An Intercomparison of ERS-Scat and AMSR-E Soil Mois Simulations over France

Journal of Hydrometeorology 10, 431-447 DOI: 10.1175/2008jhm997.1

Citation Report

#	Article	IF	CITATIONS
1	Global Soil Moisture Patterns Observed by Space Borne Microwave Radiometers and Scatterometers. Surveys in Geophysics, 2008, 29, 399-420.	2.1	311
2	From near-surface to root-zone soil moisture using an exponential filter: an assessment of the method based on in-situ observations and model simulations. Hydrology and Earth System Sciences, 2008, 12, 1323-1337.	1.9	369
3	Analysis of surface and root-zone soil moisture dynamics with ERS scatterometer and the hydrometeorological model SAFRAN-ISBA-MODCOU at Grand Morin watershed (France). Hydrology and Earth System Sciences, 2008, 12, 1415-1424.	1.9	48
4	An evaluation of ASCAT surface soil moisture products with in-situ observations in Southwestern France. Hydrology and Earth System Sciences, 2009, 13, 115-124.	1.9	182
5	The influence of regional surface soil moisture anomalies on forest fires in Siberia observed from satellites. Environmental Research Letters, 2009, 4, 045021.	2.2	70
6	Using ENVISAT ASAR Global Mode Data for Surface Soil Moisture Retrieval Over Oklahoma, USA. IEEE Transactions on Geoscience and Remote Sensing, 2009, 47, 468-480.	2.7	165
7	An evaluation of AMSR–E derived soil moisture over Australia. Remote Sensing of Environment, 2009, 113, 703-710.	4.6	389
8	The European heat wave 2003: Early indicators from multisensoral microwave remote sensing?. Journal of Geophysical Research, 2009, 114, .	3.3	54
9	An EKF assimilation of AMSRâ€E soil moisture into the ISBA land surface scheme. Journal of Geophysical Research, 2009, 114, .	3.3	110
10	WindSat Global Soil Moisture Retrieval and Validation. IEEE Transactions on Geoscience and Remote Sensing, 2010, 48, 2224-2241.	2.7	120
11	Validation of Advanced Microwave Scanning Radiometer Soil Moisture Products. IEEE Transactions on Geoscience and Remote Sensing, 2010, 48, 4256-4272.	2.7	489
12	Investigating soil moisture–climate interactions in a changing climate: A review. Earth-Science Reviews, 2010, 99, 125-161.	4.0	3,380
13	A 50â€year highâ€resolution atmospheric reanalysis over France with the Safran system. International Journal of Climatology, 2010, 30, 1627-1644.	1.5	455
14	ASCAT soil wetness index validation through in situ and modeled soil moisture data in central Italy. Remote Sensing of Environment, 2010, 114, 2745-2755.	4.6	204
15	Assimilation of satelliteâ€derived soil moisture from ASCAT in a limitedâ€area NWP model. Quarterly Journal of the Royal Meteorological Society, 2010, 136, 784-798.	1.0	44
16	Soil moisture active and passive microwave products: intercomparison and evaluation over a Sahelian site. Hydrology and Earth System Sciences, 2010, 14, 141-156.	1.9	172
17	Modelling soil moisture at SMOS scale by use of a SVAT model over the Valencia Anchor Station. Hydrology and Earth System Sciences, 2010, 14, 831-846.	1.9	34
18	Monitoring of water and carbon fluxes using a land data assimilation system: a case study for southwestern France. Hydrology and Earth System Sciences, 2010, 14, 1109-1124.	1.9	73

#	Article	IF	CITATIONS
19	Improving runoff prediction through the assimilation of the ASCAT soil moisture product. Hydrology and Earth System Sciences, 2010, 14, 1881-1893.	1.9	320
20	Cross-evaluation of modelled and remotely sensed surface soil moisture with in situ data in southwestern France. Hydrology and Earth System Sciences, 2010, 14, 2177-2191.	1.9	95
21	Soil moisture modelling of a SMOS pixel: interest of using the PERSIANN database over the Valencia Anchor Station. Hydrology and Earth System Sciences, 2010, 14, 1509-1525.	1.9	19
