Two Chemoreceptors Mediate Developmental Effects of elegans</i>

Science 326, 994-998 DOI: 10.1126/science.1176331

Citation Report

#	Article	IF	CITATIONS
1	Chemosensation in C. elegans. WormBook, 2006, , 1-29.	5.3	603
2	Strategies to Get Arrested. Science, 2009, 326, 944-945.	6.0	11
3	The HMX/NKX homeodomain protein MLS-2 specifies the identity of the AWC sensory neuron type via regulation of the <i>ceh-36</i> Otx gene in <i>C. elegans</i> . Development (Cambridge), 2010, 137, 963-974.	1.2	41
4	Olfactory Plasticity Is Regulated by Pheromonal Signaling in <i>Caenorhabditis elegans</i> . Science, 2010, 329, 1647-1650.	6.0	85
5	The homeodomain protein <i>hmbx-1</i> maintains asymmetric gene expression in adult <i>C. elegans</i> olfactory neurons. Genes and Development, 2010, 24, 1802-1815.	2.7	30
6	Localization of a Guanylyl Cyclase to Chemosensory Cilia Requires the Novel Ciliary MYND Domain Protein DAF-25. PLoS Genetics, 2010, 6, e1001199.	1.5	21
7	Histone tales: echoes from the past, prospects for the future. Genome Biology, 2010, 11, 105.	13.9	9
8	Methods for Evaluating the Caenorhabditis elegans Dauer State: Standard Dauer-Formation Assay Using Synthetic Daumones and Proteomic Analysis of O-GlcNAc Modifications. Methods in Cell Biology, 2011, 106, 445-460.	0.5	4
9	Sensory Perception and Aging in Model Systems: From the Outside In. Annual Review of Cell and Developmental Biology, 2011, 27, 759-785.	4.0	49
10	Dafadine inhibits DAF-9 to promote dauer formation and longevity of Caenorhabditis elegans. Nature Chemical Biology, 2011, 7, 891-893.	3.9	27
11	Optogenetic Long-Term Manipulation of Behavior and Animal Development. PLoS ONE, 2011, 6, e18766.	1.1	55
12	Catecholamine receptor polymorphisms affect decision-making in C. elegans. Nature, 2011, 472, 313-318.	13.7	189
13	Hormone Signaling and Phenotypic Plasticity in Nematode Development and Evolution. Current Biology, 2011, 21, R758-R766.	1.8	70
14	Parallel evolution of domesticated Caenorhabditis species targets pheromone receptor genes. Nature, 2011, 477, 321-325.	13.7	225
15	Worm Phenotype Ontology: Integrating phenotype data within and beyond the C. elegans community. BMC Bioinformatics, 2011, 12, 32.	1.2	62
16	Divergent and stereoselective synthesis of dafachronic acids. Tetrahedron, 2011, 67, 1924-1929.	1.0	17
17	Degeneracy and Neuromodulation among Thermosensory Neurons Contribute to Robust Thermosensory Behaviors in <i>Caenorhabditis elegans</i> . Journal of Neuroscience, 2011, 31, 11718-11727.	1.7	165
18	Receptor-type guanylate cyclase is required for carbon dioxide sensation by <i>Caenorhabditis elegans</i> . Proceedings of the National Academy of Sciences of the United States of America, 2011, 108, 254-259.	3.3	113

