Downwelling and deepâ€water bottom currents as food coldâ€water coral Lophelia pertusa (Scleractinia) at the

Limnology and Oceanography 54, 620-629 DOI: 10.4319/lo.2009.54.2.0620

Citation Report

#	Article	IF	CITATIONS
1	The coldâ€water coral community as hotspot of carbon cycling on continental margins: A foodâ€web analysis from Rockall Bank (northeast Atlantic). Limnology and Oceanography, 2009, 54, 1829-1844.	1.6	179
2	Beta diversity of cold-water coral reef communities off western Scotland. Coral Reefs, 2010, 29, 427-436.	0.9	49
3	The influence of flow velocity and food concentration on Lophelia pertusa (Scleractinia) zooplankton capture rates. Journal of Experimental Marine Biology and Ecology, 2010, 395, 55-62.	0.7	112
4	Short-term environmental variability in cold-water coral habitat at Viosca Knoll, Gulf of Mexico. Deep-Sea Research Part I: Oceanographic Research Papers, 2010, 57, 199-212.	0.6	68
5	In situ observations of fish associated with coral reefs off Ireland. Deep-Sea Research Part I: Oceanographic Research Papers, 2011, 58, 818-825.	0.6	65
6	Dynamics of nutrients, total organic carbon, prokaryotes and viruses in onboard incubations of cold-water corals. Biogeosciences, 2011, 8, 2609-2620.	1.3	21
7	Particulate organic matter fluxes and hydrodynamics at the Tisler cold-water coral reef. Journal of Marine Systems, 2011, 85, 19-29.	0.9	63
8	Societal need for improved understanding of climate change, anthropogenic impacts, and geo-hazard warning drive development of ocean observatories in European Seas. Progress in Oceanography, 2011, 91, 1-33.	1.5	91
9	Sedimentation on the cold-water coral Lophelia pertusa: Cleaning efficiency from natural sediments and drill cuttings. Marine Pollution Bulletin, 2011, 62, 1159-1168.	2.3	74
10	Pleistocene geochemical stratigraphy of the borehole 1317E (IODP Expedition 307) in Porcupine Seabight, SW of Ireland: applications to palaeoceanography and palaeoclimate of the coral mound development. Journal of Quaternary Science, 2011, 26, 178-189.	1.1	3
11	Definition and detection of vulnerable marine ecosystems on the high seas: problems with the "move-on―rule. ICES Journal of Marine Science, 2011, 68, 254-264.	1.2	119
12	Northeastern Atlantic cold-water coral reefs and climate. Geology, 2011, 39, 743-746.	2.0	88
13	Spatial and tidal variation in food supply to shallow cold-water coral reefs of the Mingulay Reef complex (Outer Hebrides, Scotland). Marine Ecology - Progress Series, 2012, 444, 97-115.	0.9	74
14	Cultured fungal associates from the deep-sea coral Lophelia pertusa. Deep-Sea Research Part I: Oceanographic Research Papers, 2012, 67, 12-20.	0.6	18
15	The influence of near-bed hydrodynamic conditions on cold-water corals in the Viosca Knoll area, Gulf of Mexico. Deep-Sea Research Part I: Oceanographic Research Papers, 2012, 60, 32-45.	0.6	70
16	Megafaunal-habitat associations at a deep-sea coral mound off North Carolina, USA. Marine Biology, 2012, 159, 1079-1094.	0.7	38
17	The Porcupine Bank Canyon coral mounds: oceanographic and topographic steering of deep-water carbonate mound development and associated phosphatic deposition. Geo-Marine Letters, 2012, 32, 205-225.	0.5	23
18	Acclimation to ocean acidification during longâ€term <scp><scp>CO₂</scp></scp> exposure in the coldâ€water coral <scp><i>L</i></scp> <i>ophelia pertusa</i> . Global Change Biology, 2012, 18, 843-853	4.2	192

	CITATION		
#	ARTICLE Global habitat suitability of coldâ€water octocorals. Journal of Biogeography, 2012, 39, 1278-1292.	IF 1.4	Citations
20	Hydrodynamic conditions in a cold-water coral mound area on the Renard Ridge, southern Gulf of Cadiz. Journal of Marine Systems, 2012, 96-97, 61-71.	0.9	27
21	First biological measurements of deep-sea corals from the Red Sea. Scientific Reports, 2013, 3, 2802.	1.6	49
22	Reproductive periodicity of the scleractinian coral Lophelia pertusa from the Trondheim Fjord, Norway. Marine Biology, 2013, 160, 139-153.	0.7	71
23	Growth of north-east Atlantic cold-water coral reefs and mounds during the Holocene: A high resolution U-series and 14C chronology. Earth and Planetary Science Letters, 2013, 375, 176-187.	1.8	45
24	Temperature tolerance of the deep-sea coral Lophelia pertusa from the southeastern United States. Deep-Sea Research Part II: Topical Studies in Oceanography, 2013, 92, 240-248.	0.6	65
25	Cold-water coral carbonate mounds as unique palaeo-archives: the Plio-Pleistocene Challenger Mound record (NE Atlantic). Quaternary Science Reviews, 2013, 73, 14-30.	1.4	43
