Chronic Vagus Nerve Stimulation Improves Autonomic Inflammation and Heart Failure Progression in a Canine

Circulation: Heart Failure 2, 692-699 DOI: 10.1161/circheartfailure.109.873968

Citation Report

#	Article	IF	CITATIONS
1	A Split-Rotor Single-Phase Induction Motor. International Journal of Electrical Engineering and Education, 1978, 15, 69-75.	0.4	0
2	Vagal stimulation for heart failure: Background and first in-man study. Heart Rhythm, 2009, 6, S76-S81.	0.3	54
3	Exercise training, inflammation and heart failure: working out to cool down. Journal of Physiology, 2010, 588, 2525-2526.	1.3	5
4	Acupuncture improves exercise tolerance of patients with heart failure: a placebo-controlled pilot study. Heart, 2010, 96, 1396-1400.	1.2	42
5	Vagal stimulation for heart failure. Current Opinion in Cardiology, 2011, 26, 51-54.	0.8	8
7	Vagal Stimulation for Heart Diseases: From Animals to Men - An Example of Translational Cardiology Circulation Journal, 2011, 75, 20-27.	0.7	49
8	The Parasympathetic Nervous System in the Quest for Stroke Therapeutics. Journal of Cerebral Blood Flow and Metabolism, 2011, 31, 1187-1195.	2.4	86
9	Arrhythmias and vagus nerve stimulation. Heart Failure Reviews, 2011, 16, 147-161.	1.7	52
10	Inflammatory cytokines and nitric oxide in heart failure and potential modulation by vagus nerve stimulation. Heart Failure Reviews, 2011, 16, 137-145.	1.7	54
11	Evidence for impaired vagus nerve activity in heart failure. Heart Failure Reviews, 2011, 16, 129-135.	1.7	88
12	Electrical modalities beyond pacing for the treatment of heart failure. Heart Failure Reviews, 2011, 16, 315-325.	1.7	12
13	Vagus nerve stimulation in experimental heart failure. Heart Failure Reviews, 2011, 16, 171-178.	1.7	134
14	Vagus nerve stimulation: from pre-clinical to clinical application: challenges and future directions. Heart Failure Reviews, 2011, 16, 195-203.	1.7	151
16	Role of the Cholinergic Antiinflammatory Pathway in Murine Autoimmune Myocarditis. Circulation Research, 2011, 109, 130-140.	2.0	57
17	Chronic vagus nerve stimulation: a new and promising therapeutic approach for chronic heart failure. European Heart Journal, 2011, 32, 847-855.	1.0	444
18	Continuous Low-Level Vagus Nerve Stimulation Reduces Stellate Ganglion Nerve Activity and Paroxysmal Atrial Tachyarrhythmias in Ambulatory Canines. Circulation, 2011, 123, 2204-2212.	1.6	202
19	Treatment of chronic inflammatory diseases with implantable medical devices. Annals of the Rheumatic Diseases, 2011, 70, i67-i70.	0.5	12
20	Dietary ω3 fatty acids modulate the substrate for post-operative atrial fibrillation in a canine cardiac surgery model. Cardiovascular Research, 2011, 89, 852-861.	1.8	52

		CITATION REPORT		
#	Article		IF	CITATIONS
21	Myocardial bridging causing infarction and ischaemia. European Heart Journal, 2011, 3	2, 790-790.	1.0	7
22	Chronic vagal nerve stimulation for the treatment of human heart failure: progress in t vision into reality. European Heart Journal, 2011, 32, 788-790.	ranslating a	1.0	12
23	Selective control of physiological responses by temporally-patterned electrical stimula canine vagus nerve. , 2011, 2011, 3107-10.	tion of the		2
24	Autonomic Neural Regulation of the Immune System. Hypertension, 2012, 59, 755-76	2.	1.3	134
25	Neural Autonomic Modulation of the Heart: A New Tool for Cardiac Surgeons?. Annals Surgery, 2012, 94, 1043.	of Thoracic	0.7	1
26	Neural regulation of the immune system modulates hypertension-induced target-orga Journal of the American Society of Hypertension, 2012, 6, 23-26.	n damage.	2.3	16
27	Epicardial ganglionated plexus stimulation decreases postoperative inflammatory resp Heart Rhythm, 2012, 9, 943-950.	onse in humans.	0.3	31
28	Baroreflex Function after Spinal Cord Injury. Journal of Neurotrauma, 2012, 29, 2431-2	2445.	1.7	48
29	Rationale and study design of the INcrease Of Vagal TonE in Heart Failure study: INOV. Heart Journal, 2012, 163, 954-962.e1.	ATE-HF. American	1.2	130
30	Acute vagal stimulation attenuates cardiac metabolic response to βâ€adrenergic stres Physiology, 2012, 590, 6065-6074.	ss. Journal of	1.3	11
31	Device Therapy to Modulate the Autonomic Nervous System to Treat Heart Failure. Cu Cardiology Reports, 2012, 14, 593-600.	rrent	1.3	24
32	A systematic review and metaâ€analysis of heart rate variability in epilepsy and antiepi Epilepsia, 2012, 53, 272-282.	leptic drugs.	2.6	248
33	Heart failure as an autonomic nervous system dysfunction. Journal of Cardiology, 2012	2, 59, 117-122.	0.8	197
34	Vagal nerve modulation: A promising new therapeutic approach for cardiovascular dise and Experimental Pharmacology and Physiology, 2012, 39, 701-705.	eases. Clinical	0.9	24
35	Sympathetic nerve fibers and ganglia in canine cervical vagus nerves: Localization and Heart Rhythm, 2013, 10, 585-591.	quantitation.	0.3	42
36	Mechanisms underlying the autonomic modulation of ventricular fibrillation initiationâ prophylactic properties of vagus nerve stimulation on malignant arrhythmias in heart f Failure Reviews, 2013, 18, 389-408.		1.7	73
37	Baroreflex Stimulation Versus Renal Denervation for Treatment of Hypertension: What Logical Comparison of These Interventions on Atrial Electrophysiology?. Journal of Card Electrophysiology, 2013, 24, 1034-1036.		0.8	2
38	Parasympathetic activation by pyridostigmine on chemoreflex sensitivity in heart-failur Autonomic Neuroscience: Basic and Clinical, 2013, 179, 43-48.	e rats.	1.4	10

