Dihydroxylated phenolic acids derived from microbial a lipopolysaccharide-stimulated cytokine secretion by hu cells

British Journal of Nutrition 102, 201-206

DOI: 10.1017/s0007114508162110

Citation Report

#	Article	IF	Citations
1	Targeted metabolic profiling of phenolics in urine and plasma after regular consumption of cocoa by liquid chromatography–tandem mass spectrometry. Journal of Chromatography A, 2009, 1216, 7258-7267.	1.8	160
2	Spasmolytic and anti-inflammatory effects of Aloysia triphylla and citral, in vitro and in vivo studies. Journal of Smooth Muscle Research, 2010, 46, 309-319.	0.7	26
3	Effect of Milk on the Urinary Excretion of Microbial Phenolic Acids after Cocoa Powder Consumption in Humans. Journal of Agricultural and Food Chemistry, 2010, 58, 4706-4711.	2.4	59
4	Perspectives of theÂpotential implications of wine polyphenols on human oral and gut microbiota. Trends in Food Science and Technology, 2010, 21, 332-344.	7.8	90
5	Insights into the metabolism and microbial biotransformation of dietary flavan-3-ols and the bioactivity of their metabolites. Food and Function, 2010, 1, 233.	2.1	515
6	Inflammation, Sanitation, and Consternation. Archives of General Psychiatry, 2010, 67, 1211.	13.8	153
7	Metabolic fate of polyphenols in the human superorganism. Proceedings of the National Academy of Sciences of the United States of America, 2011, 108, 4531-4538.	3.3	448
8	Metabolites in Contact with the Rat Digestive Tract after Ingestion of a Phenolic-Rich Dietary Fiber Matrix. Journal of Agricultural and Food Chemistry, 2011, 59, 5955-5963.	2.4	45
9	The chemistry and biotransformation of tea constituents. Pharmacological Research, 2011, 64, 87-99.	3.1	366
10	Mediterranean Diet and Oxidation: Nuts and Olive Oil as Important Sources of Fat and Antioxidants. Current Topics in Medicinal Chemistry, 2011, 11, 1797-1810.	1.0	132
11	Dietary polyphenols in the prevention and treatment of allergic diseases. Clinical and Experimental Allergy, 2011, 41, 1346-1359.	1.4	181
12	Metabolic conversion of dietary flavonoids alters their anti-inflammatory and antioxidant properties. Free Radical Biology and Medicine, 2011, 51, 454-463.	1.3	117
13	Antioxidative protection of dietary bilberry, chokeberry and Lactobacillus plantarum HEAL19 in mice subjected to intestinal oxidative stress by ischemia-reperfusion. BMC Complementary and Alternative Medicine, 2011, 11, 8.	3.7	55
14	Dealcoholised beers reduce atherosclerosis and expression of adhesion molecules in apoE-deficient mice. British Journal of Nutrition, 2011, 105, 721-730.	1.2	16
15	Reduction of monocyte chemoattractant protein 1 and macrophage migration inhibitory factor by a polyphenol-rich extract in subjects with clustered cardiometabolic risk factors. British Journal of Nutrition, 2011, 106, 1416-1422.	1.2	17
16	Bioprocessing of Wheat Bran in Whole Wheat Bread Increases the Bioavailability of Phenolic Acids in Men and Exerts Antiinflammatory Effects ex Vivo. Journal of Nutrition, 2011, 141, 137-143.	1.3	173
17	Polyphenols and health: Moving beyond antioxidants. Journal of Berry Research, 2012, 2, 63-71.	0.7	156
18	Up-regulating the Human Intestinal Microbiome Using Whole Plant Foods, Polyphenols, and/or Fiber. Journal of Agricultural and Food Chemistry, 2012, 60, 8776-8782.	2.4	242

