The Role of Aerosols in the Evolution of Tropical North Anomalies

Science 324, 778-781 DOI: 10.1126/science.1167404

Citation Report

#	Article	IF	CITATIONS
1	A VULNERABILIDADE DA FLORESTA AMAZÔNICA PERANTE AS MUDANÇAS CLIMÃTICAS. Oecologia Australis, 2009, 13, 609-618.	0.1	7
2	Extratropical forcing of Sahel aridity during Heinrich stadials. Geophysical Research Letters, 2009, 36,	1.5	31
3	Modelling the chemically aged and mixed aerosols over the eastern central Atlantic Ocean – potential impacts. Atmospheric Chemistry and Physics, 2010, 10, 5797-5822.	1.9	27
4	The spatial distribution of mineral dust and its shortwave radiative forcing over North Africa: modeling sensitivities to dust emissions and aerosol size treatments. Atmospheric Chemistry and Physics, 2010, 10, 8821-8838.	1.9	265
5	Seasonal characteristics of tropical marine boundary layer air measured at the Cape Verde Atmospheric Observatory. Journal of Atmospheric Chemistry, 2010, 67, 87-140.	1.4	97
6	Modeled Impact of Anthropogenic Warming on the Frequency of Intense Atlantic Hurricanes. Science, 2010, 327, 454-458.	6.0	886
7	Advances in Extracting Cloud Composition Information from Spaceborne Infrared Radiances—A Robust Alternative to Brightness Temperatures. Part I: Theory. Journal of Applied Meteorology and Climatology, 2010, 49, 1992-2012.	0.6	107
8	African Dust over the Northern Tropical Atlantic: 1955–2008. Journal of Applied Meteorology and Climatology, 2010, 49, 2213-2229.	0.6	64
9	Response of the eastern subtropical Atlantic SST to Saharan dust: A modeling and observational study. Journal of Geophysical Research, 2010, 115, .	3.3	19
10	Decadal variability of aerosol optical depth in Europe and its relationship to the temporal shift of the North Atlantic Oscillation in the realm of dimming and brightening. Journal of Geophysical Research, 2011, 116, .	3.3	31
11	Multidecadal variability and late medieval cooling of near oastal sea surface temperatures in the eastern tropical North Atlantic. Paleoceanography, 2011, 26, .	3.0	18
12	Inter-annual variations in the SeaWiFS global chlorophyll a concentration (1997–2007). Deep-Sea Research Part I: Oceanographic Research Papers, 2011, 58, 429-441.	0.6	76
13	Role of sea surface temperature responses in simulation of the climatic effect of mineral dust aerosol. Atmospheric Chemistry and Physics, 2011, 11, 6049-6062.	1.9	40
14	Impact of resolution and downscaling technique in simulating recent Atlantic tropical cylone activity. Climate Dynamics, 2011, 37, 869-892.	1.7	56
15	The impact of natural versus anthropogenic aerosols on atmospheric circulation in the Community Atmosphere Model. Climate Dynamics, 2011, 36, 1959-1978.	1.7	77
16	Variability in the summer season hydrological cycle over the Atlanticâ€Europe region 1979–2007. International Journal of Climatology, 2011, 31, 337-348.	1.5	19
17	Sulfate Aerosol Control of Tropical Atlantic Climate over the Twentieth Century. Journal of Climate, 2011, 24, 2540-2555.	1.2	114
18	Influence of African dust on ocean–atmosphere variability in the tropical Atlantic. Nature Geoscience, 2011, 4, 762-765.	5.4	97

