The TGF- \hat{I}^2 paradox in human cancer: an update

Future Oncology 5, 259-271 DOI: 10.2217/14796694.5.2.259

Citation Report

#	Article	IF	CITATIONS
1	Eosinophils and Oral Squamous Cell Carcinoma: A Short Review. Journal of Oncology, 2009, 2009, 1-6.	0.6	28
2	p130Cas Is Required for Mammary Tumor Growth and Transforming Growth Factor-β-mediated Metastasis through Regulation of Smad2/3 Activity. Journal of Biological Chemistry, 2009, 284, 34145-34156.	1.6	62
3	Activated Abl kinase inhibits oncogenic transforming growth factorâ€Î² signaling and tumorigenesis in mammary tumors. FASEB Journal, 2009, 23, 4231-4243.	0.2	56
4	Induction of endometrial epithelial cell invasion and c-fms expression by transforming growth factor beta. Molecular Human Reproduction, 2009, 15, 665-673.	1.3	30
5	Less Smad2 is good for you! A scientific update on coffee's liver benefits. Hepatology, 2009, 50, 970-978.	3.6	26
6	SPARC: a matricellular regulator of tumorigenesis. Journal of Cell Communication and Signaling, 2009, 3, 255-273.	1.8	147
7	Role of transforming growth factor \hat{I}^2 in cancer microenvironment. Clinical and Translational Oncology, 2009, 11, 715-720.	1.2	27
8	CLU "In and Out― Advances in Cancer Research, 2009, 105, 93-113.	1.9	25
9	Inhibiting Breast Cancer Progression by Exploiting TGFβ Signaling. Current Drug Targets, 2010, 11, 1089-1102.	1.0	5
10	The Pathophysiology of Epithelial-Mesenchymal Transition Induced by Transforming Growth Factor-β in Normal and Malignant Mammary Epithelial Cells. Journal of Mammary Gland Biology and Neoplasia, 2010, 15, 169-190.	1.0	202
11	Resveratrol modulates the levels of microRNAs targeting genes encoding tumor-suppressors and effectors of TGFÎ ² signaling pathway in SW480 cells. Biochemical Pharmacology, 2010, 80, 2057-2065.	2.0	221
12	Kinases as targets in the treatment of solid tumors. Cellular Signalling, 2010, 22, 984-1002.	1.7	88
13	An efficient method for expression in Escherichia coli and purification of the extracellular ligand binding domain of the human TGFβ type II receptor. Journal of Biotechnology, 2010, 148, 113-118.	1.9	5
14	JAB1/CSN5: a new player in cell cycle control and cancer. Cell Division, 2010, 5, 26.	1.1	132
15	Radiation Resistance of Cancer Stem Cells: The 4 R's of Radiobiology Revisited. Stem Cells, 2010, 28, 639-648.	1.4	328
16	Pilot analysis of cytokines levels in stored granulocyte–colonyâ€ s timulating factor–mobilized peripheral blood stem cell concentrates. Transfusion, 2010, 50, 2011-2015.	0.8	7
17	The primary mitogen (TCPOBOP)-induced hepatocyte proliferation is resistant to transforming growth factor- β-1 inhibition. Liver International, 2010, 30, 1505-1510.	1.9	1
18	Transforming growth factor-β-induced epithelial–mesenchymal transition facilitates epidermal growth factor-dependent breast cancer progression. Oncogene, 2010, 29, 6485-6498.	2.6	173

#	Article	IF	CITATIONS
19	The tumour suppressor C/EBPδ inhibits FBXW7 expression and promotes mammary tumour metastasis. EMBO Journal, 2010, 29, 4106-4117.	3.5	95
20	The polarization of immune cells in the tumour environment by TGFβ. Nature Reviews Immunology, 2010, 10, 554-567.	10.6	795
21	Reporter Gene Imaging of Cell Signal Transduction. , 0, , 195-226.		0
22	New Medical Strategies for Midgut Carcinoids. Anti-Cancer Agents in Medicinal Chemistry, 2010, 10, 250-269.	0.9	8
23	The Tumor-Suppressive Function of Connexin43 in Keratinocytes Is Mediated in Part via Interaction with Caveolin-1. Cancer Research, 2010, 70, 4222-4232.	0.4	63