22	Multilevel and multiscale drought reanalysis over France with the Safran-Isba-Modcou hydrometeorological suite. Hydrology and Earth System Sciences, 2010, 14, 459-478.	1.9	206
23	Influence of cracking clays on satellite estimated and model simulated soil moisture. Hydrology and Earth System Sciences, 2010, 14, 979-990.	1.9	24
24	Evaluation of soil moisture derived from passive microwave remote sensing over agricultural sites in Canada using ground-based soil moisture monitoring networks. International Journal of Remote Sensing, 2010, 31, 3669-3690.	1.3	53
25	Root zone soil moisture from the assimilation of screen-level variables and remotely sensed soil moisture. Journal of Geophysical Research, 2011, 116, .	3.3	47
26	An intercomparison of available soil moisture estimates from thermal infrared and passive microwave remote sensing and land surface modeling. Journal of Geophysical Research, 2011, 116, .	3.3	123
27	Evaluation and application of a fine-resolution global data set in a semiarid mesoscale river basin with a distributed biosphere hydrological model. Journal of Geophysical Research, 2011, 116, .	3.3	64
28	Soil moisture estimation through ASCAT and AMSR-E sensors: An intercomparison and validation study across Europe. Remote Sensing of Environment, 2011, 115, 3390-3408.	4.6	483
29	Observation of Hydrological Processes Using Remote Sensing. , 2011, , 351-399.		9
30	Operational assimilation of ASCAT surface soil wetness at the Met Office. Hydrology and Earth System Sciences, 2011, 15, 2729-2746.	1.9	146
31	A dynamic approach for evaluating coarse scale satellite soil moisture products. Hydrology and Earth System Sciences, 2011, 15, 75-90.	1.9	102
32	Developing an improved soil moisture dataset by blending passive and active microwave satellite-based retrievals. Hydrology and Earth System Sciences, 2011, 15, 425-436.	1.9	572
33	Sensitivity of Passive Microwave Observations to Soil Moisture and Vegetation Water Content: L-Band to W-Band. IEEE Transactions on Geoscience and Remote Sensing, 2011, 49, 1190-1199.	2.7	98
34	Validation of AMSR-E soil moisture using L-band airborne radiometer data from National Airborne Field Experiment 2006. Remote Sensing of Environment, 2011, 115, 2096-2103.	4.6	43
35	A first assessment of the SMOS data in southwestern France using in situ and airborne soil moisture estimates: The CAROLS airborne campaign. Remote Sensing of Environment, 2011, 115, 2718-2728.	4.6	59
36	State of the Climate in 2010. Bulletin of the American Meteorological Society, 2011, 92, S1-S236.	1.7	135

#	Article	IF	CITATIONS
37	The Tibetan Plateau observatory of plateau scale soil moisture and soil temperature (Tibet-Obs) for quantifying uncertainties in coarse resolution satellite and model products. Hydrology and Earth System Sciences, 2011, 15, 2303-2316.	1.9	304
38	Surface Soil Moisture Simulation for a Typical Torrential Event with a Modified Noah LSM Coupling to the NWP Model. Atmospheric and Oceanic Science Letters, 2011, 4, 18-23.	0.5	0
39	Evaluation of AMSR-E—Derived Soil Moisture over Northern China. Atmospheric and Oceanic Science Letters, 2011, 4, 223-228.	0.5	5
40	Assessment of the AMSR-E soil moisture product over India. International Journal of Remote Sensing, 2011, 32, 7955-7970.	1.3	12
41	Relative Importance of Input Parameters in the Modeling of Soil Moisture Dynamics of Small Urban Areas. Journal of Hydrologic Engineering - ASCE, 2012, 17, 359-367.	0.8	2
42	Soil Moisture Analyses at ECMWF: Evaluation Using Global Ground-Based In Situ Observations. Journal of Hydrometeorology, 2012, 13, 1442-1460.	0.7	119
43	Extreme fire events are related to previous-year surface moisture conditions in permafrost-underlain larch forests of Siberia. Environmental Research Letters, 2012, 7, 044021.	2.2	57
