Effect of inulin on the human gut microbiota: stimulation adolescentis</i>and<i>Faecalibacterium prausnitzii</i>

British Journal of Nutrition 101, 541-550 DOI: 10.1017/s0007114508019880

Citation Report

#	Article	IF	CITATIONS
1	Gut microbiota fermentation of prebiotics increases satietogenic and incretin gut peptide production with consequences for appetite sensation and glucose response after a meal. American Journal of Clinical Nutrition, 2009, 90, 1236-1243.	2.2	615
2	In Vitro Kinetics of Prebiotic Inulin-Type Fructan Fermentation by Butyrate-Producing Colon Bacteria: Implementation of Online Gas Chromatography for Quantitative Analysis of Carbon Dioxide and Hydrogen Gas Production. Applied and Environmental Microbiology, 2009, 75, 5884-5892.	1.4	73
3	Gastrointestinal microflora, food components and colon cancer prevention. Journal of Nutritional Biochemistry, 2009, 20, 743-752.	1.9	280
4	Diversity, metabolism and microbial ecology of butyrate-producing bacteria from the human large intestine. FEMS Microbiology Letters, 2009, 294, 1-8.	0.7	1,612
5	Lactate has the potential to promote hydrogen sulphide formation in the human colon. FEMS Microbiology Letters, 2009, 299, 128-134.	0.7	115
6	Comparison of prebiotic effects of arabinoxylan oligosaccharides and inulin in a simulator of the human intestinal microbial ecosystem. FEMS Microbiology Ecology, 2009, 69, 231-242.	1.3	166
7	Mechanisms of probiosis and prebiosis: considerations for enhanced functional foods. Current Opinion in Biotechnology, 2009, 20, 135-141.	3.3	178
8	Intrauterine Growth Restriction Not Only Modifies the Cecocolonic Microbiota in Neonatal Rats But Also Affects Its Activity in Young Adult Rats. Journal of Pediatric Gastroenterology and Nutrition, 2010, 51, 402-413.	0.9	75
9	Set up of a new <i>in vitro</i> model to study dietary fructans fermentation in formula-fed babies. British Journal of Nutrition, 2010, 103, 403-411.	1.2	34
10	Association between <i>Faecalibacterium prausnitzii</i> and dietary fibre in colonic fermentation in healthy human subjects. British Journal of Nutrition, 2010, 104, 693-700.	1.2	172
11	Dietary prebiotics: current status and new definition. Food Science and Technology Bulletin, 2010, 7, 1-19.	0.5	432
12	Assessment of the modulating effects of fructo-oligosaccharides on fecal microbiota using human flora–associated piglets. Archives of Microbiology, 2010, 192, 959-968.	1.0	26
13	Ribose utilization by the human commensal <i>Bifidobacterium breve</i> UCC2003. Microbial Biotechnology, 2010, 3, 311-323.	2.0	54
14	Clinical trial: the microbiological and immunological effects of synbiotic consumption – a randomized doubleâ€blind placeboâ€controlled study in active Crohn's disease. Alimentary Pharmacology and Therapeutics, 2010, 32, 872-883.	1.9	182
15	Diversity of human colonic butyrateâ€producing bacteria revealed by analysis of the butyryl oA:acetate CoAâ€transferase gene. Environmental Microbiology, 2010, 12, 304-314.	1.8	599
16	A Comparative Investigation of an in vitro and Clinical Test of the Bifidogenic Effect of an Infant Formula. Journal of Clinical Biochemistry and Nutrition, 2010, 47, 208-216.	0.6	8
17	Oligosaccharides as Functional Foods. , 2010, , 1-4.		0
18	Unexpected consequences of administering bacteriocinogenic probiotic strains for Salmonella populations, revealed by an in vitro colonic model of the child gut. Microbiology (United Kingdom), 2010, 156, 3342-3353	0.7	40

		CITATION RE	PORT	
#	Article		IF	CITATIONS
19	Prebiotic effects: metabolic and health benefits. British Journal of Nutrition, 2010, 104	, S1-S63.	1.2	1,745
20	The effects of iron fortification on the gut microbiota in African children: a randomized trial in Côte d'Ivoire. American Journal of Clinical Nutrition, 2010, 92, 1406-1415.	controlled	2.2	413
21	A double-blind, placebo-controlled, cross-over study to establish the bifidogenic effect very-long-chain inulin extracted from globe artichoke (<i>Cynara scolymus</i>) in heal subjects. British Journal of Nutrition, 2010, 104, 1007-1017.	of a thy human	1.2	176
22	Food Formats for Effective Delivery of Probiotics. Annual Review of Food Science and T 2010, 1, 65-85.	echnology,	5.1	155
23	Tolerance of arabinoxylan-oligosaccharides and their prebiotic activity in healthy subject randomised, placebo-controlled cross-over study. British Journal of Nutrition, 2010, 10	cts: a 3, 703-713.	1.2	125
24	Prebiotic effect of yacon (<i>Smallanthus sonchifolius</i>) on intestinal mucosa using model. Food and Agricultural Immunology, 2010, 21, 175-189.	a mouse	0.7	27
25	Nutritional modulation of gut microbiota in the context of obesity and insulin resistant interest of prebiotics. International Dairy Journal, 2010, 20, 277-280.	ce: Potential	1.5	41
26	Specificity of Polysaccharide Use in Intestinal Bacteroides Species Determines Diet-Ind Alterations. Cell, 2010, 141, 1241-1252.	uced Microbiota	13.5	601
27	Altered Host-Microbe Interaction in HIV: A Target for Intervention with Pro- and Prebio International Reviews of Immunology, 2010, 29, 485-513.	ics.	1.5	48
28	Fermentation of β-Glucans Derived from Different Sources by Bifidobacteria: Evaluatio Bifidogenic Effect. Journal of Agricultural and Food Chemistry, 2011, 59, 5986-5992.	n of Their	2.4	78
30	Eating For Two: How Metabolism Establishes Interspecies Interactions in the Gut. Cell Microbe, 2011, 10, 336-347.	Host and	5.1	425
31	Intestinal Microbiota of Dogs and Cats: a Bigger World than We Thought. Veterinary C America - Small Animal Practice, 2011, 41, 261-272.	linics of North	0.5	84
32	Mucosal Biofilm Communities in the Human Intestinal Tract. Advances in Applied Micro 75, 111-143.	biology, 2011,	1.3	86
33	Oligosaccharide Binding Proteins from Bifidobacterium longum subsp. infantis Reveal a for Host Clycans. PLoS ONE, 2011, 6, e17315.	a Preference	1.1	179
34	Nutritional influences on the gut microbiota and the consequences for gastrointestina Biochemical Society Transactions, 2011, 39, 1073-1078.	l health.	1.6	29
35	Faecal microbiota and short-chain fatty acids in patients receiving enteral nutrition wit fructo-oligosaccharides and fibre-enriched formulas. Journal of Human Nutrition and Di 24, 260-268.	h standard or etetics, 2011,	1.3	31
36	High-throughput method for comparative analysis of denaturing gradient gel electroph profiles from human fecal samples reveals significant increases in two bifidobacterial s inulin-type prebiotic intake. FEMS Microbiology Ecology, 2011, 75, 343-349.	ioresis pecies after	1.3	37
37	Monitoring horizontal antibiotic resistance gene transfer in a colonic fermentation mo Microbiology Ecology, 2011, 78, 210-219.	del. FEMS	1.3	39