#	Article	IF	CITATIONS
39	Network interactions within the canine intrinsic cardiac nervous system: implications for reflex control of regional cardiac function. Journal of Physiology, 2013, 591, 4515-4533.	1.3	107
40	Ventricular Rate Control of Atrial Fibrillation in Heart Failure. Heart Failure Clinics, 2013, 9, 397-406.	1.0	6
41	Cardiac Autonomic Nerve Stimulation in the Treatment of Heart Failure. Annals of Thoracic Surgery, 2013, 96, 339-345.	0.7	37
42	Left ventricular strain distribution in healthy dogs and in dogs with tachycardia-induced dilated cardiomyopathy. Cardiovascular Ultrasound, 2013, 11, 43.	0.5	15
43	Selectivity for Specific Cardiovascular Effects of Vagal Nerve Stimulation With a Multi-Contact Electrode Cuff. IEEE Transactions on Neural Systems and Rehabilitation Engineering, 2013, 21, 32-36.	2.7	21
44	The treatment with pyridostigmine improves the cardiocirculatory function in rats with chronic heart failure. Autonomic Neuroscience: Basic and Clinical, 2013, 173, 58-64.	1.4	33
45	Therapeutic Effects of Selective Atrioventricular Node Vagal Stimulation in Atrial Fibrillation and Heart Failure. Journal of Cardiovascular Electrophysiology, 2013, 24, 86-91.	0.8	8
46	AV Nodal Fat Pad Stimulation for Rate Control in Atrial Fibrillation and Heart Failure: A Better Solution?. Journal of Cardiovascular Electrophysiology, 2013, 24, 92-93.	0.8	1
47	The wonders of the Wanderer. Experimental Physiology, 2013, 98, 38-45.	0.9	31
48	Autonomic Regulation Therapy for the Improvement of Left Ventricular Function and Heart Failure Symptoms: The ANTHEM-HF Study. Journal of Cardiac Failure, 2013, 19, 655-660.	0.7	59
49	Atrial ganglionated plexi stimulation may be an effective therapeutic tool for the treatment of heart failure. Medical Hypotheses, 2013, 81, 905-907.	0.8	5
50	Resting Heart Rate and Heart Rate Reserve inÂAdvancedÂHeart Failure Have Distinct Pathophysiologic Correlates and Prognostic Impact. JACC: Heart Failure, 2013, 1, 259-266.	1.9	46
51	Changes in parasympathetic system in medulla oblongata in male pigs in the course of tachycardia-induced cardiomyopathy. Autonomic Neuroscience: Basic and Clinical, 2013, 177, 253-259.	1.4	2
52	Time for change: Cardiac neurophysiology meets cardiac electrophysiology. Heart Rhythm, 2013, 10, 758-759.	0.3	0
53	Effects of low-intensity atrial ganglionated plexi stimulation on ventricular electrophysiology and arrhythmogenesis. Autonomic Neuroscience: Basic and Clinical, 2013, 174, 54-60.	1.4	16
54	Vagal stimulation for heart diseases: from animals to men. An example of translational cardiology. Netherlands Heart Journal, 2013, 21, 82-84.	0.3	9
55	Association of heart rate variability and inflammatory response in patients with cardiovascular diseases: current strengths and limitations. Frontiers in Physiology, 2013, 4, 174.	1.3	58
56	Increase in parasympathetic tone by pyridostigmine prevents ventricular dysfunction during the onset of heart failure. American Journal of Physiology - Regulatory Integrative and Comparative Physiology, 2013, 305, R908-R916.	0.9	62

	CITATION	Report	
#	ARTICLE Hypertrophy of Neurons Within Cardiac Ganglia in Human, Canine, and Rat Heart Failure: The Potential	IF	CITATIONS
57	Role of Nerve Growth Factor. Journal of the American Heart Association, 2013, 2, e000210.	1.6	27
58	Vagus nerve stimulation improves left ventricular function in a canine model of chronic heart failure. European Journal of Heart Failure, 2013, 15, 1319-1326.	2.9	91
59	Mild Hypothermia Attenuates Circulatory and Pulmonary Dysfunction During Experimental Endotoxemia*. Critical Care Medicine, 2013, 41, e401-e410.	0.4	28
60	Pathology Influences Blood Pressure Change following Vagal Stimulation in an Animal Intubation Model. PLoS ONE, 2013, 8, e69957.	1.1	6
61	Neural Activity and Atrial Tachyarrhythmias. , 2014, , 399-407.		1
62	Response of Various Conduit Arteries in Tachycardia- and Volume Overload-Induced Heart Failure. PLoS ONE, 2014, 9, e101645.	1.1	3
63	Longitudinal Hemodynamic Measurements in Swine Heart Failure Using a Fully Implantable Telemetry System. PLoS ONE, 2014, 9, e103331.	1,1	3
64	Pyridostigmine Restores Cardiac Autonomic Balance after Small Myocardial Infarction in Mice. PLoS ONE, 2014, 9, e104476.	1.1	29
65	Vagal Nerve Stimulation Therapy: What Is Being Stimulated?. PLoS ONE, 2014, 9, e114498.	1,1	27
66	Obesity and Gut's Dysbiosis Promote Neuroinflammation, Cognitive Impairment, and Vulnerability to Alzheimer's disease: New Directions and Therapeutic Implications. Journal of Molecular and Genetic Medicine: an International Journal of Biomedical Research, 2014, s1, .	0.1	14
67	Are Electronic Cardiac Devices Still Evolving?. Yearbook of Medical Informatics, 2014, 23, 128-134.	0.8	4
68	Cholinergic Activity as a New Target in Diseases of the Heart. Molecular Medicine, 2014, 20, 527-537.	1.9	64
69	Electroacupuncture improves cardiac function and remodeling by inhibition of sympathoexcitation in chronic heart failure rats. American Journal of Physiology - Heart and Circulatory Physiology, 2014, 306, H1464-H1471.	1,5	33
70	Role of Exercise Training on Autonomic Changes and Inflammatory Profile Induced by Myocardial Infarction. Mediators of Inflammation, 2014, 2014, 1-11.	1.4	16
71	Autonomic Regulation Therapy via Left or Right Cervical Vagus Nerve Stimulation in Patients With Chronic Heart Failure: Results of the ANTHEM-HF Trial. Journal of Cardiac Failure, 2014, 20, 808-816.	0.7	289
72	Cervical Ganglion Block Attenuates the Progression of Pulmonary Hypertension via Nitric Oxide and Arginase Pathways. Hypertension, 2014, 63, 309-315.	1.3	33
73	Rationale and study design of the <scp>NEuroCardiac TherApy foR</scp> Heart Failure Study: <scp>NECTARâ€HF</scp> . European Journal of Heart Failure, 2014, 16, 692-699.	2.9	56
75	Vagomimetic Effects of Fingolimod: Physiology and Clinical Implications. CNS Neuroscience and Therapeutics, 2014, 20, 496-502.	1.9	14