#	Article	IF	Citations
19	Optimizing the bioactive potential of wheat bran by processing. Food and Function, 2012, 3, 362.	2.1	75
20	Benefits of polyphenols on gut microbiota and implications in human health. Journal of Nutritional Biochemistry, 2013, 24, 1415-1422.	1.9	1,146
21	Effect of flavonoids on circulating levels of TNF- \hat{l}_{\pm} and IL-6 in humans: A systematic review and meta-analysis. Molecular Nutrition and Food Research, 2013, 57, 784-801.	1.5	65
22	Flavonols enhanced production of antiâ€inflammatory substance(s) by <i>Bifidobacterium adolescentis</i> : Prebiotic actions of galangin, quercetin, and fisetin. BioFactors, 2013, 39, 422-429.	2.6	71
23	Biotransformation of 4,5-O-dicaffeoylquinic acid methyl ester by human intestinal flora and evaluation on their inhibition of NO production and antioxidant activity of the products. Food and Chemical Toxicology, 2013, 55, 297-303.	1.8	16
24	Cocoa consumption reduces NF-κB activation in peripheral blood mononuclear cells in humans. Nutrition, Metabolism and Cardiovascular Diseases, 2013, 23, 257-263.	1.1	60
25	Increasing Antioxidant Activity of Procyanidin Extracts from the Pericarp of Litchi chinensis Processing Waste by Two Probiotic Bacteria Bioconversions. Journal of Agricultural and Food Chemistry, 2013, 61, 2506-2512.	2.4	44
26	Blueberries: A "Super Fruit―Complement to Cereals. Cereal Foods World, 2013, 58, 13-17.	0.7	2
27	Flavonoids and immune function., 2013,, 379-415.		3
28	Interactions of black tea polyphenols with human gut microbiota: implications for gut and cardiovascular health. American Journal of Clinical Nutrition, 2013, 98, 1631S-1641S.	2.2	86
29	Cocoa Polyphenols and Inflammatory Markers of Cardiovascular Disease. Nutrients, 2014, 6, 844-880.	1.7	102
30	Apple Polyphenols in Cancer Prevention. , 2014, , 1373-1383.		6
31	Metabolic and colonic microbiota transformation may enhance the bioactivities of dietary polyphenols. Journal of Functional Foods, 2014, 7, 3-25.	1.6	94
32	Biotransformation of tea polyphenols by gut microbiota. Journal of Functional Foods, 2014, 7, 26-42.	1.6	96
33	Microbial phenolic metabolites improve glucose-stimulated insulin secretion and protect pancreatic beta cells against tert-butyl hydroperoxide-induced toxicity via ERKs and PKC pathways. Food and Chemical Toxicology, 2014, 66, 245-253.	1.8	73
34	Lactobacillus plantarum IFPL935 impacts colonic metabolism in a simulator of the human gut microbiota during feeding with red wine polyphenols. Applied Microbiology and Biotechnology, 2014, 98, 6805-6815.	1.7	44
35	Chemical Properties, Bioavailability, and Metabolomics of Fruit Proanthocyanidins., 2014,, 339-351.		5
36	Uptake and Metabolism of Dietary Proanthocyanidins. , 2014, , 553-560.		5

#	Article	IF	Citations
37	Polyphenol-Mediated Beneficial Effects in Healthy Status and Disease with Special Reference to Immune-Based Mechanisms., 2014, , 467-479.		6
38	Interactions between prebiotics, probiotics, polyunsaturated fatty acids and polyphenols: diet or supplementation for metabolic syndrome prevention?. International Journal of Food Sciences and Nutrition, 2014, 65, 259-267.	1.3	40
39	Production and <i>in Vitro</i> Fermentation of Soluble, Non-digestible, Feruloylated Oligo- and Polysaccharides from Maize and Wheat Brans. Journal of Agricultural and Food Chemistry, 2014, 62, 159-166.	2.4	42