26	Local variation in the distribution of benthic megafauna species associated with cold-water coral reefs on the Norwegian margin. Continental Shelf Research, 2013, 54, 37-51.	0.9	47
27	Benthic Foraminifer Assemblages from Norwegian Cold-Water Coral Reefs. Journal of Foraminiferal Research, 2013, 43, 21-39.	0.1	18
28	Tidal downwelling and implications for the carbon biogeochemistry of coldâ€water corals in relation to future ocean acidification and warming. Global Change Biology, 2013, 19, 2708-2719.	4.2	51
29	Skeletal growth, respiration rate and fatty acid composition in the cold-water coral Lophelia pertusa under varying food conditions. Marine Ecology - Progress Series, 2013, 483, 169-184.	0.9	48
30	In situ short-term growth rates of a cold-water coral. Marine and Freshwater Research, 2013, 64, 631.	0.7	18
31	Multi-scale interactions between local hydrography, seabed topography, and community assembly on cold-water coral reefs. Biogeosciences, 2013, 10, 2737-2746.	1.3	44
32	Diversity, distribution and spatial structure of the cold-water coral fauna of the Azores (NE) Tj ETQq1 1 0.7843	.4 rgBT /O	verlogk 10 T
33	Bathymetrical distribution and size structure of cold-water coral populations in the Cap de Creus and Lacaze-Duthiers canyons (northwestern Mediterranean). Biogeosciences, 2013, 10, 2049-2060.	1.3	117
34	Coral Patch seamount (NE Atlantic) – a sedimentological and megafaunal reconnaissance based on video and hydroacoustic surveys. Biogeosciences, 2013, 10, 3421-3443.	1.3	27
35	Microhabitat and shrimp abundance within a Norwegian cold-water coral ecosystem. Biogeosciences, 2013, 10, 5779-5791.	1.3	21
36	Embryogenesis and Larval Biology of the Cold-Water Coral Lophelia pertusa. PLoS ONE, 2014, 9, e102222.	1.1	80

#	Article	IF	CITATIONS
37	Cold-water coral growth under extreme environmental conditions, the Cape Lookout area, NW Atlantic. Biogeosciences, 2014, 11, 2543-2560.	1.3	47
38	Opportunistic feeding on various organic food sources by the cold-water coral <i>Lophelia pertusa</i> . Biogeosciences, 2014, 11, 123-133.	1.3	88
39	Revisiting Squires' Coral Coppice, Campbell Plateau, New Zealand. New Zealand Journal of Marine and Freshwater Research, 2014, 48, 507-523.	0.8	7
40	Future-proofing marine protected area networks for cold water coral reefs. ICES Journal of Marine Science, 2014, 71, 2621-2629.	1.2	28
41	Potential seasonal calibration for palaeoenvironmental reconstruction using skeletal microstructures and strontium measurements from the coldâ€water coral <i>Lophelia pertusa</i> . Journal of Quaternary Science, 2014, 29, 803-814.	1.1	8
42	Linking benthic hydrodynamics and cold-water coral occurrences: A high-resolution model study at three cold-water coral provinces in the NE Atlantic. Progress in Oceanography, 2014, 122, 92-104.	1.5	100
43	Short-term metabolic and growth responses of the cold-water coral Lophelia pertusa to ocean acidification. Deep-Sea Research Part II: Topical Studies in Oceanography, 2014, 99, 27-35.	0.6	84
44	Species-specific physiological response by the cold-water corals Lophelia pertusa and Madrepora oculata to variations within their natural temperature range. Deep-Sea Research Part II: Topical Studies in Oceanography, 2014, 99, 36-41.	0.6	86
45	Habitat characterization of deep-water coral reefs in La Gaviera Canyon (Avilés Canyon System,) Tj ETQq0 0 0	rgBT /Ove 0.6	rlogg 10 Tf 50
46	High-resolution temperature observations of a trapped nonlinear diurnal tide influencing cold-water corals on the Logachev mounds. Progress in Oceanography, 2014, 125, 16-25.	1.5	41
47	Effects of high temperature and CO2 on intracellular DMSP in the cold-water coral Lophelia pertusa. Marine Biology, 2014, 161, 1499-1506.	0.7	11
48	Geochemical and physical constraints for the occurrence of living cold-water corals. Deep-Sea Research Part II: Topical Studies in Oceanography, 2014, 99, 19-26.	0.6	78
49	Insights into the population dynamics of the deep-sea coral genus Paramuricea in the Gulf of Mexico. Deep-Sea Research Part II: Topical Studies in Oceanography, 2014, 99, 71-82.	0.6	54
50	Late Weichselian deglaciation and early Holocene development of a cold-water coral reef along the Lopphavet shelf (Northern Norway) recorded by benthic foraminifera and ostracoda. Deep-Sea Research Part II: Topical Studies in Oceanography, 2014, 99, 249-269.	0.6	23
51	Changes in fossil assemblage in sediment cores from Mingulay Reef Complex (NE Atlantic): Implications for coral reef build-up. Deep-Sea Research Part II: Topical Studies in Oceanography, 2014, 99, 286-296.	0.6	30
52	Uptake of dissolved free amino acids by four cold-water coral species from the Mediterranean Sea. Deep-Sea Research Part II: Topical Studies in Oceanography, 2014, 99, 42-50.	0.6	52
53	Cold-water coral habitats of Rockall and Porcupine Bank, NE Atlantic Ocean: Sedimentary facies and benthic foraminiferal assemblages. Deep-Sea Research Part II: Topical Studies in Oceanography, 2014, 99, 270-285.	0.6	13
54	Cold-water corals in a changing ocean. Current Opinion in Environmental Sustainability, 2014, 7, 118-126.	3.1	92

			_
#	ARTICLE	IF	CITATIONS
55	Temporal and spatial distributions of cold-water corals in the Drake Passage: Insights from the last 35,000 years. Deep-Sea Research Part II: Topical Studies in Oceanography, 2014, 99, 237-248.	0.6	36
56	Predicting the distribution of vulnerable marine ecosystems in the deep sea using presence-background models. Deep-Sea Research Part II: Topical Studies in Oceanography, 2014, 99, 6-18.	0.6	86
57	Benthic Assemblages of the Anton Dohrn Seamount (NE Atlantic): Defining Deep-Sea Biotopes to Support Habitat Mapping and Management Efforts with a Focus on Vulnerable Marine Ecosystems. PLoS ONE, 2015, 10, e0124815.	1.1	44
58	Exploration of the Canyon-Incised Continental Margin of the Northeastern United States Reveals Dynamic Habitats and Diverse Communities. PLoS ONE, 2015, 10, e0139904.	1.1	79
59	The influence of flow velocity and temperature on zooplankton capture rates by the cold-water coral Dendrophyllia cornigera. Journal of Experimental Marine Biology and Ecology, 2015, 466, 92-97.	0.7	27
60	The Eugen Seibold coral mounds offshore western Morocco: oceanographic and bathymetric boundary conditions of a newly discovered cold-water coral province. Geo-Marine Letters, 2015, 35, 257-269.	0.5	24
61	SCHACKOINELLA SPINA, A NEW BENTHIC FORAMINIFERAL SPECIES FROM COLD-WATER CORAL ECOSYSTEMS OF THE ALBORAN SEA AND THE GULF OF CÃÐIZ. Journal of Foraminiferal Research, 2015, 45, 344-353.	0.1	0
62	Spatio-temporal distribution patterns of Mediterranean cold-water corals (Lophelia pertusa and) Tj ETQq1 1 0.784 Papers, 2015, 103, 37-48.	314 rgBT 0.6	/Overlock 10 50
63	Interglacial occurrence of cold-water corals off Cape Lookout (NW Atlantic): First evidence of the Gulf Stream influence. Deep-Sea Research Part I: Oceanographic Research Papers, 2015, 105, 158-170.	0.6	25
64	Food selectivity and processing by the cold-water coral <i>Lophelia pertusa</i> . Biogeosciences, 2016, 13, 5789-5798.	1.3	20
65	Coral mucus fuels the sponge loop in warm- and cold-water coral reef ecosystems. Scientific Reports, 2016, 6, 18715.	1.6	145
66	Overlooked habitat of a vulnerable gorgonian revealed in the Mediterranean and Eastern Atlantic by ecological niche modelling. Scientific Reports, 2016, 6, 36460.	1.6	35
67	The trophic structure of <i>Spongosorites coralliophaga</i> -coral rubble communities at two northeast Atlantic cold water coral reefs. Marine Biology Research, 2016, 12, 932-947.	0.3	16
68	The effect of flow speed and food size on the capture efficiency and feeding behaviour of the cold-water coral Lophelia pertusa. Journal of Experimental Marine Biology and Ecology, 2016, 481, 34-40.	0.7	70
69	Reconstruction of the formation history of the Darwin Mounds, N Rockall Trough: How the dynamics of a sandy contourite affected cold-water coral growth. Marine Geology, 2016, 378, 186-195.	0.9	23
70	Quantifying relationships between abundances of cold-water coral Lophelia pertusa and terrain features: A case study on the Norwegian margin. Continental Shelf Research, 2016, 116, 13-26.	0.9	14
71	Cold-Water Corals in an Era of Rapid Global Change: Are These the Deep Ocean's Most Vulnerable Ecosystems?. , 2016, , 593-606.		14
72	Lipids and fatty acids of cold-water soft corals and hydrocorals: a comparison with tropical species and implications for coral nutrition. Marine Biology, 2016, 163, 1.	0.7	23

#	Article	IF	CITATIONS
73	Ecosystem engineering creates a direct nutritional link between 600-m deep cold-water coral mounds and surface productivity. Scientific Reports, 2016, 6, 35057.	1.6	62
74	On the influence of coldâ€water coral mound size on flow hydrodynamics, and vice versa. Geophysical Research Letters, 2016, 43, 775-783.	1.5	41
75	Evolution of body size, vision, and biodiversity of coral-associated organisms: evidence from fossil crustaceans in cold-water coral and tropical coral ecosystems. BMC Evolutionary Biology, 2016, 16, 132.	3.2	14
76	Good neighbours shaped by vigorous currents: Cold-water coral mounds and contourites in the North Atlantic. Marine Geology, 2016, 378, 171-185.	0.9	66
77	Biodiversity of Spongosorites coralliophaga (Stephens, 1915) on coral rubble at two contrasting cold-water coral reef settings. Coral Reefs, 2016, 35, 193-208.	0.9	34
78	Decline in condition of gorgonian octocorals on mesophotic reefs in the northern Gulf of Mexico: before and after the Deepwater Horizon oil spill. Coral Reefs, 2016, 35, 77-90.	0.9	55
79	Cold-water coral ecosystems in Cassidaigne Canyon: An assessment of their environmental living conditions. Deep-Sea Research Part II: Topical Studies in Oceanography, 2017, 137, 436-453.	0.6	40
80	Modeling polyp activity of Paragorgia arborea using supervised learning. Ecological Informatics, 2017, 39, 109-118.	2.3	8
81	Physiological responses and lipid storage of the coral <i>Lophelia pertusa</i> at varying food density. Journal of Toxicology and Environmental Health - Part A: Current Issues, 2017, 80, 266-284.	1.1	18
82	Reef building and carbonate production modes in the west-central Tethys during the Cenozoic. Marine and Petroleum Geology, 2017, 83, 261-304.	1.5	126
83	Using novel acoustic and visual mapping tools to predict the small-scale spatial distribution of live biogenic reef framework in cold-water coral habitats. Coral Reefs, 2017, 36, 255-268.	0.9	38
84	Reproductive Strategies in Marine Invertebrates and the Structuring of Marine Animal Forests. , 2017, , 571-594.		3
85	The Giant Cold-Water Coral Mounds Barrier Off Mauritania. , 2017, , 481-525.		16
86	Framework-Forming Scleractinian Cold-Water Corals Through Space and Time: A Late Quaternary North Atlantic Perspective. , 2017, , 699-732.		26
87	Trophic Ecology and Habitat Provision in Cold-Water Coral Ecosystems. , 2017, , 919-944.		15
88	Species distribution models of two critically endangered deep-sea octocorals reveal fishing impacts on vulnerable marine ecosystems in central Mediterranean Sea. Scientific Reports, 2017, 7, 8049.	1.6	44
89	High-resolution facies zonation within a cold-water coral mound: The case of the Piddington Mound, Porcupine Seabight, NE Atlantic. Marine Geology, 2017, 390, 120-130.	0.9	31
90	Cold-Water Corals. , 0, , 803-816.		4

#	Article	IF	CITATIONS
91	Ecossistemas de corais de águas profundas da Bacia de Campos. , 2017, , 43-85.		7
92	Cold-Water Coral Habitats in Submarine Canyons of the Bay of Biscay. Frontiers in Marine Science, 2017, 4, .	1.2	40
93	Predicting cold-water coral distribution in the Cap de Creus Canyon (NW Mediterranean): Implications for marine conservation planning. Progress in Oceanography, 2018, 169, 169-180.	1.5	35
94	Predictive habitat modeling in two Mediterranean canyons including hydrodynamic variables. Progress in Oceanography, 2018, 169, 151-168.	1.5	47
95	The giant Mauritanian cold-water coral mound province: Oxygen control on coral mound formation. Quaternary Science Reviews, 2018, 185, 135-152.	1.4	63
96	Trophic structure of cold-water coral communities revealed from the analysis of tissue isotopes and fatty acid composition. Marine Biology Research, 2018, 14, 287-306.	0.3	13
97	Environmental drivers of epibenthic megafauna on a deep temperate continental shelf: A multiscale approach. Progress in Oceanography, 2018, 162, 171-186.	1.5	7
98	New paleoenvironmental insights on the Miocene condensed phosphatic layer of Salento (southern) Tj ETQq1 I	0.784314	1 rgβT /Over¦o
99	The effect of local hydrodynamics on the spatial extent and morphology of cold-water coral habitats at Tisler Reef, Norway. Coral Reefs, 2018, 37, 253-266.	0.9	39
100	Growth and feeding of deep-sea coral <i>Lophelia pertusa</i> from the California margin under simulated ocean acidification conditions. PeerJ, 2018, 6, e5671.	0.9	32
101	Biochemical composition of the cold-water coral Dendrophyllia cornigera under contrasting productivity regimes: Insights from lipid biomarkers and compound-specific isotopes. Deep-Sea Research Part I: Oceanographic Research Papers, 2018, 141, 106-117.	0.6	12
102	New insights on coral mound development from groundtruthed high-resolution ROV-mounted multibeam imaging. Marine Geology, 2018, 403, 225-237.	0.9	27
103	Unravelling the versatile feeding and metabolic strategies of the cold-water ecosystem engineer Spongosorites coralliophaga (Stephens, 1915). Deep-Sea Research Part I: Oceanographic Research Papers, 2018, 141, 71-82.	0.6	18
104	Large-scale paleoceanographic variations in the western Mediterranean Sea during the last 34,000 years: From enhanced cold-water coral growth to declining mounds. Marine Micropaleontology, 2018, 143, 46-62.	0.5	16
105	Temperature control of cold-water coral (Lophelia) mound growth by climate-cycle forcing, Northeast Gulf of Mexico. Deep-Sea Research Part I: Oceanographic Research Papers, 2018, 140, 142-158.	0.6	8
106	Oceanographic setting and short-timescale environmental variability at an Arctic seamount sponge ground. Deep-Sea Research Part I: Oceanographic Research Papers, 2018, 138, 98-113.	0.6	47
107	Survival under conditions of variable food availability: Resource utilization and storage in the coldâ€water coral <i>Lophelia pertusa</i> . Limnology and Oceanography, 2019, 64, 1651-1671.	1.6	36
108	26 Occurrence of Living Cold-Water Corals at Large Depths Within Submarine Canyons of the Northwestern Mediterranean Sea. Coral Reefs of the World, 2019, , 271-284.	0.3	7

#	Article	IF	CITATIONS
109	33 Diversity of Bacteria Associated with the Cold Water Corals Lophelia pertusa and Madrepora oculata. Coral Reefs of the World, 2019, , 377-386.	0.3	2
110	Biology and Ecophysiology of Mediterranean Cold–Water Corals. Coral Reefs of the World, 2019, , 391-404.	0.3	6
111	36 Growth Patterns of Mediterranean Calcifying Cold-Water Corals. Coral Reefs of the World, 2019, , 405-422.	0.3	4
112	4 A Turbulent Story: Mediterranean Contourites and Cold-Water Corals. Coral Reefs of the World, 2019, , 35-46.	0.3	6
113	Using 3D photogrammetry from ROV video to quantify cold-water coral reef structural complexity and investigate its influence on biodiversity and community assemblage. Coral Reefs, 2019, 38, 1007-1021.	0.9	97
114	The Diversity and Ecological Role of Non-scleractinian Corals (Antipatharia and Alcyonacea) on Scleractinian Cold-Water Coral Mounds. Frontiers in Marine Science, 2019, 6, .	1.2	31
115	Cabled ocean observatory data reveal food supply mechanisms to a cold-water coral reef. Progress in Oceanography, 2019, 172, 51-64.	1.5	28
116	Characteristics of modern carbonate contourite drifts. Sedimentology, 2019, 66, 1163-1191.	1.6	44
117	Occurrence and distribution of the coral Dendrophyllia ramea in Cyprus insular shelf: Environmental setting and anthropogenic impacts. Deep-Sea Research Part II: Topical Studies in Oceanography, 2019, 164, 190-205.	0.6	10
118	Ecological characterisation of a Mediterranean cold-water coral reef: Cabliers Coral Mound Province (Alboran Sea, western Mediterranean). Progress in Oceanography, 2019, 175, 245-262.	1.5	59
119	Holocene shifts in sub-surface water circulation of the North-East Atlantic inferred from Nd isotopic composition in cold-water corals. Marine Geology, 2019, 410, 135-145.	0.9	7
120	Cold-Water Coral Reefs. , 2019, , 675-687.		21
121	A Mediterranean mesophotic coral reef built by non-symbiotic scleractinians. Scientific Reports, 2019, 9, 3601.	1.6	45
122	Cold-water coral mounds in the southern Alboran Sea (western Mediterranean Sea): Internal waves as an important driver for mound formation since the last deglaciation. Marine Geology, 2019, 412, 1-18.	0.9	31
123	Baseline Assessment of Marine Litter and Microplastic Ingestion by Cold-Water Coral Reef Benthos at the East Mingulay Marine Protected Area (Sea of the Hebrides, Western Scotland). Frontiers in Marine Science, 2019, 6, .	1.2	36
124	Thousands of cold-water coral mounds along the Moroccan Atlantic continental margin: Distribution and morphometry. Marine Geology, 2019, 411, 51-61.	0.9	25
125	Assemblage structure, vertical distributions and stableâ€ i sotope compositions of anguilliform leptocephali in the Gulf of Mexico. Journal of Fish Biology, 2019, 94, 621-647.	0.7	13
126	Massive Coral Backscattering Value Detection Using Single Beam Echosounder. , 2019, , .		0

#	Article	IF	CITATIONS
127	Environmental factors influencing benthic communities in the oxygen minimum zones on the Angolan and Namibian margins. Biogeosciences, 2019, 16, 4337-4356.	1.3	42
128	Ocean Circulation Over North Atlantic Underwater Features in the Path of the Mediterranean Outflow Water: The Ormonde and Formigas Seamounts, and the Gazul Mud Volcano. Frontiers in Marine Science, 2019, 6, .	1.2	9
129	Investigating the environmental drivers of deepâ€seafloor biodiversity: A case study of peracarid crustacean assemblages in the Northwest Atlantic Ocean. Ecology and Evolution, 2019, 9, 14167-14204.	0.8	15
130	Sponges Revealed: A Synthesis of Their Overlooked Ecological Functions Within Aquatic Ecosystems. , 2020, , 181-193.		16
131	Habitat suitability and environmental niche comparison of cold-water coral species along the Brazilian continental margin. Deep-Sea Research Part I: Oceanographic Research Papers, 2020, 155, 103147.	0.6	20
132	Influence of benthic currents on cold-water coral habitats: a combined benthic monitoring and 3D photogrammetric investigation. Scientific Reports, 2020, 10, 19433.	1.6	30
133	An Automated Pipeline for Image Processing and Data Treatment to Track Activity Rhythms of Paragorgia arborea in Relation to Hydrographic Conditions. Sensors, 2020, 20, 6281.	2.1	16
134	Spatial Self-Organization as a New Perspective on Cold-Water Coral Mound Development. Frontiers in Marine Science, 2020, 7, .	1.2	13
135	3-D ocean particle tracking modeling reveals extensive vertical movement and downstream interdependence of closed areas in the northwest Atlantic. Scientific Reports, 2020, 10, 21421.	1.6	7
136	Seafloor microplastic hotspots controlled by deep-sea circulation. Science, 2020, 368, 1140-1145.	6.0	430
137	Deglacial upslope shift of NE Atlantic intermediate waters controlled slope erosion and cold-water coral mound formation (Porcupine Seabight, Irish margin). Quaternary Science Reviews, 2020, 237, 106310.	1.4	21
138	Discovery of a giant cold-water coral mound province along the northern Argentine margin and its link to the regional Contourite Depositional System and oceanographic setting. Marine Geology, 2020, 427, 106223.	0.9	22
139	Improving the predictive capability of benthic species distribution models by incorporating oceanographic data – Towards holistic ecological modelling of a submarine canyon. Progress in Oceanography, 2020, 184, 102338.	1.5	45
140	Cold-Water Coral Mound Archive Provides Unique Insights Into Intermediate Water Mass Dynamics in the Alboran Sea During the Last Deglaciation. Frontiers in Marine Science, 2020, 7, .	1.2	18
141	Late Quaternary sporadic development of Desmophyllum dianthus deep-coral populations in the southern Labrador Sea with specific attention to their 14C- and 230Th-dating. Marine Chemistry, 2020, 224, 103807.	0.9	1
142	Tidal Dynamics Control on Cold-Water Coral Growth: A High-Resolution Multivariable Study on Eastern Atlantic Cold-Water Coral Sites. Frontiers in Marine Science, 2020, 7, .	1.2	23
143	Quantification of eDNA to Map the Distribution of Cold-Water Coral Reefs. Frontiers in Marine Science, 2020, 7, .	1.2	13
144	Currents and topography drive assemblage distribution on an active hydrothermal edifice. Progress in Oceanography, 2020, 187, 102397.	1.5	13

#	Article	IF	CITATIONS
145	Broad Thermal Tolerance in the Cold-Water Coral Lophelia pertusa From Arctic and Boreal Reefs. Frontiers in Physiology, 2019, 10, 1636.	1.3	23
146	Distribution and Suitable Habitat of the Cold-Water Corals Lophelia pertusa, Paragorgia arborea, and Primnoa resedaeformis on the Norwegian Continental Shelf. Frontiers in Marine Science, 2020, 7, .	1.2	30
147	Influence of Water Masses on the Biodiversity and Biogeography of Deep-Sea Benthic Ecosystems in the North Atlantic. Frontiers in Marine Science, 2020, 7, .	1.2	43
148	Predicting the Distribution of Indicator Taxa of Vulnerable Marine Ecosystems in the Arctic and Sub-arctic Waters of the Nordic Seas. Frontiers in Marine Science, 2020, 7, .	1.2	38
149	Mapping cold-water coral biomass: an approach to derive ecosystem functions. Coral Reefs, 2021, 40, 215-231.	0.9	16
150	Climate change winner in the deep sea? Predicting the impacts of climate change on the distribution of the glass sponge Vazella pourtalesii. Marine Ecology - Progress Series, 2021, 657, 1-23.	0.9	13
151	Glacio-eustatic variations and sapropel events as main controls on the Middle Pleistocene-Holocene evolution of the Cabliers Coral Mound Province (W Mediterranean). Quaternary Science Reviews, 2021, 253, 106783.	1.4	12
153	Microplastics and the functional traits of fishes: A global metaâ€analysis. Global Change Biology, 2021, 27, 2645-2655.	4.2	63
154	Longâ€ŧerm Observations Reveal Environmental Conditions and Food Supply Mechanisms at an Arctic Deep‣ea Sponge Ground. Journal of Geophysical Research: Oceans, 2021, 126, e2020JC016776.	1.0	10
155	Contrasting metabolic strategies of two co-occurring deep-sea octocorals. Scientific Reports, 2021, 11, 10633.	1.6	10
156	Benthic foraminiferal faunas associated with coldâ€water coral environments in the North Atlantic realm. Depositional Record, 2021, 7, 223-255.	0.8	3
157	Hidden structural heterogeneity enhances marine hotspots' biodiversity. Coral Reefs, 2021, 40, 1615-1630.	0.9	7
158	Sensitivity of a coldâ€water coral reef to interannual variability in regional oceanography. Diversity and Distributions, 2021, 27, 1719-1731.	1.9	5
159	Black Coral Distribution in the Italian Seas: A Review. Diversity, 2021, 13, 334.	0.7	3
160	Using the Goldilocks Principle to model coral ecosystem engineering. Proceedings of the Royal Society B: Biological Sciences, 2021, 288, 20211260.	1.2	17
161	Cold-Water Coral Reefs in the Langenuen Fjord, Southwestern Norway—A Window into Future Environmental Change. Oceans, 2021, 2, 583-610.	0.6	4
162	Habitat suitability mapping of the black coral Leiopathes glaberrima to support conservation of vulnerable marine ecosystems. Scientific Reports, 2021, 11, 15661.	1.6	6
163	Investigating the Prevailing Hydrodynamics Around a Cold-Water Coral Colony Using a Physical and a Numerical Approach. Frontiers in Marine Science, 2021, 8, .	1.2	10

#	Article	IF	CITATIONS
164	Living benthic foraminifera from cold-water coral ecosystems in the eastern Alboran Sea, Western Mediterranean. Heliyon, 2021, 7, e07880.	1.4	3
165	From glacial times to late Holocene: Benthic foraminiferal assemblages from cold water coral habitats off northwest Scotland. Marine Geology, 2021, 440, 106581.	0.9	2
168	Benthic communities in the Southwest Atlantic Ocean: Conservation value of animal forests at the Burdwood Bank slope. Aquatic Conservation: Marine and Freshwater Ecosystems, 2020, 30, 426-439.	0.9	22
169	Framework-Forming Scleractinian Cold-Water Corals Through Space and Time: A Late Quaternary North Atlantic Perspective. , 2015, , 1-34.		17
170	Trophic Ecology and Habitat Provision in Cold-Water Coral Ecosystems. , 2016, , 1-26.		9
171	Reproductive Strategies in Marine Invertebrates and the Structuring of Marine Animal Forests. , 2016, , 1-24.		3
172	Cold-Water Coral Reefs. Encyclopedia of Earth Sciences Series, 2011, , 225-229.	0.1	4
173	Global Habitat Suitability for Framework-Forming Cold-Water Corals. PLoS ONE, 2011, 6, e18483.	1.1	295
174	Multivariate Statistical Analysis of Distribution of Deep-Water Gorgonian Corals in Relation to Seabed Topography on the Norwegian Margin. PLoS ONE, 2012, 7, e43534.	1.1	48
175	Ecohydrodynamics of Cold-Water Coral Reefs: A Case Study of the Mingulay Reef Complex (Western) Tj ETQq1	1 0,78431 1.1	4 rgBT /Overl
176	Mingulay reef complex: an interdisciplinary study of cold-water coral habitat, hydrography and biodiversity. Marine Ecology - Progress Series, 2009, 397, 139-151.	0.9	88
177	Lipid biomarkers reveal geographical differences in food supply to the cold-water coral Lophelia pertusa (Scleractinia). Marine Ecology - Progress Series, 2009, 397, 113-124.	0.9	87
178	Habitat-forming cold-water corals show affinity for seamounts in the New Zealand region. Marine Ecology - Progress Series, 2011, 430, 1-22.	0.9	71
179	Environmental factors that influence the distribution, size, and biotic relationships of the Christmas tree coral Antipathes dendrochristos in the Southern California Bight. Marine Ecology - Progress Series, 2013, 494, 159-177.	0.9	15
180	Environmental forcing of the Campeche cold-water coral province, southern Gulf of Mexico. Biogeosciences, 2014, 11, 1799-1815.	1.3	75
181	Monsoonal forcing of cold-water coral growth off southeastern Brazil during the past 160 kyr. Biogeosciences, 2020, 17, 5883-5908.	1.3	7
189	Assessing the living and dead proportions of cold-water coral colonies: implications for deep-water Marine Protected Area monitoring in a changing ocean. PeerJ, 2017, 5, e3705.	0.9	27
190	Feedbacks between hydrodynamics and cold-water coral mound development. Deep-Sea Research Part I: Oceanographic Research Papers, 2021, 178, 103641.	0.6	10

#	Article	IF	CITATIONS
194	Connectivity corridor conservation: A conceptual model for the restoration of a changing Gulf of Mexico ecosystem. Elementa, 2020, 8, .	1.1	2
195	Deciphering the composite morphological diversity of <i>Lophelia pertusa</i> , a cosmopolitan deepâ€water ecosystem engineer. Ecosphere, 2021, 12, e03802.	1.0	8
196	Biomass Mapping for an Improved Understanding of the Contribution of Cold-Water Coral Carbonate Mounds to C and N Cycling. Frontiers in Marine Science, 2021, 8, .	1.2	7
197	Morphosedimentary, Structural and Benthic Characterization of Carbonate Mound Fields on the Upper Continental Slope of the Northern Alboran Sea (Western Mediterranean). Geosciences (Switzerland), 2022, 12, 111.	1.0	5
198	Remote Sensing of the Tautra Ridge: An Overview of the World's Shallowest Cold-Water Coral Reefs. Frontiers in Marine Science, 2022, 9, .	1.2	3
199	The Importance of Ecological Accommodation Space and Sediment Supply for Cold-Water Coral Mound Formation, a Case Study From the Western Mediterranean Sea. Frontiers in Marine Science, 2021, 8, .	1.2	13
200	Living on the edge: environmental variability of a shallow late Holocene cold-water coral mound. Coral Reefs, 2022, 41, 1255-1271.	0.9	2
214	Natural variability in seawater temperature compromises the metabolic performance of a reef-forming cold-water coral with implications for vulnerability to ongoing global change. Coral Reefs, 2022, 41, 1225-1237.	0.9	7
215	Major environmental drivers determining life and death of cold-water corals through time. PLoS Biology, 2022, 20, e3001628.	2.6	24
216	Morphosedimentary characterization of the Capbreton submarine canyon system, Bay of Biscay (Cantabrian Sea). Estuarine, Coastal and Shelf Science, 2022, 274, 107955.	0.9	3
217	Food Preferences of Mediterranean Cold-Water Corals in Captivity. Frontiers in Marine Science, 0, 9, .	1.2	1
218	Deep-Sea Epibenthic Megafaunal Assemblages of the Falkland Islands, Southwest Atlantic. Diversity, 2022, 14, 637.	0.7	1
219	A 300 000-year record of cold-water coral mound build-up at the East Melilla Coral Province (SE) Tj ETQq0 0	0 rgBT /O [,] 1.3	verlock 10 Tf
220	Predicting the effects of climate change on deepâ€water coral distribution around New Zealand—Will there be suitable refuges for protection at the end of the 21st century?. Global Change Biology, 2022, 28, 6556-6576.	4.2	10
221	Cold-water coral mounds in the western Mediterranean Sea: New insights into their initiation and development since the Mid-Pleistocene in response to changes of African hydroclimate. Quaternary Science Reviews, 2022, 293, 107723.	1.4	7
222	Hydrography and food distribution during a tidal cycle above a cold-water coral mound. Deep-Sea Research Part I: Oceanographic Research Papers, 2022, 189, 103854.	0.6	5
223	Fish-farm effluents cause metabolic depression, reducing energy stores and growth in the reef forming coral Lophelia pertusa. Aquaculture Environment Interactions, 0, , .	0.7	0
224	Environmental forcing by submarine canyons: Evidence between two closely situated cold-water coral mounds (Porcupine Bank Canyon and Western Porcupine Bank, NE Atlantic). Marine Geology, 2022, 454, 106930.	0.9	1

#	Article	IF	CITATIONS
225	Phenology in the deep sea: seasonal and tidal feeding rhythms in a keystone octocoral. Proceedings of the Royal Society B: Biological Sciences, 2022, 289, .	1.2	2
226	Spatial distribution and morphometry of the Namibian coral mounds controlled by the hydrodynamic regime and outer-shelf topography. Frontiers in Marine Science, 0, 9, .	1.2	2
227	Beyond the tip of the seamount: Distinct megabenthic communities found beyond the charismatic summit sponge ground on an arctic seamount (Schulz Bank, Arctic Mid-Ocean Ridge). Deep-Sea Research Part I: Oceanographic Research Papers, 2023, 191, 103920.	0.6	5
228	Habitat utilization, demography, and behavioral observations of the squat lobster, Eumunida picta (Crustacea: Anomura: Eumunididae), on western North Atlantic deep-water coral habitats. Deep-Sea Research Part I: Oceanographic Research Papers, 2023, 193, 103953.	0.6	Ο
229	Local-scale feedbacks influencing cold-water coral growth and subsequent reef formation. Scientific Reports, 2022, 12, .	1.6	6
230	Bioclastic bottomâ€current deposits of a Devonian contourite terrace: Facies variability and depositional architecture (Tafilalt Platform, Morocco). Sedimentology, 2023, 70, 1413-1471.	1.6	2
231	Decline in cold-water coral growth promotes molluscan diversity: A paleontological perspective from a cold-water coral mound in the western Mediterranean Sea. Frontiers in Marine Science, 0, 9, .	1.2	1
232	Cold-water coral framework architecture is selectively shaped by bottom current flow. Coral Reefs, 2023, 42, 483-495.	0.9	1
233	Spatial and temporal environmental heterogeneity induced by internal tides influences faunal patterns on vertical walls within a submarine canyon. Frontiers in Marine Science, 0, 10, .	1.2	0
241	Cold-Water Coral Reefs in the Oxygen Minimum Zones Off West Africa. Coral Reefs of the World, 2023, , 199-235.	0.3	Ο
242	Waters of Ireland and the UK. Coral Reefs of the World, 2023, , 145-169.	0.3	0
243	Cold-Water Coral Reefs of the Southeastern United States. Coral Reefs of the World, 2023, , 91-126.	0.3	Ο
244	Norwegian Coral Reefs. Coral Reefs of the World, 2023, , 127-144.	0.3	0
245	Cold-Water Corals of the World: Gulf of Mexico. Coral Reefs of the World, 2023, , 51-90.	0.3	0
246	A Global View of the Cold-Water Coral Reefs of the World. Coral Reefs of the World, 2023, , 1-30.	0.3	0