#	Article	IF	CITATIONS
76	Influence of Vagus Nerve Stimulation parameters on chronotropism and inotropism in heart failure. , 2014, 2014, 526-9.		15
77	Vagus nerve stimulation improves coagulopathy in hemorrhagic shock: a thromboelastometric animal model study. Journal of Trauma Management and Outcomes, 2014, 8, 15.	0.9	11
78	Chronic Intermittent Low-Level Transcutaneous Electrical Stimulation of Auricular Branch of Vagus Nerve Improves Left Ventricular Remodeling in Conscious Dogs With Healed Myocardial Infarction. Circulation: Heart Failure, 2014, 7, 1014-1021.	1.6	105
79	Changes in Cardiopulmonary Reserve and Peripheral Arterial Function Concomitantly with Subclinical Inflammation and Oxidative Stress in Patients with Heart Failure with Preserved Ejection Fraction. International Journal of Vascular Medicine, 2014, 2014, 1-8.	0.4	14
80	Vagus nerve stimulation reduces cardiac electrical instability assessed by quantitative Tâ€wave alternans analysis in patients with drugâ€resistant focal epilepsy. Epilepsia, 2014, 55, 1996-2002.	2.6	75
81	Vagal Stimulation in Heart Failure. Journal of Cardiovascular Translational Research, 2014, 7, 310-320.	1.1	52
82	Role of the Autonomic Nervous System in Atrial Fibrillation. Circulation Research, 2014, 114, 1500-1515.	2.0	578
83	The Autonomic Nervous System and Heart Failure. Circulation Research, 2014, 114, 1815-1826.	2.0	407
84	Non-pharmacological modulation of the autonomic tone to treat heart failure. European Heart Journal, 2014, 35, 77-85.	1.0	58
85	Transcutaneous electrical stimulation of auricular branch of vagus nerve: A noninvasive therapeutic approach for post-ischemic heart failure. International Journal of Cardiology, 2014, 177, 676-677.	0.8	25
86	New devices in heart failure: an European Heart Rhythm Association report: Developed by the European Heart Rhythm Association; Endorsed by the Heart Failure Association. Europace, 2014, 16, 109-128.	0.7	62
87	Role of Stress, Depression, and Aging in Cognitive Decline and Alzheimer's Disease. Current Topics in Behavioral Neurosciences, 2014, 18, 265-296.	0.8	42
88	Chronic vagal nerve stimulation improves baroreflex neural arc function in heart failure rats. Journal of Applied Physiology, 2014, 116, 1308-1314.	1.2	14
89	Baroreflex Activation: from Mechanisms to Therapy for Cardiovascular Disease. Current Hypertension Reports, 2014, 16, 453.	1.5	29
90	Role of the Autonomic Nervous System in Modulating Cardiac Arrhythmias. Circulation Research, 2014, 114, 1004-1021.	2.0	618
91	Impact of Vagal Nerve Stimulation on Left Atrial Structure and Function in a Canine High-Rate Pacing Model. Circulation: Heart Failure, 2014, 7, 320-326.	1.6	16
92	Decreased adrenoceptor stimulation in heart failure rats reduces NGF expression by cardiac parasympathetic neurons. Autonomic Neuroscience: Basic and Clinical, 2014, 181, 13-20.	1.4	11
93	Chronic Functional Bowel Syndrome Enhances Gut-Brain Axis Dysfunction, Neuroinflammation, Cognitive Impairment, and Vulnerability to Dementia. Neurochemical Research, 2014, 39, 624-644.	1.6	104

#	Article	IF	CITATIONS
94	Short-term vagal nerve stimulation improves left ventricular function following chronic heart failure in rats. Molecular Medicine Reports, 2015, 12, 1709-1716.	1.1	12
95	Low-level Transcutaneous Electrical Stimulation of the Auricular Branch of Vagus Nerve Ameliorates Left Ventricular Remodeling and Dysfunction by Downregulation of Matrix Metalloproteinase 9 and Transforming Growth Factor β1. Journal of Cardiovascular Pharmacology, 2015, 65, 342-348.	0.8	26
96	Innovative devices for advanced heart failure. Current Opinion in Cardiology, 2015, 30, 267-276.	0.8	2
97	Non-Celiac Gluten Sensitivity Triggers Gut Dysbiosis, Neuroinflammation, Gut-Brain Axis Dysfunction, and Vulnerability for Dementia. CNS and Neurological Disorders - Drug Targets, 2015, 14, 110-131.	0.8	61
98	Design Considerations for Clinical Trials of Autonomic Modulation Therapies Targeting Hypertension and Heart Failure. Hypertension, 2015, 65, 5-15.	1.3	27
99	Device-Based Autonomic Modulation in Arrhythmia Patients: the Role of Vagal Nerve Stimulation. Current Treatment Options in Cardiovascular Medicine, 2015, 17, 379.	0.4	21
100	New dimensions in controlling cellular function with electroceutics. Therapeutic Delivery, 2015, 6, 5-8.	1.2	7
102	Cardiac Resynchronization Therapy Restores Sympathovagal Balance in the Failing Heart by Differential Remodeling of Cholinergic Signaling. Circulation Research, 2015, 116, 1691-1699.	2.0	37
103	Low-Level Transcutaneous Electrical Vagus Nerve Stimulation Suppresses AtrialÂFibrillation. Journal of the American College of Cardiology, 2015, 65, 867-875.	1.2	257
104	Vagal nerve stimulation for heart failure: new pieces to the puzzle?. European Journal of Heart Failure, 2015, 17, 125-127.	2.9	9
105	Autonomic Modulation for the Management of Patients with Chronic Heart Failure. Circulation: Heart Failure, 2015, 8, 619-628.	1.6	54
106	Autonomic Regulation Therapy in Heart Failure. Current Heart Failure Reports, 2015, 12, 284-293.	1.3	50
107	Toll-like receptor 9 plays a key role in the autonomic cardiac and baroreflex control of arterial pressure. American Journal of Physiology - Regulatory Integrative and Comparative Physiology, 2015, 308, R714-R723.	0.9	15
108	Low-intensity Atrial Ganglionated Plexi Stimulation Decreases the Serum Level of Inflammatory Factors in Canine. Heart Lung and Circulation, 2015, 24, 407-410.	0.2	8
109	Interventional and Device-Based Autonomic Modulation in Heart Failure. Heart Failure Clinics, 2015, 11, 337-348.	1.0	18
110	Increase of Ventricular Interval During Atrial Fibrillation by Atrioventricular Node Vagal Stimulation. Circulation: Arrhythmia and Electrophysiology, 2015, 8, 562-568.	2.1	3
111	In juvenile dermatomyositis, heart rate variability is reduced, and associated with both cardiac dysfunction and markers of inflammation: a cross-sectional study median 13.5 years after symptom onset. Rheumatology, 2015, 55, kev376.	0.9	13
112	Intermittent electrical stimulation of the right cervical vagus nerve in salt-sensitive hypertensive rats: effects on blood pressure, arrhythmias, and ventricular electrophysiology. Physiological Reports, 2015, 3, e12476.	0.7	41