#	Article	IF	CITATIONS
19	Statistical–Dynamical Predictions of Seasonal North Atlantic Hurricane Activity. Monthly Weather Review, 2011, 139, 1070-1082.	0.5	128
20	A Climatology of Arabian Sea Cyclonic Storms. Journal of Climate, 2011, 24, 140-158.	1.2	150
21	Analysis of the Atlantic Meridional Mode Using Linear Inverse Modeling: Seasonality and Regional Influences. Journal of Climate, 2012, 25, 1194-1212.	1.2	32
22	Physical Response of the Tropical–Subtropical North Atlantic Ocean to Decadal–Multidecadal Forcing by African Dust. Journal of Climate, 2012, 25, 5817-5829.	1.2	17
23	European Hot Summers Associated with a Reduction of Cloudiness. Journal of Climate, 2012, 25, 3637-3644.	1.2	45
24	Extratropical Forcing of Tropical Atlantic Variability during Boreal Summer and Fall. Journal of Climate, 2012, 25, 2056-2076.	1.2	27
25	Multidecadal Covariability of North Atlantic Sea Surface Temperature, African Dust, Sahel Rainfall, and Atlantic Hurricanes. Journal of Climate, 2012, 25, 5404-5415.	1.2	144
26	Changes in Climate Extremes and their Impacts on the Natural Physical Environment. , 2012, , 109-230.		1,080
27	Adjustment to Radiative Forcing in a Simple Coupled Ocean–Atmosphere Model. Journal of Climate, 2012, 25, 7802-7821.	1.2	11
28	Aerosols implicated as a prime driver of twentieth-century North Atlantic climate variability. Nature, 2012, 484, 228-232.	13.7	857
29	Aerosols and Atlantic aberrations. Nature, 2012, 484, 170-171.	13.7	4
31	Atlantic hurricane activity following two major volcanic eruptions. Journal of Geophysical Research, 2012, 117, .	3.3	33
32	Variability of aerosols in the tropical Atlantic Ocean relative to African Easterly Waves and their relationship with atmospheric and oceanic environments. Journal of Geophysical Research, 2012, 117, .	3.3	10
33	Projected changes in the physical climate of the Gulf Coast and Caribbean. Climatic Change, 2012, 112, 819-845.	1.7	81
34	Interdecadal enhancement of the walker circulation over the Tropical Pacific in the late 1990s. Advances in Atmospheric Sciences, 2013, 30, 247-262.	1.9	44
35	The Atlantic Multidecadal Oscillation in twentieth century climate simulations: uneven progress from CMIP3 to CMIP5. Climate Dynamics, 2013, 41, 3301-3315.	1.7	59
36	AMO's structure and climate footprint in observations and IPCC AR5 climate simulations. Climate Dynamics, 2013, 41, 1345-1364.	1.7	86
37	Trend Analysis with a New Global Record of Tropical Cyclone Intensity. Journal of Climate, 2013, 26, 9960-9976.	1.2	234

#	Article	IF	CITATIONS
38	Contributions of longâ€distance dust transport to atmospheric P inputs in the Yucatan Peninsula. Global Biogeochemical Cycles, 2013, 27, 167-175.	1.9	27
39	Changes in Cloud Cover, Precipitation, and Summer Temperature in North America from 1982 to 2009. Journal of Climate, 2013, 26, 1733-1744.	1.2	33
40	Have Aerosols Caused the Observed Atlantic Multidecadal Variability?. Journals of the Atmospheric Sciences, 2013, 70, 1135-1144.	0.6	282
41	The magnitude, timing and abruptness of changes in North African dust deposition over the last 20,000 yr. Earth and Planetary Science Letters, 2013, 371-372, 163-176.	1.8	195
42	Automated retrievals of volcanic ash and dust cloud properties from upwelling infrared measurements. Journal of Geophysical Research D: Atmospheres, 2013, 118, 1436-1458.	1.2	104
43	Multiyear Predictions of North Atlantic Hurricane Frequency: Promise and Limitations. Journal of Climate, 2013, 26, 5337-5357.	1.2	57
44	Monitoring and Understanding Trends in Extreme Storms: State of Knowledge. Bulletin of the American Meteorological Society, 2013, 94, 499-514.	1.7	426
45	Projected Increases in North Atlantic Tropical Cyclone Intensity from CMIP5 Models. Journal of Climate, 2013, 26, 3231-3240.	1.2	150
46	The seasonal vertical distribution of the Saharan Air Layer and its modulation by the wind. Atmospheric Chemistry and Physics, 2013, 13, 11235-11257.	1.9	98
47	Largeâ€scale impact of Saharan dust on the North Atlantic Ocean circulation. Journal of Geophysical Research: Oceans, 2014, 119, 704-730.	1.0	7
48	Beyond Hurricane Sandy: What Might the Future Hold for Tropical Cyclones in the North Atlantic?. Journal of Extreme Events, 2014, 01, 1450007.	1.2	13
49	Simulated changes in atmospheric dust in response to a Heinrich stadial. Paleoceanography, 2014, 29, 30-43.	3.0	17
50	Changes in weather and climate extremes: State of knowledge relevant to air and water quality in the United States. Journal of the Air and Waste Management Association, 2014, 64, 184-197.	0.9	50
51	Geochemical fingerprinting of trans-Atlantic African dust based on radiogenic Sr-Nd-Hf isotopes and rare earth element anomalies. Geology, 2014, 42, 675-678.	2.0	76
52	The Atlantic Multidecadal Oscillation: Its manifestations and impacts with special emphasis on the Atlantic region north of 60°N. Journal of Marine Systems, 2014, 133, 117-130.	0.9	82
53	Near-term Climate Change: Projections and Predictability. , 2014, , 953-1028.		196
54	Detection and Attribution of Climate Change: from Global to Regional. , 2014, , 867-952.		144
55	Ocean response to volcanic eruptions in <scp>C</scp> oupled <scp>M</scp> odel <scp>I</scp> ntercomparison <scp>P</scp> roject 5 simulations. Journal of Geophysical Research: Oceans, 2014, 119, 5622-5637.	1.0	90

