Nitrate-nitrogen patterns in the Raccoon River Basin re

Journal of Soils and Water Conservation 64, 190-199 DOI: 10.2489/jswc.64.3.190

Citation Report

#	Article	IF	CITATIONS
2	Linking Resilience Theory and Diffusion of Innovations Theory to Understand the Potential for Perennials in the U.S. Corn Belt. Ecology and Society, 2009, 14, .	1.0	53
3	Strategies to Reduce Nitrate Leaching into Groundwater in Potato Grown in Sandy Soils: Case Study from North Central USA. American Journal of Potato Research, 2010, 87, 229-244.	0.5	65
4	Sources of Nitrate Yields in the Mississippi River Basin. Journal of Environmental Quality, 2010, 39, 1657-1667.	1.0	361
5	Assessment of Total Maximum Daily Load Implementation Strategies for Nitrate Impairment of the Raccoon River, Iowa. Journal of Environmental Quality, 2010, 39, 1317-1327.	1.0	69
6	Precipitation Changes Impact Stream Discharge, Nitrate–Nitrogen Load More Than Agricultural Management Changes. Journal of Environmental Quality, 2010, 39, 2063-2071.	1.0	32
7	Miscanthus. Advances in Botanical Research, 2010, 56, 75-137.	0.5	169
8	Tweak, Adapt, or Transform: Policy Scenarios in Response to Emerging Bioenergy Markets in the U.S. Corn Belt. Ecology and Society, 2011, 16, .	1.0	25
9	From Agricultural Intensification to Conservation: Sediment Transport in the Raccoon River, Iowa, 1916–2009. Journal of Environmental Quality, 2011, 40, 1911-1923.	1.0	42
10	Nitrogen loss from a mixed land use watershed as influenced by hydrology and seasons. Journal of Hydrology, 2011, 405, 307-315.	2.3	36
11	The Nashua agronomic, water quality, and economic dataset. Journal of Soils and Water Conservation, 2012, 67, 502-512.	0.8	4
12	Plant nutrient management and risks of nitrous oxide emission. Journal of Soils and Water Conservation, 2012, 67, 137A-144A.	0.8	11
13	Exploring the physical controls of regional patterns of flow duration curves – Part 2: Role of seasonality, the regime curve, and associated process controls. Hydrology and Earth System Sciences, 2012, 16, 4447-4465.	1.9	73
14	Spatial Patterns of Water and Nitrogen Response Within Corn Production Fields. , 2012, , .		3
15	Evaluation of Variation in Nitrate Concentration Levels in the Raccoon River Watershed in Iowa. Journal of Environmental Quality, 2012, 41, 1557-1565.	1.0	7
16	An assessment of landscape characteristics affecting estuarine nitrogen loading in an urban watershed. Journal of Environmental Management, 2012, 94, 50-60.	3.8	33
17	Hot moments and hot spots of nutrient losses from a mixed land use watershed. Journal of Hydrology, 2012, 414-415, 393-404.	2.3	40
18	Using biodiversity to link agricultural productivity with environmental quality: Results from three field experiments in Iowa. Renewable Agriculture and Food Systems, 2013, 28, 115-128.	0.8	72
19	Aligning Insect IPM Programs with a Cropping Systems Perspective: Cover Crops and Cultural Pest Control in Wisconsin Organic Corn and Soybean. Agroecology and Sustainable Food Systems, 2013, 37, 550-577	1.0	3

