraction of protein. Analyst, The, 2015, 140, 3474-3483.	3.5	31
109	Amine-functionalized magnetic nanocomposite particles for efficient immobilization of lipase: effects of functional molecule size on properties of the immobilized lipase. RSC Advances, 2015, 5, 33313-33327.	3.6	48
110	Enhanced stability and catalytic activity of immobilized α-amylase on modified Fe3O4 nanoparticles for potential application in food industries. Journal of Nanoparticle Research, 2015, 17, 1.	1.9	43
111	Detection of liver cancer cells by using ELISA and coupling of anti-glypican 3 antibody and magnetite nanoparticles. Geosystem Engineering, 2015, 18, 219-225.	1.4	7
112	Preparation and characterization of a new surface-modified dichromate/triethylamine/silica/iron oxide magnetic hybrid nanomaterial. Journal of the Iranian Chemical Society, 2015, 12, 191-196.	2.2	15
113	Ionic liquid modified diatomite as a new effective adsorbent for uranium ions removal from aqueous solution. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2015, 465, 159-167.	4.7	53
114	Synthesis and Characterization of Chitosan/TiO2 Composite Beads for Improving Stability of Porcine Pancreatic Lipase. Applied Biochemistry and Biotechnology, 2015, 175, 1052-1068.	2.9	21
115	Immobilization of Candida rugosa lipase onto an eco-friendly support in the presence of ionic liquid. Bioprocess and Biosystems Engineering, 2015, 38, 805-814.	3.4	12
116	Fe3O4@Silica sulfuric acid core–shell composite as a novel nanomagnetic solid acid: synthesis, characterization and application as an efficient and reusable catalyst for one-pot synthesis of 3,4-dihydropyrimidinones/thiones under solvent-free conditions. Research on Chemical Intermediates, 2015, 41, 2991-3001.	2.7	36
117	Synthesis of polyethyleneimine (<scp>PEI</scp>) and <i>β</i> â€cyclodextrin grafted <scp>PEI</scp> nanocomposites with magnetic cores for lipase immobilization and esterification. Journal of Chemical Technology and Biotechnology, 2016, 91, 375-384.	3.2	32
118	The interactions between lipase and pyridinium ligands investigated by electrochemical and spectrophotometric methods. Journal of Electrochemical Science and Engineering, 2016, 6, 91.	3.5	0
119	Magnetic separation of nanobiostructured systems for innovation of biocatalytic processes in food industry. , 2016, , 67-96.		1

#	Article	IF	Citations
120	Lipase Activation and Stability Enhancement in Ionic Liquids. , 2016, , 99-152.		2
121	Magnetic Nanoparticle Supported Ionic Liquid Assisted Green Synthesis of Pyrazolopyranopyrimidines and 1,6â€diaminoâ€2â€oxoâ€1,2,3,4â€ŧetrahydropyridineâ€3,5―dicarbonitriles. Journal of the Chinese Chemica Society, 2016, 63, 557-561.	1.4	19
122	Fe ₃ O ₄ @nano-cellulose/TiCl: a bio-based and magnetically recoverable nano-catalyst for the synthesis of pyrimido[2,1-b]benzothiazole derivatives. RSC Advances, 2016, 6, 96928-96934.	3.6	57
123	Preparation and characterization of Fe ₃ O ₄ @SiO ₂ @TiO ₂ @Pd and Fe ₃ O ₄ @SiO ₂ @TiO ₂ @Pd–Ag nanocomposites and their utilization in enhanced degradation systems and rapid magnetic separation. RSC Advances, 2016,	3.6	48
124	Application of an industrial waste magnetic iron dust as a solid phase support for immobilizing enzyme of industrial applications. Adsorption Science and Technology, 2016, 34, 439-454.	3.2	3
125	Algae – A quintessential and positive resource of bioethanol production: A comprehensive review. Renewable and Sustainable Energy Reviews, 2016, 66, 248-267.	16.4	134
126	Immobilized lipase catalyzing glucose stearate synthesis and their surfactant properties analysis. 3 Biotech, 2016, 6, 184.	2.2	14