24	PGE2 receptor EP2 mediates the antagonistic effect of COXâ€⊋ on TGFâ€Î² signaling during mammary tumorigenesis. FASEB Journal, 2010, 24, 1105-1116.	0.2	62
25	Signal Transducer and Activator of Transcription (STAT)-5A and STAT5B Differentially Regulate Human Mammary Carcinoma Cell Behavior. Endocrinology, 2010, 151, 43-55.	1.4	48
26	Androgen Regulation of Gene Expression. Advances in Cancer Research, 2010, 107, 137-162.	1.9	97
27	TGF-β signaling in aortic aneurysm: another round of controversy. Journal of Genetics and Genomics, 2010, 37, 583-591.	1.7	23
28	Role of Cripto-1 in Stem Cell Maintenance and Malignant Progression. American Journal of Pathology, 2010, 177, 532-540.	1.9	110
29	An integrative view on the role of TGF-β in the progressive tubular deletion associated with chronic kidney disease. Kidney International, 2010, 77, 950-955.	2.6	131
30	Hepatocellular Carcinoma Cells and Their Fibrotic Microenvironment Modulate Bone Marrow-Derived Mesenchymal Stromal Cell Migration <i>in Vitro</i> and <i>in Vivo</i> . Molecular Pharmaceutics, 2011, 8, 1538-1548.	2.3	72
31	Lysyl Oxidase Contributes to Mechanotransduction-Mediated Regulation of Transforming Growth Factor-β Signaling in Breast Cancer Cells. Neoplasia, 2011, 13, 406-IN2.	2.3	85
32	Alcohol, Cancer Genes, and Signaling Pathways. , 2011, , 93-126.		1
33	TGF-β and Restenosis Revisited: A Smad Link. Journal of Surgical Research, 2011, 167, 287-297.	0.8	51
34	Resveratrol, MicroRNAs, Inflammation, and Cancer. Journal of Nucleic Acids, 2011, 2011, 1-9.	0.8	80
35	Role of TGF-Î ² and the Tumor Microenvironment During Mammary Tumorigenesis. Gene Expression, 2011, 15, 117-132.	0.5	81
36	Association between brain natriuretic peptide and distant metastases in advanced non-small cell lung cancer patients. Oncology Letters, 2011, 2, 253-256.	0.8	5

#	Article	IF	CITATIONS
37	Noncanonical TGF-β Signaling During Mammary Tumorigenesis. Journal of Mammary Gland Biology and Neoplasia, 2011, 16, 127-146.	1.0	103
38	Inducible expression of TGFβ, Snail and Zeb1 recapitulates EMT in vitro and in vivo in a NSCLC model. Clinical and Experimental Metastasis, 2011, 28, 593-614.	1.7	59
39	MicroRNA Dysregulation in Colon Cancer Microenvironment Interactions: The Importance of Small Things in Metastases. Cancer Microenvironment, 2011, 4, 155-162.	3.1	16
40	Mechanisms of transforming growth factor \hat{I}^2 induced cell cycle arrest in palate development. Journal of Cellular Physiology, 2011, 226, 1415-1424.	2.0	44
41	Inhibition of HIF Prolyl Hydroxylase-2 Blocks Tumor Growth in Mice through the Antiproliferative Activity of TGFβ. Cancer Research, 2011, 71, 3306-3316.	0.4	66
42	Pleiotropic functions of EAPII/TTRAP/TDP2. Cell Cycle, 2011, 10, 3274-3283.	1.3	25
43	NetSlim: high-confidence curated signaling maps. Database: the Journal of Biological Databases and Curation, 2011, 2011, bar032-bar032.	1.4	29
44	Genetic variations in the transforming growth factor-beta pathway as predictors of survival in advanced non-small cell lung cancer. Carcinogenesis, 2011, 32, 1050-1056.	1.3	32
45	The Cain and Abl of Epithelial-Mesenchymal Transition and Transforming Growth Factor-Î ² in Mammary Epithelial Cells. Cells Tissues Organs, 2011, 193, 98-113.	1.3	22
46	Growth Factors in Induction of Epithelial-Mesenchymal Transition and Metastasis. Cells Tissues Organs, 2011, 193, 85-97.	1.3	73