#	Article	IF	Citations
19	Specific insulin-like peptides encode sensory information to regulate distinct developmental processes. Development (Cambridge), 2011, 138, 1183-1193.	1.2	124
20	RNAseq Analysis of the Parasitic Nematode Strongyloides stercoralis Reveals Divergent Regulation of Canonical Dauer Pathways. PLoS Neglected Tropical Diseases, 2012, 6, e1854.	1.3	79
21	Long-Range Regulatory Polymorphisms Affecting a GABA Receptor Constitute a Quantitative Trait Locus (QTL) for Social Behavior in Caenorhabditis elegans. PLoS Genetics, 2012, 8, e1003157.	1.5	52
22	Steroids as Central Regulators of Organismal Development and Lifespan. PLoS Biology, 2012, 10, e1001307.	2.6	29
23	Function and Regulation of Lipid Biology in Caenorhabditis elegans Aging. Frontiers in Physiology, 2012, 3, 143.	1.3	41
24	Hormonal Signal Amplification Mediates Environmental Conditions during Development and Controls an Irreversible Commitment to Adulthood. PLoS Biology, 2012, 10, e1001306.	2.6	75
25	Long noncoding RNAs in <i>C. elegans</i> . Genome Research, 2012, 22, 2529-2540.	2.4	191
26	Interaction of structure-specific and promiscuous G-protein–coupled receptors mediates small-molecule signaling in <i>Caenorhabditis elegans</i> . Proceedings of the National Academy of Sciences of the United States of America, 2012, 109, 9917-9922.	3.3	110
27	Cross-Genome Clustering of Human and C. elegans G-Protein Coupled Receptors. Evolutionary Bioinformatics, 2012, 8, EBO.S9405.	0.6	13
28	A Modular Library of Small Molecule Signals Regulates Social Behaviors in Caenorhabditis elegans. PLoS Biology, 2012, 10, e1001237.	2.6	208
29	A Novel Ascaroside Controls the Parasitic Life Cycle of the Entomopathogenic Nematode <i>Heterorhabditis bacteriophora</i> . ACS Chemical Biology, 2012, 7, 961-966.	1.6	61
31	Complex Smallâ€Molecule Architectures Regulate Phenotypic Plasticity in a Nematode. Angewandte Chemie - International Edition, 2012, 51, 12438-12443.	7.2	88
32	Chemosensory behaviors of parasites. Trends in Parasitology, 2012, 28, 427-436.	1.5	60
33	Neuromodulatory State and Sex Specify Alternative Behaviors through Antagonistic Synaptic Pathways in C.Âelegans. Neuron, 2012, 75, 585-592.	3.8	141
34	Oxytocin/Vasopressin-Related Peptides Have an Ancient Role in Reproductive Behavior. Science, 2012, 338, 540-543.	6.0	225
35	Comparative Metabolomics Reveals Biogenesis of Ascarosides, a Modular Library of Small-Molecule Signals in <i>C. elegans</i> . Journal of the American Chemical Society, 2012, 134, 1817-1824.	6.6	187
36	Pheromones: Evolving Language of Chemical Communication in Nematodes. Current Biology, 2012, 22, R294-R296.	1.8	11
37	Endosymbiotic Evolution: RNA Intermediates in Endosymbiotic Gene Transfer. Current Biology, 2012, 22, R296-R298.	1.8	10