#	ARTICLE	IF	CITATIONS
113	Novel Interventional Therapies to Modulate the Autonomic Tone in HeartÂFailure. JACC: Heart Failure, 2015, 3, 786-802.	1.9	46
115	Baroreflex activation therapy for the treatment of heart failure. Interventional Cardiology, 2015, 7, 559-569.	0.0	1
116	Continuous vagal nerve stimulation affects atrial neural remodeling and reduces atrial fibrillation inducibility in rabbits. Cardiovascular Pathology, 2015, 24, 395-398.	0.7	8
117	Autonomic Modulation in Heart Failure: Ready for Prime Time?. Current Cardiology Reports, 2015, 17, 103.	1.3	5
118	Blood pressure response to renal nerve stimulation in patients undergoing renal denervation: a feasibility study. Journal of Human Hypertension, 2015, 29, 292-295.	1.0	63
119	Chronic vagal stimulation for the treatment of low ejection fraction heart failure: results of the NEural Cardiac TherApy foR Heart Failure (NECTAR-HF) randomized controlled trial. European Heart Journal, 2015, 36, 425-433.	1.0	291
120	Clinical Autonomic Dysfunction. , 2015, , .		20
121	Minimal adverse effects profile following implantation of periauricular percutaneous electrical nerve field stimulators: a retrospective cohort study. Medical Devices: Evidence and Research, 2016, Volume 9, 389-393.	0.4	14
122	Left Atrial Size and Function in a Canine Model of Chronic Atrial Fibrillation and Heart Failure. PLoS ONE, 2016, 11, e0147015.	1.1	8
123	Vagus Nerve Stimulation for Treatment of Inflammation: Systematic Review of Animal Models and Clinical Studies. Bioelectronic Medicine, 2016, 3, 1-6.	1.0	49
124	Molecular Mechanisms Linking Autonomic Dysfunction and Impaired Cardiac Contractility in Critical Illness*. Critical Care Medicine, 2016, 44, e614-e624.	0.4	29
125	Autonomic Modulation by Electrical Stimulation of the Parasympathetic Nervous System: An Emerging Intervention for Cardiovascular Diseases. Cardiovascular Therapeutics, 2016, 34, 167-171.	1.1	25
126	Vagus Nerve and Vagus Nerve Stimulation, a Comprehensive Review: Part III. Headache, 2016, 56, 479-490.	1.8	195
127	Neuro-cardiac interaction in malignant ventricular arrhythmia and sudden cardiac death. Autonomic Neuroscience: Basic and Clinical, 2016, 199, 66-79.	1.4	34
128	Heart rate variability and depressive symptoms: a cross-lagged analysis over a 10-year period in the Whitehall II study. Psychological Medicine, 2016, 46, 2121-2131.	2.7	97
129	Vagus nerve stimulation: state of the art of stimulation and recording strategies to address autonomic function neuromodulation. Journal of Neural Engineering, 2016, 13, 041002.	1.8	74
130	Translational neurocardiology: preclinical models and cardioneural integrative aspects. Journal of Physiology, 2016, 594, 3877-3909.	1.3	133
131	Temporal Development of Autonomic Dysfunction in Heart Failure: Effects of Age in an Ovine Rapid-pacing Model. Journals of Gerontology - Series A Biological Sciences and Medical Sciences, 2016, 71, 1544-1552.	1.7	7

#	Article	IF	CITATIONS
132	Vagus Nerve Stimulation for the Treatment of Heart Failure. Journal of the American College of Cardiology, 2016, 68, 149-158.	1.2	283
133	Sympathetic Activation in Chronic Heart Failure: Potential Benefits of Interventional Therapies. Current Hypertension Reports, 2016, 18, 51.	1.5	7
134	Neural modulation for hypertension and heart failure. International Journal of Cardiology, 2016, 214, 320-330.	0.8	15
135	Effects on hemodynamic variables and echocardiographic parameters after a stellate ganglion block in 15 healthy volunteers. Autonomic Neuroscience: Basic and Clinical, 2016, 197, 46-55.	1.4	21
136	Guidelines for Reporting Articles on Psychiatry and Heart rate variability (GRAPH): recommendations to advance research communication. Translational Psychiatry, 2016, 6, e803-e803.	2.4	289
137	Cardiac sympatho-vagal balance and ventricular arrhythmia. Autonomic Neuroscience: Basic and Clinical, 2016, 199, 29-37.	1.4	53
138	Renal Nerve Stimulation–Induced Blood Pressure Changes Predict Ambulatory Blood Pressure Response After Renal Denervation. Hypertension, 2016, 68, 707-714.	1.3	77
139	Exercise training preserves vagal preganglionic neurones and restores parasympathetic tonus in heart failure. Journal of Physiology, 2016, 594, 6241-6254.	1.3	23
140	Muscarinic Stimulation Facilitates Sarcoplasmic Reticulum Ca Release by Modulating Ryanodine Receptor 2 Phosphorylation Through Protein Kinase G and Ca/Calmodulin-Dependent Protein Kinase II. Hypertension, 2016, 68, 1171-1178.	1.3	21
141	Autonomic Modulation With Baroreflex Activation Therapy in Heart Failure. Current Heart Failure Reports, 2016, 13, 273-280.	1.3	5
142	Aberrant fecal flora observed in guinea pigs with pressure overload is mitigated in animals receiving vagus nerve stimulation therapy. American Journal of Physiology - Renal Physiology, 2016, 311, G754-G762.	1.6	14
143	Noninvasive Transcutaneous Vagus Nerve Stimulation Decreases Whole Blood Culture-Derived Cytokines and Chemokines: A Randomized, Blinded, Healthy Control Pilot Trial. Neuromodulation, 2016, 19, 283-291.	0.4	124
144	Optimal Titration Is Important to Maximize the Beneficial Effects of Vagal Nerve Stimulation in Chronic Heart Failure. Journal of Cardiac Failure, 2016, 22, 631-638.	0.7	16
145	Neuromodulation of the Failing Heart. JACC Basic To Translational Science, 2016, 1, 95-106.	1.9	46
146	Vagal Nerve Stimulation Evoked Heart Rate Changes and Protection from Cardiac Remodeling. Journal of Cardiovascular Translational Research, 2016, 9, 67-76.	1.1	9
147	Clinical neurocardiology defining the value of neuroscienceâ€based cardiovascular therapeutics. Journal of Physiology, 2016, 594, 3911-3954.	1.3	222
148	The strange case of the ear and the heart: The auricular vagus nerve and its influence on cardiac control. Autonomic Neuroscience: Basic and Clinical, 2016, 199, 48-53.	1.4	70
149	The Autonomic Cardiorenal Crosstalk: Pathophysiology and Implications for Heart Failure Management. , 2016, , 131-164.		0