40	Beneficial effects of cocoa on lipid peroxidation and inflammatory markers in type 2 diabetic patients and investigation of probable interactions of cocoa active ingredients with prostaglandin synthase-2 (PTGS-2/COX-2) using virtual analysis. Journal of Diabetes and Metabolic Disorders, 2014, 13, 30.	0.8	35
41	Flavonoid metabolites reduce tumor necrosis factor $\hat{\mathbf{e}}_{\pm}$ secretion to a greater extent than their precursor compounds in human THP $\hat{\mathbf{e}}_{\pm}$ monocytes. Molecular Nutrition and Food Research, 2015, 59, 1143-1154.	1.5	74
42	Apples and Cardiovascular Health—Is the Gut Microbiota a Core Consideration?. Nutrients, 2015, 7, 3959-3998.	1.7	121
43	An Apple a Day Keeps the Doctor Away – Inter-Relationship Between Apple Consumption, the Gut Microbiota and Cardiometabolic Disease Risk Reduction. , 2015, , 173-194.		9
44	Flavonoids and Immune Function in Human: A Systematic Review. Critical Reviews in Food Science and Nutrition, 2015, 55, 383-395.	5.4	126
45	Dietary Polyphenols against Metabolic Disorders: How Far Have We Progressed in the Understanding of the Molecular Mechanisms of Action of These Compounds?. Critical Reviews in Food Science and Nutrition, 2017, 57, 00-00.	5.4	29
46	Bioavailability and metabolism of phenolic compounds from wholegrain wheat and aleuroneâ€rich wheat bread. Molecular Nutrition and Food Research, 2016, 60, 2343-2354.	1.5	38
47	3,4-Dihydroxyphenylacetic acid is a predominant biologically-active catabolite of quercetin glycosides. Food Research International, 2016, 89, 716-723.	2.9	49
48	Non-absorbable apple procyanidins prevent obesity associated with gut microbial and metabolomic changes. Scientific Reports, 2016, 6, 31208.	1.6	179
49	Mechanisms by which cocoa flavanols improve metabolic syndrome and related disorders. Journal of Nutritional Biochemistry, 2016, 35, 1-21.	1.9	74
50	Microbial metabolites derived from colonic fermentation of non-digestible compounds. Current Opinion in Food Science, 2017, 13, 91-96.	4.1	9
51	3,4-Dihydroxyphenylacetic acid is a potential aldehyde dehydrogenase inducer in murine hepatoma Hepa1c1c7 cells. Bioscience, Biotechnology and Biochemistry, 2017, 81, 1978-1983.	0.6	19
52	Neuroinflammation in Alzheimer's Disease. Advances in Protein Chemistry and Structural Biology, 2017, 108, 33-57.	1.0	129
53	Dietary onion ameliorates antioxidant defence, inflammatory response, and cardiovascular risk biomarkers in hypercholesterolemic Wistar rats. Journal of Functional Foods, 2017, 36, 300-309.	1.6	25
54	Chlorogenic acids and the acyl-quinic acids: discovery, biosynthesis, bioavailability and bioactivity. Natural Product Reports, 2017, 34, 1391-1421.	5. 2	257

#	ARTICLE	IF	CITATIONS
55	Polyphenols and health: Interactions between fibre, plant polyphenols and the gut microbiota. Nutrition Bulletin, 2017, 42, 356-360.	0.8	106
56	Non-extractable polyphenols produce gut microbiota metabolites that persist in circulation and show anti-inflammatory and free radical-scavenging effects. Trends in Food Science and Technology, 2017, 69, 281-288.	7.8	146
57	Flavonoid metabolism: the interaction of metabolites and gut microbiota. Bioscience, Biotechnology and Biochemistry, 2018, 82, 600-610.	0.6	295