#	Article	IF	CITATIONS
38	Dominant and diet-responsive groups of bacteria within the human colonic microbiota. ISME Journal, 2011, 5, 220-230.	4.4	1,352
39	Dietary fiber type reflects physiological functionality: comparison of grain fiber, inulin, and polydextrose. Nutrition Reviews, 2011, 69, 9-21.	2.6	187
40	An update on alternatives to antimicrobial growth promoters for broilers. Veterinary Journal, 2011, 187, 182-188.	0.6	530
41	The gut microbiome as therapeutic target. , 2011, 130, 202-212.		299
42	Assessment of intestinal microbiota of full-term breast-fed infants from two different geographical locations. Early Human Development, 2011, 87, 511-513.	0.8	47
43	Cross-feeding between bifidobacteria and butyrate-producing colon bacteria explains bifdobacterial competitiveness, butyrate production, and gas production. International Journal of Food Microbiology, 2011, 149, 73-80.	2.1	260
44	Interaction Between Obesity and the Gut Microbiota: Relevance in Nutrition. Annual Review of Nutrition, 2011, 31, 15-31.	4.3	358
45	Inulin-type fructans with prebiotic properties counteract GPR43 overexpression and PPARÎ ³ -related adipogenesis in the white adipose tissue of high-fat diet-fed mice. Journal of Nutritional Biochemistry, 2011, 22, 712-722.	1.9	237
46	The impact of pre―and/or probiotics on human colonic metabolism: Does it affect human health?. Molecular Nutrition and Food Research, 2011, 55, 46-57.	1.5	132
47	Prebiotic effects and intestinal fermentation of cereal arabinoxylans and arabinoxylan oligosaccharides in rats depend strongly on their structural properties and joint presence. Molecular Nutrition and Food Research, 2011, 55, 1862-1874.	1.5	119
48	More citations, but a fall in impact factor. British Journal of Nutrition, 2011, 106, 789-792.	1.2	14
49	The metabolic activity of gut microbiota in obese children is increased compared with normal-weight children and exhibits more exhaustive substrate utilization. Nutrition and Diabetes, 2011, 1, e12-e12.	1.5	137
50	Beneficial Microorganisms in Multicellular Life Forms. , 2011, , .		16
51	Substrate-driven gene expression in <i>Roseburia inulinivorans</i> : Importance of inducible enzymes in the utilization of inulin and starch. Proceedings of the National Academy of Sciences of the United States of America, 2011, 108, 4672-4679.	3.3	119
52	Randomised, double-blind, placebo-controlled trial of fructo-oligosaccharides in active Crohn's disease. Gut, 2011, 60, 923-929.	6.1	288
53	DHA Supplementation during Pregnancy and Lactation Affects Infants' Cellular but Not Humoral Immune Response. Mediators of Inflammation, 2011, 2011, 1-6.	1.4	25
54	SYMPOSIUM PRESENTATIONS. Microbial Ecology in Health and Disease, 2012, 23, .	3.8	0
55	454 Pyrosequencing Reveals a Shift in Fecal Microbiota of Healthy Adult Men Consuming Polydextrose or Soluble Corn Fiber. Journal of Nutrition, 2012, 142, 1259-1265.	1.3	226