#	Article	IF	CITATIONS
150	Nicotine inhibits the production of proinflammatory cytokines of mice infected with coxsackievirus B3. Life Sciences, 2016, 148, 9-16.	2.0	14
151	The nervous heart. Progress in Biophysics and Molecular Biology, 2016, 120, 199-209.	1.4	46
152	Modulation of heart rate by temporally patterned vagus nerve stimulation in the anesthetized dog. Physiological Reports, 2016, 4, e12689.	0.7	51
153	Vagus nerve modulation of inflammation: Cardiovascular implications. Trends in Cardiovascular Medicine, 2016, 26, 1-11.	2.3	36
155	Vagal Stimulation in Heart Failure: An Anti-inflammatory Intervention?. , 2016, , 165-182.		1
157	Cardiac acetylcholine inhibits ventricular remodeling and dysfunction under pathologic conditions. FASEB Journal, 2016, 30, 688-701.	0.2	39
158	Novel method to assess intrinsic heart rate recovery in ambulatory <scp>ECG</scp> recordings tracks cardioprotective effects of chronic autonomic regulation therapy in patients enrolled in the <scp>ANTHEM</scp> â€ <scp>HF</scp> study. Annals of Noninvasive Electrocardiology, 2017, 22, e12436.	0.5	4
159	Inhibition of the Sympathetic Nervous System. , 2017, , 97-124.		Ο
160	Effect of Loss of Heart Rate Variability on T-Wave Heterogeneity and QT Variability in Heart Failure Patients: Implications in Ventricular Arrhythmogenesis. Cardiovascular Engineering and Technology, 2017, 8, 219-228.	0.7	12
161	Improved Pre-Ejection Period Estimation From Ballistocardiogram and Electrocardiogram Signals by Fusing Multiple Timing Interval Features. IEEE Sensors Journal, 2017, 17, 4172-4180.	2.4	6
162	Cardiac vagal control in a knock-in mouse model of dilated cardiomyopathy with a troponin mutation. Autonomic Neuroscience: Basic and Clinical, 2017, 205, 33-40.	1.4	2
163	Effects of short and prolonged transcutaneous vagus nerve stimulation on heart rate variability in healthy subjects. Autonomic Neuroscience: Basic and Clinical, 2017, 203, 88-96.	1.4	101
164	Neural Control of Cardiac Function in Health and Disease. , 2017, , 13-35.		3
165	Exercise for Cardiovascular Disease Prevention and Treatment. Advances in Experimental Medicine and Biology, 2017, , .	0.8	3
166	Experimental Evidences Supporting the Benefits of Exercise Training in Heart Failure. Advances in Experimental Medicine and Biology, 2017, 999, 181-206.	0.8	2
167	The autonomic nervous system as a therapeutic target in heart failure: a scientific position statement from the Translational Research Committee of the Heart Failure Association of the European Society of Cardiology. European Journal of Heart Failure, 2017, 19, 1361-1378.	2.9	115
168	Stimulation of ganglionated plexus attenuates cardiac neural remodeling and heart failure progression in a canine model of acute heart failure post-myocardial infarction. Autonomic Neuroscience: Basic and Clinical, 2017, 208, 73-79.	1.4	6
169	Interictal cardiac autonomic nervous system disturbances in dogs with idiopathic epilepsy. Veterinary Journal, 2017, 228, 41-45.	0.6	6

#	Article	IF	CITATIONS
170	Impact of exercise training associated to pyridostigmine treatment on autonomic function and inflammatory profile after myocardial infarction in rats. International Journal of Cardiology, 2017, 227, 757-765.	0.8	24
171	Intravenous electrical vagal nerve stimulation prior to coronary reperfusion in a canine ischemia-reperfusion model markedly reduces infarct size and prevents subsequent heart failure. International Journal of Cardiology, 2017, 227, 704-710.	0.8	30
172	Reduced epicardial vagal nerve density and impaired vagal control in a rat myocardial infarction–heart failure model. Cardiovascular Pathology, 2017, 26, 21-29.	0.7	7
173	Neuromodulation of the Failing Heart. , 2017, , 381-397.		1
174	Right Cervical Vagotomy Aggravates Viral Myocarditis in Mice Via the Cholinergic Anti-inflammatory Pathway. Frontiers in Pharmacology, 2017, 8, 25.	1.6	19
175	Non-pharmacological Modulation of the Autonomic Nervous System for Heart Failure Treatment: Where do We Stand?. Current Vascular Pharmacology, 2017, 16, 30-43.	0.8	6
176	Imbalance of autonomic nervous systems involved in ventricular arrhythmia after splenectomy in dogs. Journal of Veterinary Medical Science, 2017, 79, 2002-2010.	0.3	9
177	Neuroimmune Interactions in Schizophrenia: Focus on Vagus Nerve Stimulation and Activation of the Alpha-7 Nicotinic Acetylcholine Receptor. Frontiers in Immunology, 2017, 8, 618.	2.2	41
178	Neural and Spinal Stimulation. , 2017, , 595-601.		1
179	Device-Based Modulation of the Autonomic Nervous System. , 2017, , 168-189.		2
180	Early activation of deleterious molecular pathways in the kidney in experimental heart failure with atrial remodeling. Physiological Reports, 2017, 5, e13283.	0.7	10
181	Influence of cardiac nerve status on cardiovascular regulation and cardioprotection. World Journal of Cardiology, 2017, 9, 508.	0.5	12
182	Nicotinic Acetylcholine Receptor-Mediated Protection of the Rat Heart Exposed to Ischemia Reperfusion. Molecular Medicine, 2017, 23, 120-133.	1.9	32
183	Renal nerve stimulation identifies aorticorenal innervation and prevents inadvertent ablation of vagal nerves during renal denervation. Blood Pressure, 2018, 27, 271-279.	0.7	21
184	Luminescent nanoparticles for rapid monitoring of endogenous acetylcholine release in mice atria. Luminescence, 2018, 33, 588-593.	1.5	9
185	Devices and interventions for the prevention of adverse outcomes of tachycardia on heart failure. Heart Failure Reviews, 2018, 23, 507-516.	1.7	4
186	B fibers are the best predictors of cardiac activity during Vagus nerve stimulation. Bioelectronic Medicine, 2018, 4, 5.	1.0	49
187	Antiarrhythmic effects of vagal nerve stimulation after cardiac sympathetic denervation in the setting of chronic myocardial infarction. Heart Rhythm, 2018, 15, 1214-1222.	0.3	21