44	Soil Moisture Retrievals From the WindSat Spaceborne Polarimetric Microwave Radiometer. IEEE Transactions on Geoscience and Remote Sensing, 2012, 50, 2683-2694.	2.7	76
45	Wheat Canopy Structure and Surface Roughness Effects on Multiangle Observations at L-Band. IEEE Transactions on Geoscience and Remote Sensing, 2012, 50, 1498-1506.	2.7	18
46	An Initial Assessment of SMOS Derived Soil Moisture over the Continental United States. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2012, 5, 1448-1457.	2.3	28
47	Evaluation of remotely sensed and modelled soil moisture products using global ground-based in situ observations. Remote Sensing of Environment, 2012, 118, 215-226.	4.6	444
48	Trend-preserving blending of passive and active microwave soil moisture retrievals. Remote Sensing of Environment, 2012, 123, 280-297.	4.6	670
49	A microwave-optical/infrared disaggregation for improving spatial representation of soil moisture using AMSR-E and MODIS products. Remote Sensing of Environment, 2012, 124, 259-269.	4.6	107
50	An ensemble Kalman filter dual assimilation of thermal infrared and microwave satellite observations of soil moisture into the Noah land surface model. Water Resources Research, 2012, 48, .	1.7	55
51	Estimates of evapotranspiration from MODIS and AMSR-E land surface temperature and moisture over the Southern Great Plains. Remote Sensing of Environment, 2012, 127, 44-59.	4.6	32
52	Observation uncertainty of satellite soil moisture products determined with physically-based modeling. Remote Sensing of Environment, 2012, 127, 341-356.	4.6	66
53	Validation of the SMOS L2 Soil Moisture Data in the REMEDHUS Network (Spain). IEEE Transactions on Geoscience and Remote Sensing, 2012, 50, 1602-1611.	2.7	192
54	Uncertainty Assessment of the SMOS Validation in the Upper Danube Catchment. IEEE Transactions on Geoscience and Remote Sensing, 2012, 50, 1517-1529.	2.7	36

#	Article	IF	CITATIONS
55	A global analysis of soil moisture derived from satellite observations and a land surface model. Hydrology and Earth System Sciences, 2012, 16, 833-847.	1.9	69
56	A bare ground evaporation revision in the ECMWF land-surface scheme: evaluation of its impact using ground soil moisture and satellite microwave data. Hydrology and Earth System Sciences, 2012, 16, 3607-3620.	1.9	47
57	Spatial and temporal variability of biophysical variables in southwestern France from airborne L-band radiometry. Hydrology and Earth System Sciences, 2012, 16, 1725-1743.	1.9	10
58	Evolution of spatio-temporal drought characteristics: validation, projections and effect of adaptation scenarios. Hydrology and Earth System Sciences, 2012, 16, 2935-2955.	1.9	62
59	Comparing soil moisture retrievals from SMOS and ASCAT over France. Hydrology and Earth System Sciences, 2012, 16, 423-440.	1.9	72
60	Towards an integrated soil moisture drought monitor for East Africa. Hydrology and Earth System Sciences, 2012, 16, 2893-2913.	1.9	129
61	Impacts of extreme weather on wheat and maize in France: evaluating regional crop simulations against observed data. Climatic Change, 2012, 113, 751-765.	1.7	126
62	A three-dimensional gap filling method for large geophysical datasets: Application to global satellite soil moisture observations. Environmental Modelling and Software, 2012, 30, 139-142.	1.9	186
63	Evaluation of multiple surface soil moisture for Korean regional flux monitoring network sites: Advanced Microwave Scanning Radiometer E, land surface model, and ground measurements. Hydrological Processes, 2012, 26, 597-603.	1.1	11
64	Use of a soil moisture network for drought monitoring in the Czech Republic. Theoretical and Applied Climatology, 2012, 107, 99-111.	1.3	73
65	Evaluation of AMSRâ€E retrievals and GLDAS simulations against observations of a soil moisture network on the central Tibetan Plateau. Journal of Geophysical Research D: Atmospheres, 2013, 118, 4466-4475.	1.2	250