#	Article	IF	CITATIONS
56	Record citations in 2011 contribute to maintenance of the impact factor of <i>BJN</i> . British Journal of Nutrition, 2012, 108, 759-761.	1.2	2
57	Fermentable Carbohydrate Restriction Reduces Luminal Bifidobacteria and Gastrointestinal Symptoms in Patients with Irritable Bowel Syndrome. Journal of Nutrition, 2012, 142, 1510-1518.	1.3	430
58	Cultured Representatives of Two Major Phylogroups of Human Colonic Faecalibacterium prausnitzii Can Utilize Pectin, Uronic Acids, and Host-Derived Substrates for Growth. Applied and Environmental Microbiology, 2012, 78, 420-428.	1.4	341
59	Plant Cell Wall Polysaccharides as Potential Resources for the Development of Novel Prebiotics. Biomolecules and Therapeutics, 2012, 20, 371-379.	1.1	53
60	Inclusion of Chicory (Cichorium intybus L.) in Pigs' Diets Affects the Intestinal Microenvironment and the Gut Microbiota. Applied and Environmental Microbiology, 2012, 78, 4102-4109.	1.4	102
61	The impact of nutrition on the human microbiome. Nutrition Reviews, 2012, 70, S10-S13.	2.6	213
62	Iron Depletion and Repletion with Ferrous Sulfate or Electrolytic Iron Modifies the Composition and Metabolic Activity of the Gut Microbiota in Rats3. Journal of Nutrition, 2012, 142, 271-277.	1.3	166
63	Elaboration of a probiotic oblea from whey fermented using Lactobacillus acidophilus or Bifidobacterium infantis. Journal of Dairy Science, 2012, 95, 6897-6904.	1.4	10
64	Effects of Gut Microbes on Nutrient Absorption and Energy Regulation. Nutrition in Clinical Practice, 2012, 27, 201-214.	1.1	596
65	The role of the gut microbiota in nutrition and health. Nature Reviews Gastroenterology and		
	Hepatology, 2012, 9, 577-589.	8.2	1,515
66	Faecal microbiota composition in vegetarians: comparison with omnivores in a cohort of young women in southern India. British Journal of Nutrition, 2012, 108, 953-957.	8.2	88
66 67	 Hepatology, 2012, 9, 577-589. Faecal microbiota composition in vegetarians: comparison with omnivores in a cohort of young women in southern India. British Journal of Nutrition, 2012, 108, 953-957. Introducing GUt Low-Density Array (GULDA) - a validated approach for qPCR-based intestinal microbial community analysis. FEMS Microbiology Letters, 2012, 337, 38-47. 	8.2 1.2 0.7	1,515 88 76
66 67 68	Hepatology, 2012, 9, 577-589. Faecal microbiota composition in vegetarians: comparison with omnivores in a cohort of young women in southern India. British Journal of Nutrition, 2012, 108, 953-957. Introducing GUt Low-Density Array (GULDA) - a validated approach for qPCR-based intestinal microbial community analysis. FEMS Microbiology Letters, 2012, 337, 38-47. The composition and metabolic activity of child gut microbiota demonstrate differential adaptation to varied nutrient loads in an in vitro model of colonic fermentation. FEMS Microbiology Ecology, 2012, 80, 608-623.	8.2 1.2 0.7 1.3	1,515 88 76 48
66 67 68 69	 Hepatology, 2012, 9, 577-589. Faecal microbiota composition in vegetarians: comparison with omnivores in a cohort of young women in southern India. British Journal of Nutrition, 2012, 108, 953-957. Introducing GUt Low-Density Array (GULDA) - a validated approach for qPCR-based intestinal microbial community analysis. FEMS Microbiology Letters, 2012, 337, 38-47. The composition and metabolic activity of child gut microbiota demonstrate differential adaptation to varied nutrient loads in an in vitro model of colonic fermentation. FEMS Microbiology Ecology, 2012, 80, 608-623. Functional interactions between the gut microbiota and host metabolism. Nature, 2012, 489, 242-249. 	8.2 1.2 0.7 1.3 13.7	1,515 88 76 48 3,582
 66 67 68 69 70 	Hepatology, 2012, 9, 577-589. Faecal microbiota composition in vegetarians: comparison with omnivores in a cohort of young women in southern India. British Journal of Nutrition, 2012, 108, 953-957. Introducing GUt Low-Density Array (GULDA) - a validated approach for qPCR-based intestinal microbial community analysis. FEMS Microbiology Letters, 2012, 337, 38-47. The composition and metabolic activity of child gut microbiota demonstrate differential adaptation to varied nutrient loads in an in vitro model of colonic fermentation. FEMS Microbiology Ecology, 2012, 80, 608-623. Functional interactions between the gut microbiota and host metabolism. Nature, 2012, 489, 242-249. Ruminococcus champanellensis sp. nov., a cellulose-degrading bacterium from human gut microbiota. International Journal of Systematic and Evolutionary Microbiology, 2012, 62, 138-143.	8.2 1.2 0.7 1.3 13.7 0.8	1,515 88 76 48 3,582 144
 66 67 68 69 70 71 	 Faecal microbiota composition in vegetarians: comparison with omnivores in a cohort of young women in southern India. British Journal of Nutrition, 2012, 108, 953-957. Introducing GUt Low-Density Array (GULDA) - a validated approach for qPCR-based intestinal microbial community analysis. FEMS Microbiology Letters, 2012, 337, 38-47. The composition and metabolic activity of child gut microbiota demonstrate differential adaptation to varied nutrient loads in an in vitro model of colonic fermentation. FEMS Microbiology Ecology, 2012, 80, 608-623. Functional interactions between the gut microbiota and host metabolism. Nature, 2012, 489, 242-249. Ruminococcus champanellensis sp. nov., a cellulose-degrading bacterium from human gut microbiota. International Journal of Systematic and Evolutionary Microbiology, 2012, 62, 138-143. Faecal fermentation of partially hydrolyzed guar gum. Journal of Functional Foods, 2012, 4, 398-402. 	8.2 1.2 0.7 1.3 13.7 0.8 1.6	1,515 88 76 48 3,582 144 28
 66 67 68 69 70 71 72 	 Hepatology, 2012, 9, 577-589. Faecal microbiota composition in vegetarians: comparison with omnivores in a cohort of young women in southern India. British Journal of Nutrition, 2012, 108, 953-957. Introducing GUt Low-Density Array (GULDA) - a validated approach for qPCR-based intestinal microbial community analysis. FEMS Microbiology Letters, 2012, 337, 38:47. The composition and metabolic activity of child gut microbiota demonstrate differential adaptation to varied nutrient loads in an in vitro model of colonic fermentation. FEMS Microbiology Ecology, 2012, 80, 608-623. Functional interactions between the gut microbiota and host metabolism. Nature, 2012, 489, 242-249. Ruminococcus champanellensis sp. nov., a cellulose-degrading bacterium from human gut microbiota. International Journal of Systematic and Evolutionary Microbiology, 2012, 62, 138-143. Faecal fermentation of partially hydrolyzed guar gum. Journal of Functional Foods, 2012, 4, 398-402. Effects of early dietary intervention with a fermentable fibre on colonic microbiota activity and mucin gene expression in newly weaned rats. Journal of Functional Foods, 2012, 4, 520-530. 	8.2 1.2 0.7 1.3 13.7 0.8 1.6 1.6	1,515 88 76 48 3,582 144 28 41

