Targeted Muscle Reinnervation for Real-time Myoelect Artificial Arms

JAMA - Journal of the American Medical Association 301, 619 DOI: 10.1001/jama.2009.116

Citation Report

#	Article	IF	CITATIONS
1	In vivo localization of fascicular activity. , 2009, 2009, 2940-2.		1
2	Enhanced EMG signal processing for simultaneous and proportional myoelectric control. , 2009, 2009, 4335-8.		34
3	A strategy for minimizing the effect of misclassifications during real time pattern recognition myoelectric control. , 2009, 2009, 1327-30.		12
4	EMG pattern recognition control of multifunctional prostheses by transradial amputees. , 2009, 2009, 6914-7.		14
5	Toward the development of a neural interface for lower limb prosthesis control. , 2009, 2009, 2111-4.		13
6	Taking Control of Prosthetic Arms. JAMA - Journal of the American Medical Association, 2009, 301, 670.	3.8	7
7	Reinnervated Muscles Produce EMG Information for Real-Time Control of Artificial Arms. Neurology Today: an Official Publication of the American Academy of Neurology, 2009, 9, 1.	0.0	1
8	Adaptive Pattern Recognition of Myoelectric Signals: Exploration of Conceptual Framework and Practical Algorithms. IEEE Transactions on Neural Systems and Rehabilitation Engineering, 2009, 17, 270-278.	2.7	178
9	Exoskeletons and orthoses: classification, design challenges and future directions. Journal of NeuroEngineering and Rehabilitation, 2009, 6, 21.	2.4	334
10	The fitting of a unilateral shoulder disarticulation prosthesis after electrical burn injury: A case report. Journal of Pediatric Rehabilitation Medicine, 2009, 2, 229-233.	0.3	0
11	Targeted Muscle Reinnervation for Real-time Myoelectric Control of Multifunction Artificial Arms. Yearbook of Orthopedics, 2010, 2010, 91-93.	0.0	2
12	Functional reorganization of upper-body movement after spinal cord injury. Experimental Brain Research, 2010, 207, 233-247.	0.7	51
13	Multiple Binary Classifications via Linear Discriminant Analysis for Improved Controllability of a Powered Prosthesis. IEEE Transactions on Neural Systems and Rehabilitation Engineering, 2010, 18, 49-57.	2.7	182
14	Quantifying Pattern Recognition—Based Myoelectric Control of Multifunctional Transradial Prostheses. IEEE Transactions on Neural Systems and Rehabilitation Engineering, 2010, 18, 185-192.	2.7	366
15	Study of stability of time-domain features for electromyographic pattern recognition. Journal of NeuroEngineering and Rehabilitation, 2010, 7, 21.	2.4	413
16	Cognitive vision system for control of dexterous prosthetic hands: Experimental evaluation. Journal of NeuroEngineering and Rehabilitation, 2010, 7, 42.	2.4	96
17	Selection of sampling rate for EMG pattern recognition based prosthesis control. , 2010, 2010, 5058-61.		14
18	Peripheral nerve signal recording and processing for artificial limb control. , 2010, 2010, 6206-9.		6

ATION RED

#	Article	IF	CITATIONS
19	WiiEMG: A real-time environment for control of the Wii with surface electromyography. , 2010, , .		26
20	Traumatic and Trauma-Related Amputations. Journal of Bone and Joint Surgery - Series A, 2010, 92, 2934-2945.	1.4	115
21	A Feedback Information-Theoretic Approach to the Design of Brain–Computer Interfaces. International Journal of Human-Computer Interaction, 2010, 27, 5-23.	3.3	29
22	Examining the adverse effects of limb position on pattern recognition based myoelectric control. , 2010, 2010, 6337-40.		106
23	What's New in Hand Surgery. Journal of Bone and Joint Surgery - Series A, 2010, 92, 783-789.	1.4	7
24	Control of Hand Prostheses Using Peripheral Information. IEEE Reviews in Biomedical Engineering, 2010, 3, 48-68.	13.1	308
25	Double nerve intraneural interface implant on a human amputee for robotic hand control. Clinical Neurophysiology, 2010, 121, 777-783.	0.7	367
26	Adaptación de unos dedos biónicos en una paciente con doble amputación de extremidades superiores. Rehabilitacion, 2010, 44, 376-380.	0.2	0
27	Recent Trends in the Development and Evaluation of Assistive Robotic Manipulation Devices. Physical Medicine and Rehabilitation Clinics of North America, 2010, 21, 59-77.	0.7	24
28	A Pilot Study of EMG Pattern Based Classification of Arm Functional Movements. , 2010, , .		4
29	Homeokinetic prosthetic control: collaborative selection of myosignal features. , 2010, , .		0
30	Online human training of a myoelectric prosthesis controller via actor-critic reinforcement learning. , 2011, 2011, 5975338.		85
31	A Novel CPS System for Evaluating a Neural-Machine Interface for Artificial Legs. , 2011, , .		19
32	Neural Interfaces for Control of Upper Limb Prostheses: The State of the Art and Future Possibilities. PM and R, 2011, 3, 55-67.	0.9	148
33	Long-term stability of neural prosthetic control signals from silicon cortical arrays in rhesus macaque motor cortex. Journal of Neural Engineering, 2011, 8, 045005.	1.8	285
34	Cómo ayudar a los pacientes portadores de prótesis de la extremidad superior. Nursing (Ed Española), 2011, 29, 25-28.	0.0	0
35	Update on Advances in Upper Extremity Prosthetics. Journal of Hand Surgery, 2011, 36, 1711-1717.	0.7	63
36	Bionic prosthetic hands: A review of present technology and future aspirations. Journal of the Royal College of Surgeons of Edinburgh, 2011, 9, 336-340.	0.8	131

# 37	ARTICLE Development of a Neural Interface for PNS Motor Control. , 0, , .	IF	CITATIONS 0
38	Electromyography Pattern-Recognition-Based Control of Powered Multifunctional Upper-Limb Prostheses. , 0, , .		36
39	Nerve-Muscle-Endplate Band Grafting. Operative Neurosurgery, 2011, 69, ons208-ons224.	0.4	14
40	Provide a helping hand to patients with upper extremity prostheses. Nursing, 2011, 41, 49-52.	0.2	Ο
41	Selective Classification for Improved Robustness of Myoelectric Control Under Nonideal Conditions. IEEE Transactions on Biomedical Engineering, 2011, 58, 1698-1705.	2.5	139
42	A Decision-Based Velocity Ramp for Minimizing the Effect of Misclassifications During Real-Time Pattern Recognition Control. IEEE Transactions on Biomedical Engineering, 2011, 58, 2360-2368.	2.5	97
43	The Effects of Electrode Size and Orientation on the Sensitivity of Myoelectric Pattern Recognition Systems to Electrode Shift. IEEE Transactions on Biomedical Engineering, 2011, 58, 2537-2544.	2.5	222
44	Subject-Specific Myoelectric Pattern Classification of Functional Hand Movements for Stroke Survivors. IEEE Transactions on Neural Systems and Rehabilitation Engineering, 2011, 19, 558-566.	2.7	115
45	Determining the Optimal Window Length for Pattern Recognition-Based Myoelectric Control: Balancing the Competing Effects of Classification Error and Controller Delay. IEEE Transactions on Neural Systems and Rehabilitation Engineering, 2011, 19, 186-192.	2.7	375
46	Development of a Model Osseo-Magnetic Link for Intuitive Rotational Control of Upper-Limb Prostheses. IEEE Transactions on Neural Systems and Rehabilitation Engineering, 2011, 19, 213-220.	2.7	13
47	Resolving the Limb Position Effect in Myoelectric Pattern Recognition. IEEE Transactions on Neural Systems and Rehabilitation Engineering, 2011, 19, 644-651.	2.7	299
48	Limb-State Information Encoded by Peripheral and Central Somatosensory Neurons: Implications for an Afferent Interface. IEEE Transactions on Neural Systems and Rehabilitation Engineering, 2011, 19, 501-513.	2.7	88
49	Conditioning and Sampling Issues of EMG Signals in Motion Recognition of Multifunctional Myoelectric Prostheses. Annals of Biomedical Engineering, 2011, 39, 1779-1787.	1.3	82
50	Stump nerve signals during transcranial magnetic motor cortex stimulation recorded in an amputee via longitudinal intrafascicular electrodes. Experimental Brain Research, 2011, 210, 1-11.	0.7	19
51	Prosthetic finger phalanges with lifelike skin compliance for low-force social touching interactions. Journal of NeuroEngineering and Rehabilitation, 2011, 8, 16.	2.4	28
52	Decoding of grasping information from neural signals recorded using peripheral intrafascicular interfaces. Journal of NeuroEngineering and Rehabilitation, 2011, 8, 53.	2.4	89
53	Skeletal myotube integration with planar microelectrode arrays in vitro for spatially selective recording and stimulation: A comparison of neuronal and myotube extracellular action potentials. Biotechnology Progress, 2011, 27, 891-895.	1.3	21
54	Stimulus-driven changes in sensorimotor behavior and neuronal functional connectivity. Progress in Brain Research, 2011, 192, 83-102.	0.9	12

#	Article	IF	CITATIONS
55	Sensory motor remapping of space in human–machine interfaces. Progress in Brain Research, 2011, 191, 45-64.	0.9	28
56	A tongue input device for creating conversations. , 2011, , .		10
57	The tracking of reaches in three-dimensions. , 2011, 2011, 5440-3.		0
58	Effects of interelectrode distance on the robustness of myoelectric pattern recognition systems. , 2011, 2011, 3873-9.		4
59	A compact representation of locally-shortest paths and its application to a human-robot interface. , 2011, , .		2
60	Virtual Reality Environment for Simulating Tasks With a Myoelectric Prosthesis: An Assessment and Training Tool. Journal of Prosthetics and Orthotics, 2011, 23, 89-94.	0.2	48
61	Real-Time Myoelectric Control of Knee and Ankle Motions for Transfemoral Amputees. JAMA - Journal of the American Medical Association, 2011, 305, 1542.	3.8	58
62	Non-invasive physiological monitoring of exercise and fitness. Neurological Research, 2011, 33, 3-17.	0.6	14
63	Selective recovery of fascicular activity in peripheral nerves. Journal of Neural Engineering, 2011, 8, 056005.	1.8	42
64	Radio frequency identification — An innovative solution to guide dexterous prosthetic hands. , 2011, 2011, 3511-4.		14
65	Activities on PNS neural interfaces for the control of hand prostheses. , 2011, 2011, 4637-40.		8
66	Performance of electromyography recorded using textile electrodes in classifying arm movements. , 2011, 2011, 4243-6.		9
67	Design principles for noninvasive brain-machine interfaces. , 2011, 2011, 4223-6.		0
68	Using virtual reality environment to facilitate training with advanced upper-limb prosthesis. Journal of Rehabilitation Research and Development, 2011, 48, 707.	1.6	77
69	Two-degree-of-freedom powered prosthetic wrist. Journal of Rehabilitation Research and Development, 2011, 48, 609.	1.6	44
70	Target Achievement Control Test: Evaluating real-time myoelectric pattern-recognition control of multifunctional upper-limb prostheses. Journal of Rehabilitation Research and Development, 2011, 48, 619.	1.6	183
71	Physically interactive robotic technology for neuromotor rehabilitation. Progress in Brain Research, 2011, 192, 59-68.	0.9	21
72	Electromyogram pattern recognition for control of powered upper-limb prostheses: State of the art and challenges for clinical use. Journal of Rehabilitation Research and Development, 2011, 48, 643.	1.6	741

#	Article	IF	CITATIONS
73	Case report of modified Box and Blocks test with motion capture to measure prosthetic function. Journal of Rehabilitation Research and Development, 2012, 49, 1163.	1.6	56
74	Patient Training for Functional Use of Pattern Recognition–Controlled Prostheses. Journal of Prosthetics and Orthotics, 2012, 24, 56-64.	0.2	80
75	Bernstein's Levels of Construction of Movements Applied to Upper Limb Prosthetics. Journal of Prosthetics and Orthotics, 2012, 24, 67-76.	0.2	26
76	Interactions Between the Phantom Limb Sensations, Prosthesis Use, and Rehabilitation as Seen by Amputees and Health Professionals. Journal of Prosthetics and Orthotics, 2012, 24, 25-33.	0.2	11
77	Case 36-2012. New England Journal of Medicine, 2012, 367, 2027-2037.	13.9	6
78	Development of a Physics-Based Target Shooting Game to Train Amputee Users of Multijoint Upper Limb Prostheses. Presence: Teleoperators and Virtual Environments, 2012, 21, 85-95.	0.3	17
79	Performance of pattern recognition myoelectric control using a generic electrode grid with Targeted Muscle Reinnervation patients. , 2012, 2012, 4319-23.		4
80	Prediction of distal arm joint angles from EMG and shoulder orientation for prosthesis control. , 2012, 2012, 4160-3.		23
81	Material considerations for peripheral nerve interfacing. MRS Bulletin, 2012, 37, 573-580.	1.7	41
82	DYNAMIC HAND MOTION RECOGNITION BASED ON TRANSIENT AND STEADY-STATE EMG SIGNALS. International Journal of Humanoid Robotics, 2012, 09, 1250007.	0.6	43
83	Prosthesis-guided training of pattern recognition-controlled myoelectric prosthesis. , 2012, 2012, 1876-9.		15
84	Natural muscular recruitment during reaching tasks to control hand prostheses. , 2012, , .		1
85	An automatic and user-driven training method for locomotion mode recognition for artificial leg control. , 2012, 2012, 6116-9.		5
86	Reduction of the effect of arm position variation on real-time performance of motion classification. , 2012, 2012, 2772-5.		9
87	PEDOT Electrochemical Polymerization Improves Electrode Fidelity and Sensitivity. Plastic and Reconstructive Surgery, 2012, 129, 933-942.	0.7	21
88	An energy-efficient, dynamic voltage scaling neural stimulator for a proprioceptive prosthesis. , 2012, ,		3
89	On the viability of implantable electrodes for the natural control of artificial limbs: Review and discussion. BioMedical Engineering OnLine, 2012, 11, 33.	1.3	120
90	A new hierarchical approach for simultaneous control of multi-joint powered prostheses. , 2012, , .		21

ARTICLE IF CITATIONS # Dynamic switching and real-time machine learning for improved human control of assistive 29 91 biomedical robots., 2012,,. Effect of dynamic change of arm position on myoelectric pattern recognition., 2012,,. A comparison of direct and pattern recognition control for a two degree-of-freedom above elbow 93 6 virtual prosthesis., 2012, 2012, 4332-5. The Body-Machine Interface: A New Perspective on an Old Theme. Journal of Motor Behavior, 2012, 44, 94 419-433. Haptic Feedback Enhances Grip Force Control of sEMG-Controlled Prosthetic Hands in Targeted 95 Reinnervation Amputees. IEEE Transactions on Neural Systems and Rehabilitation Engineering, 2012, 20, 2.7 118 798-805. A Quasi-stationary Approach to the Approximate Solution of a FEA 3D Subject-Specific EMG Model. , 2012,,. Intuitive control for robotic rehabilitation devices by human-machine interface with EMG and EEG 97 5 signals., 2012,,. Control of Upper Limb Prostheses: Terminology and Proportional Myoelectric Controlâ€"A Review. IEEE 2.7 450 Transactions on Neural Systems and Rehabilitation Engineering, 2012, 20, 663-677. High density electromyography data of normally limbed and transradial amputee subjects for 99 0.7 112 multifunction prosthetic control. Journal of Electromyography and Kinesiology, 2012, 22, 478-484. Toward attenuating the impact of arm positions on electromyography pattern-recognition based motion classification in transradial amputees. Journal of NeuroEngineering and Rehabilitation, 2012, 2.4 9,74. On Design and Implementation of Neural-Machine Interface for Artificial Legs. IEEE Transactions on 101 7.2 54 Industrial Informatics, 2012, 8, 418-429. Quantification of Feature Space Changes With Experience During Electromyogram Pattern Recognition Control. IEEE Transactions on Neural Systems and Rehabilitation Engineering, 2012, 20, 2.7 239-246. 103 Cyborgs., 2012, , 699-704. 1 Man to Machine, Applications in Electromyography., 0, , . 104 Toward improved control of prosthetic fingers using surface electromyogram (EMG) signals. Expert 105 258 4.4 Systems With Applications, 2012, 39, 10731-10738. sEMG-based continuous estimation of joint angles of human legs by using BP neural network. 163 Neurocomputing, 2012, 78, 139-148. Improving Myoelectric Pattern Recognition Robustness to Electrode Shift by Changing Interelectrode 107 2.5201 Distance and Electrode Configuration. IEEE Transactions on Biomedical Engineering, 2012, 59, 645-652. Real-Time Animation Software for Customized Training to Use Motor Prosthetic Systems. IEEE Transactions on Neural Systems and Rehabilitation Engineering, 2012, 20, 134-142.