#	Article	IF	Citations
20	Convergence of agricultural intensification and climate change in the Midwestern United States: implications for soil and water conservation. Marine and Freshwater Research, 2013, 64, 423.	0.7	33
21	Carbon Export from the Raccoon River, Iowa: Patterns, Processes, and Opportunities. Journal of Environmental Quality, 2013, 42, 155-163.	1.0	14
22	Comparison and Evaluation of Model Structures for the Simulation of Pollution Fluxes in a Tile-Drained River Basin. Journal of Environmental Quality, 2014, 43, 86-99.	1.0	13
23	Changes in hydrology and streamflow as predicted by a modelling experiment forced with climate models. Hydrological Processes, 2014, 28, 2772-2781.	1.1	41
24	Adoption potential of nitrate mitigation practices: an ecosystem services approach. International Journal of Agricultural Sustainability, 2014, 12, 407-424.	1.3	19
25	The potential for agricultural land use change to reduce flood risk in a large watershed. Hydrological Processes, 2014, 28, 3314-3325.	1.1	86
26	Regionalization of subsurface stormflow parameters of hydrologic models: Derivation from regional analysis of streamflow recession curves. Journal of Hydrology, 2014, 519, 670-682.	2.3	33
27	Propagation method affects Miscanthus×giganteus developmental morphology. Industrial Crops and Products, 2014, 57, 59-68.	2.5	17
28	Decadal surface water quality trends under variable climate, land use, and hydrogeochemical setting in Iowa, USA. Water Resources Research, 2014, 50, 2425-2443.	1.7	43
29	Environmental Impact of Water Use in Agriculture. Agronomy Journal, 2015, 107, 1554-1556.	0.9	20
30	Projected Changes in Discharge in an Agricultural Watershed in Iowa. Journal of the American Water Resources Association, 2015, 51, 1361-1371.	1.0	16
31	Navigating the Socio-Bio-Geo-Chemistry and Engineering of Nitrogen Management in Two Illinois Tile-Drained Watersheds. Journal of Environmental Quality, 2015, 44, 368-381.	1.0	31
32	Corn Nitrogen Fertilization Requirement and Corn-Soybean Productivity with a Rye Cover Crop. Soil Science Society of America Journal, 2015, 79, 1482-1495.	1.2	84
33	Comparison of Timing and Volume of Subsurface Drainage under Perennial Forage and Row Crops in a Tile-Drained Field in Iowa. Transactions of the ASABE, 2015, , 1193-1200.	1.1	1
34	Evaluation of Alternative Cropping and Nutrient Management Systems with Soil and Water Assessment Tool for the Raccoon River Watershed Master Plan. American Journal of Environmental Sciences, 2015, 11, 227-244.	0.3	6
35	Detection of Critical LUCC Indices and Sensitive Watershed Regions Related to Lake Algal Blooms: A Case Study of Taihu Lake. International Journal of Environmental Research and Public Health, 2015, 12, 1629-1648.	1.2	3
36	Enhancing agroecosystem performance and resilience through increased diversification of landscapes and cropping systems. Elementa, 2015, 3, .	1.1	56
37	Associating conservation/production patterns in US farm policy with agricultural land-use in three lowa, USA townships, 1933–2002. Land Use Policy, 2015, 45, 76-85.	2.5	10

#	Article	IF	CITATIONS
38	Runoff characteristics and non-point source pollution analysis in the Taihu Lake Basin: a case study of the town of Xueyan, China. Environmental Science and Pollution Research, 2015, 22, 15029-15036.	2.7	43
39	Maize (Zea mays L.) yield response to nitrogen as influenced by spatio-temporal variations of soil–water-topography dynamics. Soil and Tillage Research, 2015, 146, 174-183.	2.6	25
40	Soybean Area and Baseflow Driving Nitrate in Iowa's Raccoon River. Journal of Environmental Quality, 2016, 45, 1949-1959.	1.0	15
41	Use Alkalinity Monitoring to Optimize Bioreactor Performance. Journal of Environmental Quality, 2016, 45, 855-865.	1.0	16
42	High Nitrate Concentrations in Some Midwest United States Streams in 2013 after the 2012 Drought. Journal of Environmental Quality, 2016, 45, 1696-1704.	1.0	55
43	Identifying Watershed Regions Sensitive to Soil Erosion and Contributing to Lake Eutrophication—A Case Study in the Taihu Lake Basin (China). International Journal of Environmental Research and Public Health, 2016, 13, 77.	1.2	9
44	Subfield profitability analysis reveals an economic case for cropland diversification. Environmental Research Letters, 2016, 11, 014009.	2.2	77
45	Phosphorus source—sink relationships of stream sediments in the Rathbun Lake watershed in southern Iowa, USA. Environmental Monitoring and Assessment, 2016, 188, 453.	1.3	18
46	Crop rotation and Raccoon River nitrate. Journal of Soils and Water Conservation, 2016, 71, 206-219.	0.8	23
47	Estimation of long-term Ca2+ loss through outlet flow from an agricultural watershed and the influencing factors. Environmental Science and Pollution Research, 2016, 23, 10911-10921.	2.7	1
48	Increasing nitrate concentrations in streams draining into Lake Ontario. Journal of Great Lakes Research, 2016, 42, 356-363.	0.8	14
49	A model for evaluating production and environmental performance of kenaf in rotation with conventional row crops. Industrial Crops and Products, 2017, 100, 218-227.	2.5	4
50	Use of continuous monitoring to assess stream nitrate flux and transformation patterns. Environmental Monitoring and Assessment, 2017, 189, 35.	1.3	6
51	Soil. Advances in Agronomy, 2017, , 1-46.	2.4	90
52	Regional differences in impacts to water quality from the bioenergy mandate. Biomass and Bioenergy, 2017, 106, 115-126.	2.9	5
53	Simulation of targeted pollutant-mitigation-strategies to reduce nitrate and sediment hotspots in agricultural watershed. Science of the Total Environment, 2017, 607-608, 1188-1200.	3.9	50
54	Nitrate transport and supply limitations quantified using high-frequency stream monitoring and turning point analysis. Journal of Hydrology, 2017, 549, 581-591.	2.3	25
55	Assessment of Bioenergy Cropping Scenarios for the Boone River Watershed in North Central Iowa, United States. Journal of the American Water Resources Association, 2017, 53, 1336-1354.	1.0	17