#	Article	IF	CITATIONS
56	Semidirect dynamical and radiative effect of North African dust transport on lower tropospheric clouds over the subtropical North Atlantic in CESM 1.0. Journal of Geophysical Research D: Atmospheres, 2014, 119, 8284-8303.	1.2	5
57	What controls the recent changes in African mineral dust aerosol across the Atlantic?. Atmospheric Chemistry and Physics, 2014, 14, 5735-5747.	1.9	96
58	An analysis of aeolian dust in climate models. Geophysical Research Letters, 2014, 41, 5996-6001.	1.5	156
59	Transport of the Saharan dust air plumes over the tropical North Atlantic from FORMOSAT–3/COSMIC observation. Atmospheric Pollution Research, 2014, 5, 539-553.	1.8	10
60	Application of spectral analysis techniques in the intercomparison of aerosol data. Part II: Using maximum covariance analysis to effectively compare spatiotemporal variability of satellite and AERONET measured aerosol optical depth. Journal of Geophysical Research D: Atmospheres, 2014, 119, 153-166.	1.2	29
61	On the decadal scale correlation between African dust and Sahel rainfall: The role of Saharan heat low–forced winds. Science Advances, 2015, 1, e1500646.	4.7	36
62	Dimming over the oceans: Transient anthropogenic aerosol plumes in the twentieth century. Journal of Geophysical Research D: Atmospheres, 2015, 120, 3465-3484.	1.2	11
63	Advances in understanding mineral dust and boundary layer processes over the Sahara from Fennec aircraft observations. Atmospheric Chemistry and Physics, 2015, 15, 8479-8520.	1.9	57
64	Advancements in decadal climate predictability: The role of nonoceanic drivers. Reviews of Geophysics, 2015, 53, 165-202.	9.0	81
65	The Climatic Importance of Uncertainties in Regional Aerosol–Cloud Radiative Forcings over Recent Decades. Journal of Climate, 2015, 28, 6589-6607.	1.2	18
66	North Atlantic Hurricane Activity: Past, Present and Future. World Scientific Series on Asia-Pacific Weather and Climate, 2015, , 285-301.	0.2	4
67	Tropical Atlantic influence on Pacific variability and mean state in the twentieth century in observations and CMIP5. Climate Dynamics, 2015, 44, 881-896.	1.7	61
68	Atlantic and Pacific multidecadal oscillations and Northern Hemisphere temperatures. Science, 2015, 347, 988-991.	6.0	232
69	Derivation of an observation-based map of North African dust emission. Aeolian Research, 2015, 16, 153-162.	1.1	60
70	Drivers of North Atlantic Polar Front jet stream variability. International Journal of Climatology, 2015, 35, 1697-1720.	1.5	94
71	Quantification of trans-Atlantic dust transport from seven-year (2007–2013) record of CALIPSO lidar measurements. Remote Sensing of Environment, 2015, 159, 232-249.	4.6	146
72	Natural and Forced North Atlantic Hurricane Potential Intensity Change in CMIP5 Models*. Journal of Climate, 2015, 28, 3926-3942.	1.2	36
73	Sensitivity of infrared sea surface temperature retrievals to the vertical distribution of airborne dust aerosol. Remote Sensing of Environment, 2015, 159, 1-13.	4.6	18