127	Ruthenium Salen Complex Immobilized on FeNi3 Magnetic Nanoparticles: The Efficient, Green and Reusable Nanocatalyst for Heck and Suzuki Coupling Reactions. Catalysis Letters, 2016, 146, 2555-2565.	2.6	6
129	Amine-functionalized magnetic nanoparticles as robust support for immobilization of Lipase. Journal of Chemical Sciences, 2016, 128, 1131-1140.	1.5	21
130	Polyanilineâ€functionalized magnetic mesoporous nanocomposite: A smart material for the immobilization of lipase. Polymer Composites, 2016, 37, 1152-1160.	4.6	23
131	Removal of anionic dyes from aqueous solution by adsorption onto amino-functionalized magnetic nanoadsorbent. Desalination and Water Treatment, 2016, 57, 7054-7065.	1.0	23
132	Magnetic CoFe2O4 Nanoparticles Supported Basic Poly(Ionic Liquid)s Catalysts: Preparation and Catalytic Performance Comparison in Transesterification and Knoevenagel Condensation. Catalysis Letters, 2016, 146, 951-959.	2.6	19
133	Zinc Oxide Nanoparticles Supported Lipase Immobilization for Biotransformation in Organic Solvents: A Facile Synthesis of Geranyl Acetate, Effect of Operative Variables and Kinetic Study. Applied Biochemistry and Biotechnology, 2016, 178, 1630-1651.	2.9	25
134	Synthesis and characterization of ionic liquid immobilized on magnetic nanoparticles: A recyclable heterogeneous organocatalyst for the acetylation of alcohols. Journal of Magnetism and Magnetic Materials, 2016, 401, 832-840.	2.3	38
135	Polystyrene-supported basic dicationic ionic liquid as a novel, reusable, and efficient heterogeneous catalyst for the one-pot synthesis of chromene derivatives in water. Research on Chemical Intermediates, 2016, 42, 3829-3846.	2.7	13
136	Heterogeneous Fe3O4@chitosan-Schiff base Pd nanocatalyst: Fabrication, characterization and application as highly efficient and magnetically-recoverable catalyst for Suzuki–Miyaura and Heck–Mizoroki C–C coupling reactions. Catalysis Communications, 2016, 73, 39-45.	3.3	131
137	Preparation of a novel, efficient, and recyclable magnetic catalyst, γ -Fe 2 O 3 @HAp-Ag nanoparticles, and a solvent- and halogen-free protocol for the synthesis of coumarin derivatives. Chinese Chemical Letters, 2017, 28, 75-82.	9.0	78
138	Protic ionic liquids influence on immobilization of LipaseBurkholderia cepaciaon hybrid supports. Journal of Chemical Technology and Biotechnology, 2017, 92, 633-641.	3.2	10

#	Article	IF	CITATIONS
139	A review on the important aspects of lipase immobilization on nanomaterials. Biotechnology and Applied Biochemistry, 2017, 64, 496-508.	3.1	120
140	Preparation and characterization of rapid magnetic recyclable Fe3O4@SiO2@TiO2–Sn photocatalyst. Journal of the Iranian Chemical Society, 2017, 14, 1089-1098.	2.2	11
141	Self-assembly of glucose oxidase on reduced graphene oxide-magnetic nanoparticles nanocomposite-based direct electrochemistry for reagentless glucose biosensor. Materials Science and Engineering C, 2017, 76, 398-405.	7.3	140
142	High activity and selectivity immobilized lipase on Fe 3 O 4 nanoparticles for banana flavour synthesis. Process Biochemistry, 2017, 56, 98-108.	3.7	54
143	Synthesis of Fe ₃ O ₄ @SiO ₂ @DOPisatinâ€Ni(II) and Cu(II) nanoparticles: Highly efficient catalyst for the synthesis of sulfoxides and disulfides. Applied Organometallic Chemistry, 2017, 31, e3844.	3.5	12
144	Preparation of ionic liquid-modified SiO ₂ @Fe ₃ O ₄ nanocomposite as a magnetic sorbent for use in solid-phase extraction of zinc(<scp>ii</scp>) ions from milk and water samples. RSC Advances, 2017, 7, 23293-23300.	3.6	14