#	Article	IF	CITATIONS
56	Agricultural Conservation Planning Framework: 3. Land Use and Field Boundary Database Development and Structure. Journal of Environmental Quality, 2017, 46, 676-686.	1.0	29
57	Issues for cropping and agricultural science in the next 20 years. Field Crops Research, 2018, 222, 121-142.	2.3	130
58	Linking crop- and soil-based approaches to evaluate system nitrogen-use efficiency and tradeoffs. Agriculture, Ecosystems and Environment, 2018, 256, 131-143.	2.5	64
59	Can soil nitrogen dynamics explain the yield benefit of crop diversification?. Field Crops Research, 2018, 219, 33-42.	2.3	17
60	Targeted subfield switchgrass integration could improve the farm economy, water quality, and bioenergy feedstock production. GCB Bioenergy, 2018, 10, 199-212.	2.5	47
61	The trouble with cover crops: Farmers' experiences with overcoming barriers to adoption. Renewable Agriculture and Food Systems, 2018, 33, 322-333.	0.8	157
62	Bridging biofuel sustainability indicators and ecosystem services through stakeholder engagement. Biomass and Bioenergy, 2018, 114, 143-156.	2.9	21
63	Agricultural conservation practices in Iowa watersheds: comparing actual implementation with practice potential. Environmental Monitoring and Assessment, 2018, 190, 659.	1.3	9
64	Nutrient Reduction in Agricultural Green Infrastructure: An Analysis of the Raccoon River Watershed. Water (Switzerland), 2018, 10, 749.	1.2	8
65	lowa stream nitrate and the Gulf of Mexico. PLoS ONE, 2018, 13, e0195930.	1.1	72
66	Agricultural Practices for Growing Kenaf in Iowa: I. Morphology, Stem, and Fiber Yield. Agronomy Journal, 2019, 111, 1118-1127.	0.9	1
67	Hydrograph separation of subsurface tile discharge. Environmental Monitoring and Assessment, 2019, 191, 231.	1.3	12
68	Livestock manure driving stream nitrate. Ambio, 2019, 48, 1143-1153.	2.8	25
69	Productivity and diversity of annually harvested reconstructed prairie communities. Journal of Applied Ecology, 2019, 56, 330-342.	1.9	11
70	Cropping pattern changes diminish agroecosystem services in North and South Dakota, USA. Agronomy Journal, 2020, 112, 1-24.	0.9	39
71	Temporal trends in amount and placement of conservation practices in the South Fork of the Iowa River watershed. Journal of Soils and Water Conservation, 2020, 75, 245-253.	0.8	4
72	PEWI: An interactive web-based ecosystem service model for a broad public audience. Ecological Modelling, 2020, 431, 109165.	1.2	0
73	The role of policy in social–ecological interactions of nitrogen management in the Mississippi River basin. Journal of Environmental Quality, 2020, 49, 304-313.	1.0	0