#	Article	IF	CITATIONS
109	Non-weight-bearing neural control of a powered transfemoral prosthesis. Journal of NeuroEngineering and Rehabilitation, 2013, 10, 62.	2.4	60
110	BioPatRec: A modular research platform for the control of artificial limbs based on pattern recognition algorithms. Source Code for Biology and Medicine, 2013, 8, 11.	1.7	150
111	Abstract and Proportional Myoelectric Control for Multi-Fingered Hand Prostheses. Annals of Biomedical Engineering, 2013, 41, 2687-2698.	1.3	85
112	An Energy-Efficient, Dynamic Voltage Scaling Neural Stimulator for a Proprioceptive Prosthesis. IEEE Transactions on Biomedical Circuits and Systems, 2013, 7, 129-139.	2.7	84
113	The reconstructive microsurgery ladder in orthopaedics. Injury, 2013, 44, 376-385.	0.7	42
114	Using textile electrode EMG for prosthetic movement identification in transradial amputees. , 2013, , .		9
115	DIY Prosthetics Workshops: 'critical making' for public understanding of human augmentation. , 2013, , .		8
116	Boosting-Based EMG Patterns Classification Scheme for Robustness Enhancement. IEEE Journal of Biomedical and Health Informatics, 2013, 17, 545-552.	3.9	61
117	Classification of Simultaneous Movements Using Surface EMG Pattern Recognition. IEEE Transactions on Biomedical Engineering, 2013, 60, 1250-1258.	2.5	258
118	Personalized Neuroprosthetics. Science Translational Medicine, 2013, 5, 210rv2.	5.8	141
119	Translating the Brain-Machine Interface. Science Translational Medicine, 2013, 5, 210ps17.	5.8	103
120	Hybrid brain/muscle-actuated control of an intelligent wheelchair. , 2013, , .		13
121	Robotic Leg Control with EMG Decoding in an Amputee with Nerve Transfers. New England Journal of Medicine, 2013, 369, 1237-1242.	13.9	211
122	Validation of a Selective Ensemble-Based Classification Scheme for Myoelectric Control Using a Three-Dimensional Fitts' Law Test. IEEE Transactions on Neural Systems and Rehabilitation Engineering, 2013, 21, 616-623.	2.7	68
123	Evaluation of a Noninvasive Command Scheme for Upper-Limb Prostheses in a Virtual Reality Reach and Grasp Task. IEEE Transactions on Biomedical Engineering, 2013, 60, 792-802.	2.5	35
124	Augmenting neuroprosthetic hand control through evaluation of a bioacoustic interface. , 2013, , .		0
125	Vibrotactile Sensory Substitution for Electromyographic Control of Object Manipulation. IEEE Transactions on Biomedical Engineering, 2013, 60, 2226-2232.	2.5	53
126	High-performance neuroprosthetic control by an individual with tetraplegia. Lancet, The, 2013, 381, 557-564.	6.3	1,550

#	Article	IF	CITATIONS
127	Intense Focused Ultrasound Preferentially Stimulates Subcutaneous and Focal Neuropathic Tissue: Preliminary Results. Pain Medicine, 2013, 14, 84-92.	0.9	12
128	The Paralympic effect on amputees' legal claims for prosthetics. BMJ, The, 2013, 346, f1165-f1165.	3.0	0
129	Myoelectric neural interface enables accurate control of a virtual multiple degree-of-freedom foot-ankle prosthesis. , 2013, 2013, 6650499.		17
133	Adaptive artificial limbs: a real-time approach to prediction and anticipation. IEEE Robotics and Automation Magazine, 2013, 20, 53-64.	2.2	43
136	The Use of a Bone-Anchored Device as a Hard-Wired Conduit for Transmitting EMG Signals From Implanted Muscle Electrodes. IEEE Transactions on Biomedical Engineering, 2013, 60, 1654-1659.	2.5	17
137	A Training Strategy for Learning Pattern Recognition Control for Myoelectric Prostheses. Journal of Prosthetics and Orthotics, 2013, 25, 30-41.	0.2	50
138	Computational modeling of direct neuronal recruitment during intracortical microstimulation in somatosensory cortex. Journal of Neural Engineering, 2013, 10, 066016.	1.8	41
139	Online estimation of EMG signals model based on a renewal process. , 2013, , .		0
140	Intramuscular EMG after targeted muscle reinnervation for pattern recognition control of myoelectric prostheses. , 2013, , .		1
141	Classifying the intent of novel users during human locomotion using powered lower limb prostheses. , 2013, , .		38
142	Crosspoint switching of EMG signals to increase number of channels for pattern recognition myoelectric control. , 2013, , .		1
143	Decoding the evolving grasping gesture from electroencephalographic (EEG) activity. , 2013, 2013, 5590-3.		13
144	Real-time movement prediction for improved control of neuroprosthetic devices. , 2013, , .		22
145	Towards improved partial-hand prostheses: The effect of wrist kinematics on pattern-recognition-based control. , 2013, , .		5
146	Evaluation of classifier topologies for the real-time classification of simultaneous limb motions. , 2013, 2013, 6651-4.		9
147	Implantable wireless body area networks. , 2013, , 437-468.		4
148	Powered prosthesis control during walking, sitting, standing, and non-weight bearing activities using neural and mechanical inputs. , 2013, , .		13
149	A preliminary analysis of reconstructed nerve function using targeted muscle reinnervation in a rat model. , 2013, , .		3

#	Article	IF	Citations
150	Understanding the role of haptic feedback in a teleoperated/prosthetic grasp and lift task. , 2013, , .		30
151	Pattern recognition based forearm motion classification for patients with chronic hemiparesis. , 2013, 2013, 5918-21.		5
152	Pattern recognition control outperforms conventional myoelectric control in upper limb patients with targeted muscle reinnervation. , 2013, 2013, 1599-602.		46
153	Comparison of surface and intramuscular EMG pattern recognition for simultaneous wrist/hand motion classification. , 2013, 2013, 4223-6.		53
154	An adaptation strategy of using LDA classifier for EMG pattern recognition. , 2013, 2013, 4267-70.		36
155	EMG control of robotic reaching by people with tetraplegia improved through proprioceptive and force feedback. , 2013, , .		3
156	Modelling muscle spindle dynamics for a proprioceptive prosthesis. , 2013, 2013, 1923-6.		2
157	Interfaces with the Peripheral Nerve for the Control of Neuroprostheses. International Review of Neurobiology, 2013, 109, 63-83.	0.9	77
158	Using speech for mode selection in control of multifunctional myoelectric prostheses. , 2013, 2013, 3602-5.		3
159	Intrafascicular stimulation of monkey arm nerves evokes coordinated grasp and sensory responses. Journal of Neurophysiology, 2013, 109, 580-590.	0.9	54
160	Implantable Silicone Electrode for Measurement of Muscle Activity: Results of First in Vivo Evaluation. Biomedizinische Technik, 2013, 58 Suppl 1, .	0.9	5
161	Innovations in Prosthetic Interfaces for the Upper Extremity. Plastic and Reconstructive Surgery, 2013, 132, 1515-1523.	0.7	56
162	The Bionic Limb Gets a Leg Up. Neurology Today: an Official Publication of the American Academy of Neurology, 2013, 13, 1.	0.0	0
163	Human-Machine Interface for Mechatronic Devices Control. IFAC Postprint Volumes IPPV / International Federation of Automatic Control, 2013, 46, 614-618.	0.4	8
164	Aesthetic finger prosthesis with silicone biomaterial. BMJ Case Reports, 2013, 2013, bcr2013010385-bcr2013010385.	0.2	13
165	Are muscle synergies useful for neural control?. Frontiers in Computational Neuroscience, 2013, 7, 19.	1.2	86
166	A Simple ERP Method for Quantitative Analysis of Cognitive Workload in Myoelectric Prosthesis Control and Human-Machine Interaction. PLoS ONE, 2014, 9, e112091.	1.1	45
168	Epidural electrocorticography of phantom hand movement following long-term upper-limb amputation. Frontiers in Human Neuroscience, 2014, 8, 285.	1.0	22

# 169	ARTICLE Treatment of phantom limb pain (PLP) based on augmented reality and gaming controlled by myoelectric pattern recognition: a case study of a chronic PLP patient. Frontiers in Neuroscience, 2014, 8, 24.	IF 1.4	CITATIONS
170	Does EMG control lead to distinct motor adaptation?. Frontiers in Neuroscience, 2014, 8, 302.	1.4	26
171	A functional model and simulation of spinal motor pools and intrafascicular recordings of motoneuron activity in peripheral nerve. Frontiers in Neuroscience, 2014, 8, 371.	1.4	3
172	Introduction and Testing of an Alternative Control Approach for a Robotic Prosthetic Arm. Open Biomedical Engineering Journal, 2014, 8, 93-105.	0.7	4
173	Dexterous motion recognition for myoelectric control of multifunctional transradial prostheses. Advanced Robotics, 2014, 28, 1533-1543.	1.1	13
174	Electrically stimulated signals from a long-term Regenerative Peripheral Nerve Interface. , 2014, 2014, 1989-92.		12
175	Observation-based training for neuroprosthetic control of grasping by amputees. , 2014, 2014, 3989-92.		4
176	Within-socket myoelectric prediction of continuous ankle kinematics for control of a powered transtibial prosthesis. Journal of Neural Engineering, 2014, 11, 056027.	1.8	33
177	Channel selection for simultaneous and proportional myoelectric prosthesis control of multiple degrees-of-freedom. Journal of Neural Engineering, 2014, 11, 056008.	1.8	34
178	Exploring the mechanism of neural-function reconstruction by reinnervated nerves in targeted muscles. Journal of Zhejiang University: Science C, 2014, 15, 813-820.	0.7	3
180	Blind source identification from the multichannel surface electromyogram. Physiological Measurement, 2014, 35, R143-R165.	1.2	121
181	CYBERLEGs: A User-Oriented Robotic Transfemoral Prosthesis with Whole-Body Awareness Control. IEEE Robotics and Automation Magazine, 2014, 21, 82-93.	2.2	53
182	A wireless wearable sEMG and NIRS acquisition system for an enhanced human-computer interface. , 2014, , .		10
183	The role of muscle synergies in myoelectric control: trends and challenges for simultaneous multifunction control. Journal of Neural Engineering, 2014, 11, 051001.	1.8	143
184	Hand Transplantation. JBJS Reviews, 2014, 2, .	0.8	12
185	A review of source separation and source localization approaches in peripheral nerves. , 2014, , .		6
186	Guest Editorial. IEEE Transactions on Neural Systems and Rehabilitation Engineering, 2014, 22, 711-715.	2.7	15
187	Extending myoelectric prosthesis control with shapable automation. , 2014, , .		2

#	Article	IF	CITATIONS
188	Development of a miniaturized bioreactor for neural culture and axon stretch growth. , 2014, 2014, 1416-9.		1
189	A body machine interface based on inertial sensors. , 2014, 2014, 6120-4.		28
190	Using wavelet analysis to reveal the muscle functional recovery following nerve reinnervation in a rat model. , 2014, 2014, 2549-52.		2
191	Real-time simultaneous and proportional myoelectric control using intramuscular EMG. Journal of Neural Engineering, 2014, 11, 066013.	1.8	101
192	Internal models of upper limb prosthesis users when grasping and lifting a fragile object with their prosthetic limb. Experimental Brain Research, 2014, 232, 3785-3795.	0.7	36
193	Using thin-film piezoelectret to detect tactile and slip signals for restoring sensation of prosthetic hands. , 2014, 2014, 2565-8.		5
194	An open and configurable embedded system for EMG pattern recognition implementation for artificial arms. , 2014, 2014, 4095-8.		1
195	Decellular biological scaffold polymerized with PEDOT for improving peripheral nerve interface charge transfer. , 2014, 2014, 422-5.		2
196	Dexterous Control of a Prosthetic Hand Using Fine-Wire Intramuscular Electrodes in Targeted Extrinsic Muscles. IEEE Transactions on Neural Systems and Rehabilitation Engineering, 2014, 22, 828-836.	2.7	79
197	Optimizing pattern recognition-based control for partial-hand prosthesis application. , 2014, 2014, 3574-7.		9
198	An osseointegrated human-machine gateway for long-term sensory feedback and motor control of artificial limbs. Science Translational Medicine, 2014, 6, 257re6.	5.8	378
199	Principles of Nerve and Muscle Rehabilitation. , 2014, , 27-35.		0
200	Microelectrode Array Recordings from the Ventral Roots in Chronically Implanted Cats. Frontiers in Neurology, 2014, 5, 104.	1.1	20
201	Quantification of muscle-derived signal interference during monopolar needle electromyography of a peripheral nerve interface in the rat hind limb. , 2014, 2014, 4382-5.		5
202	A quantitative evaluation of gross versus histologic neuroma formation in a rabbit forelimb amputation model: potential implications for the operative treatment and study of neuromas. Journal of Brachial Plexus and Peripheral Nerve Injury, 2014, 06, e23-e32.	1.0	14
203	Development of Upper Limb Prostheses: Current Progress and Areas for Growth. Archives of Physical Medicine and Rehabilitation, 2014, 95, 1013-1014.	0.5	16
204	Amputation Surgery. Physical Medicine and Rehabilitation Clinics of North America, 2014, 25, 35-43.	0.7	12
205	A comparison of the real-time controllability of pattern recognition to conventional myoelectric control for discrete and simultaneous movements. Journal of NeuroEngineering and Rehabilitation, 2014, 11, 5.	2.4	76