66	Evaluation of drought indices via remotely sensed data with hydrological variables. Journal of Hydrology, 2013, 476, 265-273.	2.3	125
67	The ASCAT Soil Moisture Product: A Review of its Specifications, Validation Results, and Emerging Applications. Meteorologische Zeitschrift, 2013, 22, 5-33.	0.5	471
68	A comparative assessment of UKâ€DMC and Landsatâ€7 ETM+satellite data. Sensor Review, 2013, 33, 166-173.	1.0	1
70	Intercomparison of microwave remote-sensing soil moisture data sets based on distributed eco-hydrological model simulation and <i>in situ</i> measurements overÂthe North China Plain. International Journal of Remote Sensing, 2013, 34, 6587-6610.	1.3	14
71	Remote Sensing of Soil Moisture. ISRN Soil Science, 2013, 2013, 1-33.	0.8	75
72	Towards a high-density soil moisture network for the validation of SMAP in Petzenkirchen, Austria. , 2013, , .		7
73	Seasonality and autocorrelation of satellite-derived soil moisture products. International Journal of Remote Sensing, 2013, 34, 3231-3247.	1.3	15

ARTICLE IF CITATIONS Challenges and Future Outlook., 2013,, 445-446. 2 75 Operations, Challenges, and Prospects of Satellite-Based Surface Soil Moisture Data Services. , 2013, , 463-488. 77 Satellite Remote Sensing of Surface Soil Moisture., 2013, , 85-120. 20 Analysis of two years of ASCAT-and SMOS-derived soil moisture estimates over Europe and North 78 29 Africa. European Journal of Remote Sensing, 2013, 46, 759-773. How far can be SAR considered a tool for mountain hydrology?. Proceedings of SPIE, 2013, , . 79 0.8 0 Suitability of modelled and remotely sensed essential climate variables for monitoring 1.3 Euro-Mediterranean droughts. Geościentific Model Development, 2014, 7, 931-946. Assimilation of surface soil moisture into a multilayer soil model: design and evaluation at local 81 1.9 38 scale. Hydrology and Earth System Sciences, 2014, 18, 673-689. Exploring spatiotemporal patterns and physical controls of soil moisture at various spatial scales. 1.3 Theoretical and Applied Climatology, 2014, 118, 159-171. Benchmarking a Soil Moisture Data Assimilation System for Agricultural Drought Monitoring. 83 0.7 44 Journal of Hydrometeorology, 2014, 15, 1117-1134. Compared performances of microwave passive soil moisture retrievals (SMOS) and active soil 84 moisture retrievals (ASCAT) using land surface model estimates (MERRA-LAND). , 2014, , . Validation of AMSR-E Soil Moisture Retrievals over Huaihe River Basin, in China. Applied Mechanics and 0.2 3 85 Materials, 2014, 507, 855-858. A spatially coherent global soil moisture product with improved temporal resolution. Journal of 2.3 86 Hydrology, 2014, 516, 284-296. Global-scale evaluation of two satellite-based passive microwave soil moisture datasets (SMOS and) Tj ETQq0 0 0 rgBT /Overlock 10 Tf 5 87 4.6 202 2014, 149, 181-195. Soil moisture retrieval from airborne L-band passive microwave using high resolution multispectral data. ISPRS Journal of Photogrammetry and Remote Sensing, 2014, 91, 59-71. An Approach to Constructing a Homogeneous Time Series of Soil Moisture Using SMOS. IEEE 89 2.7 19 Transactions on Geoscience and Remote Sensing, 2014, 52, 393-405. Global-scale comparison of passive (SMOS) and active (ASCAT) satellite based microwave soil moisture retrievals with soil moisture simulations (MERRA-Land). Remote Sensing of Environment, 2014, 152, 160 614-626. Performances of SMOS and AMSR-E soil moisture retrievals against Land Data Assimilation system 91 0 estimates., 2014,,. Combined use of active and passive microwave satellite data to constrain a discrete scattering model. 38 Remote Sensing of Environment, 2014, 155, 222-238.