#	Article	IF	CITATIONS
74	The health benefits of dietary fiber: Beyond the usual suspects of type 2 diabetes mellitus, cardiovascular disease and colon cancer. Metabolism: Clinical and Experimental, 2012, 61, 1058-1066.	1.5	426
75	Microbial degradation of complex carbohydrates in the gut. Gut Microbes, 2012, 3, 289-306.	4.3	1,611
76	Molecular Nutrition Research—The Modern Way Of Performing Nutritional Science. Nutrients, 2012, 4, 1898-1944.	1.7	58
77	Structural segregation of gut microbiota between colorectal cancer patients and healthy volunteers. ISME Journal, 2012, 6, 320-329.	4.4	1,038
78	How glycan metabolism shapes the human gut microbiota. Nature Reviews Microbiology, 2012, 10, 323-335.	13.6	1,073
79	Decreased colonization of fecal Clostridium coccoides/Eubacterium rectale species from ulcerative colitis patients in an in vitro dynamic gut model with mucin environment. FEMS Microbiology Ecology, 2012, 79, 685-696.	1.3	111
80	Establishment and development of intestinal microbiota in preterm neonates. FEMS Microbiology Ecology, 2012, 79, 763-772.	1.3	365
81	Faecal short chain fatty acids in healthy subjects participating in a randomised controlled trial examining a soluble highly viscous polysaccharide versus control. Journal of Human Nutrition and Dietetics, 2012, 25, 373-377.	1.3	13
82	Dietary modulation of clostridial cluster XIVa gut bacteria (Roseburia spp.) by chitin–glucan fiber improves host metabolic alterations induced by high-fat diet in mice. Journal of Nutritional Biochemistry, 2012, 23, 51-59.	1.9	215
83	Influence of dietary blueberry and broccoli on cecal microbiota activity and colon morphology in mdr1aâ^'/â^' mice, a model of inflammatory bowel diseases. Nutrition, 2012, 28, 324-330.	1.1	89
84	Changes of Fecal Bifidobacterium Species in Adult Patients with Hepatitis B Virus-Induced Chronic Liver Disease. Microbial Ecology, 2012, 63, 304-313.	1.4	111
85	Clostridium leptum group bacteria abundance and diversity in the fecal microbiota of patients with inflammatory bowel disease: a case–control study in India. BMC Gastroenterology, 2013, 13, 20.	0.8	108
86	A gene-targeted approach to investigate the intestinal butyrate-producing bacterialcommunity. Microbiome, 2013, 1, 8.	4.9	129
87	ls butyrate the link between diet, intestinal microbiota and obesityâ€related metabolic diseases?. Obesity Reviews, 2013, 14, 950-959.	3.1	206
88	Function of the microbiota. Bailliere's Best Practice and Research in Clinical Gastroenterology, 2013, 27, 5-16.	1.0	81
89	Differential recovery of bacterial and archaeal 16S rRNA genes from ruminal digesta in response to glycerol as cryoprotectant. Journal of Microbiological Methods, 2013, 95, 381-383.	0.7	21
90	Faecalibacterium prausnitzii and human intestinal health. Current Opinion in Microbiology, 2013, 16, 255-261.	2.3	829
91	A Dried Yeast Fermentate Selectively Modulates both the Luminal and Mucosal Gut Microbiota and Protects against Inflammation, As Studied in an Integrated in Vitro Approach. Journal of Agricultural and Food Chemistry, 2013, 61, 9380-9392.	2.4	49

#	Article	IF	CITATIONS
92	Emerging Aspects of Food and Nutrition on Gut Microbiota. Journal of Agricultural and Food Chemistry, 2013, 61, 9559-9574.	2.4	40
93	The nonfermentable dietary fiber hydroxypropyl methylcellulose modulates intestinal microbiota. FASEB Journal, 2013, 27, 692-702.	0.2	78
94	Modulation of the microbial fermentation in the gut by fermentable carbohydrates. Bioactive Carbohydrates and Dietary Fibre, 2013, 2, 133-142.	1.5	34
95	Molecular monitoring of fecal microbiota in healthy adults following probiotic yogurt intake. PharmaNutrition, 2013, 1, 123-129.	0.8	18
96	Commentary: isFaecalibacterium prausnitziia potential treatment for maintaining remission in ulcerative colitis?. Alimentary Pharmacology and Therapeutics, 2013, 38, 551-551.	1.9	6
97	Low iron availability in continuous <i>in vitro</i> colonic fermentations induces strong dysbiosis of the child gut microbial consortium and a decrease in main metabolites. FEMS Microbiology Ecology, 2013, 83, 161-175.	1.3	106
98	The influence of diet on the gut microbiota. Pharmacological Research, 2013, 69, 52-60.	3.1	817
99	Decreased abundance of <i><scp>F</scp>aecalibacterium prausnitzii</i> in the gut microbiota of <scp>C</scp> rohn's disease. Journal of Gastroenterology and Hepatology (Australia), 2013, 28, 613-619.	1.4	235
100	InÂvitro characterization of the impact of selected dietary fibers on fecal microbiota composition and short chain fatty acid production. Anaerobe, 2013, 23, 74-81.	1.0	235
101	The gut microbial metabolome: modulation of cancer risk in obese individuals. Proceedings of the Nutrition Society, 2013, 72, 178-188.	0.4	27
102	Inulin: therapeutic potential, prebiotic properties and immunological aspects. Food and Agricultural Immunology, 2013, 24, 21-31.	0.7	10
103	Characteristics of prebiotic food products containing inulin. British Food Journal, 2013, 115, 235-251.	1.6	12
104	Short-Chain Carbohydrates and Functional Gastrointestinal Disorders. American Journal of Gastroenterology, 2013, 108, 707-717.	0.2	218
105	Probiotics and prebiotics and health in ageing populations. Maturitas, 2013, 75, 44-50.	1.0	157
106	Insight into the prebiotic concept: lessons from an exploratory, double blind intervention study with inulin-type fructans in obese women. Gut, 2013, 62, 1112-1121.	6.1	632
107	Different Human Gut Models Reveal the Distinct Fermentation Patterns of Arabinoxylan versus Inulin. Journal of Agricultural and Food Chemistry, 2013, 61, 9819-9827.	2.4	97
108	Lactobacillus plantarum IFPL935 Favors the Initial Metabolism of Red Wine Polyphenols When Added to a Colonic Microbiota. Journal of Agricultural and Food Chemistry, 2013, 61, 10163-10172.	2.4	38
109	Biotechnological approaches for the production of prebiotics and their potential applications. Critical Reviews in Biotechnology, 2013, 33, 345-364.	5.1	63