#	Article	IF	CITATIONS
38	Life-History Evolution and the Polyphenic Regulation of Somatic Maintenance and Survival. Quarterly Review of Biology, 2013, 88, 185-218.	0.0	97
39	Cell- and subunit-specific mechanisms of CNG channel ciliary trafficking and localization in <i>C. elegans</i> . Journal of Cell Science, 2013, 126, 4381-4395.	1.2	37
40	Transmembrane protein OSTA-1 shapes sensory cilia morphology via regulation of intracellular membrane trafficking in <i>C. elegans</i> . Development (Cambridge), 2013, 140, 1560-1572.	1.2	26
41	Ascaroside activity in Caenorhabditis elegans is highly dependent on chemical structure. Bioorganic and Medicinal Chemistry, 2013, 21, 5754-5769.	1.4	32
42	Genetic mapping of variation in dauer larvae development in growing populations of Caenorhabditis elegans. Heredity, 2013, 111, 306-313.	1.2	37
43	The C. elegans cGMP-Dependent Protein Kinase EGL-4 Regulates Nociceptive Behavioral Sensitivity. PLoS Genetics, 2013, 9, e1003619.	1.5	27
44	Pheromone sensing regulates <i>Caenorhabditis elegans</i> lifespan and stress resistance via the deacetylase SIR-2.1. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110, 5522-5527.	3.3	82
45	Density dependence in Caenorhabditis larval starvation. Scientific Reports, 2013, 3, 2777.	1.6	45
46	Functional Coupling of a Nematode Chemoreceptor to the Yeast Pheromone Response Pathway. PLoS ONE, 2014, 9, e111429.	1.1	6
47	cGMP and NHR Signaling Co-regulate Expression of Insulin-Like Peptides and Developmental Activation of Infective Larvae in Strongyloides stercoralis. PLoS Pathogens, 2014, 10, e1004235.	2.1	41
48	Screening of Odor-Receptor Pairs in <i>Caenorhabditis elegans</i> Reveals Different Receptors for High and Low Odor Concentrations. Science Signaling, 2014, 7, ra39.	1.6	56
49	Diverse Cell Type-Specific Mechanisms Localize G Protein-Coupled Receptors to <i>Caenorhabditis elegans</i> Sensory Cilia. Genetics, 2014, 197, 667-684.	1.2	32
50	Neurosensory Perception of Environmental Cues Modulates Sperm Motility Critical for Fertilization. Science, 2014, 344, 754-757.	6.0	47
51	The dauer hypothesis and the evolution of parasitism: 20years on and still going strong. International Journal for Parasitology, 2014, 44, 1-8.	1.3	105
52	Biocommunication of Animals. , 2014, , .		25
53	Chemical mating cues in C. elegans. Seminars in Cell and Developmental Biology, 2014, 33, 18-24.	2.3	28
54	Chemosensation of Bacterial Secondary Metabolites Modulates Neuroendocrine Signaling and Behavior of C.Âelegans. Cell, 2014, 159, 267-280.	13.5	219
55	Chromatographic separation of free dafachronic acid epimers with a novel triazole click quinidine-based chiral stationary phase. Journal of Chromatography A, 2014, 1339, 96-102.	1.8	20

#	Article	IF	CITATIONS
57	Synthesis of Photoaffinityâ€Labeled Daumone Analogs. Bulletin of the Korean Chemical Society, 2015, 36, 2177-2178.	1.0	0
58	Formation of the transition zone by Mks5/Rpgrip1L establishes a ciliary zone of exclusion (<scp>ClZE</scp>) that compartmentalises ciliary signalling proteins and controls <scp>PIP</scp> ₂ ciliary abundance. EMBO Journal, 2015, 34, 2537-2556.	3.5	115
59	Acyl-CoA oxidase complexes control the chemical message produced by <i>Caenorhabditis elegans</i> . Proceedings of the National Academy of Sciences of the United States of America, 2015, 112, 3955-3960.	3.3	70
60	Toward a Synthesis of Developmental Biology with Evolutionary Theory and Ecology. Annual Review of Cell and Developmental Biology, 2015, 31, 453-471.	4.0	18
61	Combinatorial chemistry in nematodes: modular assembly of primary metabolism-derived building blocks. Natural Product Reports, 2015, 32, 994-1006.	5.2	38
62	Nematode Signaling Molecules Derived from Multimodular Assembly of Primary Metabolic Building Blocks. Organic Letters, 2015, 17, 1648-1651.	2.4	13
63	Sensory systems: their impact on C. elegans survival. Neuroscience, 2015, 296, 15-25.	1.1	19
64	NeuCode Labeling in Nematodes: Proteomic and Phosphoproteomic Impact of Ascaroside Treatment in Caenorhabditis elegans. Molecular and Cellular Proteomics, 2015, 14, 2922-2935.	2.5	20
65	Modular Assembly of Primary Metabolic Building Blocks: A Chemical Language in C.Âelegans. Chemistry and Biology, 2015, 22, 7-16.	6.2	49
66	GPCRs Direct Germline Development and Somatic Gonad Function in Planarians. PLoS Biology, 2016, 14, e1002457.	2.6	42
67	Aversive Behavior in the Nematode C. elegans Is Modulated by cGMP and a Neuronal Gap Junction Network. PLoS Genetics, 2016, 12, e1006153.	1.5	26
68	Synthetic Ligands of Cannabinoid Receptors Affect Dauer Formation in the Nematode Caenorhabditis elegans. G3: Genes, Genomes, Genetics, 2016, 6, 1695-1705.	0.8	9
69	A Forward Genetic Screen for Molecules Involved in Pheromone-Induced Dauer Formation in Caenorhabditis elegans. G3: Genes, Genomes, Genetics, 2016, 6, 1475-1487.	0.8	17
70	cGMP Signalling Mediates Water Sensation (Hydrosensation) and Hydrotaxis in Caenorhabditis elegans. Scientific Reports, 2016, 6, 19779.	1.6	16
71	Mating pheromones of Nematoda: olfactory signaling with physiological consequences. Current Opinion in Neurobiology, 2016, 38, 119-124.	2.0	13
72	Phenotypic Evolution With and Beyond Genome Evolution. Current Topics in Developmental Biology, 2016, 119, 291-347.	1.0	10
73	Balancing selection shapes density-dependent foraging behaviour. Nature, 2016, 539, 254-258.	13.7	132
74	Signaling in Parasitic Nematodes: Physicochemical Communication Between Host and Parasite and Endogenous Molecular Transduction Pathways Governing Worm Development and Survival. Current Clinical Microbiology Reports, 2016, 3, 186-197.	1.8	17