#	Article	IF	CITATIONS
206	Targeted Muscle Reinnervation in the Initial Management of Traumatic Upper Extremity Amputation Injury. Hand, 2014, 9, 253-257.	0.7	52
207	Intent Recognition in a Powered Lower Limb Prosthesis Using Time History Information. Annals of Biomedical Engineering, 2014, 42, 631-641.	1.3	131
208	Targeted Muscle Reinnervation: A Novel Approach to Postamputation Neuroma Pain. Clinical Orthopaedics and Related Research, 2014, 472, 2984-2990.	0.7	280
209	Prosthetic Myoelectric Control Strategies: A Clinical Perspective. Current Surgery Reports, 2014, 2, 1.	0.4	191
210	Updates in Targeted Sensory Reinnervation for Upper Limb Amputation. Current Surgery Reports, 2014, 2, 1.	0.4	24
211	Preliminary studies on the basic factors of bionics. Science China Technological Sciences, 2014, 57, 520-530.	2.0	33
212	A Training Method for Locomotion Mode Prediction Using Powered Lower Limb Prostheses. IEEE Transactions on Neural Systems and Rehabilitation Engineering, 2014, 22, 671-677.	2.7	120
213	Restoring Natural Sensory Feedback in Real-Time Bidirectional Hand Prostheses. Science Translational Medicine, 2014, 6, 222ra19.	5.8	805
214	sEMG-Based Joint Force Control for an Upper-Limb Power-Assist Exoskeleton Robot. IEEE Journal of Biomedical and Health Informatics, 2014, 18, 1043-1050.	3.9	207
215	The Cyborg Revolution. NanoEthics, 2014, 8, 263-273.	0.5	29
216	A multi-DoF anthropomorphic transradial prosthetic arm. , 2014, , .		12
217	Real-Time Control of an Interactive Impulsive Virtual Prosthesis. IEEE Transactions on Neural Systems and Rehabilitation Engineering, 2014, 22, 363-370.	2.7	57
218	PDMS microchannel scaffolds for neural interfaces with the peripheral nervous system. , 2014, , .		4
219	Real-Time and Offline Performance of Pattern Recognition Myoelectric Control Using a Generic Electrode Grid With Targeted Muscle Reinnervation Patients. IEEE Transactions on Neural Systems and Rehabilitation Engineering, 2014, 22, 727-734.	2.7	42
220	The DEKA Arm. Prosthetics and Orthotics International, 2014, 38, 492-504.	0.5	163
221	User Training for Pattern Recognition-Based Myoelectric Prostheses: Improving Phantom Limb Movement Consistency and Distinguishability. IEEE Transactions on Neural Systems and Rehabilitation Engineering, 2014, 22, 522-532.	2.7	100
222	Real-Time and Simultaneous Control of Artificial Limbs Based on Pattern Recognition Algorithms. IEEE Transactions on Neural Systems and Rehabilitation Engineering, 2014, 22, 756-764.	2.7	123
223	Development of a multi-DOF prosthetic hand with intrinsic actuation, intuitive control and sensory feedback. Industrial Robot, 2014, 41, 381-392.	1.2	38

ARTICLE IF CITATIONS # A novel channel selection method for multiple motion classification using high-density 224 1.3 51 electromyography. BioMedical Engineering OnLine, 2014, 13, 102. A state-based, proportional myoelectric control method: online validation and comparison with the 2.4 28 clinical state-of-the-art. Journal of NeuroEngineering and Rehabilitation, 2014, 11, 110. Experimental Study of an EMG-Controlled 5-DOF Anthropomorphic Prosthetic Hand for Motion 226 2.0 26 Restoration. Journal of Intelligent and Robotic Systems: Theory and Applications, 2014, 76, 427-441. Novel Method for Predicting Dexterous Individual Finger Movements by Imaging Muscle Activity Using a Wearable Ultrasonic System. IEEE Transactions on Neural Systems and Rehabilitation Engineering, 2014, 22, 69-76. Novel Targeted Sensory Reinnervation Technique to Restore Functional Hand Sensation After Transhumeral Amputation. IEEE Transactions on Neural Systems and Rehabilitation Engineering, 2014, 228 2.7 112 22, 765-773. Noninvasive, Accurate Assessment of the Behavior of Representative Populations of Motor Units in 229 Targeted Reinnervated Muscles. IEEE Transactions on Neural Systems and Rehabilitation Engineering, 2.7 2014, 22, 810-819. The Extraction of Neural Information from the Surface EMG for the Control of Upper-Limb Prostheses: Emerging Avenues and Challenges. IEEE Transactions on Neural Systems and Rehabilitation Engineering, 2014, 22, 797-809. 230 2.7 725 A real-time comparison between direct control, sequential pattern recognition control and simultaneous pattern recognition control using a Fitts' law style assessment procedure. Journal of 2.4 79 NeuroEngineering and Rehabilitation, 2014, 11, 91. Upper extremity limb loss: Functional restoration from prosthesis and targeted reinnervation to 232 0.7 34 transplantation. Journal of Hand Therapy, 2014, 27, 106-114. Crossmodal representation of a functional robotic hand arises after extensive training in healthy participants. Neuropsychologia, 2014, 53, 178-186. Does Targeted Nerve Implantation Reduce Neuroma Pain in Amputees?. Clinical Orthopaedics and 234 113 0.7 Related Research, 2014, 472, 2991-3001. Bioelectric signal detrending using smoothness prior approach. Medical Engineering and Physics, 0.8 2014, 36, 1007-1013. Quantification and solutions of arm movements effect on sEMG pattern recognition. Biomedical 236 3.5 57 Signal Processing and Control, 2014, 13, 189-197. Evaluation of EMG, force and joystick as control interfaces for active arm supports. Journal of 2.4 NeuroEngineering and Rehabilitation, 2014, 11, 68. Implanted myoneural interface for artificial hand control. International Journal of Biomedical 238 0.2 3 Engineering and Technology, 2014, 14, 13. Non-invasive control interfaces for intention detection in active movement-assistive devices. Journal 113 of NeuroEngineering and Rehabilitation, 2014, 11, 168. Electromyography data for non-invasive naturally-controlled robotic hand prostheses. Scientific 240 2.4 482 Data, 2014, 1, 140053. An Evidence-Based Structured Review to Assess the Results of Common Peroneal Nerve Repair. Plastic 241 and Reconstructive Surgery, 2014, 134, 302e-311e.

#	Article	IF	CITATIONS
242	Processing of surface EMG through pattern recognition techniques aimed at classifying shoulder joint movements. , 2015, 2015, 2107-10.		8
243	Surveying the interest of individuals with upper limb loss in novel prosthetic control techniques. Journal of NeuroEngineering and Rehabilitation, 2015, 12, 53.	2.4	126
244	Reconstruction for All: The Case for Pediatric Hand Transplantation. Vascularized Composite Allotransplantation, 2015, 2, 47-52.	0.5	6
245	EEG Complex Grasping Patterns Recognition For BMI Robotic And Prosthesis Motion Control. , 2015, , .		1
246	Improving robustness against electrode shift of high density EMG for myoelectric control through common spatial patterns. Journal of NeuroEngineering and Rehabilitation, 2015, 12, 110.	2.4	77
247	Novel Control Strategies for Arm Prostheses : A Partnership between Man and Machine. The Japanese Journal of Rehabilitation Medicine, 2015, 52, 91-95.	0.0	2
248	Subchronic Stimulation Performance of Transverse Intrafascicular Multichannel Electrodes in the Median Nerve of the Göttingen Minipig. Artificial Organs, 2015, 39, E36-48.	1.0	12
249	Handcrafted Microwire Regenerative Peripheral Nerve Interfaces with Wireless Neural Recording and Stimulation Capabilities. Internatinoal Journal of Sensor Networks and Data Communications, 2015, 05, .	0.1	0
250	Novel postural control algorithm for control of multifunctional myoelectric prosthetic hands. Journal of Rehabilitation Research and Development, 2015, 52, 449-66.	1.6	24
251	Decoding of human hand actions to handle missing limbs in neuroprosthetics. Frontiers in Computational Neuroscience, 2015, 9, 27.	1.2	31
252	Global cortical activity predicts shape of hand during grasping. Frontiers in Neuroscience, 2015, 9, 121.	1.4	78
253	Control Capabilities of Myoelectric Robotic Prostheses by Hand Amputees: A Scientific Research and Market Overview. Frontiers in Systems Neuroscience, 2015, 9, 162.	1.2	135
254	Virtual Training of the Myosignal. PLoS ONE, 2015, 10, e0137161.	1.1	29
255	Human-Machine Interface for the Control of Multi-Function Systems Based on Electrocutaneous Menu: Application to Multi-Grasp Prosthetic Hands. PLoS ONE, 2015, 10, e0127528.	1.1	19
256	Vascularised composite allotransplants: Transplant of upper extremities and face. Indian Journal of Plastic Surgery, 2015, 48, 111-118.	0.2	6
257	Bioelectronic interfaces for artificially driven human movements. , 0, , 281-293.		0
258	Targeted Muscle Reinnervation and Advanced Prosthetic Arms. Seminars in Plastic Surgery, 2015, 29, 062-072.	0.8	139
259	Intuitive Control of a Powered Prosthetic Leg During Ambulation. JAMA - Journal of the American Medical Association, 2015, 313, 2244.	3.8	124

#	Article	IF	CITATIONS
260	A pilot study assessing ipsilateral vs. contralateral feedback in EMG-force models of the wrist for upper-limb prosthesis control. , 2015, , .		0
261	Phantom movements from physiologically inappropriate muscles: A case study with a high transhumeral amputee. , 2015, 2015, 3488-91.		6
262	Assistive robotic manipulation through shared autonomy and a Body-Machine Interface. , 2015, 2015, 526-531.		34
263	Nonlinear mappings between discrete and simultaneous motions to decrease training burden of simultaneous pattern recognition myoelectric control. , 2015, 2015, 1675-8.		3
264	Residuals of autoregressive model providing additional information for feature extraction of pattern recognition-based myoelectric control. , 2015, 2015, 7270-3.		2
265	A wireless, smart EEG system for volitional control of lower-limb prosthesis. , 2015, , .		12
266	Effects of prosthesis use on the capability to control myoelectric robotic prosthetic hands. , 2015, 2015, 3456-9.		3
267	Real-time simultaneous myoelectric control by transradial amputees using linear and probability-weighted regression. , 2015, 2015, 1119-23.		3
268	Extrinsic Finger and Thumb Muscles Command a Virtual Hand to Allow Individual Finger and Grasp Control. IEEE Transactions on Biomedical Engineering, 2015, 62, 218-226.	2.5	28
269	Decoding a Wide Range of Hand Configurations from Macaque Motor, Premotor, and Parietal Cortices. Journal of Neuroscience, 2015, 35, 1068-1081.	1.7	147
270	Robotic Prosthetics : Moving Beyond Technical Performance. IEEE Technology and Society Magazine, 2015, 34, 71-79.	0.6	4
271	Control strategies for active lower extremity prosthetics and orthotics: a review. Journal of NeuroEngineering and Rehabilitation, 2015, 12, 1.	2.4	773
272	A real-time, practical sensor fault-tolerant module for robust EMG pattern recognition. Journal of NeuroEngineering and Rehabilitation, 2015, 12, 18.	2.4	52
273	Vibrotactile Stimulation Promotes Embodiment of an Alien Hand in Amputees With Phantom Sensations. IEEE Transactions on Neural Systems and Rehabilitation Engineering, 2015, 23, 450-457.	2.7	94
274	Regenerative engineering and bionic limbs. Rare Metals, 2015, 34, 143-155.	3.6	8
275	Outcomes and Perception of a Conventional and Alternative Myoelectric Control Strategy. Journal of Prosthetics and Orthotics, 2015, 27, 53-62.	0.2	11
276	Visual Guidance in Control of Grasping. Annual Review of Neuroscience, 2015, 38, 69-86.	5.0	61
277	Clinical Investigation of High-Density Electromyography Data and Pattern Classification Accuracy for Prosthetic Control. Journal of Prosthetics and Orthotics, 2015, 27, 8-14.	0.2	2

		CITATION REPORT	
#	Article	IF	CITATIONS
278	Recent advances in bioelectric prostheses. Neurology: Clinical Practice, 2015, 5, 164-170.	0.8	21
279	Ultra-low noise miniaturized neural amplifier with hardware averaging. Journal of Neural Engineering, 2015, 12, 046024.	1.8	17
280	A piezoelectret-based approach for touching and slipping detection in robotic hands. , 2015, , .		5
282	An Ultra-Low-Power RF Energy-Harvesting Transceiver for Multiple-Node Sensor Application. IEEE Transactions on Circuits and Systems II: Express Briefs, 2015, 62, 1028-1032.	2.2	63
283	A \$24,mu ext{W}\$, Batteryless, Crystal-free, Multinode Synchronized SoC "Bionode―for Wire Prosthesis Control. IEEE Journal of Solid-State Circuits, 2015, 50, 2714-2727.	less 3.5	56
284	New Control Strategies for Multifunctional Prostheses that Combine Electromyographic and Speec Signals. IEEE Intelligent Systems, 2015, 30, 47-53.	h 4.0	18
285	Classification of motor unit activity following targeted muscle reinnervation. , 2015, , .		10
286	Low-cost wearable multichannel surface EMG acquisition for prosthetic hand control. , 2015, , .		38
287	Remapping residual coordination for controlling assistive devices and recovering motor functions. Neuropsychologia, 2015, 79, 364-376.	0.7	27
288	A review on hybrid myoelectric control systems for upper limb prosthesis. , 2015, , .		27
289	First-in-man demonstration of a fully implanted myoelectric sensors system to control an advanced electromechanical prosthetic hand. Journal of Neuroscience Methods, 2015, 244, 85-93.	1.3	170
290	The Extremity Trauma and Amputation Center of Excellence: Overview of the Research and Surveillance Division. Military Medicine, 2016, 181, 3-12.	0.4	7
291	New developments in prosthetic arm systems. Orthopedic Research and Reviews, 2016, Volume 8,	31-39. 0.7	111
292	The Evolution of Neuroprosthetic Interfaces. Critical Reviews in Biomedical Engineering, 2016, 44, 123-152.	0.5	56
293	Development of a Regenerative Peripheral Nerve Interface for Control of a Neuroprosthetic Limb. BioMed Research International, 2016, 2016, 1-8.	0.9	72
294	Automatic Training of Rat Cyborgs for Navigation. Computational Intelligence and Neuroscience, 2020, 1-12.	016, 1.1	13
295	Effect of clinical parameters on the control of myoelectric robotic prosthetic hands. Journal of Rehabilitation Research and Development, 2016, 53, 345-358.	1.6	49
296	Force Myography to Control Robotic Upper Extremity Prostheses: A Feasibility Study. Frontiers in Bioengineering and Biotechnology, 2016, 4, 18.	2.0	103

#	Article	IF	CITATIONS
297	Deep Learning with Convolutional Neural Networks Applied to Electromyography Data: A Resource for the Classification of Movements for Prosthetic Hands. Frontiers in Neurorobotics, 2016, 10, 9.	1.6	436
298	Evaluating EMG Feature and Classifier Selection for Application to Partial-Hand Prosthesis Control. Frontiers in Neurorobotics, 2016, 10, 15.	1.6	67
299	Dual Window Pattern Recognition Classifier for Improved Partial-Hand Prosthesis Control. Frontiers in Neuroscience, 2016, 10, 58.	1.4	26
300	Control of Prosthetic Hands via the Peripheral Nervous System. Frontiers in Neuroscience, 2016, 10, 116.	1.4	93
301	A Review of Control Strategies in Closed-Loop Neuroprosthetic Systems. Frontiers in Neuroscience, 2016, 10, 312.	1.4	44
302	Characterization of the Statistical Signatures of Micro-Movements Underlying Natural Gait Patterns in Children with Phelan McDermid Syndrome: Towards Precision-Phenotyping of Behavior in ASD. Frontiers in Integrative Neuroscience, 2016, 10, 22.	1.0	27
303	Complexity Analysis of Surface EMG for Overcoming ECG Interference toward Proportional Myoelectric Control. Entropy, 2016, 18, 106.	1.1	18
304	Homo Technologicus: Threat or Opportunity?. Philosophies, 2016, 1, 199-208.	0.4	10
305	Motor Unit Characteristics after Targeted Muscle Reinnervation. PLoS ONE, 2016, 11, e0149772.	1.1	43
306	Myoelectric control of prosthetic hands: state-of-the-art review. Medical Devices: Evidence and Research, 2016, Volume 9, 247-255.	0.4	240
307	Management of Upper Extremity Amputations. , 2016, , 535-539.		0
308	SoftHand Pro-D: Matching dynamic content of natural user commands with hand embodiment for enhanced prosthesis control. , 2016, , .		26
309	Biomimetic rehabilitation engineering: the importance of somatosensory feedback for brain–machine interfaces. Journal of Neural Engineering, 2016, 13, 041001.	1.8	26
310	Design of a highly biomimetic anthropomorphic robotic hand towards artificial limb regeneration. , $2016,$, .		49
311	An Epidermal Stimulation and Sensing Platform for Sensorimotor Prosthetic Control, Management of Lower Back Exertion, and Electrical Muscle Activation. Advanced Materials, 2016, 28, 4462-4471.	11.1	240
312	Phantom motor execution facilitated by machine learning and augmented reality as treatment for phantom limb pain: a single group, clinical trial in patients with chronic intractable phantom limb pain. Lancet, The, 2016, 388, 2885-2894.	6.3	178
313	MyoHMI: A low-cost and flexible platform for developing real-time human machine interface for myoelectric controlled applications. , 2016, , .		12
314	IBVS and EMC based reach-to-grasp task planning method for a trans-humeral prosthesis. , 2016, ,		6

