Organised Genome Dynamics in the Escherichia coli Sp Adaptive Paths

PLoS Genetics 5, e1000344 DOI: 10.1371/journal.pgen.1000344

Citation Report

#	Article	IF	CITATIONS
1	MOSAIC: an online database dedicated to the comparative genomics of bacterial strains at the intra-species level. BMC Bioinformatics, 2008, 9, 498.	2.6	19
2	The Human Intestinal Microbiota and Microbiome. , 0, , 635-644.		0
3	Pathogenomics of the Virulence Plasmids of <i>Escherichia coli</i> . Microbiology and Molecular Biology Reviews, 2009, 73, 750-774.	6.6	377
4	Comparative genomics reveal the mechanism of the parallel evolution of O157 and non-O157 enterohemorrhagic Escherichia coli. Proceedings of the National Academy of Sciences of the United States of America, 2009, 106, 17939-17944.	7.1	325
5	Genome Sequencing and Comparative Analysis of <i>Klebsiella pneumoniae</i> NTUH-K2044, a Strain Causing Liver Abscess and Meningitis. Journal of Bacteriology, 2009, 191, 4492-4501.	2.2	300
6	A Module Located at a Chromosomal Integration Hot Spot Is Responsible for the Multidrug Resistance of a Reference Strain from <i>Escherichia coli</i> Clonal Group A. Antimicrobial Agents and Chemotherapy, 2009, 53, 2283-2288.	3.2	33
7	Genetic Structure and Distribution of the Colibactin Genomic Island among Members of the Family <i>Enterobacteriaceae</i> . Infection and Immunity, 2009, 77, 4696-4703.	2.2	273
8	Use of Zebrafish to Probe the Divergent Virulence Potentials and Toxin Requirements of Extraintestinal Pathogenic Escherichia coli. PLoS Pathogens, 2009, 5, e1000697.	4.7	72
9	Order and Disorder during Escherichia coli Divergence. PLoS Genetics, 2009, 5, e1000335.	3.5	23
10	Deletional Bias across the Three Domains of Life. Genome Biology and Evolution, 2009, 1, 145-152.	2.5	186
11	Cryptic Lineages of the Genus <i>Escherichia</i> . Applied and Environmental Microbiology, 2009, 75, 6534-6544.	3.1	233
12	Eradicating Typological Thinking in Prokaryotic Systematics and Evolution. Cold Spring Harbor Symposia on Quantitative Biology, 2009, 74, 197-204.	1.1	24
13	Genome reannotation of Escherichia coli CFT073 with new insights into virulence. BMC Genomics, 2009, 10, 552.	2.8	43
14	Genomic diversity of citrate fermentation in Klebsiella pneumoniae. BMC Microbiology, 2009, 9, 168.	3.3	14
15	aes, the gene encoding the esterase B in Escherichia coli, is a powerful phylogenetic marker of the species. BMC Microbiology, 2009, 9, 273.	3.3	9
16	Horizontal Gene Transfer of the Secretome Drives the Evolution of Bacterial Cooperation and Virulence. Current Biology, 2009, 19, 1683-1691.	3.9	217
17	Cells need safety valves. BioEssays, 2009, 31, 769-773.	2.5	28
18	Myopic selection of novel information drives evolution. Current Opinion in Biotechnology, 2009, 20, 504-508.	6.6	8

#	Article	IF	CITATIONS
19	Phylogeny of prokaryotes: does it exist and why should we care?. Research in Microbiology, 2009, 160, 513-521.	2.1	60
20	A challenge to vaccinology: Living organisms trap information. Vaccine, 2009, 27, G13-G16.	3.8	Ο
21	Whole-proteome phylogeny of prokaryotes by feature frequency profiles: An alignment-free method with optimal feature resolution. Proceedings of the National Academy of Sciences of the United States of America, 2010, 107, 133-138.	7.1	138
22	Comparison of 61 Sequenced Escherichia coli Genomes. Microbial Ecology, 2010, 60, 708-720.	2.8	436
23	Genome dynamics and its impact on evolution of Escherichia coli. Medical Microbiology and Immunology, 2010, 199, 145-154.	4.8	72
24	The attempt on the life of the Tree of Life: science, philosophy and politics. Biology and Philosophy, 2010, 25, 455-473.	1.4	22
25	Microbiology and the species problem. Biology and Philosophy, 2010, 25, 553-568.	1.4	78
26	On the need for integrative phylogenomics, and some steps toward its creation. Biology and Philosophy, 2010, 25, 711-736.	1.4	28
27	Complete sequence of pEC14_114, a highly conserved IncFIB/FIIA plasmid associated with uropathogenic Escherichia coli cystitis strains. Plasmid, 2010, 63, 53-60.	1.4	23
28	Exploring the HME and HAE1 efflux systems in the genus Burkholderia. BMC Evolutionary Biology, 2010, 10, 164.	3.2	32
29	Understanding the evolutionary relationships and major traits of Bacillus through comparative genomics. BMC Genomics, 2010, 11, 332.	2.8	143
30	Probing the pan-genome of Listeria monocytogenes: new insights into intraspecific niche expansion and genomic diversification. BMC Genomics, 2010, 11, 500.	2.8	74
31	Units of plasticity in bacterial genomes: new insight from the comparative genomics of two bacteria interacting with invertebrates, Photorhabdus and Xenorhabdus. BMC Genomics, 2010, 11, 568.	2.8	55
32	Comparative profiling of the transcriptional response to iron restriction in six serotypes of Actinobacillus pleuropneumoniae with different virulence potential. BMC Genomics, 2010, 11, 698.	2.8	21
33	The core genome of the anaerobic oral pathogenic bacterium Porphyromonas gingivalis. BMC Microbiology, 2010, 10, 252.	3.3	28
34	Some considerations for analyzing biodiversity using integrative metagenomics and gene networks. Biology Direct, 2010, 5, 47.	4.6	50
35	How Bacterial Pathogens were Constructed. , 0, , 1-15.		0
36	Emergence of fluoroquinoloneâ€resistant clonal group A: clonal analysis of Norwegian and Russian <i>E.Acoli</i> isolates. Apmis, 2010, 118, 571-577.	2.0	3

#	Article	IF	CITATIONS
37	Strandâ€specific mutational bias influences codon usage of weakly expressed genes in <i>Escherichia coli</i> . Genes To Cells, 2010, 15, 773-782.	1.2	10
38	The population genetics of commensal Escherichia coli. Nature Reviews Microbiology, 2010, 8, 207-217.	28.6	1,104
39	Mutational Patterns Cannot Explain Genome Composition: Are There Any Neutral Sites in the Genomes of Bacteria?. PLoS Genetics, 2010, 6, e1001104.	3.5	92
40	Derivation of Escherichia coli O157:H7 from Its O55:H7 Precursor. PLoS ONE, 2010, 5, e8700.	2.5	109
41	Complete Genome Sequence and Comparative Metabolic Profiling of the Prototypical Enteroaggregative Escherichia coli Strain 042. PLoS ONE, 2010, 5, e8801.	2.5	165
42	The GimA Locus of Extraintestinal Pathogenic E. coli: Does Reductive Evolution Correlate with Habitat and Pathotype?. PLoS ONE, 2010, 5, e10877.	2.5	17
43	Multi-Locus Sequence Typing of Enteroaggregative Escherichia coli Isolates from Nigerian Children Uncovers Multiple Lineages. PLoS ONE, 2010, 5, e14093.	2.5	79
44	Inference of Homologous Recombination in Bacteria Using Whole-Genome Sequences. Genetics, 2010, 186, 1435-1449.	2.9	155
45	ICE <i>Ec2</i> , a New Integrative and Conjugative Element Belonging to the pKLC102/PAGI-2 Family, Identified in <i>Escherichia coli</i> Strain BEN374. Journal of Bacteriology, 2010, 192, 5026-5036.	2.2	21
46	Characterization of the Contribution to Virulence of Three Large Plasmids of Avian Pathogenic <i>Escherichia coli</i> χ7122 (O78:K80:H9). Infection and Immunity, 2010, 78, 1528-1541.	2.2	65
48	Phylogenetic incongruence arising from fragmented speciation in enteric bacteria. Proceedings of the National Academy of Sciences of the United States of America, 2010, 107, 11453-11458.	7.1	62
49	Emergence and Dissemination of Extendedâ€Spectrum βâ€Lactamase–Producing <i>Escherichia coli</i> in the Community: Lessons from the Study of a Remote and Controlled Population. Journal of Infectious Diseases, 2010, 202, 515-523.	4.0	60
51	Autotransporters of Escherichia coli: a sequence-based characterization. Microbiology (United) Tj ETQq0 0 0 rgBT	/Overlock	2 10 Tf 50 26
52	Identification of protective and broadly conserved vaccine antigens from the genome of extraintestinal pathogenic <i>Escherichia coli</i> . Proceedings of the National Academy of Sciences of the United States of America, 2010, 107, 9072-9077.	7.1	222
53	Genome Sequence of the Deep-Rooted <i>Yersinia pestis</i> Strain Angola Reveals New Insights into the Evolution and Pangenome of the Plague Bacterium. Journal of Bacteriology, 2010, 192, 1685-1699.	2.2	117
54	Complete Genome Sequence of the Wild-Type Commensal <i>Escherichia coli</i> Strain SE15, Belonging to Phylogenetic Group B2. Journal of Bacteriology, 2010, 192, 1165-1166.	2.2	62
55	Genome Sequence of the Plant Growth Promoting Endophytic Bacterium Enterobacter sp. 638. PLoS Genetics, 2010, 6, e1000943.	3.5	282
56	Metagenomics and the Units of Biological Organization. BioScience, 2010, 60, 102-112.	4.9	51

#	Article	IF	Citations
57	The Small, Slow and Specialized CRISPR and Anti-CRISPR of Escherichia and Salmonella. PLoS ONE, 2010, 5, e11126.	2.5	198
58	Molecular mechanisms of Escherichia coli pathogenicity. Nature Reviews Microbiology, 2010, 8, 26-38.	28.6	875
59	Mobility of Plasmids. Microbiology and Molecular Biology Reviews, 2010, 74, 434-452.	6.6	919
60	Using comparative genome analysis to identify problems in annotated microbial genomes. Microbiology (United Kingdom), 2010, 156, 1909-1917.	1.8	97
61	Prevalence and phylogenetic history of the TcpC virulence determinant in Escherichia coli. International Journal of Medical Microbiology, 2010, 300, 429-434.	3.6	21
62	Effects of single and multiple pathogenicity island deletions on uropathogenic Escherichia coli strain 536 intrinsic extra-intestinal virulence. International Journal of Medical Microbiology, 2010, 300, 435-439.	3.6	29
63	Impact of recombination on bacterial evolution. Trends in Microbiology, 2010, 18, 315-322.	7.7	331
64	Approximate Bayesian Computation (ABC) in practice. Trends in Ecology and Evolution, 2010, 25, 410-418.	8.7	943
65	Hybrid fitness across time and habitats. Trends in Ecology and Evolution, 2010, 25, 530-536.	8.7	158
66	Host–pathogen interactions in urinary tract infection. Nature Reviews Urology, 2010, 7, 430-441.	3.8	380
67	Structure and dynamics of the pan-genome of Streptococcus pneumoniae and closely related species. Genome Biology, 2010, 11, R107.	8.8	321
68	Small variable segments constitute a major type of diversity of bacterial genomes at the species level. Genome Biology, 2010, 11, R45.	9.6	17
69	CRISPR Distribution within the Escherichia coli Species Is Not Suggestive of Immunity-Associated Diversifying Selection. Journal of Bacteriology, 2011, 193, 2460-2467.	2.2	139
70	Mutation Rate Inferred From Synonymous Substitutions in a Long-Term Evolution Experiment With <i>Escherichia coli</i> . G3: Genes, Genomes, Genetics, 2011, 1, 183-186.	1.8	157
71	Analysis of synonymous codon usage inShigella flexneri2a strain 301 and otherShigellaandEscherichiaÂcolistrains. Canadian Journal of Microbiology, 2011, 57, 1016-1023.	1.7	2
72	Insertion sequence-excision enhancer removes transposable elements from bacterial genomes and induces various genomic deletions. Nature Communications, 2011, 2, 152.	12.8	45
73	A Theory-Based Pragmatism for Discovering and Classifying Newly Divergent Bacterial Species. , 2011, , 21-41.		14
74	Population Structure of Pathogenic Bacteria. , 2011, , 43-57.		5

#	Article	IF	CITATIONS
75	Origins of the <i>E. coli</i> Strain Causing an Outbreak of Hemolytic–Uremic Syndrome in Germany. New England Journal of Medicine, 2011, 365, 709-717.	27.0	778
76	Evolution of Lipopolysaccharide Biosynthesis Genes. , 2011, , 339-370.		10
78	Genome sequencing of environmental <i>Escherichia coli</i> expands understanding of the ecology and speciation of the model bacterial species. Proceedings of the National Academy of Sciences of the United States of America, 2011, 108, 7200-7205.	7.1	279
79	Sugar metabolism, an additional virulence factor in enterobacteria. International Journal of Medical Microbiology, 2011, 301, 1-6.	3.6	69
80	What defines extraintestinal pathogenic Escherichia coli?. International Journal of Medical Microbiology, 2011, 301, 642-647.	3.6	236
81	Next-generation genomics of Pseudomonas syringae. Current Opinion in Microbiology, 2011, 14, 24-30.	5.1	35
82	Are pathogenic bacteria just looking for food? Metabolism and microbial pathogenesis. Trends in Microbiology, 2011, 19, 341-348.	7.7	306
83	The genome sequence of Bacillus subtilis subsp. spizizenii W23: insights into speciation within the B. subtilis complex and into the history of B. subtilis genetics. Microbiology (United Kingdom), 2011, 157, 2033-2041.	1.8	57
84	First evidence of the presence of genomic islands in Escherichia coli P4, a mammary pathogen frequently used to induce experimental mastitis. Journal of Dairy Science, 2011, 94, 2779-2793.	3.4	3
85	Mainstreams of Horizontal Gene Exchange in Enterobacteria: Consideration of the Outbreak of Enterohemorrhagic E. coli O104:H4 in Germany in 2011. PLoS ONE, 2011, 6, e25702.	2.5	31
86	Insights into a Multidrug Resistant Escherichia coli Pathogen of the Globally Disseminated ST131 Lineage: Genome Analysis and Virulence Mechanisms. PLoS ONE, 2011, 6, e26578.	2.5	209
87	Genomic Species Are Ecological Species as Revealed by Comparative Genomics in Agrobacterium tumefaciens. Genome Biology and Evolution, 2011, 3, 762-781.	2.5	110
88	Genetic variation and linkage disequilibrium in Bacillus anthracis. Scientific Reports, 2011, 1, 169.	3.3	7
89	The decoupling between genetic structure and metabolic phenotypes in <i>Escherichia coli</i> leads to continuous phenotypic diversity. Journal of Evolutionary Biology, 2011, 24, 1559-1571.	1.7	31
90	Characterization of the cryptic <i>Escherichia</i> lineages: rapid identification and prevalence. Environmental Microbiology, 2011, 13, 2468-2477.	3.8	103
91	EHEC/EAEC O104:H4 strain linked with the 2011 German outbreak of haemolytic uremic syndrome enters into the viable but nonâ€culturable state in response to various stresses and resuscitates upon stress relief. Environmental Microbiology, 2011, 13, 3139-3148.	3.8	96
92	The 2011 Shiga toxin-producing Escherichia coli O104:H4 German outbreak: a lesson in genomic plasticity. Clinical Microbiology and Infection, 2011, 17, 1124-1125.	6.0	25
93	Lateral genetic transfer and the construction of genetic exchange communities. FEMS Microbiology Reviews, 2011, 35, 707-735.	8.6	137

#	Article	IF	CITATIONS
94	Gene flow, mobile genetic elements and the recruitment of antibiotic resistance genes into Gram-negative pathogens. FEMS Microbiology Reviews, 2011, 35, 790-819.	8.6	530
95	Analysis of antibiotic resistance regions in Gram-negative bacteria. FEMS Microbiology Reviews, 2011, 35, 820-855.	8.6	290
96	Origins of bacterial diversity through horizontal genetic transfer and adaptation to new ecological niches. FEMS Microbiology Reviews, 2011, 35, 957-976.	8.6	517
97	What traits are carried on mobile genetic elements, and why?. Heredity, 2011, 106, 1-10.	2.6	266
98	Survival of <i>Escherichia coli</i> in the environment: fundamental and public health aspects. ISME Journal, 2011, 5, 173-183.	9.8	472
99	The Structure of E.Âcoli IgC-Binding Protein D Suggests a General Model for Bending and Binding in Trimeric Autotransporter Adhesins. Structure, 2011, 19, 1021-1030.	3.3	66
100	Epidemic population structure of extraintestinal pathogenic Escherichia coli determined by single nucleotide polymorphism pyrosequencing. Infection, Genetics and Evolution, 2011, 11, 1655-1663.	2.3	3
101	Evolution of mosaically related tailed bacteriophage genomes seen through the lens of phage P22 virion assembly. Virology, 2011, 411, 393-415.	2.4	132
102	Obscured phylogeny and possible recombinational dormancy in Escherichia coli. BMC Evolutionary Biology, 2011, 11, 183.	3.2	33
103	The Human Gut Microbiome: Ecology and Recent Evolutionary Changes. Annual Review of Microbiology, 2011, 65, 411-429.	7.3	589
104	Bacterial Hha-like proteins facilitate incorporation of horizontally transferred DNA. Open Life Sciences, 2011, 6, 879-886.	1.4	4
105	Genome sequence analyses of two isolates from the recent Escherichia coli outbreak in Germany reveal the emergence of a new pathotype: Entero-Aggregative-Haemorrhagic Escherichia coli (EAHEC). Archives of Microbiology, 2011, 193, 883-891.	2.2	238
106	The Salmonella enterica Pan-genome. Microbial Ecology, 2011, 62, 487-504.	2.8	175
107	Interplay of recombination and selection in the genomes of Chlamydia trachomatis. Biology Direct, 2011, 6, 28.	4.6	70
108	Of woods and webs: possible alternatives to the tree of life for studying genomic fluidity in E. coli. Biology Direct, 2011, 6, 39; discussion 39.	4.6	37
109	The public goods hypothesis for the evolution of life on Earth. Biology Direct, 2011, 6, 41.	4.6	74
110	A Rooted Net of Life. Biology Direct, 2011, 6, 45.	4.6	40
111	Molecular musings in microbial ecology and evolution. Biology Direct, 2011, 6, 58.	4.6	5