145	Targeted mutations and MD simulations of a methanol-stable lipase YLIP9 from Yarrowia lipolytica MSR80 to develop a biodiesel enzyme. International Journal of Biological Macromolecules, 2017, 104, 78-88.	7.5	14
146	Food Analysis by Microextraction Methods Based on the Use of Magnetic Nanoparticles as Supports: Recent Advances. Food Analytical Methods, 2017, 10, 2974-2993.	2.6	42
147	Optimization of enzyme immobilization on functionalized magnetic nanoparticles for laccase biocatalytic reactions. Chemical Engineering and Processing: Process Intensification, 2017, 117, 1-8.	3.6	117
148	Preparation and characterization of cyclohexandiamine/Fe 3 O 4 /ZnO core/shell nanomagnetic composite as a novel reusable catalyst and its application for the diastereoselective synthesis of Î²â€łactams via the asymmetric Kinugasa reaction. Applied Organometallic Chemistry, 2017, 31, e3763.	3.5	2
149	Increasing esterification efficiency by double immobilization of lipase-ZnO bioconjugate into sodium bis (2-ethylhexyl) sulfosuccinate (AOT)- reverse micelles and microemulsion based organogels. Biocatalysis and Agricultural Biotechnology, 2017, 10, 182-188.	3.1	7
150	Immobilization of BSA on ionic liquid functionalized magnetic Fe3O4 nanoparticles for use in surface imprinting strategy. Talanta, 2017, 168, 174-182.	5.5	65
151	Catalytic Application of Magnetic Nanocomposites. , 2017, , 627-663.		0
152	Catalytic Reaction in Ionic Liquids. , 2017, , 111-191.		4
153	Inulin hydrolysis by inulinase immobilized covalently on magnetic nanoparticles prepared with wheat gluten hydrolysates. Biotechnology Reports (Amsterdam, Netherlands), 2018, 17, 97-103.	4.4	21
154	A novel copper complex supported on magnetic reduced graphene oxide: an efficient and green nanocatalyst for the synthesis of 1-amidoalkyl-2-naphthol derivatives. Journal of Nanoparticle Research, 2018, 20, 1.	1.9	11
155	H3PW12O40 anchored on graphene-grafted silica-coated MnFe2O4 as magnetic catalyst for Mannich reaction. Journal of the Iranian Chemical Society, 2018, 15, 943-953.	2.2	10
156	pH-responsive magnetic nanocomposites based on poly(2-succinyloxyethyl) Tj ETQq1 1 0.784314 rgBT /Overlock	2.4 10 Tf 50	67 Td (metha 8

#	Article	IF	CITATIONS
158	A recyclable Ag Supported on Hydroxyapatite–Core–Shell Magnetic γ-Fe2O3 Nanoparticles (γ-Fe2O3@HAp-Ag NPs): an Environmentally Benign and Magnetically Catalyst for the Oxidation of Sulfides to Sulfoxides. Iranian Journal of Science and Technology, Transaction A: Science, 2018, 42, 1233-1240.	1.5	5
159	Development and functionalization of magnetic nanoparticles as powerful and green catalysts for organic synthesis. Beni-Suef University Journal of Basic and Applied Sciences, 2018, 7, 55-67.	2.0	80
160	Amino acid ionic liquidâ€based titanomagnetite nanoparticles: An efficient and green nanocatalyst for the synthesis of 1,4â€dihydropyrano[2,3â€ <i>c</i>]pyrazoles. Applied Organometallic Chemistry, 2018, 32, e3949.	3.5	14
161	Multi-layer Functionalized Poly(2-vinylpyridinium) Ionic Liquid Immobilized on Magnetic Nanoparticles: Highly Recoverable and Magnetically Separable BrÃ,nsted Acid Catalyst. Catalysis Letters, 2018, 148, 125-133.	2.6	26
162	Pd nanoparticles immobilized on magnetic chitosan as a novel reusable catalyst for green Heck and Suzuki cross oupling reaction: In water at room temperature. Applied Organometallic Chemistry, 2018, 32, e4112.	3.5	33