#	Article	IF	CITATIONS
315	Six Prosthetic Arm Movements Using Electromyogram Signals: A Prototype. , 2016, , .		3
316	A Comparison of Pattern Recognition Control and Direct Control of a Multiple Degree-of-Freedom Transradial Prosthesis. IEEE Journal of Translational Engineering in Health and Medicine, 2016, 4, 1-8.	2.2	102
317	A new approach to mitigate the effect of force variation on pattern recognition for myoelectric control. , 2016, 2016, 1684-1687.		12
318	Automatic grasp selection using a camera in a hand prosthesis. , 2016, 2016, 431-434.		36
319	Towards reducing the impacts of unwanted movements on identification of motion intentions. Journal of Electromyography and Kinesiology, 2016, 28, 90-98.	0.7	35
320	Restoring motor control and sensory feedback in people with upper extremity amputations using arrays of 96 microelectrodes implanted in the median and ulnar nerves. Journal of Neural Engineering, 2016, 13, 036001.	1.8	268
321	A novel immersive augmented reality system for prosthesis training and assessment. , 2016, , .		10
322	The effect of wrist position and hand-grasp pattern on virtual prosthesis task performance. , 2016, , .		2
323	Fusion of M-IMU and EMG signals for the control of trans-humeral prostheses. , 2016, , .		15
324	Virtual Environments for Hand Rehabilitation with Force Feedback. Lecture Notes in Computer Science, 2016, , 459-470.	1.0	0
325	Lumped-parameter electromyogram-driven musculoskeletal hand model: A potential platform for real-time prosthesis control. Journal of Biomechanics, 2016, 49, 3901-3907.	0.9	63
326	Real-time evaluation of a myoelectric control method for high-level upper limb amputees based on homologous leg movements. , 2016, 2016, 6365-6368.		5
327	Comparison of patient-reported outcomes after traumatic upper extremity amputation: Replantation versus prosthetic rehabilitation. Injury, 2016, 47, 2783-2788.	0.7	45
328	The RIC Arm—A Small Anthropomorphic Transhumeral Prosthesis. IEEE/ASME Transactions on Mechatronics, 2016, 21, 2660-2671.	3.7	70
329	Bioelectric Medicine and Devices for the Treatment of Spinal Cord Injury. Cells Tissues Organs, 2016, 202, 6-22.	1.3	5
330	Comparisons on different sEMG-features with dimension-reduction methods in hand motion recognition. , 2016, , .		4
331	Targeted Muscle Reinnervation for Transradial Amputation: Description of Operative Technique. Techniques in Hand and Upper Extremity Surgery, 2016, 20, 166-171.	0.3	60
332	Comprehensive Rehabilitation Following Combat Extremity Trauma: Evolution and Its Impact on Outcomes. Journal of Orthopaedic Trauma, 2016, 30, S31-S33.	0.7	8

#	Article	IF	CITATIONS
333	Reinnervated Split-Muscle Technique for Creating Additional Myoelectric Sites in an Animal Model. Plastic and Reconstructive Surgery, 2016, 138, 997e-1010e.	0.7	2
334	Chronic recording of hand prosthesis control signals via a regenerative peripheral nerve interface in a rhesus macaque. Journal of Neural Engineering, 2016, 13, 046007.	1.8	51
335	Enhancing the versatility of wireless biopotential acquisition for myoelectric prosthetic control. Journal of Neural Engineering, 2016, 13, 046012.	1.8	8
336	Multisession, noninvasive closed-loop neuroprosthetic control of grasping by upper limb amputees. Progress in Brain Research, 2016, 228, 107-128.	0.9	28
337	Experimental nerve transfer model in the rat forelimb. European Surgery - Acta Chirurgica Austriaca, 2016, 48, 334-341.	0.3	12
338	Biomechatronic design and control of an anthropomorphic artificial hand for prosthetic applications. Robotica, 2016, 34, 2291-2308.	1.3	14
339	Recording and decoding for neural prostheses. Proceedings of the IEEE, 2016, 104, 374-391.	16.4	42
340	<i>In vivo</i> characterization of regenerative peripheral nerve interface function. Journal of Neural Engineering, 2016, 13, 026012.	1.8	33
341	Ethical issues in neuroprosthetics. Journal of Neural Engineering, 2016, 13, 021002.	1.8	35
342	Incremental Learning of Muscle Synergies: From Calibration to Interaction. Springer Series on Touch and Haptic Systems, 2016, , 171-193.	0.2	5
343	Improving the Robustness of Myoelectric Pattern Recognition for Upper Limb Prostheses by Covariate Shift Adaptation. IEEE Transactions on Neural Systems and Rehabilitation Engineering, 2016, 24, 961-970.	2.7	126
344	Schizophrenia: The micro-movements perspective. Neuropsychologia, 2016, 85, 310-326.	0.7	27
345	Development of a Multi-Channel Compact-Size Wireless Hybrid sEMG/NIRS Sensor System for Prosthetic Manipulation. IEEE Sensors Journal, 2016, 16, 447-456.	2.4	68
346	An Analysis of Intrinsic and Extrinsic Hand Muscle EMG for Improved Pattern Recognition Control. IEEE Transactions on Neural Systems and Rehabilitation Engineering, 2016, 24, 485-494.	2.7	98
347	Evaluation of Linear Regression Simultaneous Myoelectric Control Using Intramuscular EMG. IEEE Transactions on Biomedical Engineering, 2016, 63, 737-746.	2.5	87
348	Design and Fabrication of a Six Degree-of-Freedom Open Source Hand. IEEE Transactions on Neural Systems and Rehabilitation Engineering, 2016, 24, 562-572.	2.7	49
349	Measuring human locomotor control using EMG and EEG: Current knowledge, limitations and future considerations. European Journal of Sport Science, 2016, 16, 416-426.	1.4	31
350	Myoelectric Control System and Task-Specific Characteristics Affect Voluntary Use of Simultaneous Control. IEEE Transactions on Neural Systems and Rehabilitation Engineering, 2016, 24, 109-116.	2.7	17

#	Article	IF	CITATIONS
351	An Empirical Evaluation of Force Feedback in Body-Powered Prostheses. IEEE Transactions on Neural Systems and Rehabilitation Engineering, 2017, 25, 215-226.	2.7	22
352	Multichannel Electrotactile Feedback With Spatial and Mixed Coding for Closed-Loop Control of Grasping Force in Hand Prostheses. IEEE Transactions on Neural Systems and Rehabilitation Engineering, 2017, 25, 183-195.	2.7	98
353	Cascaded Adaptation Framework for Fast Calibration of Myoelectric Control. IEEE Transactions on Neural Systems and Rehabilitation Engineering, 2017, 25, 254-264.	2.7	37
354	A correlation analysis of metacarpal & phalangeal injury pattern from improvised explosive devices amongst armed force personnel. Injury, 2017, 48, 738-744.	0.7	3
355	Toward an Enhanced Human–Machine Interface for Upper-Limb Prosthesis Control With Combined EMG and NIRS Signals. IEEE Transactions on Human-Machine Systems, 2017, 47, 564-575.	2.5	81
356	A motion-classification strategy based on sEMG-EEG signal combination for upper-limb amputees. Journal of NeuroEngineering and Rehabilitation, 2017, 14, 2.	2.4	144
357	Neuroengineering: Deciphering neural drive. Nature Biomedical Engineering, 2017, 1, .	11.6	11
358	Mechanomyography Assisted Myoeletric Sensing for Upper-Extremity Prostheses: A Hybrid Approach. IEEE Sensors Journal, 2017, 17, 3100-3108.	2.4	64
359	Current trends in the development of intelligent unmanned autonomous systems. Frontiers of Information Technology and Electronic Engineering, 2017, 18, 68-85.	1.5	93
360	Man/machine interface based on the discharge timings of spinal motor neurons after targeted muscle reinnervation. Nature Biomedical Engineering, 2017, 1, .	11.6	245
361	A Real-Time Method for Decoding the Neural Drive to Muscles Using Single-Channel Intra-Muscular EMG Recordings. International Journal of Neural Systems, 2017, 27, 1750025.	3.2	29
362	Body-Machine Interface Enables People With Cervical Spinal Cord Injury to Control Devices With Available Body Movements: Proof of Concept. Neurorehabilitation and Neural Repair, 2017, 31, 487-493.	1.4	29
363	Sensory feedback add-on for upper-limb prostheses. Prosthetics and Orthotics International, 2017, 41, 314-317.	0.5	10
364	Development of regenerative peripheral nerve interfaces for motor control of neuroprosthetic devices. Proceedings of SPIE, 2017, , .	0.8	1
365	Embedded System for Prosthetic Control Using Implanted Neuromuscular Interfaces Accessed Via an Osseointegrated Implant. IEEE Transactions on Biomedical Circuits and Systems, 2017, 11, 867-877.	2.7	73
366	On prosthetic control: A regenerative agonist-antagonist myoneural interface. Science Robotics, 2017, 2, .	9.9	59
367	Two degrees of freedom quasi-static EMG-force at the wrist using a minimum number of electrodes. Journal of Electromyography and Kinesiology, 2017, 34, 24-36.	0.7	29
368	Saliency Driven Object recognition in egocentric videos with deep CNN: toward application in assistance to Neuroprostheses. Computer Vision and Image Understanding, 2017, 164, 82-91.	3.0	22

# 369	ARTICLE A nanostructured cell-free photosynthetic biocomposite via molecularly controlled layer-by-layer assembly. Sensors and Actuators B: Chemical 2017, 244, 1-10	lF 4.0	CITATIONS
370	Myoelectric Pattern Recognition Outperforms Direct Control for Transhumeral Amputees with Targeted Muscle Reinnervation: A Randomized Clinical Trial. Scientific Reports, 2017, 7, 13840.	1.6	149
371	Resolving the adverse impact of mobility on myoelectric pattern recognition in upper-limb multifunctional prostheses. Computers in Biology and Medicine, 2017, 90, 76-87.	3.9	52
372	Towards Efficient Decoding of Multiple Classes of Motor Imagery Limb Movements Based on EEG Spectral and Time Domain Descriptors. Journal of Medical Systems, 2017, 41, 194.	2.2	43
373	Common Synaptic Input to Motor Neurons and Neural Drive to Targeted Reinnervated Muscles. Journal of Neuroscience, 2017, 37, 11285-11292.	1.7	32
374	Novel neural interface electrode array for the peripheral nerve. , 2017, 2017, 1067-1072.		7
375	MoBio: A 5 DOF trans-humeral robotic prosthesis. , 2017, 2017, 1627-1632.		17
376	Motor imagery classification of upper limb movements based on spectral domain features of EEG patterns. , 2017, 2017, 2976-2979.		16
377	A Classifier of Shoulder Movements for a Wearable EMG-Based Device. Journal of Medical Robotics Research, 2017, 02, 1740003.	1.0	2
378	Longitudinal high-density EMG classification: Case study in a glenohumeral TMR subject. , 2017, 2017, 1-6.		1
379	Independent, voluntary control of extra robotic limbs. , 2017, , .		43
380	Targeted Muscle Reinnervation to Improve Pain, Prosthetic Tolerance, and Bioprosthetic Outcomes in the Amputee. Advances in Wound Care, 2017, 6, 261-267.	2.6	84
381	sEMG feature selection and classification using SVM-RFE. , 2017, 2017, 390-393.		17
382	The myokinetic control interface: tracking implanted magnets as a means for prosthetic control. Scientific Reports, 2017, 7, 17149.	1.6	42
383	Adjacent regenerative peripheral nerve interfaces produce phase-antagonist signals during voluntary walking in rats. Journal of NeuroEngineering and Rehabilitation, 2017, 14, 33.	2.4	9
384	Resolving the effect of wrist position on myoelectric pattern recognition control. Journal of NeuroEngineering and Rehabilitation, 2017, 14, 39.	2.4	21
385	Dynamic training protocol improves the robustness of PR-based myoelectric control. Biomedical Signal Processing and Control, 2017, 31, 249-256.	3.5	26
386	Classification of Human Hand Movements Using Surface EMG for Myoelectric Control. Advances in Intelligent Systems and Computing, 2017, , 331-339.	0.5	7

#	Article	IF	CITATIONS
387	Real-Time Control of an Exoskeleton Hand Robot with Myoelectric Pattern Recognition. International Journal of Neural Systems, 2017, 27, 1750009.	3.2	56
388	Evaluation of Computer-Based Target Achievement Tests for Myoelectric Control. IEEE Journal of Translational Engineering in Health and Medicine, 2017, 5, 1-10.	2.2	20
389	Gaussian Process Autoregression for Simultaneous Proportional Multi-Modal Prosthetic Control With Natural Hand Kinematics. IEEE Transactions on Neural Systems and Rehabilitation Engineering, 2017, 25, 1785-1801.	2.7	68
390	Grasp specific and user friendly interface design for myoelectric hand prostheses. , 2017, 2017, 1621-1626.		8
391	The evaluation of elbow joint motion using bio-impedance signal. , 2017, , .		2
392	Upper-limb prosthetic control using wearable multichannel mechanomyography. , 2017, 2017, 1293-1298.		35
393	The role of EMG module in hybrid interface of prosthetic arm. , 2017, , .		6
394	Extrapolation of Emerging Technologies and Their Long-Term Implications for Myoelectric versus Body-Powered Prostheses: An Engineering Perspective. Journal of Prosthetics and Orthotics, 2017, 29, P63-P74.	0.2	3
395	Myoelectric versus Body-Powered Upper-Limb Prostheses: A Clinical Perspective. Journal of Prosthetics and Orthotics, 2017, 29, P25-P29.	0.2	15
396	Development of a Hybrid Arm Prosthesis Controlled by EEG Signals. , 2017, , .		5
397	Development of an upper limb neuroprosthesis to voluntarily control elbow and hand. , 2017, , .		3
398	Body-Borne Computers as Extensions of Self. Computers, 2017, 6, 12.	2.1	18
399	Improving the Robustness of Electromyogram-Pattern Recognition for Prosthetic Control by a Postprocessing Strategy. Frontiers in Neurorobotics, 2017, 11, 51.	1.6	24
400	Real-time Classification of Non-Weight Bearing Lower-Limb Movements Using EMG to Facilitate Phantom Motor Execution: Engineering and Case Study Application on Phantom Limb Pain. Frontiers in Neurology, 2017, 8, 470.	1.1	25
401	Electroencephalogram-Based Brain–Computer Interface and Lower-Limb Prosthesis Control: A Case Study. Frontiers in Neurology, 2017, 8, 696.	1.1	36
402	A Novel Hybrid Model for Drawing Trace Reconstruction from Multichannel Surface Electromyographic Activity. Frontiers in Neuroscience, 2017, 11, 61.	1.4	6
403	Simultaneous and Continuous Estimation of Shoulder and Elbow Kinematics from Surface EMG Signals. Frontiers in Neuroscience, 2017, 11, 280.	1.4	59
404	Broadband Prosthetic Interfaces: Combining Nerve Transfers and Implantable Multichannel EMG Technology to Decode Spinal Motor Neuron Activity. Frontiers in Neuroscience, 2017, 11, 421.	1.4	39