#	Article	IF	Citations
112	The evolution of metabolic networks of E. coli. BMC Systems Biology, 2011, 5, 182.	3.0	60
113	Improving pan-genome annotation using whole genome multiple alignment. BMC Bioinformatics, 2011, 12, 272.	2.6	38
114	Origin and evolution of gene families in Bacteria and Archaea. BMC Bioinformatics, 2011, 12, S14.	2.6	8
115	Genome sequencing reveals diversification of virulence factor content and possible host adaptation in distinct subpopulations of Salmonella enterica. BMC Genomics, 2011, 12, 425.	2.8	133
116	Within-species lateral genetic transfer and the evolution of transcriptional regulation in Escherichia coli and Shigella. BMC Genomics, 2011, 12, 532.	2.8	28
117	Characterization of a copper-resistant symbiotic bacterium isolated from Medicago lupulina growing in mine tailings. Bioresource Technology, 2011, 102, 703-709.	9.6	79
118	Dichotomy in the evolution of pathogenicity island and bacteriophage encoded integrases from pathogenic Escherichia coli strains. Infection, Genetics and Evolution, 2011, 11, 423-436.	2.3	17
119	Animal and human pathogenic Escherichia coli strains share common genetic backgrounds. Infection, Genetics and Evolution, 2011, 11, 654-662.	2.3	169
120	Screening of Escherichia coli Species Biodiversity Reveals New Biofilm-Associated Antiadhesion Polysaccharides. MBio, 2011, 2, e00043-11.	4.1	81
121	Analysis of <i>bla</i> _{CTX-M} -Carrying Plasmids from Escherichia coli Isolates Collected in the BfT-GermVet Study. Applied and Environmental Microbiology, 2011, 77, 7142-7146.	3.1	44
122	Positional orthology: putting genomic evolutionary relationships into context. Briefings in Bioinformatics, 2011, 12, 401-412.	6.5	78
123	Genomic characterization of asymptomatic Escherichia coli isolated from the neobladder. Microbiology (United Kingdom), 2011, 157, 1088-1102.	1.8	10
124	Genome-wide detection of chromosomal rearrangements, indels, and mutations in circular chromosomes by short read sequencing. Genome Research, 2011, 21, 1388-1393.	5.5	79
125	Prospective Genomic Characterization of the German Enterohemorrhagic Escherichia coli O104:H4 Outbreak by Rapid Next Generation Sequencing Technology. PLoS ONE, 2011, 6, e22751.	2.5	684
126	The Evolution of Host Specialization in the Vertebrate Gut Symbiont Lactobacillus reuteri. PLoS Genetics, 2011, 7, e1001314.	3.5	270
127	Did Adaptive and Directed Mutation Evolve to Accelerate Stress-Induced Evolutionary Change?. Journal of Molecular Microbiology and Biotechnology, 2011, 21, 5-7.	1.0	4
128	Pervasive Recombination and Sympatric Genome Diversification Driven by Frequency-Dependent Selection in <i>Borrelia burgdorferi</i> , the Lyme Disease Bacterium. Genetics, 2011, 189, 951-966.	2.9	69
129	Presence of Enterohemorrhagic Escherichia coli ST678/O104:H4 in France Prior to 2011. Applied and Environmental Microbiology, 2011, 77, 8784-8786.	3.1	34

#	Article	IF	CITATIONS
130	Genome Sequences of the Biotechnologically Important Bacillus megaterium Strains QM B1551 and DSM319. Journal of Bacteriology, 2011, 193, 4199-4213.	2.2	155
131	Evidence for an evolutionary antagonism between Mrr and Type III modification systems. Nucleic Acids Research, 2011, 39, 5991-6001.	14.5	21
132	Core and Panmetabolism in <i>Escherichia coli</i> . Journal of Bacteriology, 2011, 193, 1461-1472.	2.2	51
133	Intergenic Sequence Comparison of Escherichia coli Isolates Reveals Lifestyle Adaptations but Not Host Specificity. Applied and Environmental Microbiology, 2011, 77, 7620-7632.	3.1	56
134	A Comparative Genomic Analysis of Diverse Clonal Types of Enterotoxigenic <i>Escherichia coli</i> Reveals Pathovar-Specific Conservation. Infection and Immunity, 2011, 79, 950-960.	2.2	122
135	Genome-wide recombination drives diversification of epidemic strains of <i>Acinetobacter baumannii</i> . Proceedings of the National Academy of Sciences of the United States of America, 2011, 108, 13758-13763.	7.1	169
136	Whole-genome phylogeny of <i>Escherichia coli</i> / <i>Shigella</i> group by feature frequency profiles (FFPs). Proceedings of the National Academy of Sciences of the United States of America, 2011, 108, 8329-8334.	7.1	158
137	Robustness Assessment of Whole Bacterial Genome Segmentations. Journal of Computational Biology, 2011, 18, 1155-1165.	1.6	5
138	Quantifying Nonvertical Inheritance in the Evolution of Legionella pneumophila. Molecular Biology and Evolution, 2011, 28, 985-1001.	8.9	47
139	Host Factors and Portal of Entry Outweigh Bacterial Determinants To Predict the Severity of Escherichia coli Bacteremia. Journal of Clinical Microbiology, 2011, 49, 777-783.	3.9	123
140	Dynamic Evolution of Pathogenicity Revealed by Sequencing and Comparative Genomics of 19 Pseudomonas syringae Isolates. PLoS Pathogens, 2011, 7, e1002132.	4.7	413
141	Clusters of Nucleotide Substitutions and Insertion/Deletion Mutations Are Associated with Repeat Sequences. PLoS Biology, 2011, 9, e1000622.	5.6	106
142	The Impact of Recombination on dN/dS within Recently Emerged Bacterial Clones. PLoS Pathogens, 2011, 7, e1002129.	4.7	105
143	Insights into the Functions of a Prophage Recombination Directionality Factor. Viruses, 2012, 4, 2417-2431.	3.3	13
144	A New Zebrafish Model of Oro-Intestinal Pathogen Colonization Reveals a Key Role for Adhesion in Protection by Probiotic Bacteria. PLoS Pathogens, 2012, 8, e1002815.	4.7	108
145	Nucleoid-Associated Proteins Affect Mutation Dynamics in E. coli in a Growth Phase-Specific Manner. PLoS Computational Biology, 2012, 8, e1002846.	3.2	21
146	A Genome-Wide Analysis of Promoter-Mediated Phenotypic Noise in Escherichia coli. PLoS Genetics, 2012, 8, e1002443.	3.5	155
147	High-Resolution Two-Locus Clonal Typing of Extraintestinal Pathogenic Escherichia coli. Applied and Environmental Microbiology, 2012, 78, 1353-1360.	3.1	172

#	Article	IF	CITATIONS
148	Rapid Genomic-Scale Analysis of Escherichia coli O104:H4 by Using High-Resolution Alternative Methods to Next-Generation Sequencing. Applied and Environmental Microbiology, 2012, 78, 1601-1605.	3.1	22
149	Draft Genome Sequence of Escherichia coli W26, an Enteric Strain Isolated from Cow Feces. Journal of Bacteriology, 2012, 194, 5149-5150.	2.2	5
150	Draft Genome Sequences of the Diarrheagenic Escherichia coli Collection. Journal of Bacteriology, 2012, 194, 3026-3027.	2.2	19
151	Convergent Molecular Evolution of Genomic Cores in Salmonella enterica and Escherichia coli. Journal of Bacteriology, 2012, 194, 5002-5011.	2.2	40
152	Genomic epidemiology of the <i>Escherichia coli</i> O104:H4 outbreaks in Europe, 2011. Proceedings of the National Academy of Sciences of the United States of America, 2012, 109, 3065-3070.	7.1	262
153	Endosialidases: Versatile Tools for the Study of Polysialic Acid. Topics in Current Chemistry, 2012, 367, 29-73.	4.0	26
154	Distribution of horizontally transferred heavy metal resistance operons in recent outbreak bacteria. Mobile Genetic Elements, 2012, 2, 96-100.	1.8	14
155	Dynamics of Ribosomal Protein S1 on a Bacterial Ribosome with Cross-Linking and Mass Spectrometry. Molecular and Cellular Proteomics, 2012, 11, 1965-1976.	3.8	55
156	Genomic characterization of the <i>Bacillus cereus</i> sensu lato species: Backdrop to the evolution of <i>Bacillus anthracis</i> . Genome Research, 2012, 22, 1512-1524.	5.5	148
157	SrfJ, a Salmonella Type III Secretion System Effector Regulated by PhoP, RcsB, and IolR. Journal of Bacteriology, 2012, 194, 4226-4236.	2.2	32
158	Reduced mRNA Secondary-Structure Stability Near the Start Codon Indicates Functional Genes in Prokaryotes. Genome Biology and Evolution, 2012, 4, 80-88.	2.5	33
159	Identification of Escherichia coli Genes Associated with Urinary Tract Infections. Journal of Clinical Microbiology, 2012, 50, 449-456.	3.9	53
160	Population Diversity of ORFan Genes in Escherichia coli. Genome Biology and Evolution, 2012, 4, 1176-1187.	2.5	24
161	The Ecology of Bacterial Genes and the Survival of the New. International Journal of Evolutionary Biology, 2012, 2012, 1-14.	1.0	33
162	Emergence and Stability of High-Pressure Resistance in Different Food-Borne Pathogens. Applied and Environmental Microbiology, 2012, 78, 3234-3241.	3.1	52
163	The Type II Secretion System and Its Ubiquitous Lipoprotein Substrate, SslE, Are Required for Biofilm Formation and Virulence of Enteropathogenic Escherichia coli. Infection and Immunity, 2012, 80, 2042-2052.	2.2	78
164	An in silico model for identification of small RNAs in whole bacterial genomes: characterization of antisense RNAs in pathogenic Escherichia coli and Streptococcus agalactiae strains. Nucleic Acids Research, 2012, 40, 2846-2861.	14.5	37
165	Novel Genes from Formation to Function. International Journal of Evolutionary Biology, 2012, 2012, 1-9.	1.0	5

#	Article	IF	CITATIONS
166	Structuring the bacterial genome: Y1-transposases associated with REP-BIME sequences â€. Nucleic Acids Research, 2012, 40, 3596-3609.	14.5	43
167	Pathogenic and multidrug-resistant Escherichia fergusonii from broiler chicken. Poultry Science, 2012, 91, 512-525.	3.4	64
168	Evolutionary Dynamics of Small RNAs in 27 Escherichia coli and Shigella Genomes. Genome Biology and Evolution, 2012, 4, 330-345.	2.5	43
169	YghG (GspS _β) Is a Novel Pilot Protein Required for Localization of the GspS _β Type II Secretion System Secretin of Enterotoxigenic Escherichia coli. Infection and Immunity, 2012, 80, 2608-2622.	2.2	45
170	Phylogeny rather than ecology or lifestyle biases the construction of <i>Escherichia coli</i> – <i>Shigella</i> genetic exchange communities. Open Biology, 2012, 2, 120112.	3.6	42
171	New Role for the ibeA Gene in H2O2 Stress Resistance of Escherichia coli. Journal of Bacteriology, 2012, 194, 4550-4560.	2.2	19
172	Draft Genome Sequence of Escherichia coli Al27, a Porcine Isolate Belonging to Phylogenetic Group B1. Journal of Bacteriology, 2012, 194, 6640-6641.	2.2	1
173	Escherichia coli isolates from extraintestinal organs of livestock animals harbour diverse virulence genes and belong to multiple genetic lineages. Veterinary Microbiology, 2012, 160, 197-206.	1.9	24
174	Demarcation of bacterial ecotypes from DNA sequence data: A comparative analysis of four algorithms. , 2012, , .		4
175	Virulent Bacteriophages Can Target O104:H4 Enteroaggregative Escherichia coli in the Mouse Intestine. Antimicrobial Agents and Chemotherapy, 2012, 56, 6235-6242.	3.2	87
176	Population Genomics of Chlamydia trachomatis: Insights on Drift, Selection, Recombination, and Population Structure. Molecular Biology and Evolution, 2012, 29, 3933-3946.	8.9	94
177	Escherichia coli physiology and metabolism dictates adaptation to diverse host microenvironments. Current Opinion in Microbiology, 2012, 15, 3-9.	5.1	122
178	Proteomic analysis of a multi-resistant clinical Escherichia coli isolate of unknown genomic background. Journal of Proteomics, 2012, 75, 1830-1837.	2.4	20
180	Testing the Infinitely Many Genes Model for the Evolution of the Bacterial Core Genome and Pangenome. Molecular Biology and Evolution, 2012, 29, 3413-3425.	8.9	98
181	The enemy within us: lessons from the 2011 European <i>Escherichia coli</i> O104:H4 outbreak. EMBO Molecular Medicine, 2012, 4, 841-848.	6.9	215
182	A phylogenomic analysis of Escherichia coli / Shigella group: implications of genomic features associated with pathogenicity and ecological adaptation. BMC Evolutionary Biology, 2012, 12, 174.	3.2	72
183	Impact of homologous and non-homologous recombination in the genomic evolution of Escherichia coli. BMC Genomics, 2012, 13, 256.	2.8	141
184	Genetic changes during a laboratory adaptive evolution process that allowed fast growth in glucose to an Escherichia coli strain lacking the major glucose transport system. BMC Genomics, 2012, 13, 385.	2.8	45

#	Article	IF	CITATIONS
185	Variation in endogenous oxidative stress in Escherichia coli natural isolates during growth in urine. BMC Microbiology, 2012, 12, 120.	3.3	25
186	Phylogenetic identification of bacterial MazF toxin protein motifs among probiotic strains and foodborne pathogens and potential implications of engineered probiotic intervention in food. Cell and Bioscience, 2012, 2, 39.	4.8	9
187	Gene Network Homology in Prokaryotes Using a Similarity Search Approach: Queries of Quorum Sensing Signal Transduction. PLoS Computational Biology, 2012, 8, e1002637.	3.2	23
188	Estimating variation within the genes and inferring the phylogeny of 186 sequenced diverse Escherichia coli genomes. BMC Genomics, 2012, 13, 577.	2.8	205
189	New Insights into the Bacterial Fitness-Associated Mechanisms Revealed by the Characterization of Large Plasmids of an Avian Pathogenic E. coli. PLoS ONE, 2012, 7, e29481.	2.5	24
190	Phylogenetic Incongruence in E. coli O104: Understanding the Evolutionary Relationships of Emerging Pathogens in the Face of Homologous Recombination. PLoS ONE, 2012, 7, e33971.	2.5	22
191	Comparative Analysis of Gene Content Evolution in Phytoplasmas and Mycoplasmas. PLoS ONE, 2012, 7, e34407.	2.5	47
192	The CTX-M-15-Producing Escherichia coli Clone O25b: H4-ST131 Has High Intestine Colonization and Urinary Tract Infection Abilities. PLoS ONE, 2012, 7, e46547.	2.5	88
193	Genomic Diversity of Escherichia Isolates from Diverse Habitats. PLoS ONE, 2012, 7, e47005.	2.5	38
194	Comparative Genomics of Serratia spp.: Two Paths towards Endosymbiotic Life. PLoS ONE, 2012, 7, e47274.	2.5	29
195	Rapid Evolution of the Sequences and Gene Repertoires of Secreted Proteins in Bacteria. PLoS ONE, 2012, 7, e49403.	2.5	37
196	Selection-Driven Extinction Dynamics for Group II Introns in Enterobacteriales. PLoS ONE, 2012, 7, e52268.	2.5	17
197	Omics Analyses in Molecular Epidemiologic Studies. , 2012, , 99-116.		2
198	Escherichia coliO104:H4 Infections and International Travel. Emerging Infectious Diseases, 2012, 18, 473-476.	4.3	13
199	Philosophy and Evolution: Minding the Gap Between Evolutionary Patterns and Tree-Like Patterns. Methods in Molecular Biology, 2012, 856, 81-110.	0.9	12
200	Bacterial Genomes: Habitat Specificity and Uncharted Organisms. Microbial Ecology, 2012, 64, 1-7.	2.8	37
201	Evidence of non-random mutation rates suggests an evolutionary risk management strategy. Nature, 2012, 485, 95-98.	27.8	183
202	Performance comparison of benchtop high-throughput sequencing platforms. Nature Biotechnology, 2012, 30, 434-439.	17.5	1,226

			_
#	ARTICLE	IF	CITATIONS
203	Phylomark, a Tool To Identify Conserved Phylogenetic Markers from Whole-Genome Alignments. Applied and Environmental Microbiology, 2012, 78, 4884-4892.	3.1	39
204	Role of the Vpe Carbohydrate Permease in Escherichia coli Urovirulence and Fitness <i>In Vivo</i> . Infection and Immunity, 2012, 80, 2655-2666.	2.2	14
206	Optical mapping and sequencing of the <i>Escherichia coli</i> KO11 genome reveal extensive chromosomal rearrangements, and multiple tandem copies of the <i>Zymomonas mobilis pdc</i> and <i>adhB</i> genes. Journal of Industrial Microbiology and Biotechnology, 2012, 39, 629-639.	3.0	40
207	Identification of a novel prophage regulator in <i>Escherichia coli</i> controlling the expression of type III secretion. Molecular Microbiology, 2012, 83, 208-223.	2.5	33
208	Variable agronomic practices, cultivar, strain source and initial contamination dose differentially affect survival of Escherichia coli on spinach. Journal of Applied Microbiology, 2012, 112, 109-118.	3.1	52
209	Scaling up synthetic biology: Do not forget the chassis. FEBS Letters, 2012, 586, 2129-2137.	2.8	69
210	The evolution of the Escherichia coli phylogeny. Infection, Genetics and Evolution, 2012, 12, 214-226.	2.3	167
211	Repertoire of Escherichia coli agonists sensed by innate immunity receptors of the bovine udder and mammary epithelial cells. Veterinary Research, 2012, 43, 14.	3.0	84
212	Microbial systematics in the post-genomics era. Antonie Van Leeuwenhoek, 2012, 101, 45-54.	1.7	51
213	Design and validation of a supragenome array for determination of the genomic content of Haemophilus influenzae isolates. BMC Genomics, 2013, 14, 484.	2.8	14
214	Pan-genome analysis of the emerging foodborne pathogen Cronobacter spp. suggests a species-level bidirectional divergence driven by niche adaptation. BMC Genomics, 2013, 14, 366.	2.8	78
215	Comparisons of infant Escherichia coli isolates link genomic profiles with adaptation to the ecological niche. BMC Genomics, 2013, 14, 81.	2.8	12
216	Inferring ancient metabolism using ancestral core metabolic models of enterobacteria. BMC Systems Biology, 2013, 7, 46.	3.0	11
217	Functional genotypes are associated with commensal <i>Escherichia coli</i> strain abundance withinâ€host individuals and populations. Molecular Ecology, 2013, 22, 4112-4122.	3.9	3
219	Shiga toxin-producing Escherichia coli O104:H4: An emerging important pathogen in food safety. Science Bulletin, 2013, 58, 1625-1631.	1.7	2
220	Coâ€evolution of specific amino acid in sigma 1.2 region and nucleotide base in the discriminator to act as sensors of small molecule effectors of transcription initiation in mycobacteria. Molecular Microbiology, 2013, 90, 569-583.	2.5	14
221	<i>Shigella</i> Strains Are Not Clones of <i>Escherichia Coli</i> but Sister Species in the Genus< <i>Escherichia</i> . Genomics, Proteomics and Bioinformatics, 2013, 11, 61-65.	6.9	52
222	From essential to persistent genes: a functional approach to constructing synthetic life. Trends in Genetics, 2013, 29, 273-279.	6.7	106