58	3-(4-Hydroxyphenyl)propionic acid, a major microbial metabolite of procyanidin A2, shows similar suppression of macrophage foam cell formation as its parent molecule. RSC Advances, 2018, 8, 6242-6250.	1.7	19
59	Pharmacokinetic, Antiproliferative and Apoptotic Effects of Phenolic Acids in Human Colon Adenocarcinoma Cells Using In Vitro and In Silico Approaches. Molecules, 2018, 23, 2569.	1.7	40
60	Regulation of Immune Function by Polyphenols. Journal of Immunology Research, 2018, 2018, 1-8.	0.9	179
61	Insights into the intestinal bacterial metabolism of flavonoids and the bioactivities of their microbe-derived ring cleavage metabolites. Drug Metabolism Reviews, 2018, 50, 343-356.	1.5	45
62	Polyphenols, food and pharma. Current knowledge and directions for future research. Biochemical Pharmacology, 2018, 156, 186-195.	2.0	183
63	Amalgamation of polyphenols and probiotics induce health promotion. Critical Reviews in Food Science and Nutrition, 2019, 59, 2903-2926.	5.4	29
64	Beneficial Effects of Dietary Polyphenols on Gut Microbiota and Strategies to Improve Delivery Efficiency. Nutrients, 2019, 11, 2216.	1.7	268
65	Impact of Fermentable Fibres on the Colonic Microbiota Metabolism of Dietary Polyphenols Rutin and Quercetin. International Journal of Environmental Research and Public Health, 2019, 16, 292.	1.2	38
66	The phenolic interactome and gut microbiota: opportunities and challenges in developing applications forÂschizophrenia and autism. Psychopharmacology, 2019, 236, 1471-1489.	1.5	8
67	The Two-Way Polyphenols-Microbiota Interactions and Their Effects on Obesity and Related Metabolic Diseases. Frontiers in Nutrition, 2019, 6, 188.	1.6	163
68	From extraction of valuable compounds to health promoting benefits of olive leaves through bioaccessibility, bioavailability and impact on gut microbiota. Trends in Food Science and Technology, 2019, 83, 63-77.	7.8	62
69	Body Mass Index as a Determinant of Systemic Exposure to Gallotannin Metabolites during 6â€Week Consumption of Mango (<i>Mangifera indica</i> L.) and Modulation of Intestinal Microbiota in Lean and Obese Individuals. Molecular Nutrition and Food Research, 2019, 63, e1800512.	1.5	24
70	Measuring the impact of olive pomace enriched biscuits on the gut microbiota and its metabolic activity in mildly hypercholesterolaemic subjects. European Journal of Nutrition, 2019, 58, 63-81.	1.8	59
71	Potential interactions among phenolic compounds and probiotics for mutual boosting of their health-promoting properties and food functionalities $\hat{a} \in A$ review. Critical Reviews in Food Science and Nutrition, 2019, 59, 1645-1659.	5.4	101
72	The urinary phenolic acid profile varies between younger and older adults after a polyphenol-rich meal despite limited differences in in vitro colonic catabolism. European Journal of Nutrition, 2019, 58, 1095-1111.	1.8	23

#	Article	IF	Citations
73	Elucidating differences in phenolic profile between tef (<i>Eragrostis tef</i>) varieties using multivariate analyses. Cereal Chemistry, 2020, 97, 53-64.	1.1	3
74	Insight into Polyphenol and Gut Microbiota Crosstalk: Are Their Metabolites the Key to Understand Protective Effects against Metabolic Disorders?. Antioxidants, 2020, 9, 982.	2.2	71
75	Natural Sources, Pharmacokinetics, Biological Activities and Health Benefits of Hydroxycinnamic Acids and Their Metabolites. Nutrients, 2020, 12, 2190.	1.7	95
