Diffusion Tensor Imaging, White Matter Lesions, the Co Elderly

Stroke

40, 3816-3820

DOI: 10.1161/strokeaha.109.564765

Citation Report

#	Article	IF	CITATIONS
1	Management of common central vestibular disorders. Current Opinion in Otolaryngology and Head and Neck Surgery, 2010, $18,436-440$.	0.8	4
3	Correlation of cognitive dysfunction and diffusion tensor MRI measures in patients with mild and moderate multiple sclerosis. Journal of Magnetic Resonance Imaging, 2010, 31, 1492-1498.	1.9	70
4	Physical and Mental Health of Homebound Older Adults: An Overlooked Population. Journal of the American Geriatrics Society, 2010, 58, 2423-2428.	1.3	208
5	Mild Cognitive Impairment is Associated with Mild Parkinsonian Signs in a Door-to-Door Study. Journal of Alzheimer's Disease, 2010, 22, 1005-1013.	1.2	16
6	The recovery of walking in stroke patients: a review. International Journal of Rehabilitation Research, 2010, 33, 285-289.	0.7	87
7	Diffusion Tensor Imaging Reveals Supplementary Lesions to Frontal White Matter in Idiopathic Normal Pressure Hydrocephalus. Neurosurgery, 2011, 68, 1586-1593.	0.6	34
8	Quantitative approaches for assessment of white matter hyperintensities in elderly populations. Psychiatry Research - Neuroimaging, 2011, 193, 101-106.	0.9	72
9	Heterogeneity in age-related white matter changes. Acta Neuropathologica, 2011, 122, 171-185.	3.9	271
10	Loss of callosal fibre integrity in healthy elderly with age-related white matter changes. Journal of Neurology, 2011, 258, 1451-1459.	1.8	21
11	Genu of corpus callosum in diffuse axonal injury induces a worse 1-year outcome in patients with traumatic brain injury. Acta Neurochirurgica, 2011, 153, 1687-1694.	0.9	14
12	Diffusion Tensor Imaging and Gait in Elderly Persons With Cerebral Small Vessel Disease. Stroke, 2011, 42, 373-379.	1.0	53
13	Genu of corpus callosum as a prognostic factor in diffuse axonal injury. Journal of Neurosurgery, 2011, 115, 1019-1024.	0.9	21
14	Loss of white matter integrity is associated with gait disorders in cerebral small vessel disease. Brain, 2011, 134, 73-83.	3.7	246
15	Age-Related White Matter Changes. Journal of Aging Research, 2011, 2011, 1-13.	0.4	103
16	Contribution of Brain Imaging to the Understanding Of Gait Disorders in Alzheimer's Disease. American Journal of Alzheimer's Disease and Other Dementias, 2012, 27, 371-380.	0.9	47
17	Clinical Prediction of Fall Risk and White Matter Abnormalities. Archives of Neurology, 2012, 69, 733-8.	4.9	28
18	White matter fractional anisotropy predicts balance performance in older adults. Neurobiology of Aging, 2012, 33, 1900-1912.	1.5	52
19	Vascular cognitive impairment — An ill-defined concept with the need to define its vascular component. Journal of the Neurological Sciences, 2012, 322, 11-16.	0.3	12

#	ARTICLE	IF	CITATIONS
20	Degeneration of corpus callosum and recovery of motor function after stroke: A multimodal magnetic resonance imaging study. Human Brain Mapping, 2012, 33, 2941-2956.	1.9	120
21	Neuroimaging of Movement Disorders. , 2013, , .		1
22	Association between linear measurements of corpus callosum and gait in the elderly. European Radiology, 2013, 23, 2252-2257.	2.3	6
23	Motor cortex and gait in mild cognitive impairment: a magnetic resonance spectroscopy and volumetric imaging study. Brain, 2013, 136, 859-871.	3.7	86
24	Altered visual–spatial attention to task-irrelevant information is associated with falls risk in older adults. Neuropsychologia, 2013, 51, 3025-3032.	0.7	28
25	Other Gait Disorders. , 2013, , 247-273.		0
26	Mobility impairment is associated with reduced microstructural integrity of the inferior and superior cerebellar peduncles in elderly with no clinical signs of cerebellar dysfunction. Neurolmage: Clinical, 2013, 2, 332-340.	1.4	21
27	Age-related decline of myelin proteins is highly correlated with activation of astrocytes and microglia in the rat CNS. International Journal of Molecular Medicine, 2013, 32, 1021-1028.	1.8	33
28	Physical Activity and Cardiorespiratory Fitness Are Beneficial for White Matter in Low-Fit Older Adults. PLoS ONE, 2014, 9, e107413.	1.1	132
29	Treatments for Neurological Gait and Balance Disturbance: The Use of Noninvasive Electrical Brain Stimulation. Advances in Neuroscience (Hindawi), 2014, 2014, 1-13.	3.1	6
30	Addictive substances may induce a rapid neurological deterioration in fragile X-associated tremor ataxia syndrome: A report of two cases. Intractable and Rare Diseases Research, 2014, 3, 162-165.	0.3	34
31	Neuroimaging of Mobility in Aging: A Targeted Review. Journals of Gerontology - Series A Biological Sciences and Medical Sciences, 2014, 69, 1375-1388.	1.7	233
32	Greater Loss of White Matter Integrity in Postural Instability and Gait Difficulty Subtype of Parkinson's Disease. Canadian Journal of Neurological Sciences, 2014, 41, 763-768.	0.3	28
33	Small Vessel Disease and the Resting Functional Architecture of the Brain. Journal of Cerebral Blood Flow and Metabolism, 2014, 34, 1089-1090.	2.4	3
34	Transcallosal diffusion tensor abnormalities in predominant gait disorder parkinsonism. Parkinsonism and Related Disorders, 2014, 20, 53-59.	1.1	46
35	White matter microstructural organization and gait stability in older adults. Frontiers in Aging Neuroscience, 2014, 6, 104.	1.7	62
36	Magnetization Transfer Imaging for in vivo Detection of Microstructural Tissue Changes in Aging and Dementia: A Short Literature Review. Journal of Alzheimer's Disease, 2014, 42, S229-S237.	1.2	22
37	Corpus callosum in cognitive and sensory processing: insights into autism. Future Neurology, 2015, 10, 147-160.	0.9	7

3

#	ARTICLE	IF	CITATIONS
38	The Microstructural Status of the Corpus Callosum Is Associated with the Degree of Motor Function and Neurological Deficit in Stroke Patients. PLoS ONE, 2015, 10, e0122615.	1.1	53
39	The Effect of Acupuncture on the Motor Function and White Matter Microstructure in Ischemic Stroke Patients. Evidence-based Complementary and Alternative Medicine, 2015, 2015, 1-10.	0.5	17
40	Callosal Hyperintensities and Gait Speed Gain From Two Types of Mobility Interventions in Older Adults. Archives of Physical Medicine and Rehabilitation, 2015, 96, 1154-1157.	0.5	7
41	Transcranial direct current stimulation in the recovery of postural control after stroke: a pilot study. Disability and Rehabilitation, 2015, 37, 1857-1863.	0.9	40
42	Isolated astasia manifested by acute infarct of the anterior corpus callosum and cingulate gyrus. Journal of Clinical Neuroscience, 2015, 22, 763-764.	0.8	6
43	Freezing of gait and white matter changes: a tract-based spatial statistics study. Journal of Clinical Movement Disorders, 2015, 2, 1.	2.2	32
44	Changes of Brain Connectivity in the Primary Motor Cortex After Subcortical Stroke. Medicine (United States), 2016, 95, e2579.	0.4	39
45	Perturbed cholesterol homeostasis in aging spinal cord. Neurobiology of Aging, 2016, 45, 123-135.	1.5	9
46	Gray and white matter changes linking cerebral small vessel disease to gait disturbances. Neurology, 2016, 86, 1199-1207.	1.5	75
47	Diffusion alterations associated with Parkinson's disease symptomatology: A review of the literature. Parkinsonism and Related Disorders, 2016, 33, 12-26.	1.1	70
48	Gait and balance disorders. Handbook of Clinical Neurology / Edited By P J Vinken and G W Bruyn, 2016, 136, 939-955.	1.0	8
49	Tract-specific white matter microstructure and gait in humans. Neurobiology of Aging, 2016, 43, 164-173.	1.5	33
50	Cerebral White Matter and Slow Gait: Contribution of Hyperintensities and Normal-appearing Parenchyma. Journals of Gerontology - Series A Biological Sciences and Medical Sciences, 2016, 71, 968-973.	1.7	61
51	The effect of age and microstructural white matter integrity on lap time variation and fast-paced walking speed. Brain Imaging and Behavior, 2016, 10, 697-706.	1.1	21
52	Association between Various Brain Pathologies and Gait Disturbance. Dementia and Geriatric Cognitive Disorders, 2017, 43, 128-143.	0.7	44
53	Lower Magnetization Transfer Ratio in the Forceps Minor Is Associated with Poorer Gait Velocity in Older Adults. American Journal of Neuroradiology, 2017, 38, 500-506.	1.2	9
54	Myelinodegeneration and Its Influence on Pain: Aging, Diets, and Genetic Dysregulation., 2017,, 47-64.		1
55	Associations between Mobility, Cognition, and Brain Structure in Healthy Older Adults. Frontiers in Aging Neuroscience, 2017, 9, 155.	1.7	44

#	ARTICLE	IF	Citations
56	Deep white matter hyperintensities, microstructural integrity and dual task walking in older people. Brain Imaging and Behavior, 2018, 12, 1488-1496.	1.1	30
57	The functional and structural characteristics of the emotion network in alexithymia. Neuropsychiatric Disease and Treatment, 2018, Volume 14, 991-998.	1.0	10
58	Evaluation of neuregulin-1's neuroprotection against ischemic injury in rats using diffusion tensor imaging. Magnetic Resonance Imaging, 2018, 53, 63-70.	1.0	6
59	Different neural substrates for precision stepping and fast online step adjustments in youth. Brain Structure and Function, 2018, 223, 2039-2053.	1.2	15
60	Compromised prefrontal structure and function are associated with slower walking in older adults. NeuroImage: Clinical, 2018, 20, 620-626.	1.4	21
61	The impact of age-related hearing loss and lateralized auditory attention on spatiotemporal parameters of gait during dual-tasking among community dwelling older adults. Experimental Gerontology, 2018, 111, 253-262.	1.2	9
62	Moderating Effect of White Matter Integrity on Brain Activation During Dual-Task Walking in Older Adults. Journals of Gerontology - Series A Biological Sciences and Medical Sciences, 2019, 74, 435-441.	1.7	27
63	White matter integrity is associated with gait impairment and falls in mild cognitive impairment. Results from the gait and brain study. NeuroImage: Clinical, 2019, 24, 101975.	1.4	26
64	Multi-modal neuroimaging of dual-task walking: Structural MRI and fNIRS analysis reveals prefrontal grey matter volume moderation of brain activation in older adults. NeuroImage, 2019, 189, 745-754.	2.1	52
65	Physical Performance in Memory Clinic Patients: The Potential Role of the White Matter Network. Journal of the American Geriatrics Society, 2019, 67, 1880-1887.	1.3	4
66	Periventricular White Matter Abnormalities on Diffusion Tensor Imaging of Postural Instability Gait Disorder Parkinsonism. American Journal of Neuroradiology, 2019, 40, 609-613.	1.2	7
67	White matter correlates of gait perturbations resulting from spontaneous and lateralized attention in healthy older adults: A dual-task study. Experimental Gerontology, 2019, 128, 110744.	1.2	2
68	Gait Disorders and Falls in the Elderly. Medical Clinics of North America, 2019, 103, 203-213.	1.1	24
69	Multiscale Dynamics of Spontaneous Brain Activity Is Associated With Walking Speed in Older Adults. Journals of Gerontology - Series A Biological Sciences and Medical Sciences, 2020, 75, 1566-1571.	1.7	15
70	Systolic blood pressure dipping may be associated with mobility impairment and brain volume in community-dwelling older adults: An exploratory study. Experimental Gerontology, 2020, 141, 111100.	1.2	4
71	Regional segmentation strategy for DTI analysis of human corpus callosum indicates motor function deficit in mild cognitive impairment. Journal of Neuroscience Methods, 2020, 345, 108870.	1.3	7
72	Disrupted white matter integrity and network connectivity are related to poor motor performance. Scientific Reports, 2020, 10, 18369.	1.6	16
73	Prospective Associations Between Diffusion Tensor Imaging Parameters and Frailty in Older Adults. Journal of the American Geriatrics Society, 2020, 68, 1050-1055.	1.3	19

#	Article	IF	CITATIONS
74	The Role of Neuroimaging in Fall Prevention in Healthy Adults at Risk of Alzheimer's Disease. Advances in Medical Diagnosis, Treatment, and Care, 2021, , 107-129.	0.1	0
75	Brain microstructural and metabolic alterations detected <i>in vivo</i> at onset of the first demyelinating event. Brain, 2021, 144, 1409-1421.	3.7	24
76	Microstructural integrity of white matter tracts amongst older fallers: A DTI study. PLoS ONE, 2017, 12, e0179895.	1.1	8
77	Longitudinal microstructural changes of cerebral white matter and their association with mobility performance in older persons. PLoS ONE, 2018, 13, e0194051.	1.1	16
78	Unmyelinated and Myelinated Axons Exhibit Differential Injury and Treatment Responses Following Traumatic Injury., 2014,, 321-372.		0
79	Utility of Magnetic Resonance Findings in Elucidating Structural and Functional Brain Impairment in Traumatic Brain Injury., 2017,, 443-456.		0
80	Brain Function and Falls. , 2021, , 130-143.		0
81	Upper and Lower Limb Motor Function Correlates with Ipsilesional Corticospinal Tract and Red Nucleus Structural Integrity in Chronic Stroke: A Cross-Sectional, ROI-Based MRI Study. Behavioural Neurology, 2021, 2021, 1-10.	1.1	14
82	The Role of Neuroimaging in Fall Prevention in Healthy Adults at Risk of Alzheimer's Disease. , 2022, , 790-812.		0
83	Relationships of Cerebral Perfusion With Gait Speed Across Systolic Blood Pressure Levels and Age: A Cohort Study. Journals of Gerontology - Series A Biological Sciences and Medical Sciences, 2023, 78, 514-520.	1.7	4
84	Gait in cerebral small vessel disease, pre-dementia, and dementia: A systematic review. International Journal of Stroke, 2023, 18, 53-61.	2.9	9
85	Myelin Content and Gait Impairment in Older Adults with Cerebral Small Vessel Disease and Mild Cognitive Impairment. Neurobiology of Aging, 2022, 119, 56-66.	1.5	4
86	Study on the activation mechanism of protactinium and NH3 by density functional theory. Chemical Physics Letters, 2022, 806, 140072.	1.2	0
87	Gait decline while dual-tasking is an early sign of white matter deterioration in middle-aged and older adults. Frontiers in Aging Neuroscience, $0,14,.$	1.7	2
88	Aberrant interhemispheric functional reciprocities of the default mode network and motor network in subcortical ischemic stroke patients with motor impairment: A longitudinal study. Frontiers in Neurology, $0,13,1$	1.1	2
89	Pathway-Specific Mediation Effect Between Structure, Function, and Motor Impairment After Subcortical Stroke. Neurology, 2023, 100, .	1.5	3
90	Gait and falls in cerebral small vessel disease: a systematic review and meta-analysis. Age and Ageing, 2023, 52, .	0.7	9