Effect of Tempering Conditions on Milling Performance

Cereal Chemistry 86, 12-17 DOI: 10.1094/cchem-86-1-0012

Citation Report

#	Article	IF	CITATIONS
1	Effects of Extent of Chlorination, Extraction Rate, and Particle Size Reduction on Flour and Gluten Functionality Explored by Solvent Retention Capacity (SRC) and Mixograph. Cereal Chemistry, 2009, 86, 221-224.	1.1	24
2	Solvent Retention Capacity (SRC) Testing of Wheat Flour: Principles and Value in Predicting Flour Functionality in Different Wheatâ€Based Food Processes and in Wheat Breeding—A Review. Cereal Chemistry, 2011, 88, 537-552.	1.1	238
3	Development of a Benchtop Baking Method for Chemically Leavened Crackers. I. Identification of a Diagnostic Formula and Procedure. Cereal Chemistry, 2011, 88, 19-24.	1.1	15
4	Development of a Benchtop Baking Method for Chemically Leavened Crackers II. Validation of the Method. Cereal Chemistry, 2011, 88, 25-30.	1.1	12
5	Relative contribution of wheat flour constituents to Solvent Retention Capacity profiles of European wheats. Journal of Cereal Science, 2011, 53, 312-318.	1.8	68
6	Tracking diffusion of conditioning water in single wheat kernels of different hardnesses by near infrared hyperspectral imaging. Analytica Chimica Acta, 2011, 686, 64-75.	2.6	61
7	Suitability of solvent retention capacity tests to assess the cookie and bread making quality of European wheat flours. LWT - Food Science and Technology, 2012, 47, 56-63.	2.5	40
8	A Modelling Approach to Estimate the Level and Molecular Weight Distribution of β-Glucan During the Baking of an Oat-Based Bread. Food and Bioprocess Technology, 2012, 5, 1990-2002.	2.6	8
9	OPTIMIZATION OF GLUTEN PEAK TESTER: A STATISTICAL APPROACH. Journal of Food Quality, 2012, 35, 69-75.	1.4	59
10	Gravity flow operated small electricity generator retrofit kit to flour mill industry. Journal of Food Science and Technology, 2013, 50, 1006-1011.	1.4	4
11	Milling efficiency of triticale grain for commercial flour production. Journal of Cereal Science, 2013, 57, 527-530.	1.8	35
12	Flour Quality and Technological Abilities. Contemporary Food Engineering, 2013, , .	0.2	0
13	The Case for Water Activity as a Specification for Wheat Tempering and Flour Production. Cereal Foods World, 2015, 60, 166-170.	0.7	15
14	Relationship Between Solvent Retention Capacity and Protein Molecular Weight Distribution, Quality Characteristics, and Breadmaking Functionality of Hard Red Spring Wheat Flour. Cereal Chemistry, 2015, 92, 466-474.	1.1	36
15	Effect of tempering moisture of wheat on grinding energy, middlings and flour size distribution, and gluten and dough mixing properties. Journal of Cereal Science, 2016, 69, 306-312.	1.8	41
16	Biomechanical properties of wheat grains: the implications on milling. Journal of the Royal Society Interface, 2017, 14, 20160828.	1.5	26
17	Whole Grain Wheat Flour Production Using an Ultracentrifugal Mill. Cereal Chemistry, 2017, 94, 1001-1007.	1.1	12
18	Source of Variation in Flour Protein Quantity and Quality of a Top-Yielding Korean Wheat Cultivar, Baegjoong Grown from Different Regions. Journal of Crop Science and Biotechnology, 2018, 21, 103-111.	0.7	0

CITATION REPORT

#	Article	IF	CITATIONS
19	A Laboratory-Scale Tempering and Milling Method for Grain Sorghum. Transactions of the ASABE, 2018, 61, 713-721.	1.1	6
20	Tempering Improves Flour Properties of Refined Intermediate Wheatgrass (Thinopyrum intermedium). Foods, 2019, 8, 337.	1.9	6
21	Solvent retention capacity application to assess soft wheat flour quality for making whiteâ€ s alted noodles. Cereal Chemistry, 2019, 96, 497-507.	1.1	5
22	Quality of wheat flour and pan bread as influenced by the tempering time and milling system. Cereal Chemistry, 2019, 96, 429-438.	1.1	5
23	Assessing gluten strength with a new smallâ€scale LASRC method useful for soft wheat breeding programs. Cereal Chemistry, 2020, 97, 196-204.	1.1	8
24	The kneading process: A systematic review of the effects on dough rheology and resulting bread characteristics, including improvement strategies. Trends in Food Science and Technology, 2020, 104, 91-101.	7.8	68
25	Applying the Correlation between Amplitude and Phase Change for Massâ€Independent Moisture Content Evaluation of Wheat Flour. IEEJ Transactions on Electrical and Electronic Engineering, 2020, 15, 1863-1867.	0.8	1
26	Effects of CO2 snow addition during kneading on thermoregulation, dough rheological properties, and bread characteristics: A focus on ancient and modern wheat cultivars. International Journal of Refrigeration, 2020, 117, 52-60.	1.8	22
27	Influence of enzymatic tempering on milling characteristics, flour quality, crystallinity and microstructure of wheat. Journal of Food Measurement and Characterization, 2020, 14, 1986-1997.	1.6	6
28	Stone milling versus roller milling: A systematic review of the effects on wheat flour quality, dough rheology, and bread characteristics. Trends in Food Science and Technology, 2020, 97, 147-155.	7.8	83
29	Effects of tempering with steam on the water distribution of wheat grains and quality properties of wheat flour. Food Chemistry, 2020, 323, 126842.	4.2	25
30	Determination of the effect of high energy ultrasound application in tempering on flour quality of wheat. Ultrasonics Sonochemistry, 2020, 67, 105129.	3.8	10
31	Acorn flour properties depending on the production method and laboratory baking test results: A review. Comprehensive Reviews in Food Science and Food Safety, 2021, 20, 980-1008.	5.9	18
32	Influence of wheat conditioning duration on the technological qualities of flour. Research, Society and Development, 2021, 10, e20110111230.	0.0	1
33	The Effects of Two-Step Tempering Treatment on the Physical, Chemical and Technological Properties of Flour in Bread Wheats (Triticum aestivum L.). KahramanmaraÅŸ S¼tĀ§Ã¼ İmam Āœniversitesi Tarım Ve E Dergisi, 2022, 25, 181-190.)ooÄäa	1
34	Effect of Purple-Colored Wheat Bran Addition on Quality and Antioxidant Property of Bread and Optimization of Bread-Making Conditions. Applied Sciences (Switzerland), 2021, 11, 4034.	1.3	10
35	Impact of tempering process on yield and composition of quinoa flour. LWT - Food Science and Technology, 2021, 140, 110808.	2.5	5
36	The Effects of Two-Step Tempering Treatment on the Rheological Characteristics of Flour in Bread Wheat (Triticum aestivum L.). KahramanmaraÅŸ Sütçü Á°mam Üniversitesi Tarım Ve DoÄŸa Dergisi, 0, ,	. 0.2	1