#	Article	IF	CITATIONS
75	De novo asymmetric synthesis and biological analysis of the daumone pheromones in Caenorhabditis elegans and in the soybean cyst nematode Heterodera glycines. Tetrahedron, 2016, 72, 2280-2286.	1.0	15
76	A tachykinin-like neuroendocrine signalling axis couples central serotonin action and nutrient sensing with peripheral lipid metabolism. Nature Communications, 2017, 8, 14237.	5.8	51
77	Multisensory integration in C. elegans. Current Opinion in Neurobiology, 2017, 43, 110-118.	2.0	39
78	Small-molecule pheromones and hormones controlling nematode development. Nature Chemical Biology, 2017, 13, 577-586.	3.9	47
79	Decoding chemical communication in nematodes. Natural Product Reports, 2017, 34, 472-477.	5.2	42
80	Endogenous RNAi Pathways Are Required in Neurons for Dauer Formation in <i>Caenorhabditis elegans</i> . Genetics, 2017, 205, 1503-1516.	1.2	13
81	Molecular Determinants of the Regulation of Development and Metabolism by Neuronal eIF2α Phosphorylation in Caenorhabditis elegans. Genetics, 2017, 206, 251-263.	1.2	11
82	Ageing: Lessons from C. elegans. Healthy Ageing and Longevity, 2017, , .	0.2	14
83	Dauer Formation and Ageing. Healthy Ageing and Longevity, 2017, , 41-62.	0.2	0
84	Lipid Metabolism, Lipid Signalling and Longevity. Healthy Ageing and Longevity, 2017, , 307-329.	0.2	3
85	Early Pheromone Experience Modifies a Synaptic Activity to Influence Adult Pheromone Responses of C.Âelegans. Current Biology, 2017, 27, 3168-3177.e3.	1.8	35
86	Genetic deficiency in neuronal peroxisomal fatty acid β-oxidation causes the interruption of dauer development in Caenorhabditis elegans. Scientific Reports, 2017, 7, 9358.	1.6	12
87	Counteracting Ascarosides Act through Distinct Neurons to Determine the Sexual Identity of C.Âelegans Pheromones. Current Biology, 2017, 27, 2589-2599.e3.	1.8	43
88	Using an Adapted Microfluidic Olfactory Chip for the Imaging of Neuronal Activity in Response to Pheromones in Male C. Elegans Head Neurons. Journal of Visualized Experiments, 2017, , .	0.2	14
89	A conserved neuronal DAF-16/FoxO plays an important role in conveying pheromone signals to elicit repulsion behavior in Caenorhabditis elegans. Scientific Reports, 2017, 7, 7260.	1.6	17
90	Effects of <i>trans</i> â€2â€hexenal on reproduction, growth and behaviour and efficacy against the pinewood nematode, <i>Bursaphelenchus xylophilus</i> . Pest Management Science, 2017, 73, 888-895.	1.7	27
91	A Single-Neuron Chemosensory Switch Determines the Valence of a Sexually Dimorphic Sensory Behavior. Current Biology, 2018, 28, 902-914.e5.	1.8	60
92	The Chemical Sensitivity and Electrical Activity of Individual Olfactory Sensory Neurons to a Range of Sex Pheromones and Food Odors in the Goldfish, Chemical Senses, 2018, 43, 249-260	1.1	19