#	Article	IF	Citations
405	Improving the Robustness of Real-Time Myoelectric Pattern Recognition against Arm Position Changes in Transradial Amputees. BioMed Research International, 2017, 2017, 1-10.	0.9	36
406	Factors associated with interest in novel interfaces for upper limb prosthesis control. PLoS ONE, 2017, 12, e0182482.	1.1	20
407	Classification complexity in myoelectric pattern recognition. Journal of NeuroEngineering and Rehabilitation, 2017, 14, 68.	2.4	20
408	Gaze controlled prosthetic arm with EMG and EEG input interface. , 2017, , .		3
409	Muscle redistribution surgery based capacitive sensing for upper-limb motion recognition: Preliminary results. , 2017, , .		3
410	A pilot study of two degrees of freedom dynamic EMG-force at the wrist using a minimum number of electrodes. , 2017, , .		3
411	Cyborgs. , 2017, , 705-715.		0
412	Upper Limb Prosthesis Control for High-Level Amputees via Myoelectric Recognition of Leg Gestures. IEEE Transactions on Neural Systems and Rehabilitation Engineering, 2018, 26, 1056-1066.	2.7	26
413	An Alternative Myoelectric Pattern Recognition Approach for the Control of Hand Prostheses: A Case Study of Use in Daily Life by a Dysmelia Subject. IEEE Journal of Translational Engineering in Health and Medicine, 2018, 6, 1-12.	2.2	36
414	Targeted muscle reinnervation: Advances and opportunities. Journal of Plastic, Reconstructive and Aesthetic Surgery, 2018, 71, 920-921.	0.5	3
415	Closed-Loop Continuous Hand Control via Chronic Recording of Regenerative Peripheral Nerve Interfaces. IEEE Transactions on Neural Systems and Rehabilitation Engineering, 2018, 26, 515-526.	2.7	45
416	Innovative Use of Thighplasty to Improve Prosthesis Fit and Function in a Transfemoral Amputee. Plastic and Reconstructive Surgery - Clobal Open, 2018, 6, e1632.	0.3	8
417	A Review on Upper-Limb Myoelectric Prosthetic Control. IETE Journal of Research, 2018, 64, 740-752.	1.8	41
418	Towards Wearable A-Mode Ultrasound Sensing for Real-Time Finger Motion Recognition. IEEE Transactions on Neural Systems and Rehabilitation Engineering, 2018, 26, 1199-1208.	2.7	86
419	Illusory movement perception improves motor control for prosthetic hands. Science Translational Medicine, 2018, 10, .	5.8	162
420	Targeted Muscle Reinnervation: Considerations for Future Implementation in Adolescents and Younger Children. Plastic and Reconstructive Surgery, 2018, 141, 1447-1458.	0.7	14
421	Pattern recognition of electromyography signals based on novel time domain features for amputees' limb motion classification. Computers and Electrical Engineering, 2018, 67, 646-655.	3.0	135
422	Engineering skeletal muscle - from two to three dimensions. Journal of Tissue Engineering and Regenerative Medicine, 2018, 12, e1-e6.	1.3	16

#	Article	IF	Citations
423	Robust extraction of basis functions for simultaneous and proportional myoelectric control via sparse non-negative matrix factorization. Journal of Neural Engineering, 2018, 15, 026017.	1.8	51
424	The Effect of Split Nerve on Electromyography Signal Pattern in a Rat Model. Journal of Reconstructive Microsurgery, 2018, 34, 095-102.	1.0	0
425	Targeted muscle reinnervation for pain control in an elective transradial amputation. Journal of Plastic, Reconstructive and Aesthetic Surgery, 2018, 71, 258-259.	0.5	7
426	Classification of Upper limb phantom movements in transhumeral amputees using electromyographic and kinematic features. Engineering Applications of Artificial Intelligence, 2018, 68, 153-164.	4.3	30
427	Improved Prosthetic Control Based on Myoelectric Pattern Recognition via Wavelet-Based De-Noising. IEEE Transactions on Neural Systems and Rehabilitation Engineering, 2018, 26, 506-514.	2.7	33
428	Neural Prostheses for Reaching and Grasping. , 2018, , .		0
429	Improving the Robustness of Myoelectric Control System Using Linear Regression Classifier. , 2018, , .		0
430	Comparing the Effects of Signal Noise on Pattern Recognition and Linear Regression-Based Myoelectric Controllers. , 2018, 2018, 2132-2135.		2
431	Lower limbs motion intention detection by using pattern recognition. , 2018, , .		2
432	To Realize Bimanual Coordination for Trans-humeral Prosthesis Users in a Box-lifting Task with Various Box Configurations. , 2018, , .		0
433	Classification of Hand Movements by Surface Myoelectric Signal Using Artificial-Spiking Neural Network Model. , 2018, , .		5
434	Control of Human Motor Rehabilitation Devices. Human Physiology, 2018, 44, 686-695.	0.1	1
435	Influence of Functional Electrical Stimulation on Muscle and Nerve Rehabilitation in Post Targeted Muscle Reinnervation Surgery. , 2018, , .		0
436	Neuroengineering and neuroprosthetics. Brain and Neuroscience Advances, 2018, 2, 239821281881749.	1.8	9
437	Forearm Muscle Synergy Reducing Dimension of the Feature Matrix in Hand Gesture Recognition. , 2018, , .		6
438	Hybrid control combined with a voluntary biosignal to control a prosthetic hand. Robotics and Biomimetics, 2018, 5, 4.	1.7	8
439	Regenerative peripheral nerve interfaces for real-time, proportional control of a Neuroprosthetic hand. Journal of NeuroEngineering and Rehabilitation, 2018, 15, 108.	2.4	37
440	Myoelectric signals and pattern recognition from implanted electrodes in two TMR subjects with an osseointegrated communication interface. , 2018, 2018, 5174-5177.		14

#	Article	IF	CITATIONS
441	Surgical Algorithm for Neuroma Management: A Changing Treatment Paradigm. Plastic and Reconstructive Surgery - Global Open, 2018, 6, e1952.	0.3	120
442	The Ewing Amputation: The First Human Implementation of the Agonist-Antagonist Myoneural Interface. Plastic and Reconstructive Surgery - Global Open, 2018, 6, e1997.	0.3	51
443	An Approach for Brain-Controlled Prostheses Based on a Facial Expression Paradigm. Frontiers in Neuroscience, 2018, 12, 943.	1.4	16
444	Adjacent Features for High-Density EMG Pattern Recognition. , 2018, 2018, 5978-5981.		3
445	Motorized Biomechatronic Upper and Lower Limb Prostheses—Clinically Relevant Outcomes. PM and R, 2018, 10, S207-S219.	0.9	11
446	On-line Synergy Identification for Personalized Active Arm Prosthesis: a Feasibility Study. , 2018, , .		5
447	Applying Mechanical Pressure and Skin Stretch Simultaneously for Sensory Feedback in Prosthetic Hands. , 2018, , .		7
448	Causes of Performance Degradation in Non-invasive Electromyographic Pattern Recognition in Upper Limb Prostheses. Frontiers in Neurorobotics, 2018, 12, 58.	1.6	67
449	Using Vibration Motors to Create Tactile Apparent Movement for Transradial Prosthetic Sensory Feedback. , 2018, , .		6
450	The SoftHand Pro: Functional evaluation of a novel, flexible, and robust myoelectric prosthesis. PLoS ONE, 2018, 13, e0205653.	1.1	62
451	A fingertip force prediction model for grasp patterns characterised from the chaotic behaviour of EEG. Medical and Biological Engineering and Computing, 2018, 56, 2095-2107.	1.6	14
452	An approach for brain-controlled prostheses based on Scene Graph Steady-State Visual Evoked Potentials. Brain Research, 2018, 1692, 142-153.	1.1	12
453	Proprioception from a neurally controlled lower-extremity prosthesis. Science Translational Medicine, 2018, 10, .	5.8	145
454	Evaluating Internal Model Strength and Performance of Myoelectric Prosthesis Control Strategies. IEEE Transactions on Neural Systems and Rehabilitation Engineering, 2018, 26, 1046-1055.	2.7	41
455	Myoelectric Control Based on a Generic Musculoskeletal Model: Toward a Multi-User Neural-Machine Interface. IEEE Transactions on Neural Systems and Rehabilitation Engineering, 2018, 26, 1435-1442.	2.7	51
456	A novel gel liner system with embedded electrodes for use with upper limb myoelectric prostheses. PLoS ONE, 2018, 13, e0198934.	1.1	6
457	Approaching Human Hand Dexterity Through Highly Biomimetic Design. , 2018, , 87-114.		0
458	Classification of Transient Myoelectric Signals for the Control of Multi-Grasp Hand Prostheses. IEEE Transactions on Neural Systems and Rehabilitation Engineering, 2018, 26, 1756-1764.	2.7	44

#	Article	IF	CITATIONS
459	EMG Pattern Recognition in the Era of Big Data and Deep Learning. Big Data and Cognitive Computing, 2018, 2, 21.	2.9	165
460	Spike detection: The first step towards an ENC-based neuroprosheses. Journal of Neuroscience Methods, 2018, 308, 294-308.	1.3	8
461	Comparing Surface and Intramuscular Electromyography for Simultaneous and Proportional Control Based on a Musculoskeletal Model: A Pilot Study. IEEE Transactions on Neural Systems and Rehabilitation Engineering, 2018, 26, 1735-1744.	2.7	28
462	Decoding the grasping intention from electromyography during reaching motions. Journal of NeuroEngineering and Rehabilitation, 2018, 15, 57.	2.4	45
463	The Evolution of Man and Machine—a Review of Current Surgical Techniques and Cutting Technologies After Upper Extremity Amputation. Current Trauma Reports, 2018, 4, 339-347.	0.6	1
464	Human's Capability to Discriminate Spatial Forces at the Big Toe. Frontiers in Neurorobotics, 2018, 12, 13.	1.6	1
465	Initial Clinical Evaluation of the Modular Prosthetic Limb. Frontiers in Neurology, 2018, 9, 153.	1.1	33
466	Human-Inspired Reflex to Autonomously Prevent Slip of Grasped Objects Rotated with a Prosthetic Hand. Journal of Healthcare Engineering, 2018, 2018, 1-11.	1.1	9
467	A Robust Sparse Representation Based Pattern Recognition Approach for Myoelectric Control. IEEE Access, 2018, 6, 38326-38335.	2.6	39
468	Effect of threshold values on the combination of EMG time domain features: Surface versus intramuscular EMG. Biomedical Signal Processing and Control, 2018, 45, 267-273.	3.5	39
469	Analysis and Comparison of Features and Algorithms to Classify Shoulder Movements From sEMG Signals. IEEE Sensors Journal, 2018, 18, 3714-3721.	2.4	21
470	Two ways to improve myoelectric control for a transhumeral amputee after targeted muscle reinnervation: a case study. Journal of NeuroEngineering and Rehabilitation, 2018, 15, 37.	2.4	11
471	Development of an upper-limb neuroprosthesis to voluntarily control elbow and hand. Advanced Robotics, 2018, 32, 879-886.	1.1	3
472	Towards Control of a Transhumeral Prosthesis with EEG Signals. Bioengineering, 2018, 5, 26.	1.6	19
473	Long-term stability of neural signals from microwire arrays implanted in common marmoset motor cortex and striatum. Biomedical Physics and Engineering Express, 2018, 4, 055025.	0.6	16
474	Current Concepts in Upper-Extremity Amputation. Journal of Hand Surgery, 2018, 43, 657-667.	0.7	38
475	Autonomy in Rehabilitation Robotics: An Intersection. Annual Review of Control, Robotics, and Autonomous Systems, 2018, 1, 441-463.	7.5	28
476	Myoelectric control with abstract decoders. Journal of Neural Engineering, 2018, 15, 056003.	1.8	41

#	Article	IF	Citations
477	Machine learning for electroencephalography decoding and robotics dextrous hands movement. , 2018, , .		0
478	Evaluation of feature extraction techniques and classifiers for finger movement recognition using surface electromyography signal. Medical and Biological Engineering and Computing, 2018, 56, 2259-2271.		38
479	Innervation of an engineered muscle graft for reconstruction of muscle defects. American Journal of Transplantation, 2019, 19, 37-47.		15
480	Myoelectric Pattern Recognition for Controlling a Robotic Hand: A Feasibility Study in Stroke. IEEE Transactions on Biomedical Engineering, 2019, 66, 365-372.		64
481	Evaluation of the Role of Proprioception During Proportional Position Control Using Sonomyography: Applications in Prosthetic Control. , 2019, 2019, 830-836.		7
482	Pattern recognition and direct control home use of a multi-articulating hand prosthesis. , 2019, 2019, 386-391.		16
483	Biomimetic sensory feedback through peripheral nerve stimulation improves dexterous use of a bionic hand. Science Robotics, 2019, 4, .		244
484	Reach-to-grasp motions: Towards a dynamic classification approach for upper-limp prosthesis. , 2019, , .		0
485	Adapting isokinetic dynamometry to accommodate transradial amputation: The development of a new dynamometer attachment and user case study. Cogent Engineering, 2019, 6, .	1.1	0
486	Development of an Embedded Myokinetic Prosthetic Hand Controller. Sensors, 2019, 19, 3137.		13
487	Proprioceptive Sonomyographic Control: A novel method for intuitive and proportional control of multiple degrees-of-freedom for individuals with upperÂextremity limb loss. Scientific Reports, 2019, 9, 9499.		60
488	A Physics-based Virtual Reality Environment to Quantify Functional Performance of Upper-limb Prostheses. , 2019, 2019, 3807-3810.		5
489	Rehabilitation Engineering: A perspective on the past 40-years and thoughts for the future. Medical Engineering and Physics, 2019, 72, 3-12.	0.8	17
490	The Prosthetic Arm: A Dramatic Improvement For The Limb Amputation From The Humerus. , 2019, , .		3
491	Regression-based reconstruction of human grip force trajectories with noninvasive scalp electroencephalography. Journal of Neural Engineering, 2019, 16, 066030.		9
492	MyoBeatz: Using music and rhythm to improve prosthetic control in a mobile game for health. , 2019, , .		10
493	Stationary Wavelet Processing and Data Imputing in Myoelectric Pattern Recognition on a Low-Cost Embedded System. IEEE Transactions on Medical Robotics and Bionics, 2019, 1, 256-266.	2.1	5
494	Comparative Analysis of Classifiers for EMG Signals. , 2019, , .		6