#	Article	IF	CITATIONS
110	The Role of Probiotics and Prebiotics in Inducing Gut Immunity. Frontiers in Immunology, 2013, 4, 445.	2.2	197
111	Carbohydrates and the human gut microbiota. Current Opinion in Clinical Nutrition and Metabolic Care, 2013, 16, 453-460.	1.3	145
112	Dietary Fiber Information for Individuals With Crohn Disease. Gastroenterology Nursing, 2013, 36, 320-327.	0.2	8
113	Mechanisms and effectiveness of prebiotics in modifying the gastrointestinal microbiota for the management of digestive disorders. Proceedings of the Nutrition Society, 2013, 72, 288-298.	0.4	38
114	The hypersensitivity to colonic distension of <scp>IBS</scp> patients can be transferred to rats through their fecal microbiota. Neurogastroenterology and Motility, 2013, 25, e272-82.	1.6	231
115	Evolving Concepts: How Diet and the Intestinal Microbiome Act as Modulators of Breast Malignancy. ISRN Oncology, 2013, 2013, 1-10.	2.1	57
116	Exopolysaccharides of Lactic Acid Bacteria for Food and Colon Health Applications. , 0, , .		36
117	Synbiotic consumption changes the metabolism and composition of the gut microbiota in older people and modifies inflammatory processes: a randomised, double-blind, placebo-controlled crossover study. Alimentary Pharmacology and Therapeutics, 2013, 38, 804-816.	1.9	112
118	Microbiota and healthy ageing: observational and nutritional intervention studies. Microbial Biotechnology, 2013, 6, 326-334.	2.0	57
119	Commentary: coeliac disease and atherosclerosis - hand in hand? Authors' reply. Alimentary Pharmacology and Therapeutics, 2013, 38, 550-551.	1.9	1
120	Dietary choice affects Shiga toxin-producing <i>Escherichia coli</i> (STEC) O157:H7 colonization and disease. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110, E2126-33.	3.3	93
121	Decreased dietary fiber intake and structural alteration of gut microbiota in patients with advanced colorectal adenoma. American Journal of Clinical Nutrition, 2013, 97, 1044-1052.	2.2	274
122	Some are more equal than others. Gut Microbes, 2013, 4, 236-240.	4.3	117
123	Gut microbiota dysbiosis and bacterial community assembly associated with cholesterol gallstones in large-scale study. BMC Genomics, 2013, 14, 669.	1.2	168
124	The Gut Microbiotassay: a high-throughput qPCR approach combinable with next generation sequencing to study gut microbial diversity. BMC Genomics, 2013, 14, 788.	1.2	105
125	Xylo-Oligosaccharides and Inulin Affect Genotoxicity and Bacterial Populations Differently in a Human Colonic Simulator Challenged with Soy Protein. Nutrients, 2013, 5, 3740-3756.	1.7	19
127	Fluctuations in butyrate-producing bacteria in ulcerative colitis patients of North India. World Journal of Gastroenterology, 2013, 19, 3404.	1.4	165
128	Population Dynamics of Some Relevant Intestinal Microbial Groups in Human Fecal Batch Cultures with Added Fermentable Xylooligosaccharides Obtained from Rice Husks. BioResources, 2013, 8, .	0.5	5