#	Article	IF	CITATIONS
223	Recent Advances in Understanding Enteric Pathogenic Escherichia coli. Clinical Microbiology Reviews, 2013, 26, 822-880.	13.6	1,071
224	Hierarchical clustering of genetic diversity associated to different levels of mutation and recombination in Escherichia coli: A study based on Mexican isolates. Infection, Genetics and Evolution, 2013, 13, 187-197.	2.3	11
225	Characterization of Escherichia coli O78 from an outbreak of septicemia in lambs in Norway. Veterinary Microbiology, 2013, 166, 276-280.	1.9	11
226	Rapid quantification of sequence repeats to resolve the size, structure and contents of bacterial genomes. BMC Genomics, 2013, 14, 537.	2.8	40
227	Lessons learned and unlearned in periodontal microbiology. Periodontology 2000, 2013, 62, 95-162.	13.4	268
228	Natural Genome Diversity of Al-2 Quorum Sensing in Escherichia coli: Conserved Signal Production but Labile Signal Reception. Genome Biology and Evolution, 2013, 5, 16-30.	2.5	26
229	Genomic variation landscape of the human gut microbiome. Nature, 2013, 493, 45-50.	27.8	783
231	Commensal <i><scp>E</scp>scherichia coli</i> strains in <scp>G</scp> uiana reveal a high genetic diversity with hostâ€dependant population structure. Environmental Microbiology Reports, 2013, 5, 49-57.	2.4	82
232	Speedy speciation in a bacterial microcosm: new species can arise as frequently as adaptations within a species. ISME Journal, 2013, 7, 1080-1091.	9.8	62
233	Large plasmids of Escherichia coli and Salmonella encode highly diverse arrays of accessory genes on common replicon families. Plasmid, 2013, 69, 36-48.	1.4	31
234	The IncF plasmid pRSB225 isolated from a municipal wastewater treatment plant's on-site preflooder combining antibiotic resistance and putative virulence functions is highly related to virulence plasmids identified in pathogenic E. coli isolates. Plasmid, 2013, 69, 127-137.	1.4	35
236	Conjugative Plasmids in Anthropogenic Soils. , 2013, , 215-247.		0
237	Reassessment of the Listeria monocytogenespan-genome reveals dynamic integration hotspots and mobile genetic elements as major components of the accessory genome. BMC Genomics, 2013, 14, 47.	2.8	212
238	Distribution of Genes. , 2013, , 127-142.		0
239	The <scp>C</scp> lermont <i><scp>E</scp>scherichia coli</i> phyloâ€typing method revisited: improvement of specificity and detection of new phyloâ€groups. Environmental Microbiology Reports, 2013, 5, 58-65.	2.4	1,360
240	Dental Caries from a Molecular Microbiological Perspective. Caries Research, 2013, 47, 89-102.	2.0	196
241	Rapid Detection of the Escherichia coli Genospecies in Water by Conventional and Real-Time PCR. Methods in Molecular Biology, 2013, 943, 289-305.	0.9	3
242	Horizontal gene transfer and the evolution of bacterial and archaeal population structure. Trends in Genetics, 2013, 29, 170-175.	6.7	364

ARTICLE IF CITATIONS # Reverse vaccinology in the 21st century: improvements over the original design. Annals of the New 243 3.8 77 York Academy of Sciences, 2013, 1285, 115-132. <i>Sulfolobus islandicus:</i> a model system for evolutionary genomics. Biochemical Society 244 3.4 28 Transactions, 2013, 41, 458-462. E. coli as an All-Rounder: The Thin Line Between Commensalism and Pathogenicity. Current Topics in 245 1.1 242 Microbiology and Immunology, 2013, 358, 3-32. Molecular richness and biotechnological potential of bacteria cultured from Irciniidae sponges in 2.7 246 the north-east Atlantic. FEMS Microbiology Ecology, 2013, 85, 519-536. Comparative genomics of pathogenic Escherichia coli., 2013, , 21-43. 247 5 The ecology of Escherichia coli., 2013, , 3-20. 249 Evolution of pathogenic Escherichia coli., 2013,, 45-71. 3 Severity of Escherichia coli bacteraemia is independent of the intrinsic virulence of the strains 250 6.0 assessed in a mouse model. Clinical Microbiology and Infection, 2013, 19, 85-90. Expression Divergence between Escherichia coli and Salmonella enterica serovar Typhimurium 251 8.9 27 Reflects Their Lifestyles. Molecular Biology and Evolution, 2013, 30, 1302-1314. Comparative Genomics of Recent Shiga Toxin-Producing Escherichia coli O104:H4: Short-Term 4.1 Evolution of an Emerging Pathogen. MBio, 2013, 4, e00452-12. Universal distribution of component frequencies in biological and technological systems. 253 7.132 Proceedings of the National Academy of Sciences of the United States of America, 2013, 110, 6235-6239. On the Mutational Topology of the Bacterial Genome. G3: Genes, Genomes, Genetics, 2013, 3, 399-407. 254 1.8 A Phyletically Rare Gene Promotes the Niche-specific Fitness of an E. coli Pathogen during Bacteremia. 255 4.7 21 PLoS Pathogens, 2013, 9, e1003175. The Role of Selection in Shaping Diversity of Natural M. tuberculosis Populations. PLoS Pathogens, 138 2013, 9, e1003543. Appraisal of Microbial Evolution to Commensalism and Pathogenicity in Humans. Clinical Medicine 257 1.0 21 Insights Gastroenterology, 2013, 6, CGast.S11858. A Gene Transfer Agent and a Dynamic Repertoire of Secretion Systems Hold the Keys to the Explosive 89 Radiation of the Emerging Pathogen Bartonella. PLoS Genetics, 2013, 9, e1003393. A design-constraint trade-off underpins the diversity in ecologically important traits in species 259 9.8 42 <i>Escherichia coli</i>. ISME Journal, 2013, 7, 2034-2043. Combining Quantitative Genetic Footprinting and Trait Enrichment Analysis to Identify Fitness Determinants of a Bacterial Pathogen. PLoS Genetics, 2013, 9, e1003716.

#	Article	IF	CITATIONS
261	Extensive genomic variation within clonal bacterial groups resulted from homologous recombination. Mobile Genetic Elements, 2013, 3, e23463.	1.8	3
262	Molecular Control of Sucrose Utilization in Escherichia coli W, an Efficient Sucrose-Utilizing Strain. Applied and Environmental Microbiology, 2013, 79, 478-487.	3.1	76
263	Evidence for Coexistence of Distinct Escherichia coli Populations in Various Aquatic Environments and Their Survival in Estuary Water. Applied and Environmental Microbiology, 2013, 79, 4684-4693.	3.1	106
264	Gene Frequency Distributions Reject a Neutral Model of Genome Evolution. Genome Biology and Evolution, 2013, 5, 233-242.	2.5	61
265	Co-phylog: an assembly-free phylogenomic approach for closely related organisms. Nucleic Acids Research, 2013, 41, e75-e75.	14.5	101
266	Comparative Genomic Analysis of Phylogenetically Closely Related Hydrogenobaculum sp. Isolates from Yellowstone National Park. Applied and Environmental Microbiology, 2013, 79, 2932-2943.	3.1	39
267	Outbreak Investigation Using High-Throughput Genome Sequencing within a Diagnostic Microbiology Laboratory. Journal of Clinical Microbiology, 2013, 51, 1396-1401.	3.9	86
268	Chemoreceptor Gene Loss and Acquisition via Horizontal Gene Transfer in Escherichia coli. Journal of Bacteriology, 2013, 195, 3596-3602.	2.2	11
269	Transcription termination controls prophage maintenance in <i>Escherichia coli</i> genomes. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110, 14414-14419.	7.1	38
270	Homologous Recombination Drives Both Sequence Diversity and Gene Content Variation in Neisseria meningitidis. Genome Biology and Evolution, 2013, 5, 1611-1627.	2.5	34
271	The Adaptation of Temperate Bacteriophages to Their Host Genomes. Molecular Biology and Evolution, 2013, 30, 737-751.	8.9	196
272	Phylogenetic groupâ€associated differences in regulation of the common colonization factor <scp>Mat</scp> fimbria in <i><scp>E</scp>scherichia coli</i> . Molecular Microbiology, 2013, 87, 1200-1222.	2.5	26
273	Insights into the low-temperature adaptation and nutritional flexibility of a soil-persistent <i>Escherichia coli</i> . FEMS Microbiology Ecology, 2013, 84, 75-85.	2.7	27
274	The long polar fimbriae operon and its flanking regions in bovineEscherichia coliO157:H43 and STEC O136:H12 strains. Pathogens and Disease, 2013, 68, 1-7.	2.0	2
275	The Outer Membrane TolC-like Channel HgdD Is Part of Tripartite Resistance-Nodulation-Cell Division (RND) Efflux Systems Conferring Multiple-drug Resistance in the Cyanobacterium Anabaena sp. PCC7120. Journal of Biological Chemistry, 2013, 288, 31192-31205.	3.4	22
276	Historical variations in mutation rate in an epidemic pathogen, <i>Yersinia pestis</i> . Proceedings of the United States of America, 2013, 110, 577-582.	7.1	373
277	Genome-scale metabolic reconstructions of multiple <i>Escherichia coli</i> strains highlight strain-specific adaptations to nutritional environments. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110, 20338-20343.	7.1	270
278	A SIMPLE SHORTCUT TO UNSUPERVISED ALIGNMENT-FREE PHYLOGENETIC GENOME GROUPINGS, EVEN FROM UNASSEMBLED SEQUENCING READS. Journal of Bioinformatics and Computational Biology, 2013, 11, 1343005.	0.8	3

#	Article	IF	CITATIONS
279	Shigella and enteroinvasive Escherichia coli. , 2013, , 215-245.		27
280	The Evolutionary Path to Extraintestinal Pathogenic, Drug-Resistant Escherichia coli Is Marked by Drastic Reduction in Detectable Recombination within the Core Genome. Genome Biology and Evolution, 2013, 5, 699-710.	2.5	45
281	Inter- and intra-specific pan-genomes of Borrelia burgdorferi sensu lato: genome stability and adaptive radiation. BMC Genomics, 2013, 14, 693.	2.8	74
282	Chaperone-Usher Fimbriae of Escherichia coli. PLoS ONE, 2013, 8, e52835.	2.5	179
283	Comparative Genomic Analysis of the Genus Nocardiopsis Provides New Insights into Its Genetic Mechanisms of Environmental Adaptability. PLoS ONE, 2013, 8, e61528.	2.5	33
284	Identification of Commensal Escherichia coli Genes Involved in Biofilm Resistance to Pathogen Colonization. PLoS ONE, 2013, 8, e61628.	2.5	33
285	Constraints on Genome Dynamics Revealed from Gene Distribution among the Ralstonia solanacearum Species. PLoS ONE, 2013, 8, e63155.	2.5	17
286	Context-Dependent Competition in a Model Gut Bacterial Community. PLoS ONE, 2013, 8, e67210.	2.5	25
287	Comparative Genomics Reveal That Host-Innate Immune Responses Influence the Clinical Prevalence of Legionella pneumophila Serogroups. PLoS ONE, 2013, 8, e67298.	2.5	33
288	Evolutionary Dynamics of the Accessory Genome of Listeria monocytogenes. PLoS ONE, 2013, 8, e67511.	2.5	63
289	A System to Automatically Classify and Name Any Individual Genome-Sequenced Organism Independently of Current Biological Classification and Nomenclature. PLoS ONE, 2014, 9, e89142.	2.5	49
290	F9 Fimbriae of Uropathogenic Escherichia coli Are Expressed at Low Temperature and Recognise Gall²1-3GlcNAc-Containing Glycans. PLoS ONE, 2014, 9, e93177.	2.5	43
291	Acetobixan, an Inhibitor of Cellulose Synthesis Identified by Microbial Bioprospecting. PLoS ONE, 2014, 9, e95245.	2.5	12
292	The Complete Genome Sequence of Escherichia coli EC958: A High Quality Reference Sequence for the Globally Disseminated Multidrug Resistant E. coli O25b:H4-ST131 Clone. PLoS ONE, 2014, 9, e104400.	2.5	116
293	Molecular and Functional Profiling of the Polyamine Content in Enteroinvasive E. coli : Looking into the Gap between Commensal E. coli and Harmful Shigella. PLoS ONE, 2014, 9, e106589.	2.5	37
294	The Conserved nhaAR Operon Is Drastically Divergent between B2 and Non-B2 Escherichia coli and Is Involved in Extra-Intestinal Virulence. PLoS ONE, 2014, 9, e108738.	2.5	13
295	Comparative Genomic Analysis Shows That Avian Pathogenic Escherichia coli Isolate IMT5155 (O2:K1:H5;) Tj ETQ PLoS ONE, 2014, 9, e112048.	9q0 0 0 rgl 2.5	BT /Overlock 75
296	Escherichia coli with virulence factors and multidrug resistance in the Plankenburg River. South African Journal of Science, 2014, 110, 6.	0.7	21

#	Article	IF	Citations
297	Global dissemination of a multidrug resistant <i>Escherichia coli</i> clone. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111, 5694-5699.	7.1	498
298	The Extent of Genome Flux and Its Role in the Differentiation of Bacterial Lineages. Genome Biology and Evolution, 2014, 6, 1514-1529.	2.5	76
299	Dynamic Organization: Chromosome Domains in <i>Escherichia coli</i> . Journal of Molecular Microbiology and Biotechnology, 2014, 24, 301-315.	1.0	13
300	Cellular localization and dynamics of the Mrr type IV restriction endonuclease of Escherichia coli. Nucleic Acids Research, 2014, 42, 3908-3918.	14.5	8
301	Understanding the commonalities and differences in genomic organizations across closely related bacteria from an energy perspective. Science China Life Sciences, 2014, 57, 1121-1130.	4.9	4
302	Selection on Horizontally Transferred and Duplicated Genes in Sinorhizobium (Ensifer), the Root-Nodule Symbionts of Medicago. Genome Biology and Evolution, 2014, 6, 1199-1209.	2.5	17
303	Proteomes of pathogenic <i>Escherichia coli/Shigella</i> group surveyed in their host environments. Expert Review of Proteomics, 2014, 11, 593-609.	3.0	10
304	Proteomic analysis of uropathogenicEscherichia coli. Expert Review of Proteomics, 2014, 11, 43-58.	3.0	9
305	A PNPase Dependent CRISPR System in Listeria. PLoS Genetics, 2014, 10, e1004065.	3.5	76
306	Hidden Diversity in Honey Bee Gut Symbionts Detected by Single-Cell Genomics. PLoS Genetics, 2014, 10, e1004596.	3.5	131
307	Plasmid Flux in Escherichia coli ST131 Sublineages, Analyzed by Plasmid Constellation Network (PLACNET), a New Method for Plasmid Reconstruction from Whole Genome Sequences. PLoS Genetics, 2014, 10, e1004766.	3.5	179
308	The contribution of Escherichia coli from human and animal sources to the integron gene pool in coastal waters. Frontiers in Microbiology, 2014, 5, 419.	3.5	27
309	Efficient Inference of Recombination Hot Regions in Bacterial Genomes. Molecular Biology and Evolution, 2014, 31, 1593-1605.	8.9	62
310	Accuracy and efficiency of algorithms for the demarcation of bacterial ecotypes from DNA sequence data. International Journal of Bioinformatics Research and Applications, 2014, 10, 409.	0.2	7
311	Mobile elements drive recombination hotspots in the core genome of Staphylococcus aureus. Nature Communications, 2014, 5, 3956.	12.8	128
312	<i>In Vivo</i> mRNA Profiling of Uropathogenic Escherichia coli from Diverse Phylogroups Reveals Common and Group-Specific Gene Expression Profiles. MBio, 2014, 5, e01075-14.	4.1	63
313	Draft Genome Sequences of Three Escherichia coli Strains Investigated for the Effects of Lysogeny on Niche Diversification. Genome Announcements, 2014, 2, .	0.8	1
314	Heteropathogenic virulence and phylogeny reveal phased pathogenic metamorphosis in <i>Escherichia coli</i> O2:H6. EMBO Molecular Medicine, 2014, 6, 347-357.	6.9	49