76	Plant Polyphenols-Biofortified Foods as a Novel Tool for the Prevention of Human Gut Diseases. Antioxidants, 2020, 9, 1225.	2.2	22
77	Synergic interactions between polyphenols and gut microbiota in mitigating inflammatory bowel diseases. Food and Function, 2020, 11, 4878-4891.	2.1	78
78	Dietary Fibres Differentially Impact on the Production of Phenolic Acids from Rutin in an In Vitro Fermentation Model of the Human Gut Microbiota. Nutrients, 2020, 12, 1577.	1.7	23
79	Thyme (Thymus vulgaris [Lamiaceae]) Leaves Inhibit Contraction of the Nonpregnant Mouse Uterus. Journal of Medicinal Food, 2021, 24, 541-550.	0.8	1
80	Coarse Cereals and Legume Grains Exert Beneficial Effects through Their Interaction with Gut Microbiota: A Review. Journal of Agricultural and Food Chemistry, 2021, 69, 861-877.	2.4	22
81	Main drivers of (poly)phenol effects on human health: metabolite production and/or gut microbiota-associated metabotypes?. Food and Function, 2021, 12, 10324-10355.	2.1	58
83	Natural Bioactive Compounds Useful in Clinical Management of Metabolic Syndrome. Nutrients, 2021, 13, 630.	1.7	49
84	Recognizing the Benefits of Pre-/Probiotics in Metabolic Syndrome and Type 2 Diabetes Mellitus Considering the Influence of Akkermansia muciniphila as a Key Gut Bacterium. Microorganisms, 2021, 9, 618.	1.6	80
85	Role of dietary polyphenols on gut microbiota, their metabolites and health benefits. Food Research International, 2021, 142, 110189.	2.9	184
86	Diet-Derived Antioxidants and Their Role in Inflammation, Obesity and Gut Microbiota Modulation. Antioxidants, 2021, 10, 708.	2.2	47
87	Impact of High-Pressure Processed Onion on Colonic Metabolism Using a Dynamic Gastrointestinal Digestion Simulator. Metabolites, 2021, 11, 262.	1.3	9
88	One-Pot Efficient Biosynthesis of 4-Hydroxyphenylacetic Acid and Its Analogues from Lignin-Related <i>p</i> -Coumaric and Ferulic Acids. ACS Sustainable Chemistry and Engineering, 2021, 9, 6400-6409.	3.2	14
89	Potential Modulatory Microbiome Therapies for Prevention or Treatment of Inflammatory Bowel Diseases. Pharmaceuticals, 2021, 14, 506.	1.7	8
90	Evolving Interplay Between Dietary Polyphenols and Gut Microbiota—An Emerging Importance in Healthcare. Frontiers in Nutrition, 2021, 8, 634944.	1.6	42
91	Advances in Nanodelivery of Green Tea Catechins to Enhance the Anticancer Activity. Molecules, 2021, 26, 3301.	1.7	22

#	Article	IF	CITATIONS
92	The gut microbial metabolite, 3,4-dihydroxyphenylpropionic acid, alleviates hepatic ischemia/reperfusion injury via mitigation of macrophage pro-inflammatory activity in mice. Acta Pharmaceutica Sinica B, 2022, 12, 182-196.	5.7	22
93	Microbiome signatures of progression toward celiac disease onset in at-risk children in a longitudinal prospective cohort study. Proceedings of the National Academy of Sciences of the United States of America, 2021, 118 , .	3.3	70
94	Caffeoylquinic acids: chemistry, biosynthesis, occurrence, analytical challenges, and bioactivity. Plant Journal, 2021, 107, 1299-1319.	2.8	87
95	Inflammation and Alzheimer's Disease: Mechanisms and Therapeutic Implications by Natural Products. Mediators of Inflammation, 2021, 2021, 1-21.	1.4	36
96	Gut microbiota, dysbiosis and atrial fibrillation. Arrhythmogenic mechanisms and potential clinical implications. Cardiovascular Research, 2022, 118, 2415-2427.	1.8	45