#	Article		CITATIONS
495	Bioactuators based on stimulus-responsive hydrogels and their emerging biomedical applications. NPG Asia Materials, 2019, 11, .		202
496	Real-Time EMG Based Pattern Recognition Control for Hand Prostheses: A Review on Existing Methods, Challenges and Future Implementation. Sensors, 2019, 19, 4596.		195
497	The Effect of Feedback During Training Sessions on Learning Pattern-Recognition-Based Prosthesis Control. IEEE Transactions on Neural Systems and Rehabilitation Engineering, 2019, 27, 2087-2096.		27
498	Design and Assessment of Myoelectric Games for Prosthesis Training of Upper Limb Amputees. , 2019, , .		11
499	Effect of User Practice on Prosthetic Finger Control With an Intuitive Myoelectric Decoder. Frontiers in Neuroscience, 2019, 13, 891.	1.4	34
500	Patient perspectives on benefits and risks of implantable interfaces for upper limb prostheses: a national survey. Expert Review of Medical Devices, 2019, 16, 515-540.	1.4	6
501	A Modular Transradial Bypass Socket for Surface Myoelectric Prosthetic Control in Non-Amputees. IEEE Transactions on Neural Systems and Rehabilitation Engineering, 2019, 27, 2070-2076.	2.7	18
502	Targeted Muscle Reinnervation for Prosthesis Optimization and Neuroma Management in the Setting of Transradial Amputation. Journal of Hand Surgery, 2019, 44, 525.e1-525.e8.	0.7	34
503	Adaptive Auto-Regressive Proportional Myoelectric Control. IEEE Transactions on Neural Systems and Rehabilitation Engineering, 2019, 27, 314-322.		25
504	Bionic reconstruction. Wiener Klinische Wochenschrift, 2019, 131, 599-607.	1.0	15
505	Targeted muscle reinnervation in oncologic amputees: Early experience of a novel institutional protocol. Journal of Surgical Oncology, 2019, 120, 348-358.	0.8	69
507	Upper Arm Motion High-Density sEMG Recognition Optimization Based on Spatial and Time-Frequency Domain Features. Journal of Healthcare Engineering, 2019, 2019, 1-16.		21
508	Offline and online myoelectric pattern recognition analysis and real-time control of a robotic hand after spinal cord injury. Journal of Neural Engineering, 2019, 16, 036018.	1.8	24
509	Counteracting Electrode Shifts in Upper-Limb Prosthesis Control via Transfer Learning. IEEE Transactions on Neural Systems and Rehabilitation Engineering, 2019, 27, 956-962.	2.7	39
510	Feature Selection and Non-Linear Classifiers: Effects on Simultaneous Motion Recognition in Upper Limb. IEEE Transactions on Neural Systems and Rehabilitation Engineering, 2019, 27, 743-750.	2.7	33
511	Priorities for the design and control of upper limb prostheses: A focus group study. Disability and Health Journal, 2019, 12, 706-711.	1.6	11
512	Synergistic Myoelectrical Activities of Forearm Muscles Improving Robust Recognition of Multi-Fingered Gestures. Sensors, 2019, 19, 610.	2.1	18
513	Fixed muscle synergies and their potential to improve the intuitive control of myoelectric assistive technology for upper extremities. Journal of NeuroEngineering and Rehabilitation, 2019, 16, 6.	2.4	21

#	Article	IF	CITATIONS
514	Large-area MRI-compatible epidermal electronic interfaces for prosthetic control and cognitive monitoring. Nature Biomedical Engineering, 2019, 3, 194-205.	11.6	253
515	Development of Human Mashine Interface for an Electromyogram Recorder. , 2019, , .		2
516	Treatment of Neuroma-induced Chronic Pain and Management of Nerve Defects with Processed Nerve Allografts. Plastic and Reconstructive Surgery - Global Open, 2019, 7, e2467.		9
517	Analysis of upper limb rehabilitation using muscle mechanics: current and future perspectives using Mechanomyography signals. , 2019, , .		1
518	Does Training on Broad Band Tactile Stimulation Promote the Generalization of Learning?. , 2019, , .		0
519	Myoelectric Control for Upper Limb Prostheses. Electronics (Switzerland), 2019, 8, 1244.	1.8	27
520	Hard-wired Epimysial Recordings from Normal and Reinnervated Muscle Using a Bone-anchored Device. Plastic and Reconstructive Surgery - Global Open, 2019, 7, e2391.	0.3	3
522	Stable, three degree-of-freedom myoelectric prosthetic control via chronic bipolar intramuscular electrodes: a case study. Journal of NeuroEngineering and Rehabilitation, 2019, 16, 147.	2.4	21
523	New Innovations in Targeted Muscle Reinnervation. JBJS Reviews, 2019, 7, e3-e3.	0.8	15
524	Seamless Integrated Textrode-Band for Real-time Lower Limb Movements Classification to Facilitate Self-Administrated Phantom Limb Pain Treatment. , 2019, 2019, 1753-1756.		0
525	Caprine Models of the Agonist-Antagonist Myoneural Interface Implemented at the Above- and Below-Knee Amputation Levels. Plastic and Reconstructive Surgery, 2019, 144, 218e-229e.	0.7	15
526	Histologic Analysis of Sensory and Motor Axons in Branches of the Human Brachial Plexus. Plastic and Reconstructive Surgery, 2019, 144, 1359-1368.	0.7	7
527	Modular Prosthetic Limb Control by an Individual with Congenital Upper-Limb Amputation: A Case Report. Journal of Prosthetics and Orthotics, 2019, 31, 213-221.	0.2	2
528	The Role of Muscle Stem Cells in Regeneration and Recovery after Denervation: A Review. Plastic and Reconstructive Surgery, 2019, 143, 779-788.	0.7	16
529	Prosthetic Rehabilitation and Vascularized Composite Allotransplantation following Upper Limb Loss. Plastic and Reconstructive Surgery, 2019, 143, 1688-1701.	0.7	16
530	Electrotactile Feedback in a Virtual Hand Rehabilitation Platform: Evaluation and Implementation. IEEE Transactions on Automation Science and Engineering, 2019, 16, 1556-1565.	3.4	23
531	Peripheral nerve transfers change target muscle structure and function. Science Advances, 2019, 5, eaau2956.	4.7	46
532	Micro-channel sieve electrode for concurrent bidirectional peripheral nerve interface. Part A: recording. Journal of Neural Engineering, 2019, 16, 026001.	1.8	6

# 533	ARTICLE Intelligent EMG Pattern Recognition Control Method for Upper-Limb Multifunctional Prostheses: Advances, Current Challenges, and Future Prospects. IEEE Access, 2019, 7, 10150-10165.	IF 2.6	CITATIONS
534	On the robustness of real-time myoelectric control investigations: a multiday Fitts' law approach. Journal of Neural Engineering, 2019, 16, 026003.	1.8	20
535	Decoding motor neuron activity from epimysial thin-film electrode recordings following targeted muscle reinnervation. Journal of Neural Engineering, 2019, 16, 016010.	1.8	27
536	Improving the functionality, robustness, and adaptability of myoelectric control for dexterous motion restoration. Experimental Brain Research, 2019, 237, 291-311.	0.7	42
537	Comparative Study of Segmentation and Feature Extraction Method on Finger Movement. Advances in Intelligent Systems and Computing, 2019, , 117-127.	0.5	0
538	The Progressive Intertwinement Between Design, Human Needs and the Regulation of Care Technology: The Case of Lower-Limb Exoskeletons. International Journal of Social Robotics, 2020, 12, 959-972.	3.1	18
539	Advanced technologies for intuitive control and sensation of prosthetics. Biomedical Engineering Letters, 2020, 10, 119-128.	2.1	19
540	Finger Joint Angle Estimation Based on Motoneuron Discharge Activities. IEEE Journal of Biomedical and Health Informatics, 2020, 24, 760-767.	3.9	62
541	An experimental study on upper limb position invariant EMG signal classification based on deep neural network. Biomedical Signal Processing and Control, 2020, 55, 101669.	3.5	94
542	Hand gesture recognition based on motor unit spike trains decoded from high-density electromyography. Biomedical Signal Processing and Control, 2020, 55, 101637.	3.5	65
543	Artificial sensory feedback for bionic hands. , 2020, , 131-145.		6
544	A Novel Postprocessing Method for Robust Myoelectric Pattern-Recognition Control Through Movement Pattern Transition Detection. IEEE Transactions on Human-Machine Systems, 2020, 50, 32-41.	2.5	13
545	A database of multi-channel intramuscular electromyogram signals during isometric hand muscles contractions. Scientific Data, 2020, 7, 10.	2.4	16
546	Amputation Surgeries for the Lower Limb. , 2020, , 471-503.		1
547	Rehabilitation for Persons With Upper Extremity Amputation. , 2020, , 784-797.		0
548	Evaluation of surface EMG-based recognition algorithms for decoding hand movements. Medical and Biological Engineering and Computing, 2020, 58, 83-100.	1.6	54
549	The Modular Prosthetic Limb. , 2020, , 393-444.		19
550	Sensing and Control for Prosthetic Hands in Clinical and Research Applications. , 2020, , 445-468.		12

#	Article	IF	CITATIONS
551	Serious gaming to generate separated and consistent EMG patterns in pattern-recognition prosthesis control. Biomedical Signal Processing and Control, 2020, 62, 102140.		19
552	Advancing limb neural prostheses. Science, 2020, 370, 290-291.	6.0	34
553	The Myokinetic Control Interface: How Many Magnets Can be Implanted in an Amputated Forearm? Evidence From a Simulated Environment. IEEE Transactions on Neural Systems and Rehabilitation Engineering, 2020, 28, 2451-2458.	2.7	10
554	Rehabilitation of high upper limb amputees after Targeted Muscle Reinnervation. Journal of Hand Therapy, 2022, 35, 58-66.	0.7	10
555	Wearable mechatronic devices for upper-limb amputees. , 2020, , 205-234.		4
556	Controlling a robotic arm for functional tasks using a wireless head-joystick: A case study of a child with congenital absence of upper and lower limbs. PLoS ONE, 2020, 15, e0226052.	1.1	4
557	Brain–Machine Interfaces as Commodities: Exchanging Mind for Matter. Linacre quarterly, The, 2020, 87, 387-398.	0.1	4
558	Neuromusculoskeletal Arm Prostheses: Personal and Social Implications of Living With an Intimately Integrated Bionic Arm. Frontiers in Neurorobotics, 2020, 14, 39.	1.6	31
559	Functional Electrical Stimulation Controlled by Motor Imagery Brain-Computer Interface for Rehabilitation. Brain Sciences, 2020, 10, 512.	1.1	12
560	Targeted Muscle Reinnervation in the Oncologic Population: A Literature Review and Current Practice. Current Surgery Reports, 2020, 8, 1.	0.4	2
561	Smartphone Control for People with Tetraplegia by Decoding Wearable Electromyography with an On-Device Convolutional Neural Network. , 2020, , .		2
562	Targeted Muscle Reinnervation as a Solution for Nerve Pain. Plastic and Reconstructive Surgery, 2020, 146, 651e-663e.	0.7	24
563	Flexible Dry Electrodes for EMG Acquisition within Lower Extremity Prosthetic Sockets. , 2020, 2020, 1088-1095.		12
564	Dexterous Force Estimation during Finger Flexion and Extension Using Motor Unit Discharge Information. , 2020, 2020, 3130-3133.		4
565	Exploring augmented grasping capabilities in a multi-synergistic soft bionic hand. Journal of NeuroEngineering and Rehabilitation, 2020, 17, 116.	2.4	13
566	Targeted Muscle Reinnervation Improves Residual Limb Pain, Phantom Limb Pain, and Limb Function: A Prospective Study of 33 Major Limb Amputees. Clinical Orthopaedics and Related Research, 2020, 478, 2161-2167.	0.7	52
567	Robustness of Muscle Synergies under Variant Muscle Contraction Force during Forearm Movements. , 2020, 2020, 3306-3309.		2
568	Novel approach for electromyography-controlled prostheses based on facial action. Medical and Biological Engineering and Computing, 2020, 58, 2685-2698.	1.6	7

#	Article		CITATIONS
569	Surface EMG in Clinical Assessment and Neurorehabilitation: Barriers Limiting Its Use. Frontiers in Neurology, 2020, 11, 934.		100
570	CORR Insights®: Targeted Muscle Reinnervation Improves Residual Limb Pain, Phantom Limb Pain, and Limb Function: A Prospective Study of 33 Major Limb Amputees. Clinical Orthopaedics and Related Research, 2020, 478, 2168-2169.		Ο
571	Targeted muscle reinnervation following external hemipelvectomy or hip disarticulation: An anatomic description of technique and clinical case correlates. Journal of Surgical Oncology, 2020, 122, 1693-1710.		11
572	Evaluation of a Simultaneous Myoelectric Control Strategy for a Multi-DoF Transradial Prosthesis. IEEE Transactions on Neural Systems and Rehabilitation Engineering, 2020, 28, 2286-2295.	2.7	14
573	EMG-Force and EMG-Target Models During Force-Varying Bilateral Hand-Wrist Contraction in Able-Bodied and Limb-Absent Subjects. IEEE Transactions on Neural Systems and Rehabilitation Engineering, 2020, 28, 3040-3050.	2.7	10
574	CLoSES: A platform for closed-loop intracranial stimulation in humans. NeuroImage, 2020, 223, 117314.	2.1	21
575	Feasibility of Two Different EMC-Based Pattern Recognition Control Paradigms to Control a Robot After Stroke – Case Study. , 2020, 2020, 833-838.		0
576	Pose Estimation from Electromyographical Data using Convolutional Neural Networks. , 2020, 2020, 653-656.		1
577	Assessment of an Automatic Prosthetic Elbow Control Strategy Using Residual Limb Motion for Transhumeral Amputated Individuals With Socket or Osseointegrated Prostheses. IEEE Transactions on Medical Robotics and Bionics, 2020, 2, 38-49.		22
578	Real-Time Hand Gesture Recognition Using Surface Electromyography and Machine Learning: A Systematic Literature Review. Sensors, 2020, 20, 2467.	2.1	119
579	Intent Prediction Based on Biomechanical Coordination of EMG and Vision-Filtered Gaze for End-Point Control of an Arm Prosthesis. IEEE Transactions on Neural Systems and Rehabilitation Engineering, 2020, 28, 1471-1480.		30
580	The future of upper extremity rehabilitation robotics: research and practice. Muscle and Nerve, 2020, 61, 708-718.	1.0	22
581	Soft Electronics for the Skin: From Health Monitors to Human–Machine Interfaces. Advanced Materials Technologies, 2020, 5, .	3.0	80
582	Innervation: the missing link for biofabricated tissues and organs. Npj Regenerative Medicine, 2020, 5, 11.	2.5	56
583	The current state of bionic limbs from the surgeon's viewpoint. EFORT Open Reviews, 2020, 5, 65-72.	1.8	23
584	A regenerative peripheral nerve interface allows real-time control of an artificial hand in upper limb amputees. Science Translational Medicine, 2020, 12, .	5.8	166
585	Decoding of grasping tasks from intraneural recordings in trans-radial amputee. Journal of Neural Engineering, 2020, 17, 026034.	1.8	39
586	Surgery for lower extremity symptomatic neuroma: Long-term outcomes. Journal of Plastic, Reconstructive and Aesthetic Surgery, 2020, 73, 1456-1464.	0.5	11