#	Article	IF	CITATIONS
315	Recombination Shapes Genome Architecture in an Organism from the Archaeal Domain. Genome Biology and Evolution, 2014, 6, 170-178.	2.5	14
316	Within-Population Distribution of Trimethoprim Resistance in Escherichia coli before and after a Community-Wide Intervention on Trimethoprim Use. Antimicrobial Agents and Chemotherapy, 2014, 58, 7492-7500.	3.2	8
317	eCAMBer: efficient support for large-scale comparative analysis of multiple bacterial strains. BMC Bioinformatics, 2014, 15, 65.	2.6	21
318	An evolutionary analysis of genome expansion and pathogenicity in Escherichia coli. BMC Genomics, 2014, 15, 882.	2.8	25
319	Correlation between the genomic o454-nlpD region polymorphisms, virulence gene equipment and phylogenetic group of extraintestinal Escherichia coli (ExPEC) enables pathotyping irrespective of host, disease and source of isolation. Gut Pathogens, 2014, 6, 37.	3.4	6
320	The Genomic Diversification of the Whole Acinetobacter Genus: Origins, Mechanisms, and Consequences. Genome Biology and Evolution, 2014, 6, 2866-2882.	2.5	269
321	Flexibility and Symmetry of Prokaryotic Genome Rearrangement Reveal Lineage-Associated Core-Gene-Defined Genome Organizational Frameworks. MBio, 2014, 5, e01867.	4.1	22
322	Escherichia coli Isolate for Studying Colonization of the Mouse Intestine and Its Application to Two-Component Signaling Knockouts. Journal of Bacteriology, 2014, 196, 1723-1732.	2.2	66
323	Automated Reconstruction of Whole-Genome Phylogenies from Short-Sequence Reads. Molecular Biology and Evolution, 2014, 31, 1077-1088.	8.9	399
324	The interplay of restriction-modification systems with mobile genetic elements and their prokaryotic hosts. Nucleic Acids Research, 2014, 42, 10618-10631.	14.5	246
325	Ribosomal proteins: Toward a next generation standard for prokaryotic systematics?. Molecular Phylogenetics and Evolution, 2014, 75, 103-117.	2.7	30
326	Prevalence of autotransporters in Escherichia coli: what is the impact of phylogeny and pathotype?. International Journal of Medical Microbiology, 2014, 304, 243-256.	3.6	19
327	Bacillus subtilis and Escherichia coli essential genes and minimal cell factories after one decade of genome engineering. Microbiology (United Kingdom), 2014, 160, 2341-2351.	1.8	127
328	Genome sequencing of disease and carriage isolates of nontypeable <i>Haemophilus influenzae</i> identifies discrete population structure. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111, 5439-5444.	7.1	104
329	Conserved patterns in bacterial genomes: A conundrum physically tailored by evolutionary tinkering. Computational Biology and Chemistry, 2014, 53, 125-133.	2.3	14
330	Immunostimulatory CpG motifs in the genomes of gut bacteria and their role in human health and disease. Journal of Medical Microbiology, 2014, 63, 293-308.	1.8	54
331	Comparative assembly hubs: Web-accessible browsers for comparative genomics. Bioinformatics, 2014, 30, 3293-3301.	4.1	33
332	Exploiting the explosion of information associated with whole genome sequencing to tackle Shiga toxin-producing Escherichia coli (STEC) in global food production systems. International Journal of Food Microbiology, 2014, 187, 57-72.	4.7	83

#	Article	IF	CITATIONS
333	The contribution of systemic <i>Escherichia coli</i> infection to the early mortalities of commercial broiler chickens. Avian Pathology, 2014, 43, 37-42.	2.0	64
334	Three-dimensional reconstructions of the bacteriophage CUS-3 virion reveal a conserved coat protein I-domain but a distinct tailspike receptor-binding domain. Virology, 2014, 464-465, 55-66.	2.4	24
335	Quinolone-resistant Escherichia coli from the faecal microbiota of healthy volunteers after ciprofloxacin exposure are highly adapted to a commensal lifestyle. Journal of Antimicrobial Chemotherapy, 2014, 69, 761-768.	3.0	16
336	Pathogenesis of Human Diffusely Adhering Escherichia coli Expressing Afa/Dr Adhesins (Afa/Dr DAEC): Current Insights and Future Challenges. Clinical Microbiology Reviews, 2014, 27, 823-869.	13.6	71
337	BorreliaBase: a phylogeny-centered browser of Borrelia genomes. BMC Bioinformatics, 2014, 15, 233.	2.6	40
338	Different dynamics of genome content shuffling among host-specificity groups of the symbiotic actinobacterium Frankia. BMC Genomics, 2014, 15, 609.	2.8	6
339	The chromosomal accommodation and domestication of mobile genetic elements. Current Opinion in Microbiology, 2014, 22, 22-29.	5.1	73
340	The <i>rpoS</i> Gene Is Predominantly Inactivated during Laboratory Storage and Undergoes Source-Sink Evolution in Escherichia coli Species. Journal of Bacteriology, 2014, 196, 4276-4284.	2.2	41
341	Fecal Source Tracking in Water by Next-Generation Sequencing Technologies Using Host-Specific <i>Escherichia coli</i> Genetic Markers. Environmental Science & Technology, 2014, 48, 9616-9623.	10.0	49
342	Genomic and metabolic comparison with Dickeya dadantii 3937 reveals the emerging Dickeya solani potato pathogen to display distinctive metabolic activities and T5SS/T6SS-related toxin repertoire. BMC Genomics, 2014, 15, 283.	2.8	61
343	Genomic analysis of the emergence of 20th century epidemic dysentery. BMC Genomics, 2014, 15, 355.	2.8	32
344	SearchDOCS Bacteria, Software That Provides Automated Identification of Potentially Missed Genes in Annotated Bacterial Genomes. Journal of Bacteriology, 2014, 196, 2030-2042.	2.2	12
345	Coping with low pH: molecular strategies in neutralophilic bacteria. FEMS Microbiology Reviews, 2014, 38, 1091-1125.	8.6	375
346	Genomic Heterogeneity and Ecological Speciation within One Subspecies of Bacillus subtilis. Applied and Environmental Microbiology, 2014, 80, 4842-4853.	3.1	44
347	Evolutionary genomics of Borrelia burgdorferi sensu lato: Findings, hypotheses, and the rise of hybrids. Infection, Genetics and Evolution, 2014, 27, 576-593.	2.3	31
348	Escherichia fergusonii. Veterinary Microbiology, 2014, 172, 7-12.	1.9	56
349	LESS IS MORE: SELECTIVE ADVANTAGES CAN EXPLAIN THE PREVALENT LOSS OF BIOSYNTHETIC GENES IN BACTERIA. Evolution; International Journal of Organic Evolution, 2014, 68, 2559-2570.	2.3	197
350	EHEC Genomics: Past, Present, and Future. Microbiology Spectrum, 2014, 2, EHEC-0020-2013.	3.0	50

#	Article	IF	CITATIONS
351	Matrix-assisted laser desorption ionization-time of flight mass spectrometry analysis of Escherichia coli categories. Genetics and Molecular Research, 2014, 13, 716-722.	0.2	10
352	Potential impact of antimicrobial resistance in wildlife, environment and human health. Frontiers in Microbiology, 2014, 5, 23.	3.5	161
353	Tn7. Microbiology Spectrum, 2014, 2, .	3.0	67
354	Complete genome sequence of DSM 30083T, the type strain (U5/41T) of Escherichia coli, and a proposal for delineating subspecies in microbial taxonomy. Standards in Genomic Sciences, 2014, 9, 2.	1.5	454
355	Escherichia coli Bacteremia in Children. Pediatric Infectious Disease Journal, 2014, 33, 872-879.	2.0	28
357	A peptide identification-free, genome sequence-independent shotgun proteomics workflow for strain-level bacterial differentiation. Scientific Reports, 2015, 5, 14337.	3.3	10
358	Genome analysis and in vivo virulence of porcine extraintestinal pathogenic Escherichia coli strain PCN033. BMC Genomics, 2015, 16, 717.	2.8	63
359	Diarrhea, bacteremia and multiorgan dysfunction due to an extraintestinal pathogenic <i>Escherichia coli</i> strain with enteropathogenic <i>E. coli</i> genes. Pathogens and Disease, 2015, 73, ftv076.	2.0	17
360	Detection of virulenceâ€associated genes characteristic of intestinal <i>Escherichia coli</i> pathotypes, including the enterohemorrhagic/enteroaggregative O104:H4, in bovines from Germany and Spain. Microbiology and Immunology, 2015, 59, 433-442.	1.4	15
361	The Biology of the <i>Escherichia coli</i> Extracellular Matrix. Microbiology Spectrum, 2015, 3, .	3.0	66
362	Bacteriophages and Phage-Derived Proteins – Application Approaches. Current Medicinal Chemistry, 2015, 22, 1757-1773.	2.4	163
363	The Biology of the Escherichia coli Extracellular Matrixs. , 2015, , 249-267.		5
364	Genetic determinants of heat resistance in Escherichia coli. Frontiers in Microbiology, 2015, 6, 932.	3.5	105
365	Comprehensive Characterization of Escherichia coli O104:H4 Isolated from Patients in the Netherlands. Frontiers in Microbiology, 2015, 6, 1348.	3.5	16
366	Prevalence and Characterization of Shiga Toxin-Producing and Enteropathogenic Escherichia coli in Shellfish-Harvesting Areas and Their Watersheds. Frontiers in Microbiology, 2015, 6, 1356.	3.5	43
367	Metabolism and Fitness of Urinary Tract Pathogens. Microbiology Spectrum, 2015, 3, .	3.0	60
368	Distinct Mutations Led to Inactivation of Type 1 Fimbriae Expression in Shigella spp PLoS ONE, 2015, 10, e0121785.	2.5	20
369	Novel recA-Independent Horizontal Gene Transfer in Escherichia coli K-12. PLoS ONE, 2015, 10, e0130813.	2.5	12

ARTICLE IF CITATIONS # CRISPR Content Correlates with the Pathogenic Potential of Escherichia coli. PLoS ONE, 2015, 10, 370 2.5 47 e0131935. Multifactor Regulation of the MdtJI Polyamine Transporter in Shigella. PLoS ONE, 2015, 10, e0136744. 371 2.5 Genomic Comparison of Translocating and Non-Translocating Escherichia coli. PLoS ONE, 2015, 10, 372 2.5 4 e0137131. Pangenome Analysis of Burkholderia pseudomallei: Genome Evolution Preserves Gene Order despite High Recombination Rates. PLoS ONE, 2015, 10, e0140274. Restriction Profiling of 23S Microheterogenic Ribosomal Repeats for Detection and Characterizing 374 1.4 0 ofE. coliand Their Clonal, Pathogenic, and Phylogroups. Journal of Pathogens, 2015, 2015, 1-11. Tn7., 0, , 647-667. Genetic Diversity of the fliC Genes Encoding the Flagellar Antigen H19 of Escherichia coli and 376 Application to the Specific Identification of Enterohemorrhagic E. coli O121:H19. Applied and 3.1 9 Environmental Microbiology, 2015, 81, 4224-4230. Effects of Genic Base Composition on Growth Rate in G+C-rich Genomes. G3: Genes, Genomes, Genetics, 377 1.8 2015, 5, 1247-1252. Use of the Microbiome in the Practice of Epidemiology: A Primer on -Omic Technologies. American 378 3.4 19 Journal of Epidemiology, 2015, 182, 1-8. Prokaryotic Nucleotide Composition Is Shaped by Both Phylogeny and the Environment. Genome 379 2.5 Biology and Evolution, 2015, 7, 1380-1389. Escherichia coli O-Genotyping PCR: a Comprehensive and Practical Platform for Molecular O 380 123 3.9 Serogrouping. Journal of Clinical Microbiology, 2015, 53, 2427-2432. Defining the genome features of <i>Escherichia albertii </i>, an emerging enteropathogen closely related to<i>Escherichia coli</i>. Genome Biology and Evolution, 2015, 7, evv211. Inferring Speciation Processes from Patterns of Natural Variation in Microbial Genomes. Systematic 382 5.6 37 Biology, 2015, 64, 926-935. Resource constrained flux balance analysis predicts selective pressure on the global structure of metabolic networks. BMC Systems Biology, 2015, 9, 88. Implications of enterotoxigenic<i>Escherichia coli</i>genomics for vaccine development. Expert 384 4.4 16 Review of Vaccines, 2015, 14, 551-560. Comparative analysis of the uropathogenic Escherichia coli surface proteome by tandem mass-spectrometry of artificially induced outer membrane vesicles. Journal of Proteomics, 2015, 115, 2.4 33 93-106. Molecular Analysis of Asymptomatic Bacteriuria Escherichia coli Strain VR50 Reveals Adaptation to 386 2.224 the Urinary Tract by Gene Acquisition. Infection and Immunity, 2015, 83, 1749-1764. The mosaic genome structure and phylogeny of Shiga toxin-producing Escherichia coli O104:H4 is driven by short-term adaptation. Clinical Microbiology and Infection, 2015, 21, 468.e7-468.e18.

#	Article	IF	Citations
388	Defining the Phylogenomics of Shigella Species: a Pathway to Diagnostics. Journal of Clinical Microbiology, 2015, 53, 951-960.	3.9	82
389	Metabolic cross-feeding via intercellular nanotubes among bacteria. Nature Communications, 2015, 6, 6238.	12.8	229
390	Towards a Synthesis of Population Genomics and Epidemiology. , 2015, , 337-345.		0
391	Guide to the various phylogenetic classification schemes for Escherichia coli and the correspondence among schemes. Microbiology (United Kingdom), 2015, 161, 980-988.	1.8	139
392	Understanding the association of Escherichia coli with diverse macroalgae in the lagoon of Venice. Scientific Reports, 2015, 5, 10969.	3.3	25
394	GC-Content Evolution in Bacterial Genomes: The Biased Gene Conversion Hypothesis Expands. PLoS Genetics, 2015, 11, e1004941.	3.5	200
395	The host metabolite D-serine contributes to bacterial niche specificity through gene selection. ISME Journal, 2015, 9, 1039-1051.	9.8	43
396	Bacterial Factors Associated with Lethal Outcome of Enteropathogenic Escherichia coli Infection: Genomic Case-Control Studies. PLoS Neglected Tropical Diseases, 2015, 9, e0003791.	3.0	21
397	Selection Maintains Low Genomic GC Content in Marine SAR11 Lineages. Molecular Biology and Evolution, 2015, 32, 2738-2748.	8.9	47
398	Ecological speciation in bacteria: reverse ecology approaches reveal the adaptive part of bacterial cladogenesis. Research in Microbiology, 2015, 166, 729-741.	2.1	37
399	Examination of the Enterotoxigenic Escherichia coli Population Structure during Human Infection. MBio, 2015, 6, e00501.	4.1	39
400	Emergence of a New Highly Successful Acapsular Group A <i>Streptococcus</i> Clade of Genotype <i>emm</i> 89 in the United Kingdom. MBio, 2015, 6, e00622.	4.1	126
401	Genome dynamics and evolution of Salmonella Typhi strains from the typhoid-endemic zones. Scientific Reports, 2015, 4, 7457.	3.3	19
402	Extensive Within-Host Diversity in Fecally Carried Extended-Spectrum-Beta-Lactamase-Producing Escherichia coli Isolates: Implications for Transmission Analyses. Journal of Clinical Microbiology, 2015, 53, 2122-2131.	3.9	84
403	Recombinant transfer in the basic genome of <i>Escherichia coli</i> . Proceedings of the National Academy of Sciences of the United States of America, 2015, 112, 9070-9075.	7.1	77
404	Potential role of Escherichia coli DNA mismatch repair proteins in colon cancer. Critical Reviews in Oncology/Hematology, 2015, 96, 475-482.	4.4	36
405	Signatures of Adaptation in Human Invasive Salmonella Typhimurium ST313 Populations from Sub-Saharan Africa. PLoS Neglected Tropical Diseases, 2015, 9, e0003611.	3.0	116
406	Rapid and reliable discrimination between Shigella species and Escherichia coli using MALDI-TOF mass spectrometry. International Journal of Medical Microbiology, 2015, 305, 446-452.	3.6	59

#	Article	IF	CITATIONS
407	Whole-genome sequencing of uropathogenic Escherichia coli reveals long evolutionary history of diversity and virulence. Infection, Genetics and Evolution, 2015, 34, 244-250.	2.3	17
408	Genome Sequences of Two Bovine Mastitis-Causing Escherichia coli Strains. Genome Announcements, 2015, 3, .	0.8	5
409	The diversity of fungal genome. Biological Procedures Online, 2015, 17, 8.	2.9	173
410	Inter-individual differences in the gene content of human gut bacterial species. Genome Biology, 2015, 16, 82.	8.8	184
411	Quorum Sensing in Escherichia coli: Interkingdom, Inter- and Intraspecies Dialogues, and a Suicide-Inducing Peptide. , 2015, , 85-99.		11
412	High Recombinant Frequency in Extraintestinal PathogenicEscherichia coliStrains. Molecular Biology and Evolution, 2015, 32, 1708-1716.	8.9	21
413	Ecological Overlap and Horizontal Gene Transfer in Staphylococcus aureus and Staphylococcus epidermidis. Genome Biology and Evolution, 2015, 7, 1313-1328.	2.5	130
414	Bacterial genome remodeling through bacteriophage recombination. FEMS Microbiology Letters, 2015, 362, 1-10.	1.8	52
415	Regulation of Bacterial Virulence by Csr (Rsm) Systems. Microbiology and Molecular Biology Reviews, 2015, 79, 193-224.	6.6	309
416	Comparative Genomics of a Plant-Parasitic Nematode Endosymbiont Suggest a Role in Nutritional Symbiosis. Genome Biology and Evolution, 2015, 7, 2727-2746.	2.5	42
417	The evolutionary dynamics of tRNA-gene copy number and codon-use in E. coli BMC Evolutionary Biology, 2015, 15, 163.	3.2	26
418	Novel genetic markers define a subgroup of pathogenicEscherichia colistrains belonging to the B2 phylogenetic group. FEMS Microbiology Letters, 2015, 362, fnv193.	1.8	15
419	The evolution and epidemiology of Listeria monocytogenes in Europe and the United States. Infection, Genetics and Evolution, 2015, 35, 172-183.	2.3	179
420	YjjQ Represses Transcription of <i>flhDC</i> and Additional Loci in Escherichia coli. Journal of Bacteriology, 2015, 197, 2713-2720.	2.2	16
421	Synonymous Genetic Variation in Natural Isolates of <i>Escherichia coli</i> Does Not Predict Where Synonymous Substitutions Occur in a Long-Term Experiment. Molecular Biology and Evolution, 2015, 32, 2897-2904.	8.9	27
422	Cenetic Structure and Antimicrobial Resistance of Escherichia coli and Cryptic Clades in Birds with Diverse Human Associations. Applied and Environmental Microbiology, 2015, 81, 5123-5133.	3.1	49
423	A Genomic View of Lactobacilli and Pediococci Demonstrates that Phylogeny Matches Ecology and Physiology. Applied and Environmental Microbiology, 2015, 81, 7233-7243.	3.1	195
424	Rates of Lateral Gene Transfer in Prokaryotes: High but Why?. Trends in Microbiology, 2015, 23, 598-605.	7.7	153