#	Article	IF	CITATIONS
93	Acyl-CoA Oxidases Fine-Tune the Production of Ascaroside Pheromones with Specific Side Chain Lengths. ACS Chemical Biology, 2018, 13, 1048-1056.	1.6	24
94	Endosome maturation factors Rabenosynâ€5/VPS45 and caveolinâ€1 regulate ciliary membrane and polycystinâ€2 homeostasis. EMBO Journal, 2018, 37, .	3.5	23
95	The Caenorhabditis elegans gene ham-1 regulates daughter cell size asymmetry primarily in divisions that produce a small anterior daughter cell. PLoS ONE, 2018, 13, e0195855.	1.1	5
96	Molecular alterations during larval development of Haemonchus contortus in vitro are under tight post-transcriptional control. International Journal for Parasitology, 2018, 48, 763-772.	1.3	30
97	Nutritional Control of the Germline Development in Caenorhabditis elegans. Diversity and Commonality in Animals, 2018, , 69-101.	0.7	2
98	An atlas of Caenorhabditis elegans chemoreceptor expression. PLoS Biology, 2018, 16, e2004218.	2.6	93
99	Co-option of neurotransmitter signaling for inter-organismal communication in C. elegans. Nature Communications, 2019, 10, 3186.	5.8	20
100	Pheromones Modulate Learning by Regulating the Balanced Signals of Two Insulin-like Peptides. Neuron, 2019, 104, 1095-1109.e5.	3.8	29
101	Ascaroside Pheromones: Chemical Biology and Pleiotropic Neuronal Functions. International Journal of Molecular Sciences, 2019, 20, 3898.	1.8	24
102	Pheromones and Nutritional Signals Regulate the Developmental Reliance on let-7 Family MicroRNAs in C.Âelegans. Current Biology, 2019, 29, 1735-1745.e4.	1.8	21
103	Natural products as chemical tools to dissect complex biology in C. elegans. Current Opinion in Chemical Biology, 2019, 50, 138-144.	2.8	10
104	SRDâ€l in AWA neurons is the receptor for female volatile sex pheromones in <i>C. elegans</i> males. EMBO Reports, 2019, 20, .	2.0	34
105	Serotonergic neuron ADF modulates avoidance behaviors by inhibiting sensory neurons in C. elegans. Pflugers Archiv European Journal of Physiology, 2019, 471, 357-363.	1.3	10
106	A primer on pheromone signaling in Caenorhabditis elegans for systems biologists. Current Opinion in Systems Biology, 2019, 13, 23-30.	1.3	31
107	The population structure and sex ratios of Bursaphelenchus xylophilus under α-pinene stress. Journal of Forestry Research, 2020, 31, 921-926.	1.7	6
108	smFISH in chips: a microfluidic-based pipeline to quantify in situ gene expression in whole organisms. Lab on A Chip, 2020, 20, 266-273.	3.1	9
109	Photoaffinity probes for nematode pheromone receptor identification. Organic and Biomolecular Chemistry, 2020, 18, 36-40.	1.5	5
110	Functional characterization of a novel gene, Hc-dhs-28 and its role in protecting the host after Haemonchus contortus infection through regulation of diapause formation. International Journal for Parasitology, 2020, 50, 945-957.	1.3	2