#	Article	IF	CITATIONS
129	Effects of Diet on Gut Microbiota Profile and the Implications for Health and Disease. Bioscience of Microbiota, Food and Health, 2013, 32, 1-12.	0.8	41
130	Prebiotic inulin: Useful dietary adjuncts to manipulate the livestock gut microflora. Brazilian Journal of Microbiology, 2013, 44, 1-14.	0.8	64
131	Comparison of the Growth of Lactobacillus delbrueckii, L. paracasei and L. plantarum on Inulin in Co-culture Systems. Bioscience of Microbiota, Food and Health, 2014, 33, 139-146.	0.8	0
132	The Impact of Different DNA Extraction Kits and Laboratories upon the Assessment of Human Gut Microbiota Composition by 16S rRNA Gene Sequencing. PLoS ONE, 2014, 9, e88982.	1.1	236
133	In Vitro Continuous Fermentation Model (PolyFermS) of the Swine Proximal Colon for Simultaneous Testing on the Same Gut Microbiota. PLoS ONE, 2014, 9, e94123.	1.1	67
134	Comparison of the Growth of <i>Lactobacillus delbrueckii</i> , <i>L. paracasei</i> and <i>L. plantarum</i> on Inulin in Co-culture Systems. Bioscience of Microbiota, Food and Health, 2014, 33, 139-146.	0.8	16
135	The Importance of Microbiota and Host Interactions Throughout Life. , 2014, , 489-511.		0
136	Abundance and Diversity of GI Microbiota Rather than IgG ₄ Levels Correlate with Abdominal Inconvenience and Gut Permeability in Consumers Claiming Food Intolerances. Endocrine, Metabolic and Immune Disorders - Drug Targets, 2014, 14, 67-75.	0.6	16
138	Hydrogen and methane emissions from beef cattle and their rumen microbial community vary with diet, time after feeding and genotype. British Journal of Nutrition, 2014, 112, 398-407.	1.2	95
139	Non-antibiotic strategies for the control of necrotic enteritis in poultry. World's Poultry Science Journal, 2014, 70, 865-879.	1.4	9
140	Metabolic benefits of dietary prebiotics in human subjects: a systematic review of randomised controlled trials. British Journal of Nutrition, 2014, 111, 1147-1161.	1.2	243
141	Carbadox has both temporary and lasting effects on the swine gut microbiota. Frontiers in Microbiology, 2014, 5, 276.	1.5	84
142	Summer Meeting 2013: growth and physiology of bifidobacteria. Journal of Applied Microbiology, 2014, 116, 477-491.	1.4	91
143	Flos Lonicera Ameliorates Obesity and Associated Endotoxemia in Rats through Modulation of Gut Permeability and Intestinal Microbiota. PLoS ONE, 2014, 9, e86117.	1.1	84
144	Effects of iron supplementation on dominant bacterial groups in the gut, faecal SCFA and gut inflammation: a randomised, placebo-controlled intervention trial in South African children. British Journal of Nutrition, 2014, 112, 547-556.	1.2	92
146	The microbiota and helminths: sharing the same niche in the human host. Parasitology, 2014, 141, 1255-1271.	0.7	88
149	Ecology and metabolism of the beneficial intestinal commensal bacterium <i>Faecalibacterium prausnitzii</i> . Gut Microbes, 2014, 5, 146-151.	4.3	128
150	Iron supplementation promotes gut microbiota metabolic activity but not colitis markers in human gut microbiota-associated rats. British Journal of Nutrition, 2014, 111, 2135-2145.	1.2	58

ARTICLE IF CITATIONS Inulin and Health Benefits., 2014, , 1-36. 0 151 A Review of the Epidemiology of Inflammatory Bowel Disease with a Focus on Diet, Infections and Antibiotic Exposure. Nestle Nutrition Institute Workshop Series, 2014, 79, 1-18. 1.5 Antibiotics, Probiotics and Prebiotics in IBD. Nestle Nutrition Institute Workshop Series, 2014, 79, 153 1.5 28 83-100. Effect of multispecies probiotics on irritable bowel syndrome: A randomized, doubleâ€blind, 154 1.4 148 placeboâ€controlled trial. Journal of Gastroenterology and Hepatology (Australia), 2014, 29, 52-59. Prebiotic stimulation of human colonic butyrate-producing bacteria and bifidobacteria, <i>in 155 348 1.3vitro</i>. FEMS Microbiology Ecology, 2014, 87, 30-40. The abundance of fecal Faecalibacterium prausnitzii in relation to obesity and gender in Chinese adults. Archives of Microbiology, 2014, 196, 73-77. 1.0 Microbiota and epigenetic regulation of inflammatory mediators in type 2 diabetes and obesity. 157 1.0 107 Beneficial Microbes, 2014, 5, 33-43. Gut Microbial Metabolites of Polyunsaturated Fatty Acids Correlate with Specific Fecal Bacteria and Serum Markers of Metabolic Syndrome in Obese Women. Lipids, 2014, 49, 397-402. Association of dietary type with fecal microbiota in vegetarians and omnivores in Slovenia. European 159 1.8 155 Journal of Nutrition, 2014, 53, 1051-1064. Diet Effects in Gut Microbiome and Obesity. Journal of Food Science, 2014, 79, R442-51. 1.5 Gut microbiota in older subjects: variation, health consequences and dietary intervention prospects. 161 0.4 33 Proceedings of the Nutrition Society, 2014, 73, 441-451. Additional oligofructose/inulin does not increase faecal bifidobacteria in critically ill patients 2.3 receiving enteral nutrition: A randomised controlled trial. Clinical Nutrition, 2014, 33, 966-972. Increased Proportions of Bifidobacterium and the Lactobacillus Group and Loss of Butyrate-Producing Bacteria in Inflammatory Bowel Disease. Journal of Clinical Microbiology, 2014, 163 1.8 370 52, 398-406. Altered intestinal microbiota and blood T cell phenotype are shared by patients with Crohn's disease and their unaffected siblings. Gut, 2014, 63, 1578-1586. 164 6.1 Dietary supplementation with soybean oligosaccharides increases short-chain fatty acids but 165 decreases protein-derived catabolites in the intestinal luminal content of weaned Huanjiang 1.3 65 mini-piglets. Nutrition Research, 2014, 34, 780-788. A Perspective on the Complexity of Dietary Fiber Structures and Their Potential Effect on the Gut 424 Microbiota. Journal of Molecular Biology, 2014, 426, 3838-3850. Effect of dietary prebiotic supplementation on advanced glycation, insulin resistance and 167 inflammatory biomarkers in adults with pre-diabetes: a study protocol for a double-blind 0.9 70 placebo-controlled randomised crossover clinical trial. BMC Endocrine Disorders, 2014, 14, 55. Functional Metabolic Map of Faecalibacterium prausnitzii, a Beneficial Human Gut Microbe. Journal of 173 Bacteriology, 2014, 196, 3289-3302.