	CITATION	N KEPORT	
#	Article	IF	CITATIONS
425	YOC, A new strategy for pairwise alignment of collinear genomes. BMC Bioinformatics, 2015, 16, 111.	2.6	8
426	Determinants of spontaneous mutation in the bacterium <i>Escherichia coli</i> as revealed by whole-genome sequencing. Proceedings of the National Academy of Sciences of the United States of America, 2015, 112, E5990-9.	7.1	135
427	Microbiology Meets Big Data: The Case of Gut Microbiota–Derived Trimethylamine. Annual Review of Microbiology, 2015, 69, 305-321.	7.3	133
428	Impermanence of bacterial clones. Proceedings of the National Academy of Sciences of the United States of America, 2015, 112, 8893-8900.	7.1	34
429	Mutation—The Engine of Evolution: Studying Mutation and Its Role in the Evolution of Bacteria: Figure 1 Cold Spring Harbor Perspectives in Biology, 2015, 7, a018077.	5.5	66
430	Shigella and Shigellosis. , 2015, , 1147-1168.		3
431	Horizontal gene transfer in human pathogens. Critical Reviews in Microbiology, 2015, 41, 101-108.	6.1	172
432	Large-scale genomic sequencing of extraintestinal pathogenic <i>Escherichia coli</i> strains. Genome Research, 2015, 25, 119-128.	5.5	158
433	Decoding cyanobacterial phylogeny and molecular evolution using an evonumeric approach. Protoplasma, 2015, 252, 519-535.	2.1	19
434	Population Phylogenomics of Extraintestinal Pathogenic <i>Escherichia coli</i> ., 0, , 207-233.		1
435	Phylogenetic Analyses of Shigella and Enteroinvasive Escherichia coli for the Identification of Molecular Epidemiological Markers: Whole-Genome Comparative Analysis Does Not Support Distinct Genera Designation. Frontiers in Microbiology, 2015, 6, 1573.	3.5	94
436	A High-resolution Typing Assay for Uropathogenic Escherichia coli Based on Fimbrial Diversity. Frontiers in Microbiology, 2016, 7, 623.	3.5	12
437	Pangenome Evidence for Higher Codon Usage Bias and Stronger Translational Selection in Core Genes of Escherichia coli. Frontiers in Microbiology, 2016, 7, 1180.	3.5	18
438	H-NS Facilitates Sequence Diversification of Horizontally Transferred DNAs during Their Integration in Host Chromosomes. PLoS Genetics, 2016, 12, e1005796.	3.5	25
439	Population genomics of the symbiotic plasmids of sympatric nitrogenâ€fixing <i>Rhizobium</i> species associated with <i>Phaseolus vulgaris</i> . Environmental Microbiology, 2016, 18, 2660-2676.	3.8	72
440	Antimicrobial Resistance of Escherichia fergusonii Isolated from Broiler Chickens. Journal of Food Protection, 2016, 79, 929-938.	1.7	23
441	Similarly Lethal Strains of Extraintestinal Pathogenic Escherichia coli Trigger Markedly Diverse Host Responses in a Zebrafish Model of Sepsis. MSphere, 2016, 1, .	2.9	22
442	Genome-based Definition of an Inflammatory Bowel Disease-associated Adherent-Invasive Escherichia coli Pathovar. Inflammatory Bowel Diseases, 2016, 22, 1-12.	1.9	54

#	Article	IF	CITATIONS
443	Detection of homologous recombination in closely related strains. Journal of Bioinformatics and Computational Biology, 2016, 14, 1641001.	0.8	1
444	Coordination of Metabolism and Virulence Factors Expression of Extraintestinal Pathogenic Escherichia coli Purified from Blood Cultures of Patients with Sepsis. Molecular and Cellular Proteomics, 2016, 15, 2890-2907.	3.8	24
445	Complete Genomic Sequence of an Avian Pathogenic Escherichia coli Strain of Serotype O7:HNT. Genome Announcements, 2016, 4, .	0.8	8
446	Population Phylogenomics of Extraintestinal Pathogenic <i>Escherichia coli</i> . Microbiology Spectrum, 2016, 4, .	3.0	26
447	Next generation apomorphy: the ubiquity of taxonomically restricted genes. , 0, , 237-263.		0
448	Testing for Independence between Evolutionary Processes. Systematic Biology, 2016, 65, 812-823.	5.6	13
449	Regulation of genetic flux between bacteria by restriction–modification systems. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113, 5658-5663.	7.1	161
450	Strengths and Limitations of Model Systems for the Study of Urinary Tract Infections and Related Pathologies. Microbiology and Molecular Biology Reviews, 2016, 80, 351-367.	6.6	50
451	Overcoming Enterotoxigenic Escherichia coli Pathogen Diversity: Translational Molecular Approaches to Inform Vaccine Design. Methods in Molecular Biology, 2016, 1403, 363-383.	0.9	9
452	Benefit of transferred mutations is better predicted by the fitness of recipients than by their ecological or genetic relatedness. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113, 5047-5052.	7.1	41
453	Not So Simple After All: Bacteria, Their Population Genetics, and Recombination. Cold Spring Harbor Perspectives in Biology, 2016, 8, a018069.	5.5	50
454	Ancestral genome reconstruction identifies the evolutionary basis for trait acquisition in polyphosphate accumulating bacteria. ISME Journal, 2016, 10, 2931-2945.	9.8	43
455	A barrier to homologous recombination between sympatric strains of the cooperative soil bacterium <i>Myxococcus xanthus</i> . ISME Journal, 2016, 10, 2468-2477.	9.8	52
456	Ecological Opportunity, Evolution, and the Emergence of Flea-Borne Plague. Infection and Immunity, 2016, 84, 1932-1940.	2.2	40
457	Genome and Evolution of Yersinia pestis. Advances in Experimental Medicine and Biology, 2016, 918, 171-192.	1.6	12
458	Insertion sequence-caused large-scale rearrangements in the genome of <i>Escherichia coli</i> . Nucleic Acids Research, 2016, 44, gkw647.	14.5	104
459	Gene flow, recombination, and positive selection in <i>Stenotrophomonas maltophilia</i> : mechanisms underlying the diversity of the widespread opportunistic pathogen. Genome, 2016, 59, 1063-1075.	2.0	21
460	Navigating Microbiological Food Safety in the Era of Whole-Genome Sequencing. Clinical Microbiology Reviews 2016, 29, 837-857	13.6	130

#	Article	IF	CITATIONS
461	Whole-Genome Multilocus Sequence Typing of Extended-Spectrum-Beta-Lactamase-Producing Enterobacteriaceae. Journal of Clinical Microbiology, 2016, 54, 2919-2927.	3.9	97
462	Acetate metabolism regulation in Escherichia coli: carbon overflow, pathogenicity, and beyond. Applied Microbiology and Biotechnology, 2016, 100, 8985-9001.	3.6	98
463	Transcriptional analysis and adaptive evolution of Escherichia coli strains growing on acetate. Applied Microbiology and Biotechnology, 2016, 100, 7777-7785.	3.6	38
464	Tracking bacterial virulence: global modulators as indicators. Scientific Reports, 2016, 6, 25973.	3.3	12
465	Recombination in Bacterial Populations. , 2016, , 425-432.		0
466	Genome Plasticity, Bacterial. , 2016, , 170-178.		0
467	Diversité des populations d'Escherichia coli et leurs variations au cours du temps au sein du microbiote intestinal. Revue Francophone Des Laboratoires, 2016, 2016, 35-43.	0.0	3
468	Bacterial intra-species gene loss occurs in a largely clocklike manner mostly within a pool of less conserved and constrained genes. Scientific Reports, 2016, 6, 35168.	3.3	24
469	Genomic diversity of EPEC associated with clinical presentations of differing severity. Nature Microbiology, 2016, 1, 15014.	13.3	66
470	Genomic epidemiology and global diversity of the emerging bacterial pathogen Elizabethkingia anophelis. Scientific Reports, 2016, 6, 30379.	3.3	65
471	The revisited genome of <i>Pseudomonas putida</i> KT2440 enlightens its value as a robust metabolic <i>chassis</i> . Environmental Microbiology, 2016, 18, 3403-3424.	3.8	270
472	Phage Conversion and the Role of Bacteriophage and Host Functions in Regulation of Diphtheria Toxin Production by Corynebacterium diphtheriae. Advances in Environmental Microbiology, 2016, , 15-45.	0.3	4
473	Impact of genomics on the understanding of microbial evolution and classification: the importance of Darwin's views on classification. FEMS Microbiology Reviews, 2016, 40, 520-553.	8.6	73
474	Genome sequence of Escherichia coli NCCP15653, a group D strain isolated from a diarrhea patient. Gut Pathogens, 2016, 8, 7.	3.4	3
475	The Impact of Selection, Gene Conversion, and Biased Sampling on the Assessment of Microbial Demography. Molecular Biology and Evolution, 2016, 33, 1711-1725.	8.9	62
476	Links between Transcription, Environmental Adaptation and Gene Variability in <i>Escherichia coli</i> : Correlations between Gene Expression and Gene Variability Reflect Growth Efficiencies. Molecular Biology and Evolution, 2016, 33, 2515-2529.	8.9	31
477	Horizontal Gene Transfer and the History of Life. Cold Spring Harbor Perspectives in Biology, 2016, 8, a018036.	5.5	79
478	Emergence of Antimicrobial-Resistant <i>Escherichia coli</i> of Animal Origin Spreading in Humans. Molecular Biology and Evolution, 2016, 33, 898-914.	8.9	65

#	Article	IF	CITATIONS
479	Comparative proteomics of uropathogenic Escherichia coli during growth in human urine identify UCA-like (UCL) fimbriae as an adherence factor involved in biofilm formation and binding to uroepithelial cells. Journal of Proteomics, 2016, 131, 177-189.	2.4	53
480	Effects of sequence diversity and recombination on the accuracy of phylogenetic trees estimated by <scp>kSNP</scp> . Cladistics, 2016, 32, 90-99.	3.3	5
481	Genome Sequence and Analysis of <i>Escherichia coli</i> MRE600, a Colicinogenic, Nonmotile Strain that Lacks RNase I and the Type I Methyltransferase, EcoKI. Genome Biology and Evolution, 2016, 8, 742-752.	2.5	35
482	Uncovering Listeria monocytogenes hypervirulence by harnessing its biodiversity. Nature Genetics, 2016, 48, 308-313.	21.4	541
483	Genomic Comparison of Two O111:Hâ^'Enterohemorrhagic Escherichia coli Isolates from a Historic Hemolytic-Uremic Syndrome Outbreak in Australia. Infection and Immunity, 2016, 84, 775-781.	2.2	14
484	The Landscape of Realized Homologous Recombination in Pathogenic Bacteria. Molecular Biology and Evolution, 2016, 33, 456-471.	8.9	72
485	The genomic signatures of Shigella evolution, adaptation and geographical spread. Nature Reviews Microbiology, 2016, 14, 235-250.	28.6	142
486	<i>Escherichia coli</i> : an old friend with new tidings. FEMS Microbiology Reviews, 2016, 40, 437-463.	8.6	225
487	Coevolution of the Organization and Structure of Prokaryotic Genomes. Cold Spring Harbor Perspectives in Biology, 2016, 8, a018168.	5.5	55
488	Interactions between genotype and environment drive the metabolic phenotype within <scp><i>E</i></scp> <i>scherichia coli</i> isolates. Environmental Microbiology, 2016, 18, 100-117.	3.8	19
489	Fecal Carriage of Extended-Spectrum β-Lactamase-Producing <i>Enterobacteriaceae</i> Strains Is Associated with Worse Outcome in Patients Hospitalized in the Pediatric Oncology Unit of Beni-Messous Hospital in Algiers, Algeria. Microbial Drug Resistance, 2017, 23, 757-763.	2.0	18
490	Rpn (YhgA-Like) Proteins of Escherichia coli K-12 and Their Contribution to RecA-Independent Horizontal Transfer. Journal of Bacteriology, 2017, 199, .	2.2	21
491	Verocytotoxin-Producing Escherichia coli in the Genomic Era: From Virulotyping to Pathogenomics. , 2017, , 109-126.		1
492	Statistical inference for DNA sequences of promoters: a non-stationary qualitative model. Statistics, 2017, 51, 154-166.	0.6	0
493	Consensus architecture of promoters and transcription units in Escherichia coli: design principles for synthetic biology. Molecular BioSystems, 2017, 13, 665-676.	2.9	9
494	The nucleotide composition of microbial genomes indicates differential patterns of selection on core and accessory genomes. BMC Genomics, 2017, 18, 151.	2.8	55
495	Comparative genomics of Crohn's disease-associated adherent-invasive <i>Escherichia coli</i> . Gut, 2017, 66, 1382-1389.	12.1	114
496	Metabolic diversity of the emerging pathogenic lineages of <i>Klebsiella pneumoniae</i> . Environmental Microbiology, 2017, 19, 1881-1898.	3.8	79

#	Article	IF	CITATIONS
497	On the Ability to Reconstruct Ancestral Genomes from Mycobacterium Genus. Lecture Notes in Computer Science, 2017, , 642-658.	1.3	1
498	The Food Contaminant Deoxynivalenol Exacerbates the Genotoxicity of Gut Microbiota. MBio, 2017, 8, .	4.1	60
499	Genomic landscape of extended-spectrum β-lactamase resistance in Escherichia coli from an urban African setting. Journal of Antimicrobial Chemotherapy, 2017, 72, 1602-1609.	3.0	46
500	Prokaryote genome fluidity is dependent on effective population size. ISME Journal, 2017, 11, 1719-1721.	9.8	100
501	The role of recombination in evolutionary adaptation of <i>Escherichia coli</i> to a novel nutrient. Journal of Evolutionary Biology, 2017, 30, 1692-1711.	1.7	8
502	Occurrence of aminoglycoside-modifying enzymes among isolates of Escherichia coli exhibiting high levels of aminoglycoside resistance isolated from Korean cattle farms. FEMS Microbiology Letters, 2017, 364, .	1.8	20
503	Fine-Scale Structure Analysis Shows Epidemic Patterns of Clonal Complex 95, a Cosmopolitan Escherichia coli Lineage Responsible for Extraintestinal Infection. MSphere, 2017, 2, .	2.9	32
504	Evolution of bacterial virulence. FEMS Microbiology Reviews, 2017, 41, 679-697.	8.6	139
505	Competitive interactions between sponge-associated bacteria. FEMS Microbiology Ecology, 2017, 93, fix008.	2.7	26
506	Bacterial virulence phenotypes of <i>Escherichia coli</i> and host susceptibility determine risk for urinary tract infections. Science Translational Medicine, 2017, 9, .	12.4	139
507	Environmental <i>Escherichia coli</i> : ecology and public health implications-a review. Journal of Applied Microbiology, 2017, 123, 570-581.	3.1	477
508	Correlated Mutations and Homologous Recombination Within Bacterial Populations. Genetics, 2017, 205, 891-917.	2.9	16
509	Strain-specific impact of the high-pathogenicity island on virulence in extra-intestinal pathogenic Escherichia coli. International Journal of Medical Microbiology, 2017, 307, 44-56.	3.6	31
510	Whole-genome comparison of urinary pathogenic Escherichia coli and faecal isolates of UTI patients and healthy controls. International Journal of Medical Microbiology, 2017, 307, 497-507.	3.6	57
511	Epidemiological characterization of a nosocomial outbreak of extended spectrum βâ€lactamase <i>Escherichia coli</i> STâ€131 confirms the clinical value of core genome multilocus sequence typing. Apmis, 2017, 125, 1117-1124.	2.0	11
512	Metagenomic assessment of the interplay between the environment and the genetic diversification of <i>Acinetobacter</i> . Environmental Microbiology, 2017, 19, 5010-5024.	3.8	24
513	Identification of microorganisms grown in blood culture flasks using liquid chromatography–tandem mass spectrometry. Future Microbiology, 2017, 12, 1135-1145.	2.0	18
514	The chromosomal organization of horizontal gene transfer in bacteria. Nature Communications, 2017, 8, 841.	12.8	184

#	Article	IF	CITATIONS
515	Why Might Bacterial Pathogens Have Small Genomes?. Trends in Ecology and Evolution, 2017, 32, 936-947.	8.7	59
516	Recombination of Virulence Genes in Divergent Acidovorax avenae Strains That Infect a Common Host. Molecular Plant-Microbe Interactions, 2017, 30, 813-828.	2.6	15
517	Recombination-Driven Genome Evolution and Stability of Bacterial Species. Genetics, 2017, 207, 281-295.	2.9	47
518	Comparative genomics and transcriptomics of Escherichia coli isolates carrying virulence factors of both enteropathogenic and enterotoxigenic E. coli. Scientific Reports, 2017, 7, 3513.	3.3	45
519	Genomic epidemiology of global Klebsiella pneumoniae carbapenemase (KPC)-producing Escherichia coli. Scientific Reports, 2017, 7, 5917.	3.3	108
520	OrthoGNC: A Software for Accurate Identification of Orthologs Based on Gene Neighborhood Conservation. Genomics, Proteomics and Bioinformatics, 2017, 15, 361-370.	6.9	12
521	Are pangenomes adaptive or not?. Nature Microbiology, 2017, 2, 1576-1576.	13.3	59
522	Discovering Complete Quasispecies in Bacterial Genomes. Genetics, 2017, 206, 2149-2157.	2.9	21
523	Impact of Recombination on the Base Composition of Bacteria and Archaea. Molecular Biology and Evolution, 2017, 34, 2627-2636.	8.9	44
524	Comparative genome analysis of the Flavobacteriales bacterium strain UJ101, isolated from the gut of Atergatis reticulatus. Journal of Microbiology, 2017, 55, 583-591.	2.8	8
525	No evidence for a bovine mastitis Escherichia coli pathotype. BMC Genomics, 2017, 18, 359.	2.8	85
526	Enterobacteriaceae. , 2017, , 1565-1578.e2.		10
527	Resistance patterns of diversified phylogroups of <i>Escherichia coli</i> associated with mothers having history of preterm births in Pakistan. Journal of Maternal-Fetal and Neonatal Medicine, 2017, 30, 68-73.	1.5	6
528	Using longâ€term experimental evolution to uncover the patterns and determinants of molecular evolution of an <i>Escherichia coli</i> natural isolate in the streptomycinâ€treated mouse gut. Molecular Ecology, 2017, 26, 1802-1817.	3.9	63
529	MetaMLST: multi-locus strain-level bacterial typing from metagenomic samples. Nucleic Acids Research, 2017, 45, e7-e7.	14.5	88
530	Strain profiling and epidemiology of bacterial species from metagenomic sequencing. Nature Communications, 2017, 8, 2260.	12.8	98
531	Cleaning and disinfection programs against Campylobacter jejuni for broiler chickens: productive performance, microbiological assessment and characterization. Poultry Science, 2017, 96, 3188-3198.	3.4	22
532	Ancestral Genome Estimation Reveals the History of Ecological Diversification in Agrobacterium. Genome Biology and Evolution, 2017, 9, 3413-3431.	2.5	31