#	Article	IF	CITATIONS
93	A simplified physically-based algorithm for surface soil moisture retrieval using AMSR-E data. Frontiers of Earth Science, 2014, 8, 427-438.	0.9	16
94	Comparison Between SMOS, VUA, ASCAT, and ECMWF Soil Moisture Products Over Four Watersheds in U.S IEEE Transactions on Geoscience and Remote Sensing, 2014, 52, 1562-1571.	2.7	88
95	SMOSâ€derived soil moisture anomalies and drought indices: a comparative analysis using <i>in situ</i> measurements. Hydrological Processes, 2015, 29, 373-383.	1.1	71
96	Estimation of Soil Moisture in Mountain Areas Using SVR Technique Applied to Multiscale Active Radar Images at C-Band. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2015, 8, 262-283.	2.3	51
97	Spatial representativeness of soil moisture using in situ, remote sensing, and land reanalysis data. Journal of Geophysical Research D: Atmospheres, 2015, 120, 9955-9964.	1.2	42
98	First Evaluation of Aquarius Soil Moisture Products Using <i>In Situ</i> Observations and GLDAS Model Simulations. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2015, 8, 5511-5525.	2.3	31
99	Evaluation of SMOS soil moisture products over the CanEx-SM10 area. Journal of Hydrology, 2015, 520, 254-267.	2.3	40
100	An assessment of remotely sensed surface and root zone soil moisture through active and passive sensors in northeast Asia. Remote Sensing of Environment, 2015, 160, 166-179.	4.6	44
101	SMOS soil moisture retrievals using the land parameter retrieval model: Evaluation over the Murrumbidgee Catchment, southeast Australia. Remote Sensing of Environment, 2015, 163, 70-79.	4.6	40
102	Evaluation of remotely sensed and reanalysis soil moisture products over the Tibetan Plateau using in-situ observations. Remote Sensing of Environment, 2015, 163, 91-110.	4.6	287
103	Analysis of ASCAT, SMOS, in-situ and land model soil moisture as a regionalized variable over Europe and North Africa. Remote Sensing of Environment, 2015, 170, 280-289.	4.6	24
104	An evaluation of satellite-based drought indices on a regional scale. International Journal of Remote Sensing, 2015, 36, 5593-5612.	1.3	28
105	Combining satellite observations to develop a global soil moisture product for near-real-time applications. Hydrology and Earth System Sciences, 2016, 20, 4191-4208.	1.9	22
106	Spatially and Temporally Complete Satellite Soil Moisture Data Based on a Data Assimilation Method. Remote Sensing, 2016, 8, 49.	1.8	22
107	Blending Satellite Observed, Model Simulated, and in Situ Measured Soil Moisture over Tibetan Plateau. Remote Sensing, 2016, 8, 268.	1.8	70
108	Advantages of Using Microwave Satellite Soil Moisture over Gridded Precipitation Products and Land Surface Model Output in Assessing Regional Vegetation Water Availability and Growth Dynamics for a Lateral Inflow Receiving Landscape. Remote Sensing, 2016, 8, 428.	1.8	15
109	Application of Remote Sensing Data to Constrain Operational Rainfall-Driven Flood Forecasting: A Review. Remote Sensing, 2016, 8, 456.	1.8	68
110	Merging Alternate Remotely-Sensed Soil Moisture Retrievals Using a Non-Static Model Combination Approach. Remote Sensing, 2016, 8, 518.	1.8	14

#	Article	IF	CITATIONS
111	Enhancing Noah Land Surface Model Prediction Skill over Indian Subcontinent by Assimilating SMOPS Blended Soil Moisture. Remote Sensing, 2016, 8, 976.	1.8	25
112	Available Data Sets and Satellites for Terrestrial Soil Moisture Estimation. , 2016, , 29-44.		4
113	The role of soil moisture accounting in estimation of soil evaporation and transpiration. Journal of Hydroinformatics, 2016, 18, 329-344.	1.1	8
114	Performance of Global Soil Moisture Products in Crop Growing Region of Central India. Journal of the Indian Society of Remote Sensing, 2016, 44, 277-285.	1.2	3
115	Overview of SMOS performance in terms of global soil moisture monitoring after six years in operation. Remote Sensing of Environment, 2016, 180, 40-63.	4.6	240
116	Evaluation of soil moisture data products over Indian region and analysis of spatio-temporal characteristics with respect to monsoon rainfall. Journal of Hydrology, 2016, 542, 47-62.	2.3	36