		REPORT	
#	Article	IF	Citations
74	Direct and semi-direct aerosol radiative effect on the Mediterranean climate variability using a coupled regional climate system model. Climate Dynamics, 2015, 44, 1127-1155.	1.7	110
75	Tropical cyclones and climate change. Wiley Interdisciplinary Reviews: Climate Change, 2016, 7, 65-89.	3.6	471
76	Positive low cloud and dust feedbacks amplify tropical North Atlantic Multidecadal Oscillation. Geophysical Research Letters, 2016, 43, 1349-1356.	1.5	99
77	Satelliteâ€based shortwave aerosol radiative forcing of dust storm over the Arabian Sea. Atmospheric Science Letters, 2016, 17, 43-50.	0.8	13
78	Glacial to Holocene changes in trans-Atlantic Saharan dust transport and dust-climate feedbacks. Science Advances, 2016, 2, e1600445.	4.7	41
79	Weakening and moistening of the summertime Saharan heat low through convective cold pools from the Atlas Mountains. Journal of Geophysical Research D: Atmospheres, 2016, 121, 3907-3928.	1.2	6
80	The role of carbonaceous aerosols on shortâ€ŧerm variations of precipitation over North Africa. Atmospheric Science Letters, 2016, 17, 407-414.	0.8	9
81	Seasonal Forecasts of Tropical Cyclone Activity in a High-Atmospheric-Resolution Coupled Prediction System*. Journal of Climate, 2016, 29, 1179-1200.	1.2	38
82	Quantifying the impacts of landscape heterogeneity and model resolution on dust emissions in the Arabian Peninsula. Environmental Modelling and Software, 2016, 78, 106-119.	1.9	6
83	The past, present and future of African dust. Nature, 2016, 531, 493-495.	13.7	173
84	Impacts of dust reduction on the northward expansion of the African monsoon during the Green Sahara period. Earth and Planetary Science Letters, 2016, 434, 298-307.	1.8	126
85	Assessing the suitability of Holocene environments along the central Belize coast, Central America, for the reconstruction of hurricane records. International Journal of Earth Sciences, 2017, 106, 283-309.	0.9	11
86	The Central Role of Ocean Dynamics in Connecting the North Atlantic Oscillation to the Extratropical Component of the Atlantic Multidecadal Oscillation. Journal of Climate, 2017, 30, 3789-3805.	1.2	122
87	Dust-wind interactions can intensify aerosol pollution over eastern China. Nature Communications, 2017, 8, 15333.	5.8	105
88	Effects of continental anthropogenic sources on organic aerosols in the coastal atmosphere of East China. Environmental Pollution, 2017, 229, 350-361.	3.7	19
89	Enhanced ice sheet melting driven by volcanic eruptions during the last deglaciation. Nature Communications, 2017, 8, 1020.	5.8	13
90	Dryland climate change: Recent progress and challenges. Reviews of Geophysics, 2017, 55, 719-778.	9.0	507
91	Internally Generated and Externally Forced Multidecadal Oceanic Modes and Their Influence on the Summer Rainfall over East Asia. Journal of Climate, 2017, 30, 8299-8316.	1.2	27