		CITATION R	REPORT	
#	Article		IF	CITATIONS
533	Computational Methods in Microbial Population Genomics. Population Genomics, 2017	', , 3-29.	0.5	2
534	A Theory-Based Pragmatism for Discovering and Classifying Newly Divergent Species of Pathogens. , 2017, , 25-49.	Bacterial		4
535	Reverse Vaccinology. , 2017, , 65-86.			19
536	The Evolution of Bacterial Genome Architecture. Frontiers in Genetics, 2017, 8, 72.		2.3	103
537	Virulence Markers and Phylogenetic Analysis of Escherichia coli Strains with Hybrid EAE Genotypes Recovered from Sporadic Cases of Extraintestinal Infections. Frontiers in Mic 2017, 8, 146.	C/UPEC crobiology,	3.5	53
538	Distribution of Integrons and Phylogenetic Groups among Enteropathogenic Escherichi from Children <5 Years of Age in Delhi, India. Frontiers in Microbiology, 2017, 8, 561.	a coli Isolates	3.5	15
539	The Intriguing Evolutionary Journey of Enteroinvasive E. coli (EIEC) toward Pathogenicity in Microbiology, 2017, 8, 2390.	y. Frontiers	3.5	78
540	Sibling sRNA RyfA1 Influences Shigella dysenteriae Pathogenesis. Genes, 2017, 8, 50.		2.4	11
541	Investigation of horizontal gene transfer of pathogenicity islands in Escherichia coli usir next-generation sequencing. PLoS ONE, 2017, 12, e0179880.	ıg	2.5	35
542	Comparative genomics of two super-shedder isolates of Escherichia coli O157:H7. PLoS e0182940.	ONE, 2017, 12,	2.5	19
543	Similar levels of gene content variation observed for Pseudomonas syringae populations from single and multiple host species. PLoS ONE, 2017, 12, e0184195.	s extracted	2.5	8
544	metaSNV: A tool for metagenomic strain level analysis. PLoS ONE, 2017, 12, e0182392		2.5	92
545	Cell-to-cell variation and specialization in sugar metabolism in clonal bacterial populatio Genetics, 2017, 13, e1007122.	ns. PLoS	3.5	58
546	Comparative genomic analysis of Acinetobacter strains isolated from murine colonic cry Genomics, 2017, 18, 525.	vpts. BMC	2.8	14
547	Preliminary comparative genomics revealed pathogenic potential and international spre Staphylococcus argenteus. BMC Genomics, 2017, 18, 808.	ad of	2.8	44
548	Neutral Theory, Microbial Practice: Challenges in Bacterial Population Genetics. Molecul and Evolution, 2018, 35, 1338-1347.	ar Biology	8.9	93
549	Statistics of Shared Components in Complex Component Systems. Physical Review X, 2	:018, 8, .	8.9	23
550	Extensive Gene Amplification as a Mechanism for Piperacillin-Tazobactam Resistance in coli. MBio, 2018, 9, .	Escherichia	4.1	54

#	Article	IF	CITATIONS
551	Metagenomic binning reveals versatile nutrient cycling and distinct adaptive features in alphaproteobacterial symbionts of marine sponges. FEMS Microbiology Ecology, 2018, 94, .	2.7	61
552	Fitness Tradeoffs of Antibiotic Resistance in Extraintestinal Pathogenic Escherichia coli. Genome Biology and Evolution, 2018, 10, 667-679.	2.5	49
553	Coalescent framework for prokaryotes undergoing interspecific homologous recombination. Heredity, 2018, 120, 474-484.	2.6	6
554	Pathogenesis of <i>Proteus mirabilis</i> Infection. EcoSal Plus, 2018, 8, .	5.4	208
555	<i>Bacillus subtilis,</i> the model Gramâ€positive bacterium: 20Âyears of annotation refinement. Microbial Biotechnology, 2018, 11, 3-17.	4.2	95
556	Evolution of a Dominant Natural Isolate of Escherichia coli in the Human Gut over the Course of a Year Suggests a Neutral Evolution with Reduced Effective Population Size. Applied and Environmental Microbiology, 2018, 84, .	3.1	58
557	The putative functions of lysogeny in mediating the survivorship of Escherichia coli in seawater and marine sediment. FEMS Microbiology Ecology, 2018, 94, .	2.7	6
558	Genetic Competence Drives Genome Diversity in Bacillus subtilis. Genome Biology and Evolution, 2018, 10, 108-124.	2.5	67
560	Abundant production of exopolysaccharide by EAEC strains enhances the formation of bacterial biofilms in contaminated sprouts. Gut Microbes, 2018, 9, 264-278.	9.8	13
561	"lt's a gut feeling―– <i>Escherichia coli</i> biofilm formation in the gastrointestinal tract environment. Critical Reviews in Microbiology, 2018, 44, 1-30.	6.1	87
562	Genome-wide association mapping of vitamins B1 and B2 in common wheat. Crop Journal, 2018, 6, 263-270.	5.2	25
563	Cyclicâ€diâ€GMP regulation of virulence in bacterial pathogens. Wiley Interdisciplinary Reviews RNA, 2018, 9, e1454.	6.4	79
564	The First 30 Years of Shiga Toxin–Producing Escherichia coli in Cattle Production. , 2018, , 117-131.		3
565	Gaussian process modelling in approximate Bayesian computation to estimate horizontal gene transfer in bacteria. Annals of Applied Statistics, 2018, 12, .	1.1	22
566	Genetic characterization of extraintestinal Escherichia coli isolates from chicken, cow and swine. AMB Express, 2018, 8, 117.	3.0	10
567	Temporal Variability of <i>Escherichia coli</i> Diversity in the Gastrointestinal Tracts of Tanzanian Children with and without Exposure to Antibiotics. MSphere, 2018, 3, .	2.9	23
568	Carbapenemases on the move: it's good to be on ICEs. Mobile DNA, 2018, 9, 37.	3.6	39
569	Heaps' law, statistics of shared components, and temporal patterns from a sample-space-reducing process. Physical Review E, 2018, 98, .	2.1	9

#	Article	IF	CITATIONS
570	Association of metformin administration with gut microbiome dysbiosis in healthy volunteers. PLoS ONE, 2018, 13, e0204317.	2.5	96
571	Features of urinary Escherichia coli isolated from children with complicated and uncomplicated urinary tract infections in Mexico. PLoS ONE, 2018, 13, e0204934.	2.5	16
572	Detection and identification of genetic material via single-molecule conductance. Nature Nanotechnology, 2018, 13, 1167-1173.	31.5	59
573	Factors driving effective population size and pan-genome evolution in bacteria. BMC Evolutionary Biology, 2018, 18, 153.	3.2	107
574	Precision identification of diverse bloodstream pathogens in the gut microbiome. Nature Medicine, 2018, 24, 1809-1814.	30.7	158
575	Determination of virulence and fitness genes associated with the pheU, pheV and selC integration sites of LEE-negative food-borne Shiga toxin-producing Escherichia coli strains. Gut Pathogens, 2018, 10, 43.	3.4	6
576	Genotypic and phenotypic characteristics of <i>Escherichia coli</i> involved in transfusionâ€transmitted bacterial infections: implications for preventive strategies. Transfusion, 2018, 58, 1940-1950.	1.6	4
577	The relationship between phylogenetic classification, virulence and antibiotic resistance of extraintestinal pathogenic <i>Escherichia coli</i> in İzmir province, Turkey. PeerJ, 2018, 6, e5470.	2.0	33
578	Recent developments of quinolone-based derivatives and their activities against Escherichia coli. European Journal of Medicinal Chemistry, 2018, 157, 1223-1248.	5.5	85
579	Evolution and Sequence Diversity of FhuA in Salmonella and Escherichia. Infection and Immunity, 2018, 86, .	2.2	14
580	Host-Derived Nitric Oxide and Its Antibacterial Effects in the Urinary Tract. Advances in Microbial Physiology, 2018, 73, 1-62.	2.4	7
581	Comparative virulence characterization of the Shiga toxin phage-cured Escherichia coli O104:H4 and enteroaggregative Escherichia coli. International Journal of Medical Microbiology, 2018, 308, 912-920.	3.6	8
582	A multivariate prediction model for Rho-dependent termination of transcription. Nucleic Acids Research, 2018, 46, 8245-8260.	14.5	30
583	Single-strand DNA processing: phylogenomics and sequence diversity of a superfamily of potential prokaryotic HuH endonucleases. BMC Genomics, 2018, 19, 475.	2.8	5
584	An Updated Functional Annotation of Protein-Coding Genes in the Cucumber Genome. Frontiers in Plant Science, 2018, 9, 325.	3.6	2
585	Zipf and Heaps laws from dependency structures in component systems. Physical Review E, 2018, 98, 012315.	2.1	21
586	Exposure to Sub-lethal 2,4-Dichlorophenoxyacetic Acid Arrests Cell Division and Alters Cell Surface Properties in Escherichia coli. Frontiers in Microbiology, 2018, 9, 44.	3.5	14
587	The Probiotic Escherichia coli Strain Nissle 1917 Combats Lambdoid Bacteriophages stx and λ. Frontiers in Microbiology, 2018, 9, 929.	3.5	24

#	Article	IF	CITATIONS
588	Identification of Novel Biomarkers for Priority Serotypes of Shiga Toxin-Producing Escherichia coli and the Development of Multiplex PCR for Their Detection. Frontiers in Microbiology, 2018, 9, 1321.	3.5	7
589	Comparison of Commensal Escherichia coli Isolates from Adults and Young Children in Lubuskie Province, Poland: Virulence Potential, Phylogeny and Antimicrobial Resistance. International Journal of Environmental Research and Public Health, 2018, 15, 617.	2.6	16
590	Genome-Wide Essential Gene Identification in Pathogens. , 2018, , 227-244.		0
591	Comparative genomic analysis reveals the evolution and environmental adaptation strategies of vibrios. BMC Genomics, 2018, 19, 135.	2.8	71
592	xenoGI: reconstructing the history of genomic island insertions in clades of closely related bacteria. BMC Bioinformatics, 2018, 19, 32.	2.6	12
593	Modeling of the GC content of the substituted bases in bacterial core genomes. BMC Genomics, 2018, 19, 589.	2.8	16
594	Future of Cellular and Molecular Diagnostics. , 2018, , 203-270.		2
595	Comparative Genomics of the Genus Lactobacillus Reveals Robust Phylogroups That Provide the Basis for Reclassification. Applied and Environmental Microbiology, 2018, 84, .	3.1	93
596	High genomic diversity of multi-drug resistant wastewater Escherichia coli. Scientific Reports, 2018, 8, 8928.	3.3	39
597	Transposon-insertion sequencing screens unveil requirements for EHEC growth and intestinal colonization. PLoS Pathogens, 2019, 15, e1007652.	4.7	35
599	Genomic and metabolic analysis of <i>Komagataeibacter xylinus</i> DSM 2325 producing bacterial cellulose nanofiber. Biotechnology and Bioengineering, 2019, 116, 3372-3381.	3.3	46
600	Comparative genomics reveals complex natural product biosynthesis capacities and carbon metabolism across hostâ€associated and freeâ€living <i>Aquimarina</i> (<i>Bacteroidetes,) Tj ETQq1 1 0.78431</i>	.4 8g&T /O	veøøck 10 T
601	Population Genetics of Host-Associated Microbiomes. Current Molecular Biology Reports, 2019, 5, 128-139.	1.6	10
602	Antibiotic resistance in Pseudomonas aeruginosa – Mechanisms, epidemiology and evolution. Drug Resistance Updates, 2019, 44, 100640.	14.4	269
604	Phenotypic and Genotypic Characterization of Escherichia coli Causing Urinary Tract Infections in Kidney-Transplanted Patients. Journal of Clinical Medicine, 2019, 8, 988.	2.4	13
605	MicroScope—an integrated resource for community expertise of gene functions and comparative analysis of microbial genomic and metabolic data. Briefings in Bioinformatics, 2019, 20, 1071-1084.	6.5	71
606	Irregularities in genetic variation and mutation rates with environmental stresses. Environmental Microbiology, 2019, 21, 3979-3988.	3.8	19
607	Phylogenomic Analysis Reveals the Evolutionary Route of Resistant Genes in Staphylococcus aureus. Genome Biology and Evolution, 2019, 11, 2917-2926.	2.5	21

ARTICLE IF CITATIONS # <p>Whole-genome sequence analysis of multidrug-resistant uropathogenic strains of Escherichia coli from Mexico</p>. Infection and Drug Resistance, 2019, 608 2.7 22 Volume 12, 2363-2377. Systems Biology and Pangenome of <i>Salmonella</i>O-Antigens. MBio, 2019, 10, . 609 4.1 Pseudogene repair driven by selection pressure applied in experimental evolution. Nature 610 13.3 21 Microbiology, 2019, 4, 386-389. Characterization and rapid identification of phylogroup G in <i>Escherichia coli</i>, a lineage with 611 high virulence and antibiotic resistance potential. Environmental Microbiology, 2019, 21, 3107-3117. Comparative genomeâ€scale modelling of the pathogenic Flavobacteriaceae species <i>Riemerella 612 3.8 13 anatipestifer (i) in China. Environmental Microbiology, 2019, 21, 2836-2851. Genus-wide Leptospira core genome multilocus sequence typing for strain taxonomy and global surveillance. PLoS Neglected Tropical Diseases, 2019, 13, e0007374. 3.0 Avian Pathogenic Escherichia coli: Link to Foodborne Urinary Tract Infections in Humans., 2019,, 614 1 261-292. Substantial Extracellular Metabolic Differences Found Between Phylogenetically Closely Related 3.5 Probiotic and Pathogenic Strains of Escherichia coli. Frontiers in Microbiology, 2019, 10, 252. Carbon Cycle Implications of Soil Microbial Interactions. Advances in Environmental Microbiology, 616 0.3 0 2019, , 1-29. Persistence of foodborne diarrheagenic Escherichia coli in the agricultural and food production 4.2 44 environment: Implications for food safety and public health. Food Microbiology, 2019, 82, 363-370. It's a small, small world: unravelling the role and evolution of small RNAs in organelle and 618 9 1.8 endosymbiont genomes. FEMS Microbiology Letters, 2019, 366, . Dispersal of potentially pathogenic bacteria by plastic debris in Guanabara Bay, RJ, Brazil. Marine Pollution Bulletin, 2019, 141, 561-568. 619 5.0 111 The phytopathogenic nature of <i>Dickeya aquatica</i> 174/2 and the dynamic early evolution of 620 3.8 32 <i>Dickeya</i> pathogenicity. Environmental Microbiology, 2019, 21, 2809-2835. A Significant Expansion of Our Understanding of the Composition of the Human Microbiome. 3.8 MSystems, 2019, 4, . Substitutions Are Boring: Some Arguments about Parallel Mutations and High Mutation Rates. Trends 622 6.7 38 in Genetics, 2019, 35, 253-264. Adapting for life in the extreme. ELife, 2019, 8, . Transmission in the Origins of Bacterial Diversity, From Ecotypes to Phyla., 2019, , 311-343. 624 4 The impact of sequencing depth on the inferred taxonomic composition and AMR gene content of metagenomic samples. Environmental Microbiomes, 2019, 14, 7.

#	Article	IF	CITATIONS
626	ShiF acts as an auxiliary factor of aerobactin secretion in meningitis Escherichia coli strain S88. BMC Microbiology, 2019, 19, 298.	3.3	7
627	Rapid Growth and Metabolism of Uropathogenic Escherichia coli in Relation to Urine Composition. Clinical Microbiology Reviews, 2019, 33, .	13.6	56
628	Comparative genomic analysis and molecular examination of the diversity of enterotoxigenic Escherichia coli isolates from Chile. PLoS Neglected Tropical Diseases, 2019, 13, e0007828.	3.0	17
629	Shigella. , 2019, , 317-345.		7
630	Stratified reconstruction of ancestral Escherichia coli diversification. BMC Genomics, 2019, 20, 936.	2.8	23
631	Diversity and distribution of Klebsiella capsules in Escherichia coli. Environmental Microbiology Reports, 2019, 11, 107-117.	2.4	15
632	Revisiting the methionine salvage pathway and its paralogues. Microbial Biotechnology, 2019, 12, 77-97.	4.2	38
633	Phylogenomic Analysis of Extraintestinal Pathogenic <i>Escherichia coli</i> Sequence Type 1193, an Emerging Multidrug-Resistant Clonal Group. Antimicrobial Agents and Chemotherapy, 2019, 63, .	3.2	64
634	Phylogroups, pathotypes, biofilm formation and antimicrobial resistance of Escherichia coli isolates in farms and packing facilities of tomato, jalapeño pepper and cantaloupe from Northern Mexico. International Journal of Food Microbiology, 2019, 290, 96-104.	4.7	25
635	MSPminer: abundance-based reconstitution of microbial pan-genomes from shotgun metagenomic data. Bioinformatics, 2019, 35, 1544-1552.	4.1	82
636	Transmission in the Origins of Bacterial Diversity, From Ecotypes to Phyla. Microbiology Spectrum, 2017, 5, .	3.0	46
637	A newly developed Escherichia coli isolate panel from a cross section of U.S. animal production systems reveals geographic and commodity-based differences in antibiotic resistance gene carriage. Journal of Hazardous Materials, 2020, 382, 120991.	12.4	6
638	Risk factors for quinolone-resistant Escherichia coli infection: a systematic review and meta-analysis. Antimicrobial Resistance and Infection Control, 2020, 9, 11.	4.1	16
639	Epigenomic characterization of Clostridioides difficile finds a conserved DNA methyltransferase that mediates sporulation and pathogenesis. Nature Microbiology, 2020, 5, 166-180.	13.3	75
640	Immunogenicity of trimeric autotransporter adhesins and their potential as vaccine targets. Medical Microbiology and Immunology, 2020, 209, 243-263.	4.8	10
641	Fast identification of Escherichia coli in urinary tract infections using a virulence gene based PCR approach in a novel thermal cycler. Journal of Microbiological Methods, 2020, 169, 105799.	1.6	24
642	Pathogenicity Factors of Genomic Islands in Intestinal and Extraintestinal Escherichia coli. Frontiers in Microbiology, 2020, 11, 2065.	3.5	77
643	Genome Complexity Browser: Visualization and quantification of genome variability. PLoS Computational Biology, 2020, 16, e1008222.	3.2	1