CITATION REPORT

#	Article	IF	CITATIONS
37	Potential application of enzymes to improve quality of dry noodles by reducing water absorption of inferior-quality flour. Food Science and Biotechnology, 2021, 30, 921-930.	1.2	2
38	Biochemically assisted rice whitening for improving head rice yield. Journal of Food Process Engineering, 2021, 44, e13850.	1.5	1
39	Application of response surface methodology for optimization of wheat flour milling process. Cereal Chemistry, 2021, 98, 1215-1226.	1.1	8
40	Wheat Grinding Process with Low Moisture Content: A New Approach for Wholemeal Flour Production. Processes, 2021, 9, 32.	1.3	16
41	Utilisation of GlutoPeak tester on whole-wheat flour for gluten quality assessment. Quality Assurance and Safety of Crops and Foods, 2019, 11, 295-304.	1.8	13
42	Quality of Commercial Korean Domestic Wheat Flours and Their Dry Noodle-Making Performance. Korean Journal of Food and Cookery Science, 2018, 34, 366-374.	0.2	4
43	Relationship between Quality of Commercial Pastry and All-Purpose Flours Milled in Korea Analyzed by SRC Method and Their Cookie Making Performance. Korean Journal of Food and Cookery Science, 2017, 33, 443-451.	0.2	1
44	Ekmeklik Buğdaylara (Triticum aestivum L.) İki Aşamalı Uygulanan Tavlama İşleminin Unun Ekmeklik Özelliklerine Etkisi. European Journal of Science and Technology, 0, , 445-453.	0.5	2
45	Effects of acidic water tempering and heat treatment on the Shiga toxinâ€producing <i>Escherichia coli</i> (O121 and O26) load of wheat during tempering and its impact on wheat flour quality. Journal of Food Processing and Preservation, 2022, 46, e16155.	0.9	8
46	The effect of tempering on protein properties and arabinoxylan contents of intermediate wheatgrass (<i>Thinopyrum intermedium</i>) flour. Cereal Chemistry, 2022, 99, 144-156.	1.1	1
47	Laboratory Milling: Rheological Evaluation of Dry and Tempered Wheat. Bulletin of University of Agricultural Sciences and Veterinary Medicine Cluj-Napoca: Agriculture, 2012, 69, .	0.0	0
48	Impacts of weathering/preâ€harvest sprouting in the field on the milling and flour quality of soft wheats, and resulting baking performance for soft wheatâ€based baked products. Cereal Chemistry, 0, , .	1.1	0
49	Predicting the moisture content of organic wheat in the first stage of tempering. IFAC-PapersOnLine, 2022, 55, 678-683.	0.5	1
50	IMPROVING THE RHEOLOGICAL AND QUALITATIVE PROPERTIES OF BREAD WHEAT BY BARLEY-EXTRACTED PENTOSANES. Iraqi Journal of Agricultural Sciences, 2022, 53, 1212-1222.	0.1	0
51	Effects of tempering with plasma activated water on the degradation of deoxynivalenol and quality properties of wheat. Food Research International, 2022, 162, 112070.	2.9	5
52	Future trends in organic flour milling: the role of AI. AIMS Agriculture and Food, 2023, 8, 48-77.	0.8	3
53	Analysis of the Physicochemical Quality Characteristics of Korean Triticale by Cultivars and Grain-Processing Types. Journal of the Korean Society of Food Science and Nutrition, 2022, 51, 1194-1204.	0.2	0
54	Drought adaptability of different subspecies of tetraploid wheat (Triticum turgidum) under contrasting moisture conditions: Association with solvent retention capacity and quality-related traits. PLoS ONE, 2023, 18, e0275412.	1.1	1

#

55