		CITATION REPORT		
#	Article		IF	Citations
92	The Science of William M. Gray: His Contributions to the Knowledge of Tropical Meteorolog Tropical Cyclones. Bulletin of the American Meteorological Society, 2017, 98, 2311-2336.	gy and	1.7	6
93	Sensitivity of the interannual variability of mineral aerosol simulations to meteorological for dataset. Atmospheric Chemistry and Physics, 2017, 17, 3253-3278.	rcing	1.9	14
94	Air and Climate. , 2017, , 251-270.			0
95	Supporting Weather Forecasters in Predicting and Monitoring Saharan Air Layer Dust Even Impact the Greater Caribbean. Bulletin of the American Meteorological Society, 2018, 99, 2	ts as They 159-268.	1.7	14
96	Decoupling of Climatic Drying and Asian Dust Export During the Holocene. Journal of Geop Research D: Atmospheres, 2018, 123, 915-928.	hysical	1.2	39
97	Characterizing the Impact of Aerosols on Pre-Hurricane Sandy. IEEE Journal of Selected Top Applied Earth Observations and Remote Sensing, 2018, 11, 1378-1386.	ics in	2.3	3
98	A Possible Role of Dust in Resolving the Holocene Temperature Conundrum. Scientific Repo 4434.	orts, 2018, 8,	1.6	37
99	Contributions of Interdecadal Pacific Oscillation and Atlantic Multidecadal Oscillation to Glo Ocean Heat Content Distribution. Journal of Climate, 2018, 31, 1227-1244.	obal	1.2	21
100	Mechanism for the Formation of Temperature Anomalies in the Upper Layer of the North At Oceanology, 2018, 58, 652-660.	lantic.	0.3	2
102	Experimental Studies of Aerosols in the Atmosphere of Semiarid Landscapes of Kalmykia: 1. Microphysical Parameters and Mass Concentration of Aerosol Particles. Izvestiya - Atmosph Oceanic Physics, 2018, 54, 777-793.	eric and	0.2	4
103	Effect of Aerosols on Ocean Parameters in India by Using Satellite Data. Procedia Compute 2018, 132, 1857-1865.	r Science,	1.2	2
104	Aerosol distribution in the northern Gulf of Guinea: local anthropogenic sources, long-range transport, and the role of coastal shallow circulations. Atmospheric Chemistry and Physics, 12363-12389.	2018, 18,	1.9	21
106	Estimation of the Dust Aerosol Shortwave Direct Forcing Over Land Based on an Equiâ€alb From Satellite Measurements. Journal of Geophysical Research D: Atmospheres, 2019, 124,		1.2	5
107	Quantifying the effect of geomorphology on aeolian dust emission potential in northern Ch Surface Processes and Landforms, 2019, 44, 2872-2884.	nina. Earth	1.2	21
108	Geochemical characteristics of dust aerosol availability in northwestern China. Arabian Jour Geosciences, 2019, 12, 1.	nal of	0.6	1
109	The penultimate deglaciation: protocol for Paleoclimate Modelling Intercomparison Project phase 4 transient numerical simulations between 140 and 127 ka, version 1.0. Geoscie Development, 2019, 12, 3649-3685.	(PMIP) entific Model	1.3	26
110	Seasonal predictability of the tropical Atlantic variability: northern tropical Atlantic pattern. Dynamics, 2019, 52, 6909-6929.	Climate	1.7	14
111	100 Years of Progress in Understanding the Dynamics of Coupled Atmosphere–Ocean Va Meteorological Monographs, 2019, 59, 8.1-8.57.	ariability.	5.0	22

#	Article	IF	CITATIONS
113	Comparison of extreme temperature response to 0.5 °C additional warming between dry and humid regions over East–central Asia. International Journal of Climatology, 2019, 39, 3348-3364.	1.5	14
114	Hurricane Risk. Hurricane Risk B, 2019, , .	0.1	5
115	Impact of Aerosols and Ocean Temperature on Tropical Cyclone Days Near Australia. Hurricane Risk B, 2019, , 135-160.	0.1	0
116	Modeled aerosol-cloud indirect effects and processes based on an observed partially glaciated marine deep convective cloud case. Atmospheric Environment, 2019, 204, 12-21.	1.9	1
117	Decline of large-diameter trees in a bamboo-dominated forest following anthropogenic disturbances in southwestern Amazonia. Annals of Forest Science, 2019, 76, 1.	0.8	13
118	Satellites See the World's Atmosphere. Meteorological Monographs, 2019, 59, 4.1-4.53.	5.0	36
119	Seasonal forecasts of North Atlantic tropical cyclone activity in the North American Multi-Model Ensemble. Climate Dynamics, 2019, 53, 7169-7184.	1.7	15
120	Multiyear Hybrid Prediction of Atlantic Tropical Cyclone Activity and the Predictability Sources. Journal of Climate, 2020, 33, 2263-2279.	1.2	3
121	Influence of Saharan Dust on the Largeâ€Scale Meteorological Environment for Development of Tropical Cyclone Over North Atlantic Ocean Basin. Journal of Geophysical Research D: Atmospheres, 2020, 125, e2020JD033454.	1.2	41
122	Anthropogenic Decline of African Dust: Insights From the Holocene Records and Beyond. Geophysical Research Letters, 2020, 47, e2020GL089711.	1.5	5
123	Allometric Equations for Volume, Biomass, and Carbon in Commercial Stems Harvested in a Managed Forest in the Southwestern Amazon: A Case Study. Forests, 2020, 11, 874.	0.9	16
124	Reconstructing climatic modes of variability from proxy records using ClimIndRec version 1.0. Geoscientific Model Development, 2020, 13, 841-858.	1.3	10
125	Intensification of the Atlantic Multidecadal Variability Since 1870: Implications and Possible Causes. Journal of Geophysical Research D: Atmospheres, 2020, 125, e2019JD030977.	1.2	8
126	The Greening of the Sahara: Past Changes and Future Implications. One Earth, 2020, 2, 235-250.	3.6	91
127	Temporal variation of dust aerosol pollution in northern China. Arabian Journal of Geosciences, 2020, 13, 1.	0.6	4
128	A Satellite Era Warming Hole in the Equatorial Atlantic Ocean. Journal of Geophysical Research: Oceans, 2020, 125, e2019JC015834.	1.0	9
129	The Spatial Distribution of Aeolian Dust and Terrigenous Fluxes in the Tropical Atlantic Ocean Since the Last Glacial Maximum. Paleoceanography and Paleoclimatology, 2021, 36, e2020PA004148.	1.3	6
130	Anthropogenic aerosol forcing of the Atlantic meridional overturning circulation and the associated mechanisms in CMIP6 models. Atmospheric Chemistry and Physics, 2021, 21, 5821-5846.	1.9	25