#	Article	IF	CITATIONS
644	A Comparative Study of Fluoroquinolone-Resistant Escherichia coli Lineages Portrays Indistinguishable Pathogenicity- and Survivability-Associated Phenotypic Characteristics Between ST1193 and ST131. Infection and Drug Resistance, 2020, Volume 13, 4167-4175.	2.7	6
645	Impact of homologous recombination on core genome phylogenies. BMC Genomics, 2020, 21, 829.	2.8	17
646	Genetic Diversity Among Mycobacterium avium Subspecies Revealed by Analysis of Complete Genome Sequences. Frontiers in Microbiology, 2020, 11, 1701.	3.5	21
647	Uneven genotypic diversity of <i>Escherichia coli</i> in fecal sources limits the performance of a library-dependent method of microbial source tracking on the southwestern French Atlantic coast. Canadian Journal of Microbiology, 2020, 66, 698-712.	1.7	3
648	High prevalence of mcr-1-encoded colistin resistance in commensal Escherichia coli from broiler chicken in Bangladesh. Scientific Reports, 2020, 10, 18637.	3.3	28
649	Common plant flavonoids prevent the assembly of amyloid curli fibres and can interfere with bacterial biofilm formation. Environmental Microbiology, 2020, 22, 5280-5299.	3.8	28
650	Genotype–phenotype correlation of β-lactamase-producing uropathogenic Escherichia coli (UPEC) strains from Bangladesh. Scientific Reports, 2020, 10, 14549.	3.3	11
651	The Role of Pea (Pisum sativum) Seeds in Transmission of Entero-Aggregative Escherichia coli to Growing Plants. Microorganisms, 2020, 8, 1271.	3.6	5
652	Siderophore-Microcins in Escherichia coli: Determinants of Digestive Colonization, the First Step Toward Virulence. Frontiers in Cellular and Infection Microbiology, 2020, 10, 381.	3.9	24
653	Escherichia coli as a Multifaceted Pathogenic and Versatile Bacterium. Frontiers in Cellular and Infection Microbiology, 2020, 10, 548492.	3.9	75
654	THE EFFECTS OF SOME ENVIRONMENTAL FACTORS ON THE ENTEROBACTER GROUP. Journal of Physics: Conference Series, 2020, 1660, 012083.	0.4	0
655	A Role for Gut Microbiome Fermentative Pathways in Fatty Liver Disease Progression. Journal of Clinical Medicine, 2020, 9, 1369.	2.4	22
656	Phylogenetic background and habitat drive the genetic diversification of Escherichia coli. PLoS Genetics, 2020, 16, e1008866.	3.5	131
657	Characterization of water treatment-resistant and multidrug-resistant urinary pathogenic Escherichia coli in treated wastewater. Water Research, 2020, 182, 115827.	11.3	31
658	Virulence gene transcription, phylogroups, and antibiotic resistance of cervico-vaginal pathogenic E. coli in Mexico. PLoS ONE, 2020, 15, e0234730.	2.5	9
659	GeneRax: A Tool for Species-Tree-Aware Maximum Likelihood-Based Gene ÂFamily Tree Inference under Gene Duplication, Transfer, and Loss. Molecular Biology and Evolution, 2020, 37, 2763-2774.	8.9	87
660	Multiple Bacteria Identification in the Point-of-Care: an Old Method Serving a New Approach. Sensors, 2020, 20, 3351.	3.8	6
661	Compound Lactobacillus sp. administration ameliorates stress and body growth through gut microbiota optimization on weaning piglets. Applied Microbiology and Biotechnology, 2020, 104,	3.6	35

#	Article	IF	CITATIONS
662	CoreSimul: a forward-in-time simulator of genome evolution for prokaryotes modeling homologous recombination. BMC Bioinformatics, 2020, 21, 264.	2.6	10
663	Standardized phylogenetic and molecular evolutionary analysis applied to species across the microbial tree of life. Scientific Reports, 2020, 10, 1723.	3.3	65
664	Epistatic Effect of Regulators to the Adaptive Growth of Escherichia coli. Scientific Reports, 2020, 10, 3661.	3.3	5
665	Metaphylogenetic analysis of global sewage reveals that bacterial strains associated with human disease show less degree of geographic clustering. Scientific Reports, 2020, 10, 3033.	3.3	7
666	Disentangling the impact of environmental and phylogenetic constraints on prokaryotic within-species diversity. ISME Journal, 2020, 14, 1247-1259.	9.8	74
667	A bifunctional salvage pathway for two distinct Sâ€adenosylmethionine byâ€products that is widespread in bacteria, including pathogenic <i>Escherichia coli</i> . Molecular Microbiology, 2020, 113, 923-937.	2.5	18
668	Early fate of exogenous promoters in E.Âcoli. Nucleic Acids Research, 2020, 48, 2348-2356.	14.5	10
669	Climatic changes and their role in emergence and re-emergence of diseases. Environmental Science and Pollution Research, 2020, 27, 22336-22352.	5.3	169
670	Molecular determinants of surface colonisation in diarrhoeagenic <i>Escherichia coli</i> (DEC): from bacterial adhesion to biofilm formation. FEMS Microbiology Reviews, 2020, 44, 314-350.	8.6	34
671	Complete Genome Sequence of Colistin-Resistant Escherichia fergusonii Strain EFCF056. Microbiology Resource Announcements, 2020, 9, .	0.6	8
672	Evaluation of cinnamon extract effects on clbB gene expression and biofilm formation in Escherichia coli strains isolated from colon cancer patients. BMC Cancer, 2020, 20, 267.	2.6	22
673	Pan-genomics of model bacteria and their outcomes. , 2020, , 189-201.		2
674	E. coli diversity: low in colorectal cancer. BMC Medical Genomics, 2020, 13, 59.	1.5	7
675	Overview of the rules of the microbial engagement in the gut microbiome: a step towards microbiome therapeutics. Journal of Applied Microbiology, 2021, 130, 1425-1441.	3.1	38
676	Selective Survival of Escherichia coli Phylotypes in Freshwater Beach Sand. Applied and Environmental Microbiology, 2021, 87, .	3.1	9
677	Timeâ€calibrated genomic evolution of a monomorphic bacterium during its establishment as an endemic crop pathogen. Molecular Ecology, 2021, 30, 1823-1835.	3.9	9
678	The population genetics of pathogenic Escherichia coli. Nature Reviews Microbiology, 2021, 19, 37-54.	28.6	268
679	The utility of Escherichia coli as a contamination indicator for rural drinking water: Evidence from whole genome sequencing. PLoS ONE, 2021, 16, e0245910.	2.5	28

#	Article	IF	CITATIONS
680	Whole genome phylogenies reflect the distributions of recombination rates for many bacterial species. ELife, 2021, 10, .	6.0	42
681	Searching for an Identity: Functional Characterization of Taxonomically Restricted Genes in Grain Amaranth. Compendium of Plant Genomes, 2021, , 97-124.	0.5	5
682	Genome-wide genetic marker analysis and genotyping of Escherichia fergusonii strain OTSVEF-60. Brazilian Journal of Microbiology, 2021, 52, 989-1004.	2.0	14
683	A comprehensive and high-quality collection of Escherichia coli genomes and their genes. Microbial Genomics, 2021, 7, .	2.0	38
684	High-Resolution Typing of <i>Staphylococcus epidermidis</i> Based on Core Genome Multilocus Sequence Typing To Investigate the Hospital Spread of Multidrug-Resistant Clones. Journal of Clinical Microbiology, 2021, 59, .	3.9	4
687	How sequence populations persist inside bacterial genomes. Genetics, 2021, 217, .	2.9	10
688	High Rates of Genome Rearrangements and Pathogenicity of Shigella spp Frontiers in Microbiology, 2021, 12, 628622.	3.5	13
690	Comparative genomics of the ADA clade within the Nostocales. Harmful Algae, 2021, 104, 102037.	4.8	11
691	Evaluating the impact of hydrometeorological conditions on <i>E. coli</i> concentration in farmed mussels and clams: experience in Central Italy. Journal of Water and Health, 2021, 19, 512-533.	2.6	7
692	Hybrid Atypical Enteropathogenic and Extraintestinal Escherichia coli (aEPEC/ExPEC) BA1250 Strain: A Draft Genome. Pathogens, 2021, 10, 475.	2.8	8
693	Circulation of Extended-Spectrum Beta-Lactamase-Producing Escherichia coli of Pandemic Sequence Types 131, 648, and 410 Among Hospitalized Patients, Caregivers, and the Community in Rwanda. Frontiers in Microbiology, 2021, 12, 662575.	3.5	16
694	Phylogroup stability contrasts with high within sequence type complex dynamics of Escherichia coli bloodstream infection isolates over a 12-year period. Genome Medicine, 2021, 13, 77.	8.2	35
695	Genomic Insights into Drug Resistance and Virulence Platforms, CRISPR-Cas Systems and Phylogeny of Commensal E. coli from Wildlife. Microorganisms, 2021, 9, 999.	3.6	4
696	Salmonella Genomics in Public Health and Food Safety. EcoSal Plus, 2021, 9, eESP00082020.	5.4	23
697	Mutations in bdcA and valS Correlate with Quinolone Resistance in Wastewater Escherichia coli. International Journal of Molecular Sciences, 2021, 22, 6063.	4.1	3
699	A Novel Comparison of Virulence Genes, Biofilm-Forming Capacity, Antibiotic Resistance, and Level of Reactive Oxygen Species of Sediment, Sewage, and O157 E. coli. Water, Air, and Soil Pollution, 2021, 232, 1.	2.4	1
701	Predicting plasmid persistence in microbial communities by coarseâ€grained modeling. BioEssays, 2021, 43, 2100084.	2.5	2
702	Genetic characterization of extended-spectrum β-Lactamase- and carbapenemase-producing Escherichia coli isolated from Egyptian hospitals and environments. PLoS ONE, 2021, 16, e0255219.	2.5	7

ARTICLE IF CITATIONS # A Fork Trap in the Chromosomal Termination Area Is Highly Conserved across All Escherichia coli 703 4.1 3 Phylogenetic Groups. International Journal of Molecular Sciences, 2021, 22, 7928. Gut bacteria communities differ between Gynaephora species endemic to different altitudes of the 704 8.0 Tibetan Plateau. Science of the Total Environment, 2021, 777, 146115. Genomic analysis of Shiga toxin-producing Escherichia coli O157:H7 from cattle and pork-production 705 5.5 6 related environments. Npj Science of Food, 2021, 5, 15. Comparative Pathogenomics of <i>Escherichia coli </i>: Polyvalent Vaccine Target Identification through Virulome Analysis. Infection and Immunity, 2021, 89, e0011521. Assessment of metrics in next-generation sequencing experiments for use in core-genome multilocus 708 2.0 2 sequence type. PeerJ, 2021, 9, e11842. Pan-Genome-Wide Analysis of Pantoea ananatis Identified Genes Linked to Pathogenicity in Onion. Frontiers in Microbiology, 2021, 12, 684756. 3.5 Discerning the Antimicrobial Resistance, Virulence, and Phylogenetic Relatedness of Salmonella Isolates Across the Human, Poultry, and Food Materials Sources in Malaysia. Frontiers in 711 3.5 9 Microbiology, 2021, 12, 652642. A review of the taxonomy, genetics, and biology of the genus <i>Escherichia</i> and the type species 1.7 28 <i>Escherichia coli</i>. Canadian Journal of Microbiology, 2021, 67, 553-571. Characterisation of Early Positive mcr-1 Resistance Gene and Plasmidome in Escherichia coli 713 Pathogenic Strains Associated with Variable Phylogroups under Colistin Selection. Antibiotics, 2021, 3.7 7 10, 1041. Different evolutionary trends form the twilight zone of the bacterial pan-genome. Microbial 714 Genomics, 2021, 7, . Genomic Epidemiology and Strain Taxonomy of <i>Corynebacterium diphtheriae</i>. Journal of 715 12 3.9 Clinical Microbiology, 2021, 59, e0158121. Niche Preference of Escherichia coli in a Peri-Urban Pond Ecosystem. Life, 2021, 11, 1020. 716 2.4 The E phylogroup of <scp><i>Escherichia coli</i></scp> is highly diverse and mimics the whole 717 3.8 16 <scp><i>E. coli</i>/species population structure. Environmental Microbiology, 2021, 23, 7139-7151. Experimental and theoretical analyses of nano-silver for antibacterial activity based on differential 3.8 crystal growth temperatures. Saudi Journal of Biological Sciences, 2021, 28, 7561-7566. The complex evolution of the metazoan HSP70 gene family. Scientific Reports, 2021, 11, 17794. 719 3.3 11 Pandora: nucleotide-resolution bacterial pan-genomics with reference graphs. Genome Biology, 2021, 22, 267. Lipopolysaccharide core type diversity in the Escherichia coli species in association with phylogeny, 721 2.0 3 virulence gene repertoire and distribution of type VI secretion systems. Microbial Genomics, 2021, 7, . Genomic diversity of <i>Escherichia coli</i> from healthy children in rural Gambia. PeerJ, 2021, 9, e10572.

#	Article	IF	CITATIONS
723	The ecology of plasmid-coded antibiotic resistance: a basic framework for experimental research and modeling. Computational and Structural Biotechnology Journal, 2021, 19, 586-599.	4.1	13
724	The impact of genetic diversity on gene essentiality within the Escherichia coli species. Nature Microbiology, 2021, 6, 301-312.	13.3	76
725	Genomics of Escherichia and Shigella. , 2011, , 119-139.		3
726	Covering All the Bases: The Promise of Genome-Wide Sequence Data for Large Population Samples of Bacteria. Social and Ecological Interactions in the Galapagos Islands, 2013, , 41-62.	0.4	2
727	On the Eco-Evolutionary Relationships of Fresh and Salt Water Bacteria and the Role of Gene Transfer in Their Adaptation. , 2013, , 55-77.		28
728	The Prokaryotic Species Concept and Challenges. , 2020, , 21-49.		21
729	Non-spore-Forming Bacterial Entomopathogens: Their Toxins, Hosts and the Environment: Why Be a Pathogen. Advances in Environmental Microbiology, 2016, , 169-220.	0.3	2
730	Assessing the Robustness of Complete Bacterial Genome Segmentations. Lecture Notes in Computer Science, 2010, , 173-187.	1.3	1
731	E. coli as an All-Rounder: The Thin Line Between Commensalism and Pathogenicity. Current Topics in Microbiology and Immunology, 2013, , 3-32.	1.1	6
732	Signatures of Natural Selection and Ecological Differentiation in Microbial Genomes. Advances in Experimental Medicine and Biology, 2014, 781, 339-359.	1.6	20
733	Urinary tract infections: microbial pathogenesis, host–pathogen interactions and new treatment strategies. Nature Reviews Microbiology, 2020, 18, 211-226.	28.6	258
735	panRGP: a pangenome-based method to predict genomic islands and explore their diversity. Bioinformatics, 2020, 36, i651-i658.	4.1	26
736	Recombination produces coherent bacterial species clusters in both core and accessory genomes. Microbial Genomics, 2015, 1, e000038.	2.0	37
737	NASP: an accurate, rapid method for the identification of SNPs in WGS datasets that supports flexible input and output formats. Microbial Genomics, 2016, 2, e000074.	2.0	237
738	Sequencing a piece of history: complete genome sequence of the original Escherichia coli strain. Microbial Genomics, 2017, 3, mgen000106.	2.0	33
739	An assessment of genome annotation coverage across the bacterial tree of life. Microbial Genomics, 2020, 6, .	2.0	55
740	Whole-genome analyses reveal gene content differences between nontypeable Haemophilus influenzae isolates from chronic obstructive pulmonary disease compared to other clinical phenotypes. Microbial Genomics, 2020, 6, .	2.0	10
741	Diversity of the auxotrophic requirements in natural isolates of Escherichia coli. Microbiology (United Kingdom), 2017, 163, 891-899.	1.8	16

ARTICLE IF CITATIONS # Loving the poison: the methylcitrate cycle and bacterial pathogenesis. Microbiology (United Kingdom), 742 1.8 39 2018, 164, 251-259. ClbR Is the Key Transcriptional Activator of Colibactin Gene Expression in Escherichia coli. MSphere, 758 19 2020, 5, . Phylogeny Reconstruction with Alignment-Free Method That Corrects for Horizontal Gene Transfer. 759 3.2 27 PLoS Computational Biology, 2016, 12, e1004985. Evidence of Selection upon Genomic GC-Content in Bacteria. PLoS Genetics, 2010, 6, e1001107. Evidence That Mutation Is Universally Biased towards AT in Bacteria. PLoS Genetics, 2010, 6, e1001115. 761 3.5 386 Population Genomics of the Facultatively Mutualistic Bacteria Sinorhizobium meliloti and S. medicae. 3.5 PLoS Genetics, 2012, 8, e1002868. Major role of iron uptake systems in the intrinsic extra-intestinal virulence of the genus Escherichia 763 3.5 56 revealed by a genome-wide association study. PLoS Genetics, 2020, 16, e1009065. Evolution in Quantum Leaps: Multiple Combinatorial Transfers of HPI and Other Genetic Modules in 764 2.5 37 Enterobacteriaceae. PLoS ONE, 2010, 5, e8662. Complete Genome Sequence of Crohn's Disease-Associated Adherent-Invasive E. coli Strain LF82. PLoS 765 2.5 180 ONE, 2010, 5, e12714. Genes but Not Genomes Reveal Bacterial Domestication of Lactococcus Lactis. PLoS ONE, 2010, 5, 2.5 e15306. 767 Gene Decay in Shigella as an Incipient Stage of Host-Adaptation. PLoS ONE, 2011, 6, e27754. 2.5 45 Genome Sequence of E. coli O104:H4 Leads to Rapid Development of a Targeted Antimicrobial Agent 768 against This Emerging Pathogen. PLoS ONE, 2012, 7, e33637. Collagen-Like Proteins in Pathogenic E. coli Strains. PLoS ONE, 2012, 7, e37872. 769 2.5 32 Design Constraints on a Synthetic Metabolism. PLoS ONE, 2012, 7, e39903. 770 2.5 Structure Determination and Functional Analysis of a Chromate Reductase from Gluconacetobacter 771 2.532 hansenii. PLoS ONE, 2012, 7, e42432. Mutation Frequency and Spectrum of Mutations Vary at Different Chromosomal Positions of 23 Pseudomonas putida. PLoS ONE, 2012, 7, e48511. Adaptive Mutations and Replacements of Virulence Traits in the Escherichia coli O104:H4 Outbreak 773 2.515 Population. PLoS ONE, 2013, 8, e63027. A Longitudinal Study Simultaneously Exploring the Carriage of APEC Virulence Associated Genes and 774 the Molecular Epidemiology of Faecal and Systemic E. coli in Commercial Broiler Chickens. PLoS ONE, 2013, 8, e67749.