117	A regional scale performance evaluation of SMOS and ESA-CCI soil moisture products over India with simulated soil moisture from MERRA-Land. Remote Sensing of Environment, 2016, 186, 514-527.	4.6	38
118	Comparison of remotely-sensed and modeled soil moisture using CLM4.0 with in situ measurements in the central Tibetan Plateau area. Cold Regions Science and Technology, 2016, 129, 31-44.	1.6	8
119	On the identification of representative in situ soil moisture monitoring stations for the validation of SMAP soil moisture products in Australia. Journal of Hydrology, 2016, 537, 367-381.	2.3	52
120	Assessing the utility of geospatial technologies to investigate environmental change within lake systems. Science of the Total Environment, 2016, 543, 791-806.	3.9	15
121	Sensitivity of WRF short-term forecasts to different soil moisture initializations from the GLDAS database over South America in March 2009. Atmospheric Research, 2016, 167, 196-207.	1.8	22
122	DisPATCh as a tool to evaluate coarse-scale remotely sensed soil moisture using localized in situ measurements: Application to SMOS and AMSR-E data in Southeastern Australia. International Journal of Applied Earth Observation and Geoinformation, 2016, 45, 221-234.	1.4	64
123	Validation of the ESA CCI soil moisture product in China. International Journal of Applied Earth Observation and Geoinformation, 2016, 48, 28-36.	1.4	93
124	Comparison of SMOS, modelled and <i>in situ</i> long-term soil moisture series in the northwest of Spain. Hydrological Sciences Journal, 2016, 61, 2610-2625.	1.2	17
125	Testing regression equations to derive long-term global soil moisture datasets from passive microwave observations. Remote Sensing of Environment, 2016, 180, 453-464.	4.6	47
126	A review of spatial downscaling of satellite remotely sensed soil moisture. Reviews of Geophysics, 2017, 55, 341-366.	9.0	441
127	Performance of AMSR_E soil moisture data assimilation in CLM4.5 model for monitoring hydrologic fluxes at global scale. Journal of Hydrology, 2017, 547, 67-79.	2.3	31
128	The Microwave Temperature Vegetation Drought Index (MTVDI) based on AMSR-E brightness temperatures for long-term drought assessment across China (2003–2010). Remote Sensing of	4.6	54

#	ARTICLE	IF	CITATIONS
129	Hydrological Evaluation of Satellite Soil Moisture Data in Two Basins of Different Climate and Vegetation Density Conditions. Advances in Meteorology, 2017, 2017, 1-15.	0.6	7
130	Soil Moisture Sensing Using Spaceborne GNSS Reflections: Comparison of CYGNSS Reflectivity to SMAP Soil Moisture. Geophysical Research Letters, 2018, 45, 4049-4057.	1.5	227
131	Information theoretic evaluation of satellite soil moisture retrievals. Remote Sensing of Environment, 2018, 204, 392-400.	4.6	89
132	Global-scale assessment and combination of SMAP with ASCAT (active) and AMSR2 (passive) soil moisture products. Remote Sensing of Environment, 2018, 204, 260-275.	4.6	147
133	Evaluation of microwave remote sensing for monitoring live fuel moisture content in the Mediterranean region. Remote Sensing of Environment, 2018, 205, 210-223.	4.6	75
134	Global Comparison of Surface Soil Moisture from the ESA CCI Combined Product and the Orchidee Land-Surface Model. , 2018, , .		0
135	Long-Term Soil Moisture Data Records Derived From a Series of European Scatterometers. , 2018, , 51-84.		1
136	Soil Moisture From the Advanced Microwave Scanning Radiometer (AMSR) Instruments. , 2018, , 191-223.		0
137	The Potential Utility of Satellite Soil Moisture Retrievals for Detecting Irrigation Patterns in China. Water (Switzerland), 2018, 10, 1505.	1.2	22
138	Improving the Efficiency of Land Cover Classification by Combining Segmentation, Hierarchical Clustering, and Active Learning. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2018, 11, 4016-4031.	2.3	4
139	Soil Moisture Mapping from Satellites: An Intercomparison of SMAP, SMOS, FY3B, AMSR2, and ESA CCI over Two Dense Network Regions at Different Spatial Scales. Remote Sensing, 2018, 10, 33.	1.8	111
140	Evaluating Consistency between the Remotely Sensed Soil Moisture and the Hydrological Model-Simulated Soil Moisture in the Qujiang Catchment of China. Water (Switzerland), 2018, 10, 291.	1.2	12