#	Article	IF	CITATIONS
131	Saharan Dust Effects on North Atlantic Seaâ€Surface Skin Temperatures. Journal of Geophysical Research: Oceans, 2021, 126, e2021JC017282.	1.0	5
132	Envisioning an Integrated Assessment System and Observation Network for the North Atlantic Ocean. Atmosphere, 2021, 12, 955.	1.0	0
133	Association, Correlation, and Causation Among Transport Variables of PM2.5. Frontiers in Physics, 2021, 9, .	1.0	4
134	Impacts of Tropical Cyclones on the Caribbean Under Future Climate Conditions. Journal of Geophysical Research: Oceans, 2021, 126, e2020JC016869.	1.0	3
136	Arctic Aerosols. Springer Polar Sciences, 2020, , 209-329.	0.0	4
137	Climate Extremes: Challenges in Estimating and Understanding Recent Changes in the Frequency and Intensity of Extreme Climate and Weather Events. , 2013, , 339-389.		76
138	The Impact of Climate Change on Natural Disasters. , 2014, , 21-49.		83
139	Radiative and climatic effects of dust over West Africa, as simulated by a regional climate model. Climate Research, 2012, 52, 97-113.	0.4	77
140	Climate Change as a Threat to Brazil's Amazon Forest. International Journal of Social Ecology and Sustainable Development, 2013, 4, 1-12.	0.1	6
141	Revisiting the relationship between Atlantic dust and tropical cyclone activity using aerosol optical depth reanalyses: 2003–2018. Atmospheric Chemistry and Physics, 2020, 20, 15357-15378.	1.9	19
151	Settling of dust warms tropical Atlantic. Nature, 0, , .	13.7	0
154	Chemical Pollution. , 2014, , 134-167.		0
155	Trend Analysis of Aerosol Optical Depth and Ångström Exponent Anomaly over East Africa. Atmospheric and Climate Sciences, 2017, 07, 588-603.	0.1	4
157	Reassessing the relative role of anthropogenic aerosols and natural decadal variability in driving the mid-twentieth century global "coolingâ€e a focus on the latitudinal gradient of tropospheric temperature. Climate Dynamics, 2022, 59, 2655-2681.	1.7	1
158	Direct Radiative Effect (DRE) of Dust Aerosols on West African and East Asian Monsoon: The Role of Oceanâ€Atmosphere Interactions. Journal of Geophysical Research D: Atmospheres, 2022, 127, .	1.2	3
159	The water mass transformation framework and variability in hurricane activity. Climate Dynamics, 2022, 59, 961-972.	1.7	1
160	Evolution Characteristics of Sand-Dust Weather Processes in China During 1961–2020. Frontiers in Environmental Science, 2022, 10, .	1.5	2
161	Saharan air outflow variability in the 1980–2020 period. Science of the Total Environment, 2022, 839, 156268.	3.9	2

#	Article	IF	CITATIONS
162	Impact of Saharan dust on landfalling North Atlantic tropical cyclones over North America in September. Atmospheric and Oceanic Science Letters, 2023, 16, 100276.	0.5	1
163	Natural and anthropogenic contributions to the hurricane drought of the 1970s–1980s. Nature Communications, 2022, 13, .	5.8	9
164	Long-term projection of future climate change over the twenty-first century in the Sahara region in Africa under four Shared Socio-Economic Pathways scenarios. Environmental Science and Pollution Research, 2023, 30, 22319-22329.	2.7	11
166	Dust temporal and spatial deposition affected by climate and soil mineralogical and chemical properties in a semi-arid area. Heliyon, 2023, 9, e15181.	1.4	Ο
167	Atmospheric dust intrusions from the peninsular region into the Northern Gulf of California: case study. Earth Science Informatics, 2023, 16, 1677-1685.	1.6	0