	CITATION RE	CITATION REPORT	
#	Article	IF	Citations
775	A Genomic Redefinition of Pseudomonas avellanae species. PLoS ONE, 2013, 8, e75794.	2.5	40
776	Diversified Microbiota of Meconium Is Affected by Maternal Diabetes Status. PLoS ONE, 2013, 8, e78257.	2.5	208
777	Two Novel EHEC/EAEC Hybrid Strains Isolated from Human Infections. PLoS ONE, 2014, 9, e95379.	2.5	39
778	Comparative Genomics of the Bacterial Genus Streptococcus Illuminates Evolutionary Implications of Species Groups. PLoS ONE, 2014, 9, e101229.	2.5	76
779	Recombination Blurs Phylogenetic Groups Routine Assignment in Escherichia coli: Setting the Record Straight. PLoS ONE, 2014, 9, e105395.	2.5	27
780	Comparative Genomics to Delineate Pathogenic Potential in Non-O157 Shiga Toxin-Producing Escherichia coli (STEC) from Patients with and without Haemolytic Uremic Syndrome (HUS) in Norway. PLoS ONE, 2014, 9, e111788.	2.5	41
781	Enteroaggregative Escherichia coli Have Evolved Independently as Distinct Complexes within the E. coli Population with Varying Ability to Cause Disease. PLoS ONE, 2014, 9, e112967.	2.5	17
782	What It Takes to Be a Pseudomonas aeruginosa? The Core Genome of the Opportunistic Pathogen Updated. PLoS ONE, 2015, 10, e0126468.	2.5	91
783	Genomic Comparative Study of Bovine Mastitis Escherichia coli. PLoS ONE, 2016, 11, e0147954.	2.5	63
784	Genetic Attributes of E. coli Isolates from Chlorinated Drinking Water. PLoS ONE, 2017, 12, e0169445.	2.5	14
785	Highly diverse and antimicrobial susceptible Escherichia coli display a naÃ⁻ve bacterial population in fruit bats from the Republic of Congo. PLoS ONE, 2017, 12, e0178146.	2.5	28
786	A Highly Conserved Bacterial D-Serine Uptake System Links Host Metabolism and Virulence. PLoS Pathogens, 2016, 12, e1005359.	4.7	55
788	The Phenotypic and Genotypic Characteristics of Antibiotic Resistance in Escherichia coli Populations Isolated from Farm Animals with Different Exposure to Antimicrobial Agents. Polish Journal of Microbiology, 2013, 62, 173-179.	1.7	20
790	Enumeration of Escherichia coli and determination of Salmonella spp. and verotoxigenic Escherichia coli in shellfish (Mytilus galloprovincialis and Ruditapes) Tj ETQq1 1 0.784314 rgBT /O	verlock 10) T f 50 212
791	Molecular phylogeny of Escherichia coli isolated from clinical samples in Hilla, Iraq. African Journal of Biotechnology, 2011, 10, .	0.6	2
792	Statistical analysis of pentose phosphate pathway genes from eubacteria and eukarya reveals translational selection as a major force in shaping codon usage pattern. Bioinformation, 2013, 9, 349-356.	0.5	1
793	The unexhausted potential of E. coli. ELife, 2015, 4, .	6.0	251
794	Complex chromosomal neighborhood effects determine the adaptive potential of a gene under selection. ELife, 2017, 6, .	6.0	17

#	Article	IF	Citations
795	Slightly beneficial genes are retained by bacteria evolving DNA uptake despite selfish elements. ELife, 2020, 9, .	6.0	29
798	Enterobacteriaceae. , 2010, , 1690-1703.		1
800	Genomic and Transcriptomic Analyses of Foodborne Bacterial Pathogens. , 2011, , 311-341.		0
803	Population Genetics of the â \in œAeromonas hydrophila Species Complexâ \in , 0, , .		0
804	Horse Chestnut Bleeding Canker: A Twenty-First Century Tree Pathogen. Forestry Sciences, 2014, , 783-794.	0.4	0
805	Der norddeutsche Ausbruch mit Shigaâ€Toxinâ€produzierenden E. coli O104:H4 aus klinischâ€mikrobiologischer Sicht. , 2014, , 39-57.		0
806	Gene Acquisition and Loss in the Phylogenetic Lineages of the Invasive Escherichia coli. , 0, , 133-156.		0
807	<i>Shigella</i> Species. , 0, , 377-399.		1
808	The Genomics of Escherichia coli and Beyond. , 0, , 31-42.		0
809	Genomic and Virulence Heterogeneity of Enteroaggregative <i>Escherichia coli</i> ., 0, , 181-198.		0
811	Microbial Toxins in Foods: The Importance of Escherichia coli, a Versatile Enemy. Springer Briefs in Molecular Science, 2015, , 79-101.	0.1	2
812	Enterohemorrhagic Escherichia coli Genomics: Past, Present, and Future. , 0, , 55-71.		0
813	A Decad(e) of Reasons to Contribute to a PLOS Community-Run Journal. PLoS Genetics, 2015, 11, e1005557.	3.5	0
819	Exploration of Specific DNA-Barcodes in Shigella dysenteriae Using In-silico Analysis. Avicenna Journal of Clinical Microbiology and Infection, 2017, 4, 13082-13082.	0.4	0
828	Colibacilosis en gallinas reproductoras. Revista Sistemas De Producciâon Agroecolâogicos, 2018, 9, 52-76.	0.0	0
829	Züchtung gestern bis heute. , 2019, , 39-116.		0
830	Gene und Gesellschaft. , 2019, , 225-266.		0
831	Extrinsic Antibiotic-Resistant Mechanism in Bacteria. , 2019, , 87-103.		0

#	Article	IF	CITATIONS
838	Colibacilosis en gallinas reproductoras pesadas en reproducción. Revista Sistemas De Producciâon Agroecolâogicos, 2019, 10, 63-90.	0.0	0
841	Relationship between Escherichia coli and colon cancer. GSC Biological and Pharmaceutical Sciences, 2020, 12, 188-193.	0.3	1
843	Unconventional Cyclic di-GMP Signaling in Escherichia coli. , 2020, , 487-517.		0
845	The Location of Substitutions and Bacterial Genome Arrangements. Genome Biology and Evolution, 2021, 13, .	2.5	2
846	Homologous Recombination in Clostridioides difficile Mediates Diversification of Cell Surface Features and Transport Systems. MSphere, 2020, 5, .	2.9	4
847	Bacterial Microevolution and the Pangenome. , 2020, , 129-149.		1
852	Rates of gene conversions between <i>Escherichia coli</i> ribosomal operons. G3: Genes, Genomes, Genetics, 2021, 11, .	1.8	4
853	Enterobacterial Repetitive Intergenic Consensus Polymerase Chain Reaction (ERIC-PCR) Genotyping of Strains Isolated from Different Animal Stool Specimens. Iranian Journal of Pathology, 2017, 12, 25-34.	0.5	17
854	A Study of the Antimicrobial Activity of Combined Black Pepper and Cinnamon Essential Oils against Escherichia fergusonii in Traditional African Yoghurt. Foods, 2021, 10, 2847.	4.3	5
855	Carbon catabolite repression in pectin digestion by the phytopathogen Dickeya dadantii. Journal of Biological Chemistry, 2022, 298, 101446.	3.4	1
856	How Safe to Eat Are Raw Bivalves? Host Pathogenic and Public Health Concern Microbes within Mussels, Oysters, and Clams in Greek Markets. Foods, 2021, 10, 2793.	4.3	9
857	Breeding, Yesterday Until Today. , 2022, , 35-103.		0
858	Genes and Society. , 2022, , 199-235.		0
859	Specificities and Commonalities of Carbapenemase-Producing Escherichia coli Isolated in France from 2012 to 2015. MSystems, 2022, 7, e0116921.	3.8	7
860	Microbial defenses against mobile genetic elements and viruses: Who defends whom from what?. PLoS Biology, 2022, 20, e3001514.	5.6	83
861	Phylogeny and potential virulence of cryptic clade Escherichia coli species complex isolates derived from an arable field trial. Current Research in Microbial Sciences, 2022, 3, 100093.	2.3	0
862	The microbial ecology of <i>Escherichia coli</i> in the vertebrate gut. FEMS Microbiology Reviews, 2022, 46, .	8.6	34
865	Proteogenomics Identification of Tbbpa Degraders in Anaerobic Bioreactor. SSRN Electronic Journal, 0, , .	0.4	0

#	Article	IF	CITATIONS
866	Combined Transcriptomic and Proteomic Profiling of E. coli under Microaerobic versus Aerobic Conditions: The Multifaceted Roles of Noncoding Small RNAs and Oxygen-Dependent Sensing in Global Gene Expression Control. International Journal of Molecular Sciences, 2022, 23, 2570.	4.1	5
867	Mosaic Evolution of Beta-Barrel-Porin-Encoding Genes in <i>Escherichia coli</i> . Applied and Environmental Microbiology, 2022, 88, e0006022.	3.1	3
868	Cooperation increases robustness to ecological disturbance in microbial crossâ€feeding networks. Ecology Letters, 2022, 25, 1410-1420.	6.4	16
869	Impact of plastic bags on the benthic system of a tropical estuary: An experimental study. Marine Pollution Bulletin, 2022, 178, 113623.	5.0	1
870	Current Advances in the Biodegradation and Bioconversion of Polyethylene Terephthalate. Microorganisms, 2022, 10, 39.	3.6	29
873	The gut environment regulates bacterial gene expression which modulates susceptibility to bacteriophage infection. Cell Host and Microbe, 2022, 30, 556-569.e5.	11.0	24
938	Comparative Genomics Applied to Systematically Assess Pathogenicity Potential in Shiga Toxin-Producing Escherichia coli O145:H28. Microorganisms, 2022, 10, 866.	3.6	7
939	Using unique ORFan genes as strain-specific identifiers for Escherichia coli. BMC Microbiology, 2022, 22, 135.	3.3	2
941	Genomics and pathotypes of the many faces of <i>Escherichia coli</i> . FEMS Microbiology Reviews, 2022, 46, .	8.6	36
942	A 16th century Escherichia coli draft genome associated with an opportunistic bile infection. Communications Biology, 2022, 5, .	4.4	2
943	Differential survival of potentially pathogenic, septicemia- and meningitis-causing E. coli across the wastewater treatment train. Npj Clean Water, 2022, 5, .	8.0	1
944	Proteogenomics identification of TBBPA degraders in anaerobic bioreactor. Environmental Pollution, 2022, 310, 119786.	7.5	2
945	A Straightforward Approach towards Antibacterial and Antiâ€Inflammatory Multifunctional Nanofiber Membranes with Sustained Drug Release Profiles. Macromolecular Bioscience, 2022, 22, .	4.1	5
946	Type 1 piliated uropathogenic Escherichia coli hijack the host immune response by binding to CD14. ELife, 0, 11, .	6.0	2
948	Prospective and challenges of live bacterial therapeutics from a superhero <i>Escherichia coli</i> Nissle 1917. Critical Reviews in Microbiology, 2023, 49, 611-627.	6.1	10
949	Nutrition or nature: using elementary flux modes to disentangle the complex forces shaping prokaryote pan-genomes. Bmc Ecology and Evolution, 2022, 22, .	1.6	0
950	The Population Genomics of Increased Virulence and Antibiotic Resistance in Human Commensal Escherichia coli over 30 Years in France. Applied and Environmental Microbiology, 2022, 88, .	3.1	23
951	Genomic dissection of the Vibrio cholerae O-serogroup global reference strains: reassessing our view of diversity and plasticity between two chromosomes. Microbial Genomics, 2022, 8, .	2.0	2

#	Article	IF	CITATIONS
952	Multiple genome alignment in the telomere-to-telomere assembly era. Genome Biology, 2022, 23, .	8.8	17
954	Metabolic and Morphotypic Trade-Offs within the Eco-Evolutionary Dynamics of Escherichia coli. Microbiology Spectrum, 2022, 10, .	3.0	2
955	Prevalence and Characterization of Shiga Toxin Producing Escherichia coli Isolated from Animal Feed in Croatia. Microorganisms, 2022, 10, 1839.	3.6	2
956	Horizontal gene transfer enables programmable gene stability in synthetic microbiota. Nature Chemical Biology, 2022, 18, 1245-1252.	8.0	12
957	Multidrug-Resistant High-Risk Escherichia coli and Klebsiella pneumoniae Clonal Lineages Occur in Black-Headed Gulls from Two Conservation Islands in Germany. Antibiotics, 2022, 11, 1357.	3.7	4
960	<i>Escherichia coli</i> O157:H7 senses microbiota-produced riboflavin to increase its virulence in the gut. Proceedings of the National Academy of Sciences of the United States of America, 2022, 119, .	7.1	10
961	Comparative genomic and phenotypic analyses of the virulence potential in Shiga toxin-producing Escherichia coli O121:H7 and O121:H10. Frontiers in Cellular and Infection Microbiology, 0, 12, .	3.9	3
962	<i>Escherichia coli</i> : An Overview of Main Characteristics. , 0, , .		5
963	Identification of a gene cluster for D-tagatose utilization in Escherichia coli B2 phylogroup. IScience, 2022, 25, 105655.	4.1	0
964	Ancient Darwinian replicators nested within eubacterial genomes. BioEssays, 2023, 45, .	2.5	4
965	Transcriptional Potential Determines the Adaptability of Escherichia coli Strains with Different Fitness Backgrounds. Microbiology Spectrum, 2022, 10, .	3.0	1
966	Bioinformatics study of the DNA and RNA viruses infecting plants and bacteria that could potentially affect animals and humans. Current Bioinformatics, 2022, 18, .	1.5	0
967	Genome-wide identification of genes critical for <i>in vivo</i> fitness of multi-drug resistant porcine extraintestinal pathogenic <i>Escherichia coli</i> by transposon-directed insertion site sequencing using a mouse infection model. Virulence, 2023, 14, .	4.4	2
968	High Virulence and Multidrug Resistance of EscherichiaÂcoli Isolated in Periodontal Disease. Microorganisms, 2023, 11, 45.	3.6	0
969	Genetic Determinants of Escherichia coli Survival in Beach Sand. Applied and Environmental Microbiology, 2023, 89, .	3.1	1
970	Vertical and horizontal gene transfer tradeoffs direct plasmid fitness. Molecular Systems Biology, 2023, 19, .	7.2	12
972	Avian strains of emerging pathogen Escherichia fergusonii are phylogenetically diverse and harbor the greatest AMR dissemination potential among different sources: Comparative genomic evidence. Frontiers in Microbiology, 0, 13, .	3.5	0
973	Epistasis decreases with increasing antibiotic pressure but not temperature. Philosophical Transactions of the Royal Society B: Biological Sciences, 2023, 378, .	4.0	7

#	Article	IF	CITATIONS
974	Incorporating plasmid biology and metagenomics into a holistic model of the human gut microbiome. Current Opinion in Microbiology, 2023, 73, 102307.	5.1	2
975	Genomic microbiome analyses of surface sand samples from the Kyzyl-Kum Desert (Uzbekistan): characterization and comparative study. Archives of Microbiology, 2023, 205, .	2.2	0
976	Generalizations of the genomic rank distance to indels. Bioinformatics, 2023, 39, .	4.1	0
977	Evidence for a Causal Role for Escherichia coli Strains Identified as Adherent-Invasive (AIEC) in Intestinal Inflammation. MSphere, 2023, 8, .	2.9	5
978	CALANGO: A phylogeny-aware comparative genomics tool for discovering quantitative genotype-phenotype associations across species. Patterns, 2023, , 100728.	5.9	3
979	Under-Appreciated Phylogroup Diversity of <i>Escherichia coli</i> within and between Animals at the Urban-Wildland Interface. Applied and Environmental Microbiology, 2023, 89, .	3.1	2
980	Molecular Pathogenesis of Colitis-associated Colorectal Cancer: Immunity, Genetics, and Intestinal Microecology. Inflammatory Bowel Diseases, 2023, 29, 1648-1657.	1.9	3
981	Gene Transfer. , 2023, , 51-63.		0
982	Multidrug-Resistant Bacteria. , 2023, , 65-77.		0
983	Temocillin Resistance in the Enterobacter cloacae Complex Is Conferred by a Single Point Mutation in BaeS, Leading to Overexpression of the AcrD Efflux Pump. Antimicrobial Agents and Chemotherapy, 2023, 67, .	3.2	5
985	PanGraph: scalable bacterial pan-genome graph construction. Microbial Genomics, 2023, 9, .	2.0	4
986	Predicting variable gene content in <i>Escherichia coli</i> using conserved genes. MSystems, 0, , .	3.8	0
989	A Decade-Long Evaluation of Neonatal Septicaemic Escherichia coli: Clonal Lineages, Genomes, and New Delhi Metallo-Beta-Lactamase Variants. Microbiology Spectrum, 2023, 11, .	3.0	1
990	xenoGl 3: using the DTLOR model to reconstruct the evolution of gene families in clades of microbes. BMC Bioinformatics, 2023, 24, .	2.6	0
991	The distinct transcriptome of virulence-associated phylogenetic group B2 <i>Escherichia coli</i> . Microbiology Spectrum, 2023, 11, .	3.0	0
992	Main Challenges Expected from the Impact of Climate Change on Microbial Biodiversity of Table Olives: Current Status and Trends. Foods, 2023, 12, 3712.	4.3	0
994	The Y-ome Conundrum: Insights into Uncharacterized Genes and Approaches for Functional Annotation. Molecular and Cellular Biochemistry, 0, , .	3.1	0
995	Chance Favors the Prepared Genomes: Horizontal Transfer Shapes the Emergence of Antibiotic Resistance Mutations in Core Genes. Molecular Biology and Evolution, 2023, 40, .	8.9	0

#	Article	IF	CITATIONS
996	Carriage and within-host diversity of <i>mcr-1.1-</i> harbouring <i>Escherichia coli</i> from pregnant mothers: inter- and intra-mother transmission dynamics of <i>mcr-1.1</i> . Emerging Microbes and Infections, 2023, 12, .	6.5	0
998	Development of a SNP-based strain-identified method for Streptococcus thermophilus CICC 6038 and Lactobacillus delbrueckii ssp. bulgaricus CICC 6047 using pan-genomics analysis. Journal of Dairy Science, 2024, , .	3.4	0
999	Bacterial chromosomes and their replication. , 2024, , 279-307.		0
1000	Horizontal gene transfer is predicted to overcome the diversity limit of competing microbial species. Nature Communications, 2024, 15, .	12.8	0
1001	Genotypic characterization of bacterial isolates causing urinary tract infections among adults at Kiambu Level 5 Hospital, Kenya: selected extended-spectrum β-lactamase genes and biofilm formation. Access Microbiology, 2024, 6, .	0.5	0
1002	The protein carboxymethyltransferase–dependent aspartate salvage pathway plays a crucial role in the intricate metabolic network of <i>Escherichia coli</i> . Science Advances, 2024, 10, .	10.3	0
1003	Diversity, Distribution, and Chromosomal Rearrangements of TRIP1 Repeat Sequences in Escherichia coli. Genes, 2024, 15, 236.	2.4	0
1004	Systematic review and meta-analyses of the role of drinking water sources in the environmental dissemination of antibiotic-resistant <i>Escherichia coli</i> in Africa. International Journal of Environmental Health Research, 0, , 1-15.	2.7	0