#	Article		CITATIONS
587	Spirally Arrayed Electrode for Spatially Selective and Minimally Displacive Peripheral Nerve Interface. Journal of Microelectromechanical Systems, 2020, 29, 514-521.		3
588	Fabric Vest Socket with Embroidered Electrodes for Control of Myoelectric Prosthesis. Sensors, 2020, 20, 1196.	2.1	11
589	Targeted Muscle Reinnervation for Treatment of Neuropathic Pain. Clinics in Plastic Surgery, 2020, 47, 285-293.	0.7	24
590	Model-Based Control of Individual Finger Movements for Prosthetic Hand Function. IEEE Transactions on Neural Systems and Rehabilitation Engineering, 2020, 28, 612-620.	2.7	23
591	A Comparison of Recognition and Sensitivity in the Upper Arm and Lower Arm to Mechanotactile Stimulation. IEEE Transactions on Medical Robotics and Bionics, 2020, 2, 76-85.	2.1	3
592	Self-Contained Neuromusculoskeletal Arm Prostheses. New England Journal of Medicine, 2020, 382, 1732-1738.	13.9	151
593	Identification of Upper-Limb Movements Based on Muscle Shape Change Signals for Human-Robot Interaction. Computational and Mathematical Methods in Medicine, 2020, 2020, 1-14.	0.7	10
594	Skill transfer learning for autonomous robots and human–robot cooperation: A survey. Robotics and Autonomous Systems, 2020, 128, 103515.	3.0	50
595	Agency and Performance of Reach-to-Grasp With Modified Control of a Virtual Hand: Implications for Rehabilitation. Frontiers in Human Neuroscience, 2020, 14, 126.	1.0	16
596	Human-machine shared control: New avenue to dexterous prosthetic hand manipulation. Science China Technological Sciences, 2021, 64, 767-773.	2.0	12
597	Restoring Form and Function to the Partial Hand Amputee. Hand Clinics, 2021, 37, 167-187.	0.4	12
598	Risk Factors for Neuropathic Pain Following Major Upper Extremity Amputation. Journal of Reconstructive Microsurgery, 2021, 37, 413-420.	1.0	17
599	Exploring the Relationship Between EMG Feature Space Characteristics and Control Performance in Machine Learning Myoelectric Control. IEEE Transactions on Neural Systems and Rehabilitation Engineering, 2021, 29, 21-30.	2.7	13
600	Body-Powered Prosthetic Systems. , 2021, , 27-35.		1
601	Biomimetics and Its Influence in Plastic and Reconstructive Surgery. Series in Bioengineering, 2021, , 29-43.	0.3	1
602	Stand-Up, Squat, Lunge, and Walk With a Robotic Knee and Ankle Prosthesis Under Shared Neural Control. IEEE Open Journal of Engineering in Medicine and Biology, 2021, 2, 267-277.	1.7	18
603	A KNN-Based Approach for Myoelectric Arm. Lecture Notes in Networks and Systems, 2021, , 301-308.	0.5	1
604	A Multi-Variate Approach to Predicting Myoelectric Control Usability. IEEE Transactions on Neural Systems and Rehabilitation Engineering, 2021, 29, 1312-1327.	2.7	11

# 605	ARTICLE Targeted reinnervation for somatosensory feedback. , 2021, , 245-263.	IF	CITATIONS 0
606	Shoulder kinematics plus contextual target information enable control of multiple distal joints of a simulated prosthetic arm and hand. Journal of NeuroEngineering and Rehabilitation, 2021, 18, 3.	2.4	13
607	Activities of daily living with bionic arm improved by combination training and latching filter in prosthesis control comparison. Journal of NeuroEngineering and Rehabilitation, 2021, 18, 45.	2.4	15
608	Validity and Reliability of Surface Electromyography Features in Lower Extremity Muscle Contraction in Healthy and Spinal Cord–Injured Participants. Topics in Spinal Cord Injury Rehabilitation, 2021, 27, 14-27.	0.8	3
609	User training for machine learning controlled upper limb prostheses: a serious game approach. Journal of NeuroEngineering and Rehabilitation, 2021, 18, 32.	2.4	25
610	Neural interfacing architecture enables enhanced motor control and residual limb functionality postamputation. Proceedings of the National Academy of Sciences of the United States of America, 2021, 118, .	3.3	13
611	Surgical and technological advances in the management of upper limb amputees. Bone and Joint Journal, 2021, 103-B, 430-439.	1.9	15
612	Control Strategies and Performance Assessment of Upper-Limb TMR Prostheses: A Review. Sensors, 2021, 21, 1953.	2.1	17
613	Extended home use of an advanced osseointegrated prosthetic arm improves function, performance, and control efficiency. Journal of Neural Engineering, 2021, 18, 026020.	1.8	17
614	Sensory feedback for limb prostheses in amputees. Nature Materials, 2021, 20, 925-939.	13.3	121
615	Targeted Muscle Reinnervation in Partial Hand Amputations. Plastic and Reconstructive Surgery - Global Open, 2021, 9, e3542.	0.3	6
616	Toward higher-performance bionic limbs for wider clinical use. Nature Biomedical Engineering, 2023, 7, 473-485.	11.6	104
617	Recent Advances in Myoelectric Control for Finger Prostheses for Multiple Finger Loss. Applied Sciences (Switzerland), 2021, 11, 4464.	1.3	6
618	Toward Hand Pattern Recognition in Assistive and Rehabilitation Robotics Using EMG and Kinematics. Frontiers in Neurorobotics, 2021, 15, 659876.	1.6	17
619	Perception of Static Position and Kinesthesia of the Finger using Vibratory Stimulation. , 2021, 2021, 1087-1090.		0
620	Surface Electromyogram Based Techniques for Upper and Lower Extremity Rehabilitation Therapy - A Comprehensive Review. , 2021, , .		2
621	Concurrent Estimation of Finger Flexion and Extension Forces Using Motoneuron Discharge Information. IEEE Transactions on Biomedical Engineering, 2021, 68, 1638-1645.	2.5	12
622	Hybrid Tongue - Myoelectric Control Improves Functional Use of a Robotic Hand Prosthesis. IEEE Transactions on Biomedical Engineering, 2021, 68, 2011-2020.	2.5	4

#	Article		CITATIONS
623	Dielectric Elastomer Actuators, Neuromuscular Interfaces, and Foreign Body Response in Artificial Neuromuscular Prostheses: A Review of the Literature for an In Vivo Application. Advanced Healthcare Materials, 2021, 10, e2100041.		25
624	Static and dynamic proprioceptive recognition through vibrotactile stimulation. Journal of Neural Engineering, 2021, 18, 046093.	1.8	8
625	The Need to Work Arm in Arm: Calling for Collaboration in Delivering Neuroprosthetic Limb Replacements. Frontiers in Neurorobotics, 2021, 15, 711028.	1.6	3
626	Myoelectric control of robotic lower limb prostheses: a review of electromyography interfaces, control paradigms, challenges and future directions. Journal of Neural Engineering, 2021, 18, 041004.	1.8	75
627	An integrated deep learning model for motor intention recognition of multi-class EEG Signals in upper limb amputees. Computer Methods and Programs in Biomedicine, 2021, 206, 106121.	2.6	22
629	EMG Based Control of Transhumeral Prosthesis Using Machine Learning Algorithms. International Journal of Control, Automation and Systems, 2021, 19, 3522-3532.	1.6	15
630	Real-Time and Offline Evaluation of Myoelectric Pattern Recognition for the Decoding of Hand Movements. Sensors, 2021, 21, 5677.	2.1	5
631	Acquisition of Surface EMG Using Flexible and Low-Profile Electrodes for Lower Extremity Neuroprosthetic Control. IEEE Transactions on Medical Robotics and Bionics, 2021, 3, 563-572.	2.1	10
632	Brain-Machine Interfaces. Hand Clinics, 2021, 37, 391-399.	0.4	1
633	Recommendations for the Successful Implementation of Upper Limb Prosthetic Technology. Hand Clinics, 2021, 37, 457-466.	0.4	4
634	Starfish Procedure. Hand Clinics, 2021, 37, 447-455.	0.4	4
635	Training for users of myoelectric multigrip hand prostheses: a scoping review. Prosthetics and Orthotics International, 2021, 45, 393-400.	0.5	7
636	Targeted Muscle Reinnervation for Prosthetic Control. Hand Clinics, 2021, 37, 415-424.	0.4	10
637	Regenerative Peripheral Nerve Interfaces for the Treatment and Prevention of Neuromas and Neuroma Pain. Hand Clinics, 2021, 37, 361-371.	0.4	14
638	Simulation of human lower limb skeletal muscle motion based on deep learning. International Journal of Systems Assurance Engineering and Management, 0, , 1.	1.5	0
639	Engineering and surgical advancements enable more cognitively integrated bionic arms. Science Robotics, 2021, 6, eabk3123.	9.9	7
640	A new strategy based on feature filtering technique for improving the real-time control performance of myoelectric prostheses. Biomedical Signal Processing and Control, 2021, 70, 102969.	3.5	8
641	Design, Construction and Tests of a Low-Cost Myoelectric Thumb. Technologies, 2021, 9, 63.	3.0	2

#	Article	IF	CITATIONS
642	Factors influencing perceived function in the upper limb prosthesis user population. PM and R, 2023, 15, 69-79.		2
643	Proof of concept for multiple nerve transfers to a single target muscle. ELife, 2021, 10, .	2.8	5
644	Optimal Spatial Sensor Design for Magnetic Tracking in a Myokinetic Control Interface. Computer Methods and Programs in Biomedicine, 2021, 211, 106407.		8
645	Salvage v Amputation: Lower Extremity and Upper Extremity. , 2021, , 225-242.		Ο
646	Targeted Muscle Reinnervation: A Paradigm Shift for Neuroma Management and Improved Prosthesis Control in Major Limb Amputees. Journal of the American Academy of Orthopaedic Surgeons, The, 2021, 29, 288-296.	1.1	10
647	Enhancing Classification Accuracy of Transhumeral Prosthesis: A Hybrid sEMG and fNIRS Approach. IEEE Access, 2021, 9, 113246-113257.		7
648	Semi-Automated Control System for Reaching Movements in EMG Shoulder Disarticulation Prosthesis Based on Mixed Reality Device. IEEE Open Journal of Engineering in Medicine and Biology, 2021, 2, 55-64.	1.7	4
649	Armadillo-inspired micro-foldable metal electrodes with a negligible resistance change under large stretchability. Journal of Materials Chemistry C, 2021, 9, 4046-4052.	2.7	1
650	Bioinspired Prosthetic Interfaces. Advanced Materials Technologies, 2020, 5, 1900856.	3.0	42
651	Performance Evaluation Methods for Assistive Robotic Technology. , 2009, , 41-66.		18
652	Peripheral Nerve Interface Applications, EMG/ENG. , 2014, , 1-10.		3
653	Novel Control Strategies for Upper Limb Prosthetics. Biosystems and Biorobotics, 2019, , 171-174.	0.2	5
654	Regenerative Neural Electrodes. , 2020, , 281-298.		1
655	Towards a Natural Interface for the Control of a Whole Arm Prosthesis. Mechanisms and Machine Science, 2016, , 47-59.	0.3	2
656	Prospects of Neurorehabilitation Technologies Based on Robust Decoding of the Neural Drive to Muscles Following Targeted Muscle Reinnervation. Biosystems and Biorobotics, 2017, , 1359-1363.	0.2	1
657	Design and Control of Lightweight Supernumerary Robotic Limbs for Sitting/Standing Assistance. Springer Proceedings in Advanced Robotics, 2017, , 299-308.	0.9	10
658	Conduction Properties of Decellularized Nerve Biomaterials. IFMBE Proceedings, 2010, 32, 430-433.	0.2	10
659	Recognition of Combined Arm Motions Using Support Vector Machine. Lecture Notes in Electrical Engineering, 2011, , 807-814.	0.3	2

#	Article		CITATIONS
661	Passive Mechanical Skin Stretch for Multiple Degree-of-Freedom Proprioception in a Hand Prosthesis. Lecture Notes in Computer Science, 2014, , 120-128.		25
662	Realizing Efficient EMG-Based Prosthetic Control Strategy. Advances in Experimental Medicine and Biology, 2019, 1101, 149-166.		9
663	Chronic Use of a Sensitized Bionic Hand Does Not Remap the Sense of Touch. Cell Reports, 2020, 33, 108539.	2.9	25
664	A large electroencephalographic motor imagery dataset for electroencephalographic brain computer interfaces. Scientific Data, 2018, 5, 180211.		94
665	Enhancing classification accuracy of fNIRS-BCI using features acquired from vector-based phase analysis. Journal of Neural Engineering, 2020, 17, 056025.	1.8	36
666	Forequarter Amputation and Reconstructive Options. Annals of Plastic Surgery, 2020, 84, 651-656.	0.5	5
667	Reinventing Extremity Amputation in the Era of Functional Limb Restoration. Annals of Surgery, 2021, 273, 269-279.	2.1	36
670	Surface Eletromyography Feature Extraction Techniques $\hat{a} \in \hat{A}$ A Review. , 2020, , .		18
671	Electromyography (EMG) based Classification of Finger Movements using SVM. Journal of the Malaysian Branch of the Royal Asiatic Society, 2018, 8, .	0.2	10
672	Integrating neuromuscular and cyber systems for neural control of artificial legs. , 2010, , .		24
673	Future Research Directions. Series in Medical Physics and Biomedical Engineering, 2013, , 165-184.	0.1	1
674	The LET Procedure for Prosthetic Myocontrol: Towards Multi-DOF Control Using Single-DOF Activations. PLoS ONE, 2016, 11, e0161678.	1.1	23
675	Get Your Paws off of My Pixels: Personal Identity and Avatars as Self. Journal of Medical Internet Research, 2010, 12, e28.	2.1	8
676	Sensory Feedback in Upper Limb Prostheses. Proceedings of the Latvian Academy of Sciences, 2020, 74, 308-317.	0.0	3
678	An open-source and cross-platform framework for Brain Computer Interface-guided robotic arm control. , 2012, 3, 149.		4
679	15 Years of Evolution of Non-Invasive EEG-Based Methods for Restoring Hand & Arm Function with Motor Neuroprosthetics in Individuals with High Spinal Cord Injury: A Review of Graz BCI Research. Journal of Biomedical Science and Engineering, 2017, 10, 317-325.	0.2	4
680	Title is missing!. Journal of Medical and Biological Engineering, 2010, 30, 399.	1.0	42
681	Deprivation-related and use-dependent plasticity go hand in hand. ELife, 2013, 2, e01273.	2.8	93

		CITATION REPORT	
# 682	ARTICLE Spinal Interfacing via Muscle Recordings for Neuroprosthesis Control. , 2021, , 1-29.	IF	Citations
683	Evaluating the Ability of Congenital Upper Extremity Amputees to Control a Multi-Degree of Myoelectric Prosthesis. Journal of Hand Surgery, 2022, 47, 1019.e1-1019.e9.	Freedom 0.7	2
684	Evaluation of Grasping Motion Using a Virtual Prosthetic Control System. Transactions of the Society of Instrument and Control Engineers, 2010, 46, 578-585.	[,] 0.1	0
686	Estimation of Arm Joint Angles from Surface Electromyography signals using Artificial Neural Networks. IOSR Journal of Computer Engineering, 2013, 15, 38-44.	0.1	1
687	Constraints and Flexibility in Cortical Control of the Hand. Springer Tracts in Advanced Robot 2014, , 3-21.	ics, 0.3	1
688	A Learning-Based Approach to Artificial Sensory Feedback. Springer Briefs in Electrical and Co Engineering, 2014, , 31-46.	mputer 0.3	Ο
689	ä≌å·¥ã®æ‰∢ã®ç"ç©¶é–‹ç™≗å‹•å'. Journal of the Society of Biomechanisms, 2014, 38, 3-10.	0.0	0
690	ç‹é›»å^¶å¾¡åž‹ã@義手. Journal of the Society of Biomechanisms, 2014, 38, 39-46.	0.0	3
691	Chronic Pain and Body Experience: Neuroscientific Basis and Implications For Treatment. , 20 249-268.	15,,	1
692	Achievement of a Myoelectric Clamp Provided by an Optical Shifting Control for Upper Limb Amputations. Lecture Notes in Computer Science, 2015, , 180-188.	1.0	1
693	Limb Transplantation. , 2015, , 537-543.		0
695	Achievement of a Multi DOF Myoelectric Interface for Hand Prosthesis. Lecture Notes in Com Science, 2016, , 637-644.	puter 1.0	Ο
696	Advances in Targeted Re-innervation. Anaplastology, 2016, 05, .	0.1	0
697	Grasping force estimation for prosthetic hands via feature extraction of surface EMG. , 2016,	y.	0
698	Targeted Reinnervation Strategies to Restore Upper Limb Function. , 2017, , 281-288.		0
699	Hand Transplantation: Current concepts and management algorithm. Revista Facultad De Me 2017, 65, 491-500.	edicina, 0.0	1
702	Mechanism and control of powered artificial arm with bi-articular muscular hydraulic bilateral servo. Biomechanisms, 2018, 24, 91-101.	0.1	0
704	A Hybrid Non-invasive Method for the Classification of Amputee's Hand and Wrist Mover Proceedings, 2019, , 161-166.	nents. IFMBE 0.2	0