163	Purification, Characterization of Amylase from Indigenously Isolated Aureobasidium pullulans Cau 19 and Its Bioconjugates with Gold Nanoparticles. Applied Biochemistry and Biotechnology, 2018, 184, 644-658.	2.9	10
164	Ionic liquids: solvents and sorbents in sample preparation. Journal of Separation Science, 2018, 41, 209-235.	2.5	126
165	Ionic Liquids from Biocompatibility and Electrochemical Aspects toward Applying in Biosensing Devices. Analytical Chemistry, 2018, 90, 640-648.	6.5	35
166	Synthesis, characterization and cellulose dissolution capabilities of ammonium-based room temperature ionic liquids (RTILs). Pure and Applied Chemistry, 2018, 90, 1019-1034.	1.9	9
167	Magnetic nanoparticles: a versatile carrier for enzymes in bioâ€processing sectors. IET Nanobiotechnology, 2018, 12, 535-548.	3.8	25
168	The use of magnetic nanoparticles for immobilization and recycling of enzymes. MRS Advances, 2018, 3, 3581-3587.	0.9	0
169	High-Gradient Magnetic Field for Magnetic Nanoparticles Drug Delivery System. IEEE Transactions on Applied Superconductivity, 2018, 28, 1-7.	1.7	12
170	Nanomagnetic wheat gluten hydrolysates a new carrier for nanoimmobilization of inulinase. Journal of Drug Delivery Science and Technology, 2018, 47, 43-48.	3.0	2
171	Fe ₃ O ₄ @SiO ₂ nanoparticle supported ionic liquid for green synthesis of antibacterially active 1-carbamoyl-1-phenylureas in water. RSC Advances, 2018, 8, 27631-27644.	3.6	39
172	Catalytic potency of ionic liquid-stabilized metal nanoparticles towards greening biomass processing: Insights, limitations and prospects. Biochemical Engineering Journal, 2018, 138, 141-155.	3.6	2
173	Magnetic crosslinked copoly(ionic liquid) nanohydrogel supported palladium nanoparticles as efficient catalysts for the selective aerobic oxidation of alcohols. Applied Catalysis A: General, 2018, 563, 185-195.	4.3	27
174	Biotransformation of disperse dyes using nitroreductase immobilized on magnetic particles modified with tosyl group: Identification of products by LC-MS-MS and theoretical studies conducted with DNA. Environmental Pollution, 2018, 242, 863-871.	7.5	4
175	Surfaceâ€modified quantity of Fe 3 O 4 particles by thermogravimetric analysis. Micro and Nano Letters, 2018, 13, 1556-1559.	1.3	1

~			_	
$C1^{-}$	ΓΔΤΙ	ON	Repor	Т
	AL		INLPOR	

#	Article	IF	CITATIONS
176	Applications of Magnetic Nanomaterials in Heterogeneous Catalysis. ACS Applied Nano Materials, 2019, 2, 4681-4697.	5.0	164
177	Influence of Lipase Immobilization Mode on Ethyl Acetate Hydrolysis in a Continuous Solid–Gas Biocatalytic Membrane Reactor. Bioconjugate Chemistry, 2019, 30, 2238-2246.	3.6	9
178	Immobilization of cellulase in the non-natural ionic liquid environments to enhance cellulase activity and functional stability. Applied Microbiology and Biotechnology, 2019, 103, 2483-2492.	3.6	34
179	Suitability of Recombinant Lipase Immobilised on Functionalised Magnetic Nanoparticles for Fish Oil Hydrolysis. Catalysts, 2019, 9, 420.	3.5	42
180	Synthesis and application of Fe ₃ O ₄ @nanocellulose/TiCl as a nanofiller for high performance of quasisolidâ€based dyeâ€sensitized solar cells. International Journal of Energy Research, 2019, 43, 4483-4494.	4.5	12
181	Fe 3 O 4 â€supported Schiffâ€base copper (II) complex: A valuable heterogeneous nanocatalyst for oneâ€pot synthesis of new pyrano[2,3†b]pyridineâ€3â€carboxamide derivatives. Applied Organometallic Chemistry, 2019, 33, e4918.	3.5	22
182	Fungal Lipases: Versatile Tools for White Biotechnology. Fungal Biology, 2019, , 361-404.	0.6	10
183	Preparation and characterization of magnetic graphene nanocomposite containing Cu(proline)2 as catalyst for asymmetric aldol reactions. Research on Chemical Intermediates, 2019, 45, 2641-2656.	2.7	9