#	Article	IF	CITATIONS
169	Bifidobacterium adolescentis protects from the development of nonalcoholic steatohepatitis in a mouse model. Journal of Nutritional Biochemistry, 2014, 25, 118-125.	1.9	70
170	Impact of diet and individual variation on intestinal microbiota composition and fermentation products in obese men. ISME Journal, 2014, 8, 2218-2230.	4.4	489
171	Impact of a Synbiotic Food on the Gut Microbial Ecology and Metabolic Profi les. , 2014, , 259-286.		0
172	Polysaccharides from Mushrooms: A Natural Source of Bioactive Carbohydrates. , 2014, , 168-189.		0
175	Effect of Bifidobacterium thermophilum RBL67 and fructo-oligosaccharides on the gut microbiota in Göttingen minipigs. British Journal of Nutrition, 2015, 114, 746-755.	1.2	13
176	Alleviation of high fat dietâ€induced obesity by oligofructose in gnotobiotic mice is independent of presence of <i>Bifidobacterium longum</i> . Molecular Nutrition and Food Research, 2015, 59, 2267-2278.	1.5	31
177	Differential responses of gut microbiota to the same prebiotic formula in oligotrophic and eutrophic batch fermentation systems. Scientific Reports, 2015, 5, 13469.	1.6	29
178	In vitro characterisation of the fermentation profile and prebiotic capacity of gold-fleshed kiwifruit. Beneficial Microbes, 2015, 6, 829-839.	1.0	10
179	Reevaluating the hype: four bacterial metabolites under scrutiny. European Journal of Microbiology and Immunology, 2015, 5, 1-13.	1.5	6
180	The rumen microbial metagenome associated with high methane production in cattle. BMC Genomics, 2015, 16, 839.	1.2	306
181	Effect of administering a multi-species probiotic mixture on the changes in fecal microbiota and symptoms of irritable bowel syndrome: a randomized, double-blind, placebo-controlled trial. Journal of Clinical Biochemistry and Nutrition, 2015, 57, 129-134.	0.6	72
182	Understanding How Commensal Obligate Anaerobic Bacteria Regulate Immune Functions in the Large Intestine. Nutrients, 2015, 7, 45-73.	1.7	62
183	Intestinal Microbial Dysbiosis and Colonic Epithelial Cell Hyperproliferation by Dietary α-Mangostin is Independent of Mouse Strain. Nutrients, 2015, 7, 764-784.	1.7	19
184	Prebiotics Modulate the Effects of Antibiotics on Gut Microbial Diversity and Functioning in Vitro. Nutrients, 2015, 7, 4480-4497.	1.7	55
185	The Role of Probiotic Lactic Acid Bacteria and Bifidobacteria in the Prevention and Treatment of Inflammatory Bowel Disease and Other Related Diseases: A Systematic Review of Randomized Human Clinical Trials. BioMed Research International, 2015, 2015, 1-15.	0.9	255
186	Manipulating the gut microbiota to maintain health and treat disease. Microbial Ecology in Health and Disease, 2015, 26, 25877.	3.8	162
187	Modulation of the faecal microbiome of healthy adult dogs by inclusion of potato fibre in the diet. British Journal of Nutrition, 2015, 113, 125-133.	1.2	99
188	Screening for lactic acid bacteria based on antihyperglycaemic and probiotic potential and application in synbiotic set yoghurt. Journal of Functional Foods, 2015, 16, 125-136.	1.6	39

#	Article	IF	CITATIONS
189	Review article: dietary fibre-microbiota interactions. Alimentary Pharmacology and Therapeutics, 2015, 42, 158-179.	1.9	430
190	Continuously Ingesting Fructooligosaccharide Can't Maintain Rats' Gut <i>Bifidobacterium</i> at a High Level. Journal of Food Science, 2015, 80, M2530-4.	1.5	14
191	The application of omics technologies in the functional evaluation of inulin and inulin-containing prebiotics dietary supplementation. Nutrition and Diabetes, 2015, 5, e185-e185.	1.5	14
192	Significance of Inulin Fructans in the Human Diet. Comprehensive Reviews in Food Science and Food Safety, 2015, 14, 37-47.	5.9	108
193	Preweaning modulation of intestinal microbiota by oligosaccharides or amoxicillin can contribute to programming of adult microbiota in rats. Nutrition, 2015, 31, 515-522.	1.1	32
194	Essential oils have different effects on human pathogenic and commensal bacteria in mixed faecal fermentations compared with pure cultures. Microbiology (United Kingdom), 2015, 161, 441-449.	0.7	26
195	Health Benefits of Prebiotic Fibers. Advances in Food and Nutrition Research, 2015, 74, 47-91.	1.5	36
196	Metagenomic Insights into the Effects of Fructo-oligosaccharides (FOS) on the Composition of Fecal Microbiota in Mice. Journal of Agricultural and Food Chemistry, 2015, 63, 856-863.	2.4	90
197	Human gut microbiota: does diet matter?. Proceedings of the Nutrition Society, 2015, 74, 23-36.	0.4	112
198	Dietary intake of inulin-type fructans in active and inactive Crohn's disease and healthy controls: a case–control study. Journal of Crohn's and Colitis, 2015, 9, 1024-1031.	0.6	33
199	Archaeal abundance in post-mortem ruminal digesta may help predict methane emissions from beef cattle. Scientific Reports, 2014, 4, 5892.	1.6	88
200	Dietary saponins from four popular herbal tea exert prebiotic-like effects on gut microbiota in C57BL/6 mice. Journal of Functional Foods, 2015, 17, 892-902.	1.6	53
201	16S rRNA gene-based profiling of the human infant gut microbiota is strongly influenced by sample processing and PCR primer choice. Microbiome, 2015, 3, 26.	4.9	208
202	Production of bacteriocin-like inhibitory substance by <i>Bifidobacterium lactis</i> in skim milk supplemented with additives. Journal of Dairy Research, 2015, 82, 350-355.	0.7	18
203	Wheat bran extract alters colonic fermentation and microbial composition, but does not affect faecal water toxicity: a randomised controlled trial in healthy subjects. British Journal of Nutrition, 2015, 113, 225-238.	1.2	37
204	Progress and Challenges in Developing Metabolic Footprints from Diet in Human Gut Microbial Cometabolism ,. Journal of Nutrition, 2015, 145, 1123S-1130S.	1.3	40
205	Levansucrases of a Pseudomonas syringae pathovar as catalysts for the synthesis of potentially prebiotic oligo- and polysaccharides. New Biotechnology, 2015, 32, 597-605.	2.4	38
207	The effect of low or high molecular weight oat beta-glucans on the inflammatory and oxidative stress status in the colon of rats with LPS-induced enteritis. Food and Function, 2015, 6, 590-603.	2.1	60