#	Article	IF	CITATIONS
188	Heart and soul: heart rate variability and major depression. Behavioural Pharmacology, 2018, 29, 152-164.	0.8	32
189	Median nerve stimulation prevents atrial electrical remodelling and inflammation in a canine model with rapid atrial pacing. Europace, 2018, 20, 712-718.	0.7	21
190	Devices for Autonomic Regulation Therapy in Heart Failure With Reduced Ejection Fraction. Cardiology in Review, 2018, 26, 43-49.	0.6	4
191	Sympathetic Innervation and Cardiac Arrhythmias. , 2018, , 387-395.		1
192	Neuromodulation Therapies for Cardiac Disease. , 2018, , 1519-1530.		1
193	Effective weight control via an implanted self-powered vagus nerve stimulation device. Nature Communications, 2018, 9, 5349.	5.8	242
194	The influences of the M2R-GIRK4-RGS6 dependent parasympathetic pathway on electrophysiological properties of the mouse heart. PLoS ONE, 2018, 13, e0193798.	1.1	5
195	Atrial GIRK Channels Mediate the Effects of Vagus Nerve Stimulation on Heart Rate Dynamics and Arrhythmogenesis. Frontiers in Physiology, 2018, 9, 943.	1.3	25
196	A review of vagus nerve stimulation as a therapeutic intervention. Journal of Inflammation Research, 2018, Volume 11, 203-213.	1.6	345
197	Recent advances in devices for vagus nerve stimulation. Expert Review of Medical Devices, 2018, 15, 527-539.	1.4	72
198	Safety and tolerability of Transcutaneous Vagus Nerve stimulation in humans; a systematic review. Brain Stimulation, 2018, 11, 1225-1238.	0.7	163
199	Failing Hearts Are More Vulnerable to Sympathetic, but Not Vagal Stimulation–Induced, Atrial Fibrillation—Ameliorated with Dantrolene Treatment. Journal of Cardiac Failure, 2018, 24, 460-469.	0.7	10
200	Current Directions in the Auricular Vagus Nerve Stimulation I – A Physiological Perspective. Frontiers in Neuroscience, 2019, 13, 854.	1.4	166
201	Vagus nerve stimulation for the treatment of heart failure. Bioelectronics in Medicine, 2019, 2, 43-54.	2.0	6
202	The role of low-level vagus nerve stimulation in cardiac therapy. Expert Review of Medical Devices, 2019, 16, 675-682.	1.4	16
203	Background pharmacological therapy in the ANTHEMâ€HF: comparison to contemporary trials of novel heart failure therapies. ESC Heart Failure, 2019, 6, 1052-1056.	1.4	6
204	Cardiac Alternans: Mechanisms and Clinical Utility in Arrhythmia Prevention. Journal of the American Heart Association, 2019, 8, e013750.	1.6	24
205	Neuromodulation for Ventricular Tachycardia and Atrial Fibrillation. JACC: Clinical Electrophysiology, 2019, 5, 881-896.	1.3	29

#	Article	IF	CITATIONS
206	Vagus nerve stimulation as a promising adjunctive treatment for ischemic stroke. Neurochemistry International, 2019, 131, 104539.	1.9	30
207	Vagus Nerve Stimulation in Rodent Models: An Overview of Technical Considerations. Frontiers in Neuroscience, 2019, 13, 911.	1.4	36
208	Acquired loss of cardiac vagal activity is associated with myocardial injury in patients undergoing noncardiac surgery: prospective observational mechanistic cohort study. British Journal of Anaesthesia, 2019, 123, 758-767.	1.5	15
209	Chronic Low-Level Vagus Nerve Stimulation Improves Long-Term Survival in Salt-Sensitive Hypertensive Rats. Frontiers in Physiology, 2019, 10, 25.	1.3	22
210	Laboratory Administration of Transcutaneous Auricular Vagus Nerve Stimulation (taVNS): Technique, Targeting, and Considerations. Journal of Visualized Experiments, 2019, , .	0.2	47
211	The autonomic nervous system and cardiac arrhythmias: current concepts and emerging therapies. Nature Reviews Cardiology, 2019, 16, 707-726.	6.1	130
212	Substance misuse and social cognition on the psychosis-spectrum: A bottom-up framework. , 2019, , 201-217.		0
213	The Sixth Sense Organs: The Immune System. , 2019, , 235-242.		0
214	Biophysics and Neurophysiology of the Sixth Sense. , 2019, , .		2
215	Pulmonary arterial hypertension: the case for a bioelectronic treatment. Bioelectronic Medicine, 2019, 5, 20.	1.0	15
216	The role of fish oil in attenuating cardiac oxidative stress, inflammation and fibrosis in rat model of thyrotoxicosis. Heliyon, 2019, 5, e02976.	1.4	7
217	Advances in the Treatment of Cholinergic Anti-Inflammatory Pathways in Gastrointestinal Diseases by Electrical Stimulation of Vagus Nerve. Digestion, 2021, 102, 128-138.	1.2	17
218	Pharmacological Modulation of Vagal Nerve Activity in Cardiovascular Diseases. Neuroscience Bulletin, 2019, 35, 156-166.	1.5	37
219	Empirically Based Guidelines for Selecting Vagus Nerve Stimulation Parameters in Epilepsy and Heart Failure. Cold Spring Harbor Perspectives in Medicine, 2019, 9, a034264.	2.9	26
220	Cardiac vagal dysfunction and myocardial injury after non-cardiac surgery: a planned secondary analysis of the measurement of Exercise Tolerance before surgery study. British Journal of Anaesthesia, 2019, 122, 188-197.	1.5	22
221	The effects of acetylcholinesterase inhibitors on the heart in acute myocardial infarction and heart failure: From cells to patient reports. Acta Physiologica, 2020, 228, e13396.	1.8	25
222	Neuromodulation in Heart Failure. , 2020, , 608-616.e2.		0
223	Non-invasive Auricular Vagus Nerve Stimulation as a Potential Treatment for Covid19-Originated Acute Respiratory Distress Syndrome. Frontiers in Physiology, 2020, 11, 890.	1.3	45