184	Lipoaminoacids Enzyme-Based Production and Application as Gene Delivery Vectors. Catalysts, 2019, 9, 977.	3.5	8
185	Horseradish peroxidase immobilized on the magnetic composite microspheres for high catalytic ability and operational stability. Enzyme and Microbial Technology, 2019, 122, 26-35.	3.2	28
186	Detection of hepatitis B surface antigen by immunoassay using magnetite nanoparticles binding hepatitis B surface antibody. Geosystem Engineering, 2019, 22, 206-213.	1.4	3
187	Novel magnetic nanoparticle supported ionic liquid as an efficient catalyst for the synthesis of spiro [pyrazole-pyrazolo[3,4-b]pyridine]-dione derivatives under solvent free conditions. Journal of Molecular Structure, 2019, 1178, 401-407.	3.6	19
188	One-pot solvent-free synthesis of 2,3-dihydro-2-substituted-1H-naphtho[1,2-e][1,3]oxazine derivatives using Fe3O4@nano-cellulose/TiCl as a bio-based and recyclable magnetic nano-catalyst. Molecular Diversity, 2019, 23, 413-420.	3.9	13
189	Exploring the Potential of Supported Ionic Liquids as Building Block Systems in Catalysis. ChemistrySelect, 2020, 5, 12057-12086.	1.5	16
190	Candida rugosa lipase for the biodiesel production from renewable sources. Renewable Energy, 2020, 162, 124-133.	8.9	26
191	Evaluating the Toxicity of Ionic Liquids on Shewanella sp. for Designing Sustainable Bioprocesses. Frontiers in Materials, 2020, 7, .	2.4	11
192	Immobilization in Ionogel: A New Way to Improve the Activity and Stability of Candida antarctica Lipase B. Molecules, 2020, 25, 3233.	3.8	7
193	Improvement of lipase biochemical properties via a two-step immobilization method: Adsorption onto silicon dioxide nanoparticles and entrapment in a polyvinyl alcohol/alginate hydrogel. Journal of Biotechnology, 2020, 323, 189-202.	3.8	29

#	Article	IF	CITATIONS
104	Application of novel and reusable Fe ₃ O ₄ @Co ^{II} (macrocyclic) Tj ETQq0 0 (0	
194	4 <i>H</i> â€ehromene derivatives. Applied Organometallic Chemistry, 2020, 34, e5769.	3.5	22
195	Ionic liquids in separation and preconcentration of organic and inorganic species. , 2020, , 267-318.		3
196	Immobilization of Naringinase from Aspergillus Niger on a Magnetic Polysaccharide Carrier. Molecules, 2020, 25, 2731.	3.8	15
197	Synthesis of magnetic nanoparticles with an IDA or TED modified surface for purification and immobilization of poly-histidine tagged proteins. RSC Advances, 2020, 10, 11524-11534.	3.6	9
198	Enhancement of biochemical aspects of lipase adsorbed on halloysite nanotubes and entrapped in a polyvinyl alcohol/alginate hydrogel: strategies to reuse the most stable lipase. World Journal of Microbiology and Biotechnology, 2020, 36, 45.	3.6	9
199	Efficient synthesis of β â€aminoketones catalyzed by Fe 3 O 4 @ quillaja sapogenin/Ni (II) as a novel magnetic nanoâ€catalyst. Applied Organometallic Chemistry, 2020, 34, e5834.	3.5	3
200	Organophosphonate functionalized Au/Si@Fe3O4: Versatile carrier for enzyme immobilization. Methods in Enzymology, 2020, 630, 199-214.	1.0	2
201	Design, synthesis, characterization, and catalytic properties of g-C3N4-SO3H as an efficient nanosheet ionic liquid for one-pot synthesis of pyrazolo[3,4-b]pyridines and bis(indolyl)methanes. Journal of Molecular Liquids, 2020, 303, 112625.	4.9	31
202	A BrÃ,nsted Acid Ionic Liquid Immobilized on Fe3O4@SiO2 Nanoparticles as an Efficient and Reusable Solid Acid Catalyst for the Synthesis of 2,3-Dihydroquinazolin-4(1H)-ones. Russian Journal of Organic Chemistry, 2020, 56, 298-306.	0.8	13