~		~	
		REPO	DT
\sim	IIAI	IVE FV	

#	Article	IF	CITATIONS
111	Cephalic Neuronal Vesicle Formation is Developmentally Dependent and Modified by Methylmercury and sti-1 in Caenorhabditis elegans. Neurochemical Research, 2020, 45, 2939-2948.	1.6	10
112	Small molecule signals mediate social behaviors in <i>C. elegans</i> . Journal of Neurogenetics, 2020, 34, 395-403.	0.6	16
113	Population Density Modulates the Duration of Reproduction of C.Âelegans. Current Biology, 2020, 30, 2602-2607.e2.	1.8	11
114	What can a worm learn in a bacteria-rich habitat?. Journal of Neurogenetics, 2020, 34, 369-377.	0.6	8
115	Major ascaroside pheromone component asc 5 influences reproductive plasticity among isolates of the invasive species pinewood nematode. Integrative Zoology, 2020, 16, 893-907.	1.3	7
116	A novel functional cross-interaction between opioid and pheromone signaling may be involved in stress avoidance in Caenorhabditis elegans. Scientific Reports, 2020, 10, 7524.	1.6	3
117	Combining single-cell RNA-sequencing with a molecular atlas unveils new markers for Caenorhabditis elegans neuron classes. Nucleic Acids Research, 2020, 48, 7119-7134.	6.5	27
118	Genetic and functional diversification of chemosensory pathway receptors in mosquito-borne filarial nematodes. PLoS Biology, 2020, 18, e3000723.	2.6	33
119	Natural diversity in the predatory behavior facilitates the establishment of a robust model strain for nematode-trapping fungi. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 6762-6770.	3.3	59
120	Transcriptomic analysis of hookworm Ancylostoma ceylanicum life cycle stages reveals changes in G-protein coupled receptor diversity associated with the onset of parasitism. International Journal for Parasitology, 2020, 50, 603-610.	1.3	9
123	Chemosensory signal transduction in <i>Caenorhabditis elegans</i> . Genetics, 2021, 217, .	1.2	62
125	Large Genetic Diversity and Strong Positive Selection in F-Box and GPCR Genes among the Wild Isolates of <i>Caenorhabditis elegans</i> . Genome Biology and Evolution, 2021, 13, .	1.1	13
126	Transcriptional profiles in Strongyloides stercoralis males reveal deviations from the Caenorhabditis sex determination model. Scientific Reports, 2021, 11, 8254.	1.6	6
128	Interaction of Symbiotic Rhizobia and Parasitic Root-Knot Nematodes in Legume Roots: From Molecular Regulation to Field Application. Molecular Plant-Microbe Interactions, 2021, 34, 470-490.	1.4	17
131	Acyl-CoA oxidase ACOX-1 interacts with a peroxin PEX-5 to play roles in larval development of Haemonchus contortus. PLoS Pathogens, 2021, 17, e1009767.	2.1	5
132	CREB mediates the C. elegans dauer polyphenism through direct and cell-autonomous regulation of TGF-Î ² expression. PLoS Genetics, 2021, 17, e1009678.	1.5	9
133	Sex-specific, pdfr-1-dependent modulation of pheromone avoidance by food abundance enables flexibility in C.Âelegans foraging behavior. Current Biology, 2021, 31, 4449-4461.e4.	1.8	10
134	Neuronal control of maternal provisioning in response to social cues. Science Advances, 2021, 7, .	4.7	2