#	Article	IF	CITATIONS
224	Optogenetic Stimulation of Vagal Efferent Activity Preserves Left Ventricular Function in Experimental HeartÂFailure. JACC Basic To Translational Science, 2020, 5, 799-810.	1.9	27
225	Cannabidiol activation of vagal afferent neurons requires TRPA1. Journal of Neurophysiology, 2020, 124, 1388-1398.	0.9	12
226	Application of Noninvasive Vagal Nerve Stimulation to Stress-Related Psychiatric Disorders. Journal of Personalized Medicine, 2020, 10, 119.	1.1	36
227	Autonomic Modulation for Cardiovascular Disease. Frontiers in Physiology, 2020, 11, 617459.	1.3	65
228	Revisiting Antiarrhythmic Drug Therapy for Atrial Fibrillation: Reviewing Lessons Learned and Redefining Therapeutic Paradigms. Frontiers in Pharmacology, 2020, 11, 581837.	1.6	29
229	Chronic vagal nerve stimulation has no effect on tachycardiaâ€induced heart failure progression or excitation–contraction coupling. Physiological Reports, 2020, 8, e14321.	0.7	4
230	Chronic vagus nerve stimulation for drug-resistant epilepsy may influence fasting blood glucose concentration. BioMedical Engineering OnLine, 2020, 19, 40.	1.3	5
231	Moving beyond belief: A narrative review of potential biomarkers for transcutaneous vagus nerve stimulation. Psychophysiology, 2020, 57, e13571.	1.2	70
232	Cholinergic signaling controls immune functions and promotes homeostasis. International Immunopharmacology, 2020, 83, 106345.	1.7	12
233	Novel Devices in HeartÂFailure. JACC: Heart Failure, 2020, 8, 251-264.	1.9	11
234	Oxysterols Modulate the Acute Effects of Ethanol on Hippocampal <i>N</i> -Methyl-d-Aspartate Receptors, Long-Term Potentiation, and Learning. Journal of Pharmacology and Experimental Therapeutics, 2021, 377, 181-188.	1.3	7
235	SAR340835, a Novel Selective Na ⁺ /Ca ²⁺ Exchanger Inhibitor, Improves Cardiac Function and Restores Sympathovagal Balance in Heart Failure. Journal of Pharmacology and Experimental Therapeutics, 2021, 377, 293-304.	1.3	6
236	Chronic vagus nerve stimulation is associated with multi-year improvement in intrinsic heart rate recovery and left ventricular ejection fraction in ANTHEM-HF. Clinical Autonomic Research, 2021, 31, 453-462.	1.4	7
237	A Step Further—The Role of Trigeminocardiac Reflex in Therapeutic Implications: Hypothesis, Evidence, and Experimental Models. Journal of Neurosurgical Anesthesiology, 2022, 34, 364-371.	0.6	1
238	Signaling and function of cardiac autonomic nervous system receptors: Insights from the GPCR signalling universe. FEBS Journal, 2021, 288, 2645-2659.	2.2	37
239	Pyridostigmine improves cardiac function and rhythmicity through RyR2 stabilization and inhibition of STIM1â€mediated calcium entry in heart failure. Journal of Cellular and Molecular Medicine, 2021, 25, 4637-4648.	1.6	3
240	Treatment of Localized Vulvar Pain with Neural Therapy: A Case Series and Literature Review. Complementary Medicine Research, 2021, 28, 571-577.	0.5	10
241	Cholinergic stimulation with pyridostigmine modulates a heart-spleen axis after acute myocardial infarction in spontaneous hypertensive rats. Scientific Reports, 2021, 11, 9563.	1.6	5

#	Article	IF	CITATIONS
242	Benefits of pharmacological and electrical cholinergic stimulation in hypertension and heart failure. Acta Physiologica, 2021, 232, e13663.	1.8	8
243	Neuroscientific therapies for atrial fibrillation. Cardiovascular Research, 2021, 117, 1732-1745.	1.8	33
244	Nerve–macrophage interactions in cardiovascular disease. International Immunology, 2022, 34, 81-95.	1.8	9
245	Implantable vagus nerve stimulation system performance is not affected by internal or external defibrillation shocks. Journal of Interventional Cardiac Electrophysiology, 2021, , 1.	0.6	1
246	Excess ischemic tachyarrhythmias trigger protection against myocardial infarction in hypertensive rats. Clinical Science, 2021, 135, 2143-2163.	1.8	1
247	Vagal Nerve Stimulation for the Treatment of Heart Failure. , 2017, , 157-179.		1
248	Autonomic Modulation of Cardiac Arrhythmias. JACC: Clinical Electrophysiology, 2020, 6, 467-483.	1.3	45
249	Immunity and the carotid body: implications for metabolic diseases. Bioelectronic Medicine, 2020, 6, 24.	1.0	17
250	Assessment of Brainstem Function with Auricular Branch of Vagus Nerve Stimulation in Parkinson's Disease. PLoS ONE, 2015, 10, e0120786.	1.1	36
251	Calming the Nervous Heart: Autonomic Therapies in Heart Failure. Cardiac Failure Review, 2018, 4, 92.	1.2	47
252	Neuromodulation Therapy in Heart Failure: Combined Use of Drugs and Devices. Journal of Innovations in Cardiac Rhythm Management, 2020, 11, 4151-4159.	0.2	6
253	Electrical vagus nerve stimulation for the treatment of chronic heart failure. Cleveland Clinic Journal of Medicine, 2011, 78, S24-S29.	0.6	65
254	Vagal Stimulation and Arrhythmias. Journal of Atrial Fibrillation, 2020, 13, 2398.	0.5	8
255	Central Sensitization: Clinical Implications for Chronic Head and Neck Pain. Clinical Medicine and Diagnostics, 2012, 1, 1-7.	0.2	3
256	Effects of transcutaneous auricular vagus nerve stimulation on cardiovascular autonomic control in health and disease. Autonomic Neuroscience: Basic and Clinical, 2021, 236, 102893.	1.4	23
257	Electronic cardiac medicine: present and future opportunities. Swiss Medical Weekly, 2010, 140, w13052.	0.8	5
259	Analysis of Heart Rate Variability. , 2013, , 51-77.		0
260	Vagal Stimulation for Heart Failure. , 2014, , 1315-1320.		0