203	Anionic structural effect on the dissolution of arabinoxylan-rich hemicellulose in 1-butyl-3-methylimidazolium carboxylate-based ionic liquids. RSC Advances, 2020, 10, 11643-11651.	3.6	9
204	Porous biochar/chitosan composites for high performance cellulase immobilization by glutaraldehyde. Enzyme and Microbial Technology, 2020, 138, 109561.	3.2	47
205	l-Arginine complex of copper on modified core–shell magnetic nanoparticles as reusable and organic–inorganic hybrid nanocatalyst for the chemoselective oxidation of organosulfur compounds. Journal of the Iranian Chemical Society, 2021, 18, 467-478.	2.2	25
206	Design of a New Gemini Lipoaminoacid with Immobilized Lipases Based on an Eco-Friendly Biosynthetic Process. Catalysts, 2021, 11, 164.	3.5	1
207	Immobilization of Candida rugosa lipase for resolution of racimic ibuprofen. DARU, Journal of Pharmaceutical Sciences, 2021, 29, 117-123.	2.0	2
208	An ionic liquid supported on magnetite nanoparticles as an efficient heterogeneous catalyst for the synthesis of alkyl thiocyanates in water. Journal of Sulfur Chemistry, 2021, 42, 335-345.	2.0	0
209	Catalysis Preparation of Biodiesel from Waste <i>Schisandra chinensis</i> Seed Oil with the Ionic Liquid Immobilized in a Magnetic Catalyst: Fe ₃ O ₄ @SiO ₂ @[C4mim]HSO ₄ . ACS Omega, 2021, 6, 7896-7909.	3.5	14
211	Ionic Liquids for Development of Heterogeneous Catalysts Based on Nanomaterials for Biocatalysis. Nanomaterials, 2021, 11, 2030.	4.1	35
212	Nanobiocatalysts for efficacious bioconversion of ionic liquid pretreated sugarcane tops biomass to biofuel. Bioresource Technology, 2021, 333, 125191.	9.6	40

#	Article	IF	CITATIONS
213	Efficiency of Immobilized Enzymes on Bacterial Magnetosomes. Applied Biochemistry and Microbiology, 2021, 57, 603-610.	0.9	3
214	Trends in lipase immobilization: Bibliometric review and patent analysis. Process Biochemistry, 2021, 110, 37-51.	3.7	51
215	Simple physical adsorption technique to immobilize Yarrowia lipolytica lipase purified by different methods on magnetic nanoparticles: Adsorption isotherms and thermodynamic approach. International Journal of Biological Macromolecules, 2020, 160, 889-902.	7.5	46
216	(Bio)Catalytic Continuous Flow Processes in scCO2 and/or ILs: Towards Sustainable (Bio)Catalytic Synthetic Platforms. Current Organic Synthesis, 2011, 8, 810-823.	1.3	28
217	Citric acid-based deep eutectic solvents: Physical properties and their use as cosolvents in sulphuric acid-catalysed ethanolysis of oleic acid. Advanced Technologies, 2016, 5, 53-65.	0.4	16
218	Erratum to "Trends in lipase immobilization: Bibliometric review and patent analysis―[Process Biochem. 110 (2021) 37–51]. Process Biochemistry, 2021, 110, 303-321.	3.7	3
219	Improved catalytic performance of carrier-free immobilized lipase by advanced cross-linked enzyme aggregates technology. Bioprocess and Biosystems Engineering, 2022, 45, 147-158.	3.4	5
220	Green Electroanalysis. RSC Green Chemistry, 2011, , 199-223.	0.1	0
221	SÃNTESE E IMOBILIZAÇÃO DA LIPASE DE Rhizomucor miehei EM NANOPARTÀULAS MAGNÉTICAS MODIFICADAS COM MOLÉCULAS DE LAURIL SULFATO. , 0, , .		0
222	Catalytic Application of Magnetic Nanocomposites. Advances in Materials Science and Engineering, 2017, , 627-663.	0.4	0
223	Green Biotransformations under Flow Conditions. RSC Green Chemistry, 2019, , 50-85.	0.1	2
224	Structural evidence for kinetic and thermal stability changes of α-amylase due to exposure to [emim][lactate] ionic liquid. Turkish Journal of Biochemistry, 2020, 45, 785-791.	0.5	2