#	Article	IF	CITATIONS
74	Farmer perspectives on benefits of and barriers to extended crop rotations in Iowa, USA. Agricultural and Environmental Letters, 2021, 6, e20049.	0.8	12
75	Temporal scaling of long-term co-occurring agricultural contaminants and the implications for conservation planning. Environmental Research Letters, 2021, 16, 094015.	2.2	1
76	Stem Density, Productivity, and Weed Community Dynamics in Corn-Alfalfa Intercropping. Agronomy, 2021, 11, 1696.	1.3	3
77	Improved hydrological modeling with APEX and EPIC: Model description, testing, and assessment of bioenergy producing landscape scenarios. Environmental Modelling and Software, 2021, 143, 105111.	1.9	6
78	How can cover crops contribute to weed management? A modelling approach illustrated with rye (<i>Secale cereale</i>) and <i>Amaranthus tuberculatus</i> . Weed Research, 2022, 62, 1-11.	0.8	5
79	Triple bottom-line consideration of sustainable plant disease management: From economic, sociological and ecological perspectives. Journal of Integrative Agriculture, 2021, 20, 2581-2591.	1.7	10
80	Organic agriculture effect on water use, tile flow, and crop yield. , 2021, 4, e20200.		2
81	Weed seedbank diversity and sustainability indicators for simple and more diverse cropping systems. Weed Research, 2021, 61, 164-177.	0.8	11
82	Stover Harvest and Tillage System Effects on Corn Response to Fertilizer Nitrogen. Soil Science Society of America Journal, 2015, 79, 1249-1260.	1.2	12
84	Cropping System Redesign for Improved Weed Management: A Modeling Approach Illustrated with Giant Ragweed (Ambrosia trifida). Agronomy, 2020, 10, 262.	1.3	15
86	Hydrologic and Nutrient Fluxes in a Small Watershed with Changing Agricultural Practices. Northwest Science, 2021, 95, .	0.1	0
87	Quantifying Soil Moisture Distribution at a Watershed Scale. , 0, , .		Ο
88	NITRATE CONCENTRATIONS IN STREAMS AS A FUNCTION OF CROP COVER IN MIDWESTERN AGRICULTURAL WATERSHEDS: ASSESSING THE ROLE OF CORN AND SOYBEANS. , 2018, , .		1
89	Redesigning Land Use for Enhanced Agricultural Sustainability at the Urban-Rural Interface: Perspectives Drawn from Experiments Conducted in the U.S. Corn Belt. , 0, , .		Ο
90	Stacked conservation practices reduce nitrogen loss: A paired watershed study. Journal of Environmental Management, 2022, 302, 114053.	3.8	3
91	Comprehensive impacts of diversified cropping on soil health and sustainability. Agroecology and Sustainable Food Systems, 2022, 46, 331-363.	1.0	14
92	A nonlinear autoregressive exogenous (NARX) model to predict nitrate concentration in rivers. Environmental Science and Pollution Research, 2022, 29, 40623-40642.	2.7	10
93	Nitrate losses across 29 Iowa watersheds: Measuring longâ€ŧerm trends in the context of interannual variability. Journal of Environmental Quality, 2022, 51, 708-718.	1.0	5

#	Article	IF	CITATIONS
97	Nitrate losses and nitrous oxide emissions under contrasting tillage and cover crop management. Journal of Environmental Quality, 2022, 51, 683-695.	1.0	12
98	River flow rate prediction in the Des Moines watershed (Iowa, USA): a machine learning approach. Stochastic Environmental Research and Risk Assessment, 2022, 36, 3835-3855.	1.9	19
99	How climate change and land-use evolution relates to the non-point source pollution in a typical watershed of China. Science of the Total Environment, 2022, 839, 156375.	3.9	22
100	Subsurface Nitrate Processing Beneath Drainageways: Are They Landscape Opportunities for Subsurface Drainage Remediation?. , 2022, 65, 985-995.		0
101	Assessing the Effectiveness of Winter Cover Crops for Controlling Agricultural Nutrient Losses. Journal of the American Water Resources Association, 0, , .	1.0	0
102	Rye-soybean double-crop: planting method and N fertilization effects in the North Central US. Renewable Agriculture and Food Systems, 2022, 37, 445-456.	0.8	6
103	Agroecosystem model simulations reveal spatial variability in relative productivity in biomass sorghum and maize in Iowa, <scp>USA</scp> . GCB Bioenergy, 2022, 14, 1336-1360.	2.5	3
104	Variability in the discharge of the Mississippi River and tributaries from 1817 to 2020. PLoS ONE, 2022, 17, e0276513.	1.1	3
105	An Approach for Prioritizing Natural Infrastructure Practices to Mitigate Flood and Nitrate Risks in the Mississippi-Atchafalaya River Basin. Land, 2023, 12, 276.	1.2	4
106	Identifying research priorities through decision analysis: A case study for cover crops. Frontiers in Sustainable Food Systems, 0, 7, .	1.8	0