#	Article	IF	CITATIONS
208	Agave Inulin Supplementation Affects the Fecal Microbiota of Healthy Adults Participating in a Randomized, Double-Blind, Placebo-Controlled, Crossover Trial1–3. Journal of Nutrition, 2015, 145, 2025-2032.	1.3	109
209	Enhanced butyrate formation by cross-feeding between <i>Faecalibacterium prausnitzii</i> and <i>Bifidobacterium adolescentis</i> . FEMS Microbiology Letters, 2015, 362, fnv176. Shaping the Human Microbiome with Prebiotic Foods – Current Perspectives for Continued	0.7	250
210	Development**This is an update of: "Shaping the human microbiome with prebiotic foods – current perspectives for continued development.―Food Science and Technology Bulletin 2010; 7(4): 49–64. Available from: http://dx.doi.org/10.1616/1476-2137.15989 handle: http://hdl.handle.net/10449/19776. Re-published with the permission of International Food Information Service (IFIS Publishing), 2015, ,		1
211	53-71. The human microbiota associated with overall health. Critical Reviews in Biotechnology, 2015, 35, 129-140.	5.1	20
212	Inulin-type fructans modulate intestinal Bifidobacterium species populations and decrease fecal short-chain fatty acids in obese women. Clinical Nutrition, 2015, 34, 501-507.	2.3	220
213	Correlating the Gut Microbiome to Health and Disease. , 2016, , 261-291.		5
214	Induction of Subacute Ruminal Acidosis Affects the Ruminal Microbiome and Epithelium. Frontiers in Microbiology, 2016, 7, 701.	1.5	131
215	Oral Samples as Non-Invasive Proxies for Assessing the Composition of the Rumen Microbial Community. PLoS ONE, 2016, 11, e0151220.	1.1	70
216	Characterization of the Gut Microbial Community of Obese Patients Following a Weight-Loss Intervention Using Whole Metagenome Shotgun Sequencing. PLoS ONE, 2016, 11, e0149564.	1.1	229
217	Helicobacter pylori Eradication Causes Perturbation of the Human Gut Microbiome in Young Adults. PLoS ONE, 2016, 11, e0151893.	1.1	109
218	The Gut Microbiota from Lean and Obese Subjects Contribute Differently to the Fermentation of Arabinogalactan and Inulin. PLoS ONE, 2016, 11, e0159236.	1.1	65
219	Inulin Supplementation Lowered the Metabolic Defects of Prolonged Exposure to Chlorpyrifos from Gestation to Young Adult Stage in Offspring Rats. PLoS ONE, 2016, 11, e0164614.	1.1	41
221	Influence of habitual dietary fibre intake on the responsiveness of the gut microbiota to a prebiotic: protocol for a randomised, double-blind, placebo-controlled, cross-over, single-centre study. BMJ Open, 2016, 6, e012504.	0.8	12
223	Oral treatment with Eubacterium hallii improves insulin sensitivity in db/db mice. Npj Biofilms and Microbiomes, 2016, 2, 16009.	2.9	159
224	Microbes, Metabolites and Health. , 2016, , 13-48.		0
225	Human microbiome as therapeutic intervention target to reduce cardiovascular disease risk. Current Opinion in Lipidology, 2016, 27, 615-622.	1.2	36
226	The Gut Microbiome and Its Role in Obesity. Nutrition Today, 2016, 51, 167-174.	0.6	261
227	Relationship of Enhanced Butyrate Production by Colonic Butyrate-Producing Bacteria to Immunomodulatory Effects in Normal Mice Fed an Insoluble Fraction of Brassica rapa L. Applied and Environmental Microbiology, 2016, 82, 2693-2699.	1.4	36

#	Article	IF	CITATIONS
228	How to Manipulate the Microbiota: Prebiotics. Advances in Experimental Medicine and Biology, 2016, 902, 119-142.	0.8	69
230	Studying the Human Microbiota. Advances in Experimental Medicine and Biology, 2016, 902, 5-32.	0.8	20
232	Association between intestinal permeability and faecal microbiota composition in Italian children with beta cell autoimmunity at risk for type 1 diabetes. Diabetes/Metabolism Research and Reviews, 2016, 32, 700-709.	1.7	85
233	Age-associated effect of kestose on Faecalibacterium prausnitzii and symptoms in the atopic dermatitis infants. Pediatric Research, 2016, 80, 844-851.	1.1	48
234	Effect of lactulose-derived oligosaccharides on intestinal microbiota during the shift between media with different energy contents. Food Research International, 2016, 89, 302-308.	2.9	17
235	Sex differences in colonization of gut microbiota from a man with short-term vegetarian and inulin-supplemented diet in germ-free mice. Scientific Reports, 2016, 6, 36137.	1.6	52
236	Bifidobacterial inulin-type fructan degradation capacity determines cross-feeding interactions between bifidobacteria and Faecalibacterium prausnitzii. International Journal of Food Microbiology, 2016, 231, 76-85.	2.1	101
237	Evaluation of Faecalibacterium 16S rDNA genetic markers for accurate identification of swine faecal waste by quantitative PCR. Journal of Environmental Management, 2016, 181, 193-200.	3.8	9
238	Prebiotics: Definition and protective mechanisms. Bailliere's Best Practice and Research in Clinical Gastroenterology, 2016, 30, 27-37.	1.0	120
239	Modulation of the human gut microbiota by dietