An Ecosystem Perspective on Reâ€establishing Native I Great Lakes

North American Journal of Fisheries Management 29, 1352-1371 DOI: 10.1577/m08-194.1

Citation Report

#	Article	IF	CITATIONS
1	Changes in the Fish Species Composition of the Great Lakes. Journal of the Fisheries Research Board of Canada, 1974, 31, 827-854.	1.0	227
2	Genetic Differences in Retention of Swimbladder Gas Between Two Populations of Lake Trout (<i>Salvelinus namaycush</i>). Journal of the Fisheries Research Board of Canada, 1974, 31, 1351-1354.	1.0	32
3	Zooplankton of the St. Lawrence Great Lakes — Species Composition, Distribution, and Abundance. Journal of the Fisheries Research Board of Canada, 1974, 31, 783-794.	1.0	39
4	Environmental Factors Affecting the Strength of Walleye (Stizostedion vitreum vitreum) Year-Classes in Western Lake Erie, 1960–70. Journal of the Fisheries Research Board of Canada, 1975, 32, 1733-1743.	1.0	96
5	Historical and contemporary trophic niche partitioning among Laurentian Great Lakes coregonines. , 2011, 21, 888-896.		34
6	Feeding selectivity of slimy sculpin Cottus cognatus and deepwater sculpin Myoxocephalus thompsonii in southeast Lake Michigan: Implications for species coexistence. Journal of Great Lakes Research, 2011, 37, 165-172.	0.8	16
7	Fish movement and migration studies in the Laurentian Great Lakes: Research trends and knowledge gaps. Journal of Great Lakes Research, 2011, 37, 365-379.	0.8	59
8	Trophic connections in Lake Superior Part I: The offshore fish community. Journal of Great Lakes Research, 2011, 37, 541-549.	0.8	73
9	Trophic connections in Lake Superior Part II: The nearshore fish community. Journal of Great Lakes Research, 2011, 37, 550-560.	0.8	61
10	Population Dynamics of Lake Ontario Lake Trout during 1985–2007. North American Journal of Fisheries Management, 2011, 31, 962-979.	0.5	21
11	Spawning Habitat Unsuitability: An Impediment to Cisco Rehabilitation in Lake Michigan?. North American Journal of Fisheries Management, 2011, 31, 905-913.	0.5	18
12	Contemporary life history characteristics of Lake Superior deepwater ciscoes. Aquatic Ecosystem Health and Management, 2012, 15, 322-332.	0.3	13
13	Lake charr Salvelinus namaycush spawning behaviour: new field observations and a review of current knowledge. Reviews in Fish Biology and Fisheries, 2012, 22, 575-593.	2.4	42
14	Selected Habitats of Slimy Sculpin in Coldwater Tributaries of the Upper Mississippi River in Minnesota. American Midland Naturalist, 2012, 168, 144-161.	0.2	9
15	The Spatial Scale for Cisco Recruitment Dynamics in Lake Superior during 1978–2007. North American Journal of Fisheries Management, 2012, 32, 499-514.	0.5	16
16	Prey selection by the Lake Superior fish community. Journal of Great Lakes Research, 2012, 38, 326-335.	0.8	32
17	Seasonal distribution of bloater (Coregonus hoyi) in the waters of Lake Huron surrounding the Bruce Peninsula. Journal of Great Lakes Research, 2012, 38, 381-389.	0.8	2
18	Using Diets to Reveal Overlap and Egg Predation among Benthivorous Fishes in Lake Michigan. Transactions of the American Fisheries Society, 2013, 142, 492-504.	0.6	27

#	Article	IF	CITATIONS
19	Foraging mechanisms of age-0 lake trout (Salvelinus namaycush). Journal of Great Lakes Research, 2013, 39, 128-137.	0.8	13
20	Gastric evacuation rate, index of fullness, and daily ration of Lake Michigan slimy (Cottus cognatus) and deepwater sculpin (Myoxocephalus thompsonii). Journal of Great Lakes Research, 2013, 39, 327-335.	0.8	20
21	Biological Consequences of the Coaster Brook Trout Restoration Stocking Program in Lake Superior Tributaries within Pictured Rocks National Lakeshore. North American Journal of Fisheries Management, 2013, 33, 359-372.	0.5	9
22	Evaluating analytical approaches for estimating pelagic fish biomass using simulated fish communities. Canadian Journal of Fisheries and Aquatic Sciences, 2013, 70, 1845-1857.	0.7	7
23	Spatially Varying Population Demographics and Fishery Characteristics of Lake Erie Walleyes Inferred from a Longâ€Term Tag Recovery Study. Transactions of the American Fisheries Society, 2014, 143, 188-204.	0.6	34
24	Habitat coupling in a large lake system: delivery of an energy subsidy by an offshore planktivore to the nearshore zone of <scp>L</scp> ake <scp>S</scp> uperior. Freshwater Biology, 2014, 59, 1197-1212.	1.2	37
25	Morphology and life history of the <scp>G</scp> reat <scp>S</scp> lave <scp>L</scp> ake ciscoes (<scp>S</scp> almoniformes: <scp>C</scp> oregonidae). Ecology of Freshwater Fish, 2014, 23, 453-469.	0.7	17
26	Foraging and predation risk for larval cisco (Coregonus artedi) in Lake Superior: A modelling synthesis of empirical survey data. Ecological Modelling, 2014, 294, 71-83.	1.2	11
27	Depth gradients in foodâ€web processes linking habitats in large lakes: <scp>L</scp> ake <scp>S</scp> uperior as an exemplar ecosystem. Freshwater Biology, 2014, 59, 2122-2136.	1.2	69
28	Diet and habitat use by age-0 deepwater sculpins in northern Lake Huron, Michigan and the Detroit River. Journal of Great Lakes Research, 2014, 40, 110-117.	0.8	7
29	Dispelling common beliefs about angler opposition to lake trout (Salvelinus namaycush) rehabilitation efforts in Lake Huron. Journal of Great Lakes Research, 2014, 40, 385-391.	0.8	4
30	Comparative Bioenergetics Modeling of Two Lake Trout Morphotypes. Transactions of the American Fisheries Society, 2014, 143, 1592-1604.	0.6	4
31	Exploring a Resilience-Based Approach to Spatial Planning in Fathom Five National Marine Park, Lake Huron, Canada, Using Marxan with Zones. Natural Areas Journal, 2015, 35, 452-464.	0.2	6
32	Ten-fold decline in Mysis diluviana in Lake Champlain between 1975 and 2012. Journal of Great Lakes Research, 2015, 41, 502-509.	0.8	13
33	Behavioral evidence for a role of chemoreception during reproduction in lake trout. Canadian Journal of Fisheries and Aquatic Sciences, 2015, 72, 1847-1852.	0.7	8
34	Loss of genetic diversity and reduction of genetic distance among lake trout Salvelinus namaycush ecomorphs, Lake Superior 1959 to 2013. Journal of Great Lakes Research, 2016, 42, 204-216.	0.8	32
35	Largeâ€Scale Changes in Bloater Growth and Condition in Lake Huron. Transactions of the American Fisheries Society, 2016, 145, 1241-1251.	0.6	7
36	Differential physiological response to sea lamprey parasitism between lake trout (<i>Salvelinus) Tj ETQq1 1 0.784 2016, 73, 1815-1829.</i>	4314 rgBT 0.7	/Overlock 10 13

#	Article	IF	Citations
37	If Arctic charr <i>Salvelinus alpinus</i> is â€~the most diverse vertebrate', what is the lake charr <i>Salvelinus namaycush</i> ?. Fish and Fisheries, 2016, 17, 1194-1207.	2.7	98
38	Diel Feeding Ecology of Slimy Sculpin in a Tributary to Skaneateles Lake, New York. American Midland Naturalist, 2016, 175, 37-46.	0.2	3
39	Early Feeding by Lake Trout Fry. Transactions of the American Fisheries Society, 2016, 145, 1-6.	0.6	24
40	Morphological and genetic variation in Cisco (Coregonus artedi) and Shortjaw Cisco (C. zenithicus): multiple origins of Shortjaw Cisco in inland lakes require a lake-specific conservation approach. Conservation Genetics, 2016, 17, 45-56.	0.8	21
41	Investigating the extent of parallelism in morphological and genomic divergence among lake trout ecotypes in Lake Superior. Molecular Ecology, 2017, 26, 1477-1497.	2.0	46
42	A population on the rise: The origin of deepwater sculpin in Lake Ontario. Journal of Great Lakes Research, 2017, 43, 863-870.	0.8	5
43	Climate change as a long-term stressor for the fisheries of the Laurentian Great Lakes of North America. Reviews in Fish Biology and Fisheries, 2017, 27, 363-391.	2.4	57
44	Deepwater sculpin status and recovery in Lake Ontario. Journal of Great Lakes Research, 2017, 43, 854-862.	0.8	22
45	Age, Year-Class Strength Variability, and Partial Age Validation of Kiyis from Lake Superior. North American Journal of Fisheries Management, 2017, 37, 1151-1160.	0.5	7
46	Islands in the ice stream: were spawning habitats for native salmonids in the Great Lakes created by paleoâ€ice streams?. Fish and Fisheries, 2017, 18, 347-359.	2.7	11
47	Evidence for Migratory Spawning Behavior by Morphologically Distinct Cisco (Coregonus artedi) from a Small Inland Lake. American Midland Naturalist, 2017, 178, 237-244.	0.2	1
48	Seasonal feeding ecology of co-existing native and invasive benthic fish along a nearshore to offshore gradient in Lake Michigan. Environmental Biology of Fishes, 2018, 101, 1161-1174.	0.4	13
49	Retention of morphological and ecological traits of Lake Superior cisco Coregonus artedi after translocation into inland lakes. Journal of Great Lakes Research, 2018, 44, 289-298.	0.8	8
50	Impact of the invasive three-spined stickleback (Gasterosteus aculeatus) on relative abundance and growth of native pelagic whitefish (Coregonus wartmanni) in Upper Lake Constance. Hydrobiologia, 2018, 824, 243-254.	1.0	24
51	Historical niche partitioning and longâ€ŧerm trophic shifts in Laurentian Great Lakes deepwater coregonines. Ecosphere, 2018, 9, e02080.	1.0	21
52	Evidence of sound production by spawning lake trout (<i>Salvelinus namaycush</i>) in lakes Huron and Champlain. Canadian Journal of Fisheries and Aquatic Sciences, 2018, 75, 429-438.	0.7	15
53	Small-scale intraspecific patterns of adaptive immunogenetic polymorphisms and neutral variation in Lake Superior lake trout. Immunogenetics, 2018, 70, 53-66.	1.2	7
54	Comparison of genetic and visual identification of cisco and lake whitefish larvae from Chaumont Bay, Lake Ontario. Canadian Journal of Fisheries and Aquatic Sciences, 2018, 75, 1329-1336.	0.7	12

#	Article	IF	CITATIONS
55	Hatchery Strain Contributions to Emerging Wild Lake Trout Populations in Lake Huron. Journal of Heredity, 2018, 109, 675-688.	1.0	17
56	Life history and ecological characteristics of humper and lean ecotypes of lake trout stocked in Lake Erie. Hydrobiologia, 2019, 840, 363-377.	1.0	11
57	Evolution and diversity of two cisco forms in an outlet of glacial Lake Algonquin. Ecology and Evolution, 2019, 9, 9654-9670.	0.8	13
58	Resurgence of Cisco (Coregonus artedi) in Lake Michigan. Journal of Great Lakes Research, 2019, 45, 821-829.	0.8	18
59	Cisco diversity in a historical drainage of glacial Lake Algonquin. Canadian Journal of Zoology, 2019, 97, 736-747.	0.4	5
60	Diel feeding behavior in a partially migrant Mysis population: A benthic-pelagic comparison. Food Webs, 2019, 20, e00117.	0.5	6
61	Modelâ€based exploration of the variability in lake trout (Salvelinus namaycush) bioaccumulation factors: The influence of physiology and trophic relationships. Environmental Toxicology and Chemistry, 2019, 38, 831-840.	2.2	3
62	Influences of life history and environment on lake trout (Salvelinus namaycush) growth and longevity in the Husky Lakes of the Western Canadian Arctic. Hydrobiologia, 2019, 840, 173-188.	1.0	2
63	Genetic diversity and structure of lake whitefish (Coregonus clupeaformis) 100†years after closure of the commercial fishery. Journal of Great Lakes Research, 2019, 45, 1310-1319.	0.8	4
64	Spatial segregation of cisco (Coregonus artedi) and lake whitefish (C. clupeaformis) larvae in Chaumont Bay, Lake Ontario. Journal of Great Lakes Research, 2020, 46, 1485-1490.	0.8	7
65	Larval Coregonus spp. diets and zooplankton community patterns in the Apostle Islands, Lake Superior. Journal of Great Lakes Research, 2020, 46, 1391-1401.	0.8	8
66	Does Fecundity of Cisco Vary in the Upper Great Lakes?. North American Journal of Fisheries Management, 2020, 40, 973-985.	0.5	4
67	Gut contents from multiple morphs of lake trout (Salvelinus namaycush) at two offshore shoals in Lake Superior. Journal of Great Lakes Research, 2020, 46, 1382-1390.	0.8	7
68	Niche Partitioning among Native Ciscoes and Nonnative Rainbow Smelt in Lake Superior. Transactions of the American Fisheries Society, 2020, 149, 184-203.	0.6	21
69	Postâ€stocking movement and survival of hatcheryâ€reared bloater (Coregonus hoyi) reintroduced to Lake Ontario. Freshwater Biology, 2020, 65, 1073-1085.	1.2	20
70	Comparative Genomic Analyses and a Novel Linkage Map for Cisco (<i>Coregonus artedi)</i> Provide Insights into Chromosomal Evolution and Rediploidization Across Salmonids. G3: Genes, Genomes, Genetics, 2020, 10, 2863-2878.	0.8	15
71	Piscivory in recovering Lake Michigan cisco (Coregonus artedi): The role of invasive species. Journal of Great Lakes Research, 2020, 46, 1402-1411.	0.8	14
72	Using environmental DNA metabarcoding to map invasive and native invertebrates in two Great Lakes tributaries. Environmental DNA, 2020, 2, 283-297.	3.1	14

#	Article	IF	CITATIONS
73	The history and ecology of Cisco <i>Coregonus artedi</i> in the Laurentian Great Lakes. Aquatic Ecosystem Health and Management, 2019, 22, 280-293.	0.3	8
74	A Synthesis of the Biology and Ecology of Sculpin Species in the Laurentian Great Lakes and Implications for the Adaptive Capacity of the Benthic Ecosystem. Reviews in Fisheries Science and Aquaculture, 2021, 29, 96-121.	5.1	3
75	Application of machine learning to identify predators of stocked fish in <scp>Lake Ontario</scp> : using acoustic telemetry predation tags to inform management. Journal of Fish Biology, 2021, 98, 237-250.	0.7	8
76	Prey fish communities of the Laurentian Great Lakes: A cross-basin overview of status and trends based on bottom trawl surveys, 1978-2016. Aquatic Ecosystem Health and Management, 2019, 22, 263-279.	0.3	6
78	Genetic Diversity. , 2021, , 119-165.		2
79	Effects of a low-thiamine diet on reproductive traits in three populations of Atlantic salmon targeted for reintroduction into Lake Ontario. Canadian Journal of Fisheries and Aquatic Sciences, 2021, 78, 135-143.	0.7	2
82	Size segregation and seasonal patterns in rusty crayfish Faxonius rusticus distribution and abundance on northern Lake Michigan spawning reefs. Journal of Great Lakes Research, 2021, 47, 1050-1064.	0.8	3
83	Influence of warming temperatures on coregonine embryogenesis within and among species. Hydrobiologia, 2021, 848, 4363-4385.	1.0	11
84	Movement Ecology of a Potamodromous Top Predator in a Large Lake: Synchrony and Coexistence of Distinct Migratory Patterns. Transactions of the American Fisheries Society, 2021, 150, 748-760.	0.6	4
85	Contemporary spatial extent and environmental drivers of larval coregonine distributions across Lake Ontario. Journal of Great Lakes Research, 2022, 48, 359-370.	0.8	12
86	Slimy sculpin depth shifts and habitat squeeze following the round goby invasion in the Laurentian Great Lakes. Journal of Great Lakes Research, 2021, 47, 1793-1803.	0.8	4
87	Shining a light on Laurentian Great Lakes cisco (Coregonus artedi): How ice coverage may impact embryonic developmentâ~†. Journal of Great Lakes Research, 2021, 47, 1410-1418.	0.8	3
88	The spatiotemporal dynamics of invasive three-spined sticklebacks in a large, deep lake and possible options for stock reduction. Fisheries Research, 2020, 232, 105746.	0.9	14
89	The quest for successful Atlantic salmon restoration: perspectives, priorities, and maxims. ICES Journal of Marine Science, 2021, 78, 3479-3497.	1.2	14
90	Genomics reveals identity, phenology and population demographics of larval ciscoes (Coregonus) Tj ETQq0 0 0 r 47, 1849-1857.	gBT /Overl 0.8	ock 10 Tf 50 6
92	How Many Ciscoes Are Needed for Stocking in the Laurentian Great Lakes?. Journal of Fish and Wildlife Management, 2022, 13, 28-49.	0.4	3
93	First documentation of spawning by deepwater sculpins in the Great Lakes and potential impacts of round gobies. Journal of Great Lakes Research, 2022, 48, 614-619.	0.8	1
94	Variation of cisco egg size among Laurentian Great Lakes populations. Journal of Great Lakes Research, 2022, , .	0.8	1

#	Article	IF	CITATIONS
95	Depth and temperature selection of lake charr (Salvelinus namaycush) ecotypes in Lake Superior revealed by popup satellite archival tags. Journal of Great Lakes Research, 2022, 48, 1050-1066.	0.8	7
96	Genome-wide genetic diversity may help identify fine-scale genetic structure among lake whitefish spawning groups in Lake Erie. Journal of Great Lakes Research, 2022, 48, 1298-1305.	0.8	2
97	Lake Herring (<i>Coregonus artedi</i>) aquaculture bestâ€practices: Randomized experiments from eggs to juvenile. North American Journal of Aquaculture, 0, , .	0.7	0
98	Genetic population structure of cisco, Coregonus artedi, in the Laurentian Great Lakes. Journal of Great Lakes Research, 2022, , .	0.8	0
99	Can blood proteome diversity among fish species help explain perfluoroalkyl acid trophodynamics in aquatic food webs?. Science of the Total Environment, 2023, 875, 162337.	3.9	3