225	Recent applications of ionic liquids in biocatalysis. , 2022, , 383-398.		1
226	Magnetic Nanoparticle-Supported Basic Ionic Liquid: A Reusable Phase-Transfer Catalyst for Knoevenagel Condensation in Aqueous Medium. Russian Journal of Organic Chemistry, 2022, 58, 144-151.	0.8	0
227	Magnetic nanoparticles in catalysis industry. , 2022, , 477-495.		1
228	Recent Progress and Prospects in Catalytic Water Treatment. Chemical Reviews, 2022, 122, 2981-3121.	47.7	139
229	Simultaneous Removal of Textile Dyes by Adsorption and Biodegradation Using Trametes villosa Laccase Immobilized on Magnetic Particles. Water, Air, and Soil Pollution, 2021, 232, 1.	2.4	7
230	Ionic liquids as a tunable solvent and modifier for biocatalysis. Catalysis Reviews - Science and Engineering, 0, , 1-47.	12.9	15

#	Article	IF	Citations
231	Chemical modification of clay nanocomposites for the improvement of the catalytic properties of Lipase A from Candida antarctica. Process Biochemistry, 2022, 120, 1-14.	3.7	28
232	Novel palladium tagged ferrite nanoparticle supported ionic liquid phase catalyst for the efficient copper-free Sonogashira coupling. Journal of Molecular Structure, 2022, 1269, 133729.	3.6	2
233	Magnetic ionic liquids as catalysts in organic reactions. Journal of Molecular Liquids, 2022, 367, 120395.	4.9	13
234	Preparation and Characterization of Magnetic Metal–Organic Frameworks Functionalized by Ionic Liquid as Supports for Immobilization of Pancreatic Lipase. Molecules, 2022, 27, 6800.	3.8	2
236	Nanomagnetic materials for environmental remediation. , 2023, , 537-553.		0
237	Immobilization of esterase from Bacillus subtilis on Halloysite nanotubes and applications on dibutyl phthalate degradation. Environmental Technology and Innovation, 2023, 30, 103113.	6.1	2
238	Preparation and Characterization of Polyurethane Rigid Foam Nanocomposites from Used Cooking Oil and Perlite. International Journal of Polymer Science, 2023, 2023, 1-13.	2.7	0
239	Wax esters from waste fish oil catalysed by immobilized Candida rugosa lipase. Process Biochemistry, 2023, 130, 386-400.	3.7	2
240	Engineering and application of polysaccharides and proteins-based nanobiocatalysts in the recovery of toxic metals, phosphorous, and ammonia from wastewater: A review. International Journal of Biological Macromolecules, 2023, 242, 124585.	7.5	2
241	A highly efficient, magnetite-supported and recyclable Pd catalyst for green C C cross-coupling reactions. Journal of Organometallic Chemistry, 2023, 998, 122793.	1.8	0
242	Can vitamin E ester derivatives be excellent alternatives of vitamin E: state of art. Bioprocess and Biosystems Engineering, 2023, 46, 1695-1709.	3.4	1
243	Recent Advances in Applications of Oxidases and Peroxidases Polymer-Based Enzyme Biocatalysts in Sensing and Wastewater Treatment: A Review. Polymers, 2023, 15, 3492.	4.5	3
244	Screening Stability and Kinetics of Superoxide Radical Anion in Dimethyl Sulfoxide Containing Ionic Liquids. Kinetics and Catalysis, 2023, 64, 765-782.	1.0	0
245	Green magnetic nanoparticles: a comprehensive review of recent progress in biomedical and environmental applications. Journal of Materials Science, 2024, 59, 325-358.	3.7	2
246	Proteases immobilized on nanomaterials for biocatalytic, environmental and biomedical applications: Advantages and drawbacks. Biotechnology Advances, 2024, 70, 108304.	11.7	1
247	Characterization of a recombinant Aspergillus niger GZUF36 lipase immobilized by ionic liquid modification strategy. Applied Microbiology and Biotechnology, 2024, 108, .	3.6	0