#	Article	IF	CITATIONS
261	Can we Modulate the Autonomic Nervous System to Improve the Life of Patients with Heart Failure? The Case of Vagal Stimulation. Arrhythmia and Electrophysiology Review, 2014, 3, 120.	1.3	1
262	Heart Diseases. , 2015, , 205-226.		0
263	Development of Heart Failure and the Role of the Autonomic Nervous System of the Heart. , 2015, , 61-75.		0
264	Electrophysiology and Pathophysiology of the Autonomic Nervous System of the Heart. , 2015, , 13-60.		0
267	Device Autonomic Regulation Therapy in Patients with Heart Failure and Reduced Ejection Fraction. Journal of Atrial Fibrillation, 2020, 13, 2409.	0.5	0
268	THE EFFECT OF THE INFLAMMATORY REFLEX ON THE HEART. Acta Medica Medianae, 2020, 59, 81-87.	0.0	0
269	Response to Letter to the Editor by Drs. Fialho and colleagues. Epilepsy and Behavior, 2020, 108, 107040.	0.9	0
270	Vagal stimulation in heart failure. Herz, 2021, 46, 541-549.	0.4	18
271	Sympatho-adrenergic mechanisms in heart failure: new insights into pathophysiology. Medical Review, 2021, 1, 47-77.	0.3	3
272	Cardioneuroablation for Cardioinhibitory Vasovagal Syncope. , 2020, , 307-317.		1
273	Unilateral vagus nerve stimulation improves ventricular autonomic nerve distribution and functional imbalance in a canine heart failure model. International Journal of Clinical and Experimental Medicine, 2015, 8, 9334-40.	1.3	5
274	Vagus Nerve Stimulation for Treatment of Inflammation: Systematic Review of Animal Models and Clinical Studies. Bioelectronic Medicine, 2016, 3, 1-6.	1.0	13
276	Role of ranolazine in heart failure: From cellular to clinic perspective. European Journal of Pharmacology, 2022, 919, 174787.	1.7	14
277	Ultrasound does not activate but can inhibit in vivo mammalian nerves across a wide range of parameters. Scientific Reports, 2022, 12, 2182.	1.6	14
278	Multifactorial Benefits of Chronic Vagus Nerve Stimulation on Autonomic Function and Cardiac Electrical Stability in Heart Failure Patients With Reduced Ejection Fraction. Frontiers in Physiology, 2022, 13, 855756.	1.3	9
279	Association Between Cholinesterase Inhibitors and New-Onset Heart Failure in Patients With Alzheimer's Disease: A Nationwide Propensity Score Matching Study. Frontiers in Cardiovascular Medicine, 2022, 9, 831730.	1.1	7
280	Closed-Loop Vagus Nerve Stimulation for the Treatment of Cardiovascular Diseases: State of the Art and Future Directions. Frontiers in Cardiovascular Medicine, 2022, 9, 866957.	1.1	14
282	Advances in Our Clinical Understanding of Autonomic Regulation Therapy Using Vagal Nerve Stimulation in Patients Living With Heart Failure. Frontiers in Physiology, 2022, 13, 857538.	1.3	9

#	Article	IF	Citations
283	Strategies for precision vagus neuromodulation. Bioelectronic Medicine, 2022, 8, .	1.0	29
285	"The Wandering Nerve Linking Heart and Mind―– The Complementary Role of Transcutaneous Vagus Nerve Stimulation in Modulating Neuro-Cardiovascular and Cognitive Performance. Frontiers in Neuroscience, 0, 16, .	1.4	9
286	Transcutaneous Cervical Vagus Nerve Stimulation Induces Changes in the Electroencephalogram and Heart Rate Variability of Healthy Dogs, a Pilot Study. Frontiers in Veterinary Science, 0, 9, .	0.9	2
288	A pilot randomized controlled trial of supervised, at-home, self-administered transcutaneous auricular vagus nerve stimulation (taVNS) to manage long COVID symptoms. Bioelectronic Medicine, 2022, 8, .	1.0	26
289	Antiarrhythmic calcium channel blocker verapamil inhibits trek currents in sympathetic neurons. Frontiers in Pharmacology, 0, 13, .	1.6	1
290	Vagus nerve stimulation as a novel treatment for systemic lupus erythematous: study protocol for a randomised, parallel-group, sham-controlled investigator-initiated clinical trial, the SLE-VNS study. BMJ Open, 2022, 12, e064552.	0.8	3
291	Electroencephalogram and heart rate variability features as predictors of responsiveness to vagus nerve stimulation in patients with epilepsy: a systematic review. Child's Nervous System, 0, , .	0.6	0
292	The plasticity of cardiac sympathetic nerves and its clinical implication in cardiovascular disease. Frontiers in Synaptic Neuroscience, 0, 14, .	1.3	4
293	Effects of matured hop bitter acids on heart rate variability and cognitive performance: A randomized placebo-controlled crossover trial. Journal of Functional Foods, 2023, 100, 105383.	1.6	0
294	Autonomic modulation by low-intensity focused ultrasound stimulation of the vagus nerve. Journal of Neural Engineering, 2022, 19, 066036.	1.8	2
295	The vagus nerve in cardiovascular physiology and pathophysiology: From evolutionary insights to clinical medicine. Seminars in Cell and Developmental Biology, 2024, 156, 190-200.	2.3	3
296	The Endocannabinoid System and Physical Exercise. International Journal of Molecular Sciences, 2023, 24, 1989.	1.8	17
297	Autonomic nervous system and cardiac neuro-signaling pathway modulation in cardiovascular disorders and Alzheimer's disease. Frontiers in Physiology, 0, 14, .	1.3	9
298	Vagus Nerve Stimulation and Its Cardioprotective Abilities: A Systematic Review. Journal of Clinical Medicine, 2023, 12, 1717.	1.0	5
299	Temporal interference current stimulation in peripheral nerves is not driven by envelope extraction. Journal of Neural Engineering, 2023, 20, 026041.	1.8	2
300	Effects of transcutaneous auricular vagus nerve stimulation on inflammation, cardiac autonomic modulation, and clinical evolution of patients with COVID-19: protocol for a clinical, controlled, randomized, and blind trial. Fisioterapia E Pesquisa, 2022, 29, 429-435.	0.3	0
301	Efeito da estimulação elétrica transcutânea do nervo vago na inflamação, modulação autonômica cardÃaca e evolução clÃnica dos pacientes com COVID-19: estudo de protocolo para um ensaio clÃnico, controlado, randomizado e cego. Fisioterapia E Pesquisa, 2022, 29, 429-435.	0.3	0
302	Continuous vagus nerve stimulation exerts beneficial effects on rats with experimentally induced Parkinson's disease: Evidence suggesting involvement of a vagal afferent pathway. Brain Stimulation, 2023, 16, 594-603.	0.7	3

#	Article	IF	CITATIONS
303	Afterload reduction after non-invasive vagus nerve stimulation in acute heart failure. Frontiers in Human Neuroscience, 0, 17, .	1.0	4
304	When Traditional Chinese Medicine Meets AI: A Novel Depression Treatment Paradigm based on Transcutaneous Vagus Nerve Stimulation. , 2022, , .		2
311	The Neuro-cardiac Axis in Arrhythmogenesis: Role and Impact of Autonomic Modulation. , 2023, , 187-224.		0
315	The Changes of Cardiovascular Neurotransmitter Levels under Low-Intensity Focused Ultrasound Stimulation of the Vagus Nerve. , 2023, , .		0