		CITATION REPORT		
#	Article		IF	CITATIONS
135	Ectocytosis prevents accumulation of ciliary cargo in C. elegans sensory neurons. ELife	, 2021, 10, .	2.8	22
136	Chemosensory Neurons Modulate the Response to Oomycete Recognition in Caenorh Cell Reports, 2021, 34, 108604.	abditis elegans.	2.9	17
139	Kits for RNA Extraction, Isolation, and Purification. Materials and Methods, 0, 2, .		0.0	4
140	Selection on a Subunit of the NURF Chromatin Remodeler Modifies Life History Traits i Domesticated Strain of Caenorhabditis elegans. PLoS Genetics, 2016, 12, e1006219.	n a	1.5	50
141	Pheromone-sensing neurons regulate peripheral lipid metabolism in Caenorhabditis ele Genetics, 2017, 13, e1006806.	gans. PLoS	1.5	27
142	Rictor/TORC2 mediates gut-to-brain signaling in the regulation of phenotypic plasticity PLoS Genetics, 2018, 14, e1007213.	in C. elegans.	1.5	41
143	Neuropeptide Signaling Regulates Pheromone-Mediated Gene Expression of a Chemor Molecules and Cells, 2019, 42, 28-35.	eceptor Gene in.	1.0	10
144	Ascaroside signaling in C. elegans. WormBook, 2013, , 1-22.		5.3	165
145	The neuronal genome of Caenorhabditis elegans. WormBook, 2013, , 1-106.		5.3	220
146	Feeding state-dependent regulation of developmental plasticity via CaMKI and neuroer signaling. ELife, 2015, 4, .	ndocrine	2.8	29
147	Nematophagous fungus Arthrobotrys oligospora mimics olfactory cues of sex and food nematode prey. ELife, 2017, 6, .	to lure its	2.8	75
148	Regulatory changes in two chemoreceptor genes contribute to a Caenorhabditis elega foraging behavior. ELife, 2016, 5, .	ns QTL for	2.8	63
149	The Caenorhabditis elegans Tubby homolog dynamically modulates olfactory cilia mem morphogenesis and phospholipid composition. ELife, 2019, 8, .	ıbrane	2.8	17
150	ç-šè™«Caenorhabditis elegansã®æ"Ÿè¦šå¿œç-"ã•å-¦ç¿'ã,'å^¶å¾jã™ã,‹æ©Ÿæ§‹. Hikaku 231-239.	Seiri Seikagaku(Comparat	ive Physic 0.0	ology and Bio
151	Nematode Communication. , 2014, , 383-407.			0
159	Invertebrate Olfactory Receptors. , 2020, , 453-465.			3
161	On the role of dauer in the adaptation of nematodes to a parasitic lifestyle. Parasites a 2021, 14, 554.	nd Vectors,	1.0	11
163	Chemical Ecology of Nematodes. , 2020, , 3-30.			0

ARTICLE IF CITATIONS Structural Analysis of the Caenorhabditis elegans Dauer Larval Anterior Sensilla by Focused Ion 166 0.9 12 Beam-Scanning Electron Microscopy. Frontiers in Neuroanatomy, 2021, 15, 732520. Neuronal KGB-1 JNK MAPK signaling regulates the dauer developmental decision in response to environmental stress in <i>Caenorhabditis elegans</i>. Genetics, 2022, 220, . 1.2 Reflections on plant and soil nematode ecology: past, present and future. Journal of Nematology, 169 0.4 34 2012, 44, 115-26. Efficacy of Four Nematicides Against the Reproduction and Development of Pinewood Nematode, 170 Bursaphelenchus xylophilus. Journal of Nematology, 2015, 47, 126-32. Endocrine pheromones couple fat rationing to dauer diapause through $HNF4\hat{l}$ + nuclear receptors. 171 2.3 3 Science China Life Sciences, 2021, 64, 2153-2174. A single chemosensory GPCR is required for a concentration-dependent behavioral switching in C.Âelegans. Current Biology, 2022, 32, 398-411.e4. 1.8 Interneuron control of C.Âelegans developmental decision-making. Current Biology, 2022, 32, 173 1.8 10 2316-2324.e4. Brain-wide bidirectional neuropeptide modulation of individual neuron classes regulates a 1.8 developmental decision. Current Biology, 2022, 32, 3365-3373.e6. Making $\hat{a} \in \infty$ Sense $\hat{a} \in of$ Ecology from a Genetic Perspective: Caenorhabditis elegans, Microbes and Behavior. 176 1.3 1 Metabolites, 2022, 12, 1084. Pathogenic bacteria modulate pheromone response to promote mating. Nature, 2023, 613, 324-331. 13.7 The <i>Caenorhabditis elegans</i> innexin INX-20 regulates nociceptive behavioral sensitivity. 179 1.2 0 Genetics, 2023, 223, . Transcriptomic profiling of sex-specific olfactory neurons reveals subset-specific receptor 1.2 expression in <i>Caenorhabditis elegans</i>. Génetics, 2023, 223, . Calumenin, a Ca2+ Binding Protein, Is Required for Dauer Formation in Caenorhabditis elegans. 181 1.3 0 Biology, 2023, 12, 464. Transcriptional and spatiotemporal regulation of the dauer program. Transcription, 2023, 14, 27-48. 1.7 Nematode-Trapping Fungi and Caenorhabditis elegans as a Model System for Predator–Prey 185 0 Interactions. , 2024, , 273-292.

CITATION REPORT

10