47	Fibromodulin Suppresses Nuclear Factor-κB Activity by Inducing the Delayed Degradation of IKBA via a JNK-dependent Pathway Coupled to Fibroblast Apoptosis. Journal of Biological Chemistry, 2011, 286, 6414-6422.	1.6	28
48	Prognostic value of transforming growth factor beta 1 [TGF-β1] and matrix metalloproteinase 9 [MMP-9] in oral squamous cell carcinoma. Biomarkers, 2012, 17, 21-27.	0.9	34
49	SnoN regulates mammary gland alveologenesis and onset of lactation by promoting prolactin/Stat5 signaling. Development (Cambridge), 2012, 139, 3147-3156.	1.2	24
50	Raf-1, a Potential Therapeutic Target, Mediates Early Steps in Endometriosis Lesion Development by Endometrial Epithelial and Stromal Cells. Endocrinology, 2012, 153, 3911-3921.	1.4	12
51	Integrin β4 Regulates SPARC Protein to Promote Invasion. Journal of Biological Chemistry, 2012, 287, 9835-9844.	1.6	41
52	Analysis of Gene Expression Regulated by the <i>ETV5</i> Transcription Factor in OV90 Ovarian Cancer Cells Identifies <i>FOXM1</i> Overexpression in Ovarian Cancer. Molecular Cancer Research, 2012, 10, 914-924.	1.5	22
53	Current Status of Therapeutic Targeting of Developmental Signalling Pathways in Oncology. Current Pharmaceutical Biotechnology, 2012, 13, 2184-2220.	0.9	29
54	Microenvironmental Regulation of Cancer Stem Cell Phenotypes. Current Stem Cell Research and Therapy, 2012, 7, 197-216.	0.6	93

#	Article	IF	CITATIONS
55	IL-23 directly enhances the proliferative and invasive activities of colorectal carcinoma. Oncology Letters, 2012, 4, 199-204.	0.8	34
56	Coffee and Caffeine Protect against Liver Injury Induced by Thioacetamide in Male Wistar Rats. Basic and Clinical Pharmacology and Toxicology, 2012, 111, 339-347.	1.2	71
57	The miR-106b-25 cluster targets Smad7, activates TGF-β signaling, and induces EMT and tumor initiating cell characteristics downstream of Six1 in human breast cancer. Oncogene, 2012, 31, 5162-5171.	2.6	276
58	Liver sinusoidal endothelial cells contribute to CD8 T cell tolerance toward circulating carcinoembryonic antigen in mice. Hepatology, 2012, 56, 1924-1933.	3.6	49
59	Germline prognostic markers for urinary bladder cancer: Obstacles and opportunities. Urologic Oncology: Seminars and Original Investigations, 2012, 30, 524-532.	0.8	21
60	Characterization of a cell culture model for clinically aggressive hepatocellular carcinoma induced by chronic hypoxia. Cancer Letters, 2012, 315, 178-188.	3.2	12
61	Deletion of periostin reduces muscular dystrophy and fibrosis in mice by modulating the transforming growth factor-β pathway. Proceedings of the National Academy of Sciences of the United States of America, 2012, 109, 10978-10983.	3.3	117
62	Digitoxin and its analogs as novel cancer therapeutics. Experimental Hematology and Oncology, 2012, 1, 4.	2.0	96
63	The rejuvenated scenario of epithelial–mesenchymal transition (EMT) and cancer metastasis. Cancer and Metastasis Reviews, 2012, 31, 455-467.	2.7	97
64	Lewis Y regulates signaling molecules of the transforming growth factor \hat{I}^2 pathway in ovarian carcinoma-derived RMG-I cells. International Journal of Oncology, 2012, 40, 1196-1202.	1.4	15
65	Molecular Pathways: Targeting the TGF-β Pathway for Cancer Therapy. Clinical Cancer Research, 2012, 18, 4514-4521.	3.2	172
66	<scp>CD</scp> 4 ⁺ <scp>CD</scp> 25 ^{high} Foxp3 ⁺ Cells Increased in the Peritoneal Fluid of Patients with Endometriosis. American Journal of Reproductive Immunology, 2012, 68, 301-308.	1.2	67
67	Induction of palate epithelial mesenchymal transition by transforming growth factor β3 signaling. Development Growth and Differentiation, 2012, 54, 633-648.	0.6	35
68	Transforming growth factor-beta signaling promotes hepatocarcinogenesis induced by p53 loss. Hepatology, 2012, 55, 121-131.	3.6	56
69	Transforming growth factor-Î ² and atherosclerosis: interwoven atherogenic and atheroprotective aspects. Cell and Tissue Research, 2012, 347, 155-175.	1.5	205
70	Deconstructing the mechanisms and consequences of TGF-β-induced EMT during cancer progression. Cell and Tissue Research, 2012, 347, 85-101.	1.5	202
71	Role of TGF-β in chronic kidney disease: an integration of tubular, glomerular and vascular effects. Cell and Tissue Research, 2012, 347, 141-154.	1.5	250
72	Diet-induced obesity and ethanol impair progression of hepatocellular carcinoma in a mouse mesenteric vein injection model. Surgical Endoscopy and Other Interventional Techniques, 2013, 27, 246-255.	1.3	13

#	Article	IF	CITATIONS
73	Canonical <scp>TGF</scp> â€Î² Pathway Activity Is a Predictor of <scp>SHH</scp> â€Driven Medulloblastoma Survival and Delineates Putative Precursors in Cerebellar Development. Brain Pathology, 2013, 23, 178-191.	2.1	26
74	Nodal signalling in embryogenesis and tumourigenesis. International Journal of Biochemistry and Cell Biology, 2013, 45, 885-898.	1.2	77
75	p130Cas controls the susceptibility of cancer cells to TGF-β-induced growth inhibition. Biochemical and Biophysical Research Communications, 2013, 438, 116-121.	1.0	4
76	Transforming Growth Factor \hat{l}^21 Signal is Crucial for Dedifferentiation of Cancer Cells to Cancer Stem Cells in Osteosarcoma. Stem Cells, 2013, 31, 433-446.	1.4	102
77	The relevance of the TGF-Î ² Paradox to EMT-MET programs. Cancer Letters, 2013, 341, 30-40.	3.2	174
78	TCTEX1D4, a novel protein phosphatase 1 interactor: connecting the phosphatase to the microtubule network. Biology Open, 2013, 2, 453-465.	0.6	17
79	Intestinal GUCY2C Prevents TGF-Î ² Secretion Coordinating Desmoplasia and Hyperproliferation in Colorectal Cancer. Cancer Research, 2013, 73, 6654-6666.	0.4	21
80	Reduction of prostate cancer incidence by naftopidil, an α ₁ â€adrenoceptor antagonist and transforming growth factorâ€Î² signaling inhibitor. International Journal of Urology, 2013, 20, 1220-1227.	0.5	30
81	Epigenetic regulation of <i>DACH1</i> , a novel Wnt signaling component in colorectal cancer. Epigenetics, 2013, 8, 1373-1383.	1.3	79
82	Immunological effects of the TGFβ-blocking antibody GC1008 in malignant pleural mesothelioma patients. Oncolmmunology, 2013, 2, e26218.	2.1	68
83	The Many Faces of C/EBPδ and their Relevance for Inflammation and Cancer. International Journal of Biological Sciences, 2013, 9, 917-933.	2.6	127
84	Silencing DACH1 Promotes Esophageal Cancer Growth by Inhibiting TGF-Î ² Signaling. PLoS ONE, 2014, 9, e95509.	1.1	26
85	Role of pyruvate kinase M2 in transcriptional regulation leading to epithelial–mesenchymal transition. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111, 15526-15531.	3.3	178
86	Importance of carcinoma-associated fibroblast-derived proteins in clinical oncology. Journal of Clinical Pathology, 2014, 67, 1026-1031.	1.0	33
87	TGFβ-mediated suppression of CD248 in non-cancer cells via canonical Smad-dependent signaling pathways is uncoupled in cancer cells. BMC Cancer, 2014, 14, 113.	1.1	13
88	Establishment of a human 3D lung cancer model based on a biological tissue matrix combined with a Boolean <i>inÂsilico</i> model. Molecular Oncology, 2014, 8, 351-365.	2.1	74
89	TGFß-Mediated Suppression of CD248 in Non-Cancer Cells via Canonical SMAD-Dependent Signaling Pathways is Uncoupled in Cancer Cells. , 2014, , 1-26.		0
90	Enhanced NK cell adoptive antitumor effects against breast cancer in vitro via blockade of the transforming growth factor-β signaling pathway. OncoTargets and Therapy, 2015, 8, 1553.	1.0	26

#	Article	IF	CITATIONS
91	Ubiquitin specific protease 22 promotes cell proliferation and tumor growth of epithelial ovarian cancer through synergy with transforming growth factor β1. Oncology Reports, 2015, 33, 133-140.	1.2	17
92	Transforming growth factor-Î ² promotes prostate bone metastasis through induction of microRNA-96 and activation of the mTOR pathway. Oncogene, 2015, 34, 4767-4776.	2.6	81
93	TSC1 Activates TGF-β-Smad2/3 Signaling in Growth Arrest and Epithelial-to-Mesenchymal Transition. Developmental Cell, 2015, 32, 617-630.	3.1	54
94	Relationships Between SMAD3 Expression and Preoperative Fluoropyrimidineâ€Based Chemoradiotherapy Response in Locally Advanced Rectal Cancer Patients. World Journal of Surgery, 2015, 39, 1257-1267.	0.8	9
95	Waltonitone induces apoptosis through mir-663-induced Bcl-2 downregulation in non-small cell lung cancer. Tumor Biology, 2015, 36, 871-876.	0.8	10
96	Deptor Enhances Triple-Negative Breast Cancer Metastasis and Chemoresistance through Coupling to Survivin Expression. Neoplasia, 2015, 17, 317-328.	2.3	58
97	Republished: Importance of carcinoma-associated fibroblast-derived proteins in clinical oncology. Postgraduate Medical Journal, 2015, 91, 291-296.	0.9	2
98	Genetic instability in the tumor microenvironment: a new look at an old neighbor. Molecular Cancer, 2015, 14, 145.	7.9	48
99	Growth factors in fetal and adult wound healing. , 2016, , 41-68.		2
100	miR-663 overexpression induced by endoplasmic reticulum stress modulates hepatocellular carcinoma cell apoptosis via transforming growth factor beta 1. OncoTargets and Therapy, 2016, 9, 1623.	1.0	29
101	Dichotomous roles of TGF-Î ² in human cancer. Biochemical Society Transactions, 2016, 44, 1441-1454.	1.6	91
102	Molecular biology of gynecological cancer. Oncology Letters, 2016, 11, 16-22.	0.8	16
103	The paradoxical functions of EGFR during breast cancer progression. Signal Transduction and Targeted Therapy, 2017, 2, .	7.1	95
104	Dual function of TGFβ in lens epithelial cell fate: implications for secondary cataract. Molecular Biology of the Cell, 2017, 28, 907-921.	0.9	39
105	Downregulation of deltaâ€aminolevulinate dehydratase is associated with poor prognosis inÂpatients with breast cancer. Cancer Science, 2017, 108, 604-611.	1.7	22
106	TGF-β in Development and Ageing. Healthy Ageing and Longevity, 2017, , 127-148.	0.2	0
107	Loss of SPDEF and gain of TGFBI activity after androgen deprivation therapy promote EMT and bone metastasis of prostate cancer. Science Signaling, 2017, 10, .	1.6	52
108	Prostate Cancer Stem Cells and Nanotechnology: A Focus on Wnt Signaling. Frontiers in Pharmacology, 2017, 8, 153.	1.6	23

#	Article	IF	CITATIONS
109	Mammary Gland Involution Provides a Unique Model to Study the TGF-Î ² Cancer Paradox. Journal of Clinical Medicine, 2017, 6, 10.	1.0	24
110	Fractalkine. , 2018, , 1867-1867.		0
111	Fused. , 2018, , 1875-1875.		0
112	The concomitant apoptosis and EMT underlie the fundamental functions of TGF-β. Acta Biochimica Et Biophysica Sinica, 2018, 50, 91-97.	0.9	31
113	Immune cell expression of TGFβ1 in cancer with lymphoid stroma: dendritic cell and regulatory T cell contact. Virchows Archiv Fur Pathologische Anatomie Und Physiologie Und Fur Klinische Medizin, 2018, 472, 1021-1028.	1.4	5
114	<scp>TGF</scp> â€Î² transactivates <scp>EGFR</scp> and facilitates breast cancer migration and invasion through canonical Smad3 and <scp>ERK</scp> /Sp1 signaling pathways. Molecular Oncology, 2018, 12, 305-321.	2.1	111
115	miR-663a inhibits tumor growth and invasion by regulating TGF-β1 in hepatocellular carcinoma. BMC Cancer, 2018, 18, 1179.	1.1	28
116	An Improved Method for Prediction of Cancer Prognosis by Network Learning. Genes, 2018, 9, 478.	1.0	33
117	Nuclear PKM2 promotes the progression of oral squamous cell carcinoma by inducing EMT and post-translationally repressing TGIF2. Oncotarget, 2018, 9, 33745-33761.	0.8	28
118	The Many Facets of Metzincins and Their Endogenous Inhibitors: Perspectives on Ovarian Cancer Progression. International Journal of Molecular Sciences, 2018, 19, 450.	1.8	13
119	Blockade of TGF-β signaling to enhance the antitumor response is accompanied by dysregulation of the functional activity of CD4+CD25+Foxp3+ and CD4+CD25â^Foxp3+ T cells. Journal of Translational Medicine, 2019, 17, 219.	1.8	36
120	Phytochemical Modulation of MiRNAs in Colorectal Cancer. Medicines (Basel, Switzerland), 2019, 6, 48.	0.7	9
121	TGF beta promotes repair of bulky DNA damage through increased ERCC1/XPF and ERCC1/XPA interaction. Carcinogenesis, 2019, 40, 580-591.	1.3	20
122	Scarless wound healing: From development to senescence. Advanced Drug Delivery Reviews, 2019, 146, 325-343.	6.6	59
123	A Proliferation-Inducing Ligand Regulation in Polymorphonuclear Neutrophils by Panax ginseng. Archivum Immunologiae Et Therapiae Experimentalis, 2020, 68, 32.	1.0	2
124	Heterofusion: Fusing genomics data of different measurement scales. Journal of Chemometrics, 2021, 35, e3200.	0.7	5
126	Assessment of the Role of Selected SMAD3 and SMAD4 Genes Polymorphisms in the Development of Colorectal Cancer: Preliminary Research. Pharmacogenomics and Personalized Medicine, 2021, Volume 14, 167-178.	0.4	4
127	What deubiquitinating enzymes, oncogenes, and tumor suppressors actually do: Are current assumptions supported byApatient outcomes?. BioEssays, 2021, 43, e2000269.	1.2	3

#	Article	IF	CITATIONS
128	bc-GenExMiner 4.5: new mining module computes breast cancer differential gene expression analyses. Database: the Journal of Biological Databases and Curation, 2021, 2021, .	1.4	81
129	MicroRNAs and Natural Compounds Mediated Regulation of TGF Signaling in Prostate Cancer. Frontiers in Pharmacology, 2020, 11, 613464.	1.6	6
130	Inhibitors of TGFβR1/ALK4/JNK3/Flt1 Kinases in Cynomolgus Macaques Lead to the Rapid Induction of Renal Epithelial Tumors. Toxicological Sciences, 2021, 180, 51-61.	1.4	1
131	Actin Cytoskeleton and Regulation of TGFÎ ² Signaling: Exploring Their Links. Biomolecules, 2021, 11, 336.	1.8	17
132	Ameliorative effects of colostrum against DMBA hepatotoxicity in rats. Saudi Journal of Biological Sciences, 2021, 28, 2254-2266.	1.8	6
133	Melanomaâ€associated glycosyltransferase GCNT2 as an emerging biomarker and therapeutic target*. British Journal of Dermatology, 2021, 185, 294-301.	1.4	7
134	The Role of TGF-β Signaling Pathways in Cancer and Its Potential as a Therapeutic Target. Evidence-based Complementary and Alternative Medicine, 2021, 2021, 1-16.	0.5	18
135	The Role of WAVE2 Signaling in Cancer. Biomedicines, 2021, 9, 1217.	1.4	13
136	Discovery and biological evaluation of phthalazines as novel non-kinase TGFÎ ² pathway inhibitors. European Journal of Medicinal Chemistry, 2021, 223, 113660.	2.6	2
137	Antibody-Targeted Nanoparticles for Cancer Treatment. , 2020, , 35-65.		3
138	MED15, transforming growth factor beta 1 (TGF-β1), FcγRIII (CD16), and HNK-1 (CD57) are prognostic biomarkers of oral squamous cell carcinoma. Scientific Reports, 2020, 10, 8475.	1.6	6
139	TGF-Î ² in the pathogenesis and prevention of disease: a matter of aneurysmic proportions. Journal of Clinical Investigation, 2010, 120, 403-406.	3.9	102
140	Novel Genes and Pathways Modulated by Syndecan-1: Implications for the Proliferation and Cell-Cycle Regulation of Malignant Mesothelioma Cells. PLoS ONE, 2012, 7, e48091.	1.1	41
141	The Transcription Factor GLI1 Mediates TGFβ1 Driven EMT in Hepatocellular Carcinoma via a SNAI1-Dependent Mechanism. PLoS ONE, 2012, 7, e49581.	1.1	68
142	Biomarkers of TGF-β Signaling Pathway and Prognosis of Pancreatic Cancer. PLoS ONE, 2014, 9, e85942.	1.1	99
143	Targeting the TGFÎ ² pathway in uterine carcinosarcoma. Cell Stress, 2020, 4, 252-260.	1.4	7
144	Characterization of the tumor cell microenvironment. Onkologiya Zhurnal Imeni P A Gertsena, 2018, 7, 67.	0.0	11
145	Chamaejasmenin B, a novel candidate, inhibits breast tumor metastasis by rebalancing TGF-beta paradox. Oncotarget, 2016, 7, 48180-48192.	0.8	30

#	Article	IF	CITATIONS
146	Sphingosine kinase 1 is required for TGF-Î ² mediated fibroblast-to-myofibroblast differentiation in ovarian cancer. Oncotarget, 2016, 7, 4167-4182.	0.8	51
147	TGF-β stimulation of EMT programs elicits non-genomic ER-α activity and anti-estrogen resistance in breast cancer cells. Journal of Cancer Metastasis and Treatment, 2017, 3, 150.	0.5	43
148	Profiling of Gene Expression Associated with Stemness and Aggressiveness of ALDH1A1-Expressing Human Breast Cancer Cells. The Malaysian Journal of Medical Sciences, 2019, 26, 38-52.	0.3	5
149	Transforming Growth Factor-Beta1 and Myeloid-Derived Suppressor Cells Interplay in Cancer. The Open Cancer Immunology Journal, 2017, 6, 1-14.	0.2	5
150	Identification of Paraxanthine as the Most Potent Inhibitor of TGF-Î ² Dependent Connective Tissue Growth Factor Expression Among the Three Primary Caffeine Metabolites - A New Approach in the Pharmacological Management of Chronic Fibrogenic Diseases?. The Open Conference Proceedings Journal, 2010, 1, 239-250.	0.6	1
151	Advanced pancreatic ductal adenocarcinoma - Complexities of treatment and emerging therapeutic options. World Journal of Gastroenterology, 2017, 23, 2276.	1.4	13
152	Mass spectrometry‑based iTRAQ analysis of serum markers in patients with pancreatic cancer. Oncology Letters, 2020, 19, 4106-4114.	0.8	4
153	TGF-β Suppresses COX-2 Expression by Tristetraprolin-Mediated RNA Destabilization in A549 Human Lung Cancer Cells. Cancer Research and Treatment, 1970, 47, 101-109.	1.3	13
154	Clinically Translatable Approaches of Inhibiting TGF-β to Target Cancer Stem Cells in TNBC. Biomedicines, 2021, 9, 1386.	1.4	14
155	Dormancy of Disseminated Tumor Cells: Reciprocal Crosstalk with the Microenvironment. , 2010, , 229-254.		Ο
157	Fibulins. , 2012, , 616-623.		0