141	Remotely sensed soil moisture to estimate savannah NDVI. PLoS ONE, 2018, 13, e0200328.	1.1	9
142	Evaluation of Remotely Sensed and Reanalysis Soil Moisture Against In Situ Observations on the Himalayanâ€Tibetan Plateau. Journal of Geophysical Research D: Atmospheres, 2018, 123, 7132-7148.	1.2	40
143	Simultaneous retrieval of global scale Vegetation Optical Depth, surface roughness, and soil moisture using X-band AMSR-E observations. Remote Sensing of Environment, 2019, 234, 111473.	4.6	30
144	An improved surface soil moisture downscaling approach over cloudy areas based on geographically weighted regression. Agricultural and Forest Meteorology, 2019, 275, 146-158.	1.9	29
145	Satellite surface soil moisture from SMAP, SMOS, AMSR2 and ESA CCI: A comprehensive assessment using global ground-based observations. Remote Sensing of Environment, 2019, 231, 111215.	4.6	186
146	Comparative Analysis of High-Resolution Soil Moisture Simulations from the Soil, Vegetation, and Snow (SVS) Land Surface Model Using SAR Imagery Over Bare Soil. Water (Switzerland), 2019, 11, 542.	1.2	7

#	Article	IF	CITATIONS
147	Evaluation of SMAP, SMOS-IC, FY3B, JAXA, and LPRM Soil Moisture Products over the Qinghai-Tibet Plateau and Its Surrounding Areas. Remote Sensing, 2019, 11, 792.	1.8	49
148	Satellite-based soil moisture provides missing link between summertime precipitation and surface temperature biases in CMIP5 simulations over conterminous United States. Scientific Reports, 2019, 9, 1657.	1.6	22
149	Spatial assessment of the performance of multiple highâ€resolution satelliteâ€based precipitation data sets over the Middle East. International Journal of Climatology, 2019, 39, 2522-2543.	1.5	12
150	A Novel Scheme for Merging Active and Passive Satellite Soil Moisture Retrievals Based on Maximizing the Signal to Noise Ratio. Remote Sensing, 2020, 12, 3804.	1.8	12
151	Comparative Assessment of Vegetation Indices in Downscaling of MODIS Satellite Land Surface Temperature. Remote Sensing in Earth Systems Sciences, 2020, 3, 156-167.	1.1	3
152	Studying Soil Moisture and Temperature on the Tibetan Plateau: Initial Results of an Integrated, Multiscale Observatory. IEEE Geoscience and Remote Sensing Magazine, 2020, 8, 18-36.	4.9	3
153	High-Resolution SMAP-Derived Root-Zone Soil Moisture Using an Exponential Filter Model Calibrated per Land Cover Type. Remote Sensing, 2021, 13, 1112.	1.8	9
154	Comprehensive assessment of Fengyun-3 satellites derived soil moisture with in-situ measurements across the globe. Journal of Hydrology, 2021, 594, 125949.	2.3	11
155	A fine-resolution soil moisture dataset for China in 2002–2018. Earth System Science Data, 2021, 13, 3239-3261.	3.7	48
156	Spatial merging of satellite based soil moisture and in-situ soil moisture using conditional merging technique. Journal of Korea Water Resources Association, 2016, 49, 263-273.	0.3	1
175	FUSION OF ACTIVE AND PASSIVE MICROWAVE OBSERVATIONS TO CREATE AN ESSENTIAL CLIMATE VARIABLE DATA RECORD ON SOIL MOISTURE. ISPRS Annals of the Photogrammetry, Remote Sensing and Spatial Information Sciences, 0, I-7, 315-321.	0.0	189
176	Assessment of the Temperature Effects in SMAP Satellite Soil Moisture Products in Oklahoma. Remote Sensing, 2021, 13, 4104.	1.8	2
177	The soil moisture data bank: The ground-based, model-based, and satellite-based soil moisture data. Remote Sensing Applications: Society and Environment, 2021, 24, 100649.	0.8	8
179	Utilisation de données satellitaires en hydro-météorologie : la recherche à Météo-France. Houille Blanche, 2010, 96, 96-102.	0.3	0
181	Validation of the Level 1c and Level 2 SMOS products with airborne and ground-based observations. , 0, , .		1
184	Inter-Comparison of Proximal Near-Surface Soil Moisture Measurement Techniques. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2022, 15, 2370-2378.	2.3	5
186	A global-scale intercomparison of Triple Collocation Analysis- and ground-based soil moisture time-variant errors derived from different rescaling techniques. Remote Sensing of Environment, 2023, 285, 113387.	4.6	6
187	Conceptual of soil moisture based on remote sensing and reanalysis dataset. , 2024, , 77-98.		0