# 705	ARTICLE Development of EMG Controlled Electric Wheelchair Using SVM and kNN Classifier for SCI Patients. Communications in Computer and Information Science, 2019, , 75-83.	IF 0.4	CITATIONS
706	Biologisierte Robotik und Biomechatronik. , 2019, , 203-228.		0
711	Targeted Muscle Reinnervation and the Volar Forearm Filet Flap for Forequarter Amputation: Description of Operative Technique. Journal of Hand Surgery Global Online, 2020, 2, 306-311.	0.3	2
715	Limbs from the Windy City. , 2022, , 275-286.		Ο
716	Modern Myoprostheses in Electric Burn Injuries of the Upper Extremity. , 2020, , 317-324.		0
717	Selective Chronic Recording in the Peripheral Nervous System. , 2020, , 315-330.		0
718	Estimation of Targeted-Reaching-Positions by Around-Shoulder Muscle Activities and Images from an Action Camera for Trans-Humeral Prosthesis Control. , 0, , .		0
720	Neural Engineering. , 0, , 713-744.		0
721	Prosthetic and Orthotic Devices. , 0, , 788-852.		1
722	Prosthetic and Orthotic Devices. , 0, , 549-613.		1
723	A Biomimetic Adaptive Algorithm and Micropower Circuit Architecture for Implantable Neural Decoders. , 0, , 216-254.		1
728	The Starfish Procedure. Techniques in Orthopaedics, 2021, 36, 345-348.	0.1	1
729	The Octopus Procedure Combined with Targeted Muscle Reinnervation for Elective Transhumeral Amputation. Plastic and Reconstructive Surgery - Global Open, 2021, 9, e3931.	0.3	2
730	Utilization of Techniques for Upper Extremity Amputation Neuroma Treatment and Prevention. Journal of Plastic, Reconstructive and Aesthetic Surgery, 2022, 75, 1551-1556.	0.5	6
731	Nerve Injury After Distal Radius, Metacarpal, and Finger Fractures. , 2022, , 145-166.		0
732	Targeted Muscle Reinnervation as a Surgical Approach for Phantom Limb Pain Management Following Amputation. Current Physical Medicine and Rehabilitation Reports, 2021, 9, 200-206.	0.3	0
734	A biomechatronics-based EPP topology for upper-limb prosthesis control: Modeling & benchtop prototype. Biomedical Signal Processing and Control, 2022, 73, 103454.	3.5	0
735	A Robust Multi-Channel EEG Signals Preprocessing Method for Enhanced Upper Extremity Motor Imagery Decoding. , 2020, , .		0

ARTICLE IF CITATIONS The Real Time Motion Pattern Recognition of Lower Limb Based on sEMG signals., 2020,,. 736 1 Comparing Reinforcement Learning Agents and Supervised Learning Neural Networks for EMG-Based Decoding of Continuous Movements., 2021, 2021, 6297-6300. A parallel classification strategy to simultaneous control elbow, wrist, and hand movements. Journal 738 2.4 4 of NeuroEngineering and Rehabilitation, 2022, 19, 10. A review of haptic feedback through peripheral nerve stimulation for upper extremity prosthetics. 1.8 Current Opinion in Biomedical Engineering, 2022, 21, 100368. Surgical and Technological Advances in the Management of Upper Limb Amputation. Current Physical 741 0.3 0 Medicine and Rehabilitation Reports, 2022, 10, 1-7. A multidimensional facial surface EMG analysis for objective assessment of bulbar involvement in 742 amyotrophic lateral sclerosis. Clinical Neurophysiology, 2022, 135, 74-84. Review on electromyography based intention for upper limb control using pattern recognition for human-machine interaction. Proceedings of the Institution of Mechanical Engineers, Part H: Journal 743 1.0 17 of Engineering in Medicine, 2022, 236, 628-645. Trajectory Control–An Effective Strategy for Controlling Multi-DOF Upper Limb Prosthetic Devices. IEEE Transactions on Neural Systems and Rehabilitation Engineering, 2022, 30, 420-430. 2.7 Advances in Upper Extremity Prosthetic Technology: Rehabilitation and the Interprofessional Team. 745 0.3 3 Current Physical Medicine and Rehabilitation Reports, 2022, 10, 71-76. Prosthetic embodiment: systematic review on definitions, measures, and experimental paradigms. 746 2.4 Journal of NeuroEngineering and Rehabilitation, 2022, 19, 37. Hand Transplants, Daily Functioning, and the Human Capacity for Limb Regeneration. Frontiers in Cell 747 1.8 1 and Developmental Biology, 2022, 10, 812124. A generic neural network model to estimate populational neural activity for robust neural decoding. 748 Computers in Biology and Medicine, 2022, 144, 105359. Design and Validation of a Sensor Fault-Tolerant Module for Real-Time High-Density EMG Pattern 749 1 Recognition., 2021, 2021, 6738-6742. Biorealistic Control of Hand Prosthesis Augments Functional Performance of Individuals With 1.4 Amputation. Frontiers in Neuroscience, 2021, 15, 783505. Age-Dependent Upper Limb Myoelectric Control Capability in Typically Developing Children. IEEE 751 2.7 2 Transactions on Neural Systems and Rehabilitation Engineering, 2022, 30, 1009-1018. A Novel Myoelectric Control Scheme Supporting Synchronous Gesture Recognition and Muscle Force Estimation. IEEE Transactions on Neural Systems and Rehabilitation Engineering, 2022, 30, 1127-1137. 753 On Eliciting a Sense of Self when Integrating with Computers., 2022, , . 6 Skin stimulation and recording: Moving towards metal-free electrodes. Biosensors and 754 Bioelectronics: X, 2022, , 100143.

#	Article	IF	CITATIONS
763	End-to-End Estimation of Hand- and Wrist Forces From Raw Intramuscular EMG Signals Using LSTM Networks. Frontiers in Neuroscience, 2021, 15, 777329.	1.4	4
764	Domain Adaptation With Self-Guided Adaptive Sampling Strategy: Feature Alignment for Cross-User Myoelectric Pattern Recognition. IEEE Transactions on Neural Systems and Rehabilitation Engineering, 2022, 30, 1374-1383.	2.7	10
765	First Demonstration of Functional Task Performance Using a Sonomyographic Prosthesis: A Case Study. Frontiers in Bioengineering and Biotechnology, 2022, 10, .	2.0	10
766	Monitoring at-home prosthesis control improvements through real-time data logging. Journal of Neural Engineering, 2022, 19, 036021.	1.8	2
767	Bionic Prostheses: The Emerging Alternative to Vascularised Composite Allotransplantation of the Limb. Frontiers in Surgery, 2022, 9, .	0.6	0
768	Identifying Oscillations under Multi-site Sensory Stimulation for High-level Peripheral Nerve Injured Patients:A Pilot Study. Journal of Neural Engineering, 2022, , .	1.8	0
769	Disruption of targeted muscle reinnervation due to heterotopic ossification in an amputated lower extremity. BMJ Case Reports, 2022, 15, e249705.	0.2	1
770	Surgically Implanted Electrodes Enable Real-Time Finger and Grasp Pattern Recognition for Prosthetic Hands. IEEE Transactions on Robotics, 2022, 38, 2841-2857.	7.3	8
772	The Effect of Signal Interval from sEMG sensors Combined with Mechanical Sensors on the Classification of Walking Patterns and Posture Activities. , 2022, , .		0
773	Management of conflict injuries to the upper limb. Part 2: reconstruction and managing complications. Journal of Hand Surgery: European Volume, 2022, 47, 787-797.	0.5	4
774	Factors Related to Neuropathic Pain following Lower Extremity Amputation. Plastic and Reconstructive Surgery, 2022, 150, 446-455.	0.7	8
775	Extra-neural signals from severed nerves enable intrinsic hand movements in transhumeral amputations. Scientific Reports, 2022, 12, .	1.6	3
776	Peripheral Nerve Interface Applications, EMG/ENG. , 2022, , 2660-2668.		0
777	A Real-Time EMG-Based Fixed-Bandwidth Frequency-Domain Embedded System for Robotic Hand. Frontiers in Neurorobotics, 0, 16, .	1.6	4
778	Evaluation of Simple Algorithms for Proportional Control of Prosthetic Hands Using Intramuscular Electromyography. Sensors, 2022, 22, 5054.	2.1	2
779	Surgical Treatment of Peripheral Nerve Neuromas: A Systematic Review and Meta-Analysis. Plastic and Reconstructive Surgery, 2022, 150, 823e-834e.	0.7	7
780	Strenuous exercise-tolerance stretchable dry electrodes for continuous multi-channel electrophysiological monitoring. Npj Flexible Electronics, 2022, 6, .	5.1	15
781	Agonist-antagonist muscle strain in the residual limb preserves motor control and perception after amputation. Communications Medicine, 2022, 2, .	1.9	1

#	Article	IF	CITATIONS
782	Targeted Muscle Reinnervation of the brachial plexus region: A cadaveric study and case series. Orthoplastic Surgery, 2022, 9, 116-121.	0.2	1
784	Molecular mechanisms by which targeted muscle reinnervation improves the microenvironment of spinal cord motor neurons and target muscles. Neuroscience Letters, 2022, 789, 136879.	1.0	0
785	A Wearable Ultrasound Interface for Prosthetic Hand Control. IEEE Journal of Biomedical and Health Informatics, 2022, 26, 5384-5393.	3.9	12
786	Simultaneous and Proportional Real-Time Myocontrol of Up to Three Degrees of Freedom of the Wrist and Hand. IEEE Transactions on Biomedical Engineering, 2023, 70, 459-469.	2.5	19
787	Brain-Machine Interfaces for Upper and Lower Limb Prostheses. , 2022, , 1-45.		0
789	Efficacy of Biological and Physical Enhancement on Targeted Muscle Reinnervation. Cyborg and Bionic Systems, 2022, 2022, .	3.7	4
792	The Starfish Procedure for Independent Digital Control of a Myoelectric Prosthesis. Techniques in Hand and Upper Extremity Surgery, 2023, 27, 61-67.	0.3	1
793	sEMC-Based Hand Posture Recognition and Visual Feedback Training for the Forearm Amputee. Sensors, 2022, 22, 7984.	2.1	4
795	Use of regenerative peripheral nerve interfaces and intramuscular electrodes to improve prosthetic grasp selection: a case study. Journal of Neural Engineering, 2022, 19, 066010.	1.8	7
796	Neurostimulation artifact removal for implantable sensors improves signal clarity and decoding of motor volition. Frontiers in Human Neuroscience, 0, 16, .	1.0	2
797	User Performance With a Transradial Multi-Articulating Hand Prosthesis During Pattern Recognition and Direct Control Home Use. IEEE Transactions on Neural Systems and Rehabilitation Engineering, 2023, 31, 271-281.	2.7	8
798	A Deep CNN Framework for Neural Drive Estimation From HD-EMG Across Contraction Intensities and Joint Angles. IEEE Transactions on Neural Systems and Rehabilitation Engineering, 2022, 30, 2950-2959.	2.7	7
799	3D Bioelectronics with a Remodellable Matrix for Longâ€Term Tissue Integration and Recording. Advanced Materials, 2023, 35, .	11.1	8
800	Active upper limb prostheses: a review on current state and upcoming breakthroughs. Progress in Biomedical Engineering, 2023, 5, 012001.	2.8	17
801	Toward a generalizable deep CNN for neural drive estimation across muscles and participants. Journal of Neural Engineering, 2023, 20, 016006.	1.8	3
802	Embodied Communication: How Robots and People Communicate Through Physical Interaction. Annual Review of Control, Robotics, and Autonomous Systems, 2023, 6, 205-232.	7.5	7
803	Online Classification of Transient EMG Patterns for the Control of the Wrist and Hand in a Transradial Prosthesis. IEEE Robotics and Automation Letters, 2023, 8, 1045-1052.	3.3	3
804	Simultaneous Gesture Classification and Speed Control for Myoelectric Prosthetic Hand Using Joint-Loss Neural Network. , 2022, , .		1

#	Article	IF	CITATIONS
805	Reconstruction of Forequarter and Extended Forequarter Amputations: Indications and Outcomes. Plastic and Reconstructive Surgery, 2023, 152, 194-205.	0.7	0
806	Spinal Interfacing via Muscle Recordings for Neuroprosthesis Control. , 2023, , 975-1002.		Ο
807	Multi-source domain generalization and adaptation toward cross-subject myoelectric pattern recognition. Journal of Neural Engineering, 2023, 20, 016050.	1.8	7
808	X-reality for phantom limb management for amputees: A systematic review and meta-analysis. Engineered Regeneration, 2023, 4, 134-151.	3.0	1
809	Hierarchical strategy for sEMG classification of the hand/wrist gestures and forces of transradial amputees. Frontiers in Neurorobotics, 0, 17, .	1.6	1
810	Comparing Online Performance of EMG Pattern Recognition with and Without Joint Movements. Journal of Bionic Engineering, 0, , .	2.7	0
811	Targeted muscle reinnervation and regenerative peripheral nerve interfaces for pain prophylaxis and treatment: A systematic review. PM and R, 2023, 15, 1457-1465.	0.9	3
812	Prosthetics and Innovation. , 2022, , 421-435.		0
813	Myoelectric prosthesis hand grasp control following targeted muscle reinnervation in individuals with transradial amputation. PLoS ONE, 2023, 18, e0280210.	1.1	8
814	Brain-Machine Interfaces for Upper and Lower Limb Prostheses. , 2023, , 1091-1135.		0
815	Electrical nerve stimulation for sensory-neural pathway reconstruction in upper-limb amputees. Frontiers in Neuroscience, 0, 17, .	1.4	0
817	A review of current state-of-the-art control methods for lower-limb powered prostheses. Annual Reviews in Control, 2023, 55, 142-164.	4.4	17
818	Long-term upper-extremity prosthetic control using regenerative peripheral nerve interfaces and implanted EMG electrodes. Journal of Neural Engineering, 2023, 20, 026039.	1.8	12
822	An intelligent prosthetic system for EMG pattern recognition based prosthesis control [*] ., 2023,,.		0
830	EMG-based Gesture Recognition using Extreme Learning Machine. , 2023, , .		1
836	A testosterone pattern-based sEMG signal classification method using Singular Spectrum Analysis. , 2023, , .		0
843	Below Knee Amputation: Techniques to Improve Rehabilitation, Pain Management, and Function. , 2023, , 545-557.		0
845	Neural encoding of artificial sensations evoked by peripheral nerve stimulation for neuroprosthetic applications. , 2023, , 237-265.		0

#	Article	IF	CITATIONS
856	Limb Amputations in Cancer: Modern Perspectives, Outcomes, and Alternatives. Current Oncology Reports, 0, , .	1.8	0
858	Reactive-Accelerated-Aging Testing of Thinned Tissue-Engineered Electronic Nerve Interfaces. , 2023, , .		0
864	A survey on the state of the art of force myography technique (FMG): analysis and assessment. Medical and Biological Engineering and Computing, 2024, 62, 1313-1332.	1.6	0