97	Interactions between dietary fibre and the gut microbiota. Proceedings of the Nutrition Society, 2021, 80, 398-408.	0.4	18
98	Biochemistry of Amaranthus polyphenols and their potential benefits on gut ecosystem: A comprehensive review of the literature. Journal of Ethnopharmacology, 2021, 281, 114547.	2.0	6
99	Polyphenols and their impacts on the host epigenome and the gut microbiome. , 2021, , 225-237.		1
100	Approaches that ascertain the role of dietary compounds in colonic cancer cells. World Journal of Gastrointestinal Oncology, 2014, 6, 1.	0.8	9
101	āfªāf³ã,´ç"±æ¥ãf—ãfã,∙ã,¢ãf∢ã,ãf³é;žã®æ©Ÿèf½è©•ä¾¡ã•æ©Ÿèf½æ€§è;¨ç⊯£Ÿå"ã®é–‹ç™º. Kagaku To Se	ib սեւո ւ, 20	170,55,631
102	3-(3-Hydroxyphenyl)propionic acid, a microbial metabolite of quercetin, inhibits monocyte binding to endothelial cells via modulating E-selectin expression. Fìtoterapìâ, 2022, 156, 105071.	1.1	12
104	Small phenolic and indolic gut-dependent molecules in the primate central nervous system: levels vs. bioactivity. Metabolomics, 2022, 18, 8.	1.4	1
105	Beneficial Role of Fruits, Their Juices, and Freeze-Dried Powders on Inflammatory Bowel Disease and Related Dysbiosis. Plants, 2022, 11, 4.	1.6	5
106	RING FISSION CATABOLITES OF QUERCETIN GLYCOSIDES. Journal of Environmental Science for Sustainable Society, 2022, 11, MR02_p5-MR02_p8.	0.1	1
109	Gut Microbiota as a Novel Tool to Dissect the Complex Structures of Black Tea Polymers. Journal of Agricultural and Food Chemistry, 2022, 70, 5005-5014.	2.4	5
110	Dietary Polyphenol, Gut Microbiota, and Health Benefits. Antioxidants, 2022, 11, 1212.	2.2	70
111	What is the role of phenolic compounds of yerba mate (llex paraguariensis) in gut microbiota?. Phytochemistry, 2022, 203, 113341.	1.4	4
112	Discovery and therapeutic implications of bioactive dihydroxylated phenolic acids in patients with severe heart disease and conditions associated with inflammation and hypoxia. Pharmacological Research, 2022, 185, 106458.	3.1	1

#	Article	IF	CITATIONS
113	Prune supplementation for 12 months alters the gut microbiome in postmenopausal women. Food and Function, 2022, 13, 12316-12329.	2.1	5
114	Phenolic composition of grape pomace and its metabolism. Critical Reviews in Food Science and Nutrition, 0 , 1 -17.	5.4	11
115	Polyphenols and Its Effect on the Immune System. , 2022, , 121-140.		1
116	Colonic Coffee Phenols Metabolites, Dihydrocaffeic, Dihydroferulic, and Hydroxyhippuric Acids Protect Hepatic Cells from TNF-α-Induced Inflammation and Oxidative Stress. International Journal of Molecular Sciences, 2023, 24, 1440.	1.8	7
117	Potential Role of Quercetin Glycosides as Anti-Atherosclerotic Food-Derived Factors for Human Health. Antioxidants, 2023, 12, 258.	2.2	11
118	Targeting the aryl hydrocarbon receptor by gut phenolic metabolites: A strategy towards gut inflammation. Redox Biology, 2023, 61, 102622.	3.9	15
119	Absorption, metabolism, bioactivity, and biotransformation of epigallocatechin gallate. Critical Reviews in Food Science and Nutrition, 0, , 1-21.	5.4	9
120	Black Rice Anthocyanidins Regulates Gut Microbiota and Alleviates Related Symptoms through PI3K/AKT Pathway in Type 2 Diabetic Rats. Journal of Food Biochemistry, 2023, 2023, 1-13.	1.2	0
121	Metabolism of Dietary Substrates by Intestinal Bacteria and Consequences for the Host Intestine. , 2023, , 45-144.		0