158	Response of Fetal and Adult Cells to Growth Factors. , 2013, , 65-77.		Ο
159	The Multifunctional Roles of TGF- $\hat{1}^2$ in Navigating the Metastatic Cascade. , 2013, , 169-187.		0
160	Fibulins. , 2018, , 1723-1730.		Ο
161	Transforming Growth Factor Beta (TGF-β) Signaling in Head and Neck Squamous Cell Carcinoma (HNSCC). Current Cancer Research, 2018, , 89-115.	0.2	0
162	Linking myofibroblast generation and microvascular alteration: The role of CD248 from pathogenesis to therapeutic target (Review). Molecular Medicine Reports, 2019, 20, 1488-1498.	1.1	10
163	Differentiation plasticity of human monocytes in culture. , 2020, 11, 1-10.	0.0	0
164	How the structural properties of the indole derivatives are important in kinase targeted drug design?: A case study on tyrosine kinase inhibitors. Bioorganic and Medicinal Chemistry, 2022, 53, 116534.	1.4	7

#	Article	IF	CITATIONS
165	Identification of Prognostic Gene Biomarkers in Non-Small Cell Lung Cancer Progression by Integrated Bioinformatics Analysis. Biology, 2021, 10, 1200.	1.3	16
166	Targeted Deletion of Kindlin-2 in Mouse Mammary Glands Inhibits Tumor Growth, Invasion, and Metastasis Downstream of a TGF-β/EGF Oncogenic Signaling Pathway. Cancers, 2022, 14, 639.	1.7	4
167	Mammalian tumor-like organs. 1. The role of tumor-like normal organs and atypical tumor organs in the evolution of development (carcino-evo-devo). Infectious Agents and Cancer, 2022, 17, 2.	1.2	4
168	Plasma Growth Factor Gene Expression and Mammographic Breast Density in Postmenopausal Women. Cancer Prevention Research, 2022, 15, 391-398.	0.7	1
169	Paradoxical Behavior of Oncogenes Undermines the Somatic Mutation Theory. Biomolecules, 2022, 12, 662.	1.8	9
170	The roles of TGF-β and VEGF pathways in the suppression of antitumor immunity in melanoma and other solid tumors. , 2022, 240, 108211.		21
171	Investigation of the protective and therapeutic effects of <i>Lactobacillus casei</i> and <i>Saccharomyces cerevisiae</i> in a breast cancer mouse model. AIMS Microbiology, 2022, 8, 193-207.	1.0	0
172	Deep learning for de-convolution of Smad2 versus Smad3 binding sites. BMC Genomics, 2022, 23, .	1.2	1
173	Clinical and Histopathological Factors Associated with the Tumoral Expression of TGF-β1, MED15, CD16, and CD57 in Oral Squamous Cell Carcinoma. Advances in Preventive Medicine, 2022, 2022, 1-11.	1.1	1
174	Roles of TGF- <i>β</i> in cancer hallmarks and emerging onco-therapeutic design. Expert Reviews in Molecular Medicine, 2022, 24, .	1.6	2
176	Next-generation immunotherapy for solid tumors: combination immunotherapy with crosstalk blockade of TGFÎ ² and PD-1/PD-L1. Expert Opinion on Investigational Drugs, 2022, 31, 1187-1202.	1.9	1
177	Epithelial–Mesenchymal Transition Induced in Cancer Cells by Adhesion to Type I Collagen. International Journal of Molecular Sciences, 2023, 24, 198.	1.8	2
178	Transforming growth factor- Î ² mediated regulation of epigenome is required for epithelial to mesenchymal transition associated features in liver cancer cells. Heliyon, 2023, 9, e14665.	1.4	1
179	TGF-Î ² mediated drug resistance in solid cancer. Cytokine and Growth Factor Reviews, 2023, 71-72, 54-65.	3.2	9
180	Common Attractors in Multiple Boolean Networks. IEEE/ACM Transactions on Computational Biology and Bioinformatics, 2023, , 1-12.	1.9	0
184	TGF-β in correlation with tumor progression, immunosuppression and targeted therapy in colorectal cancer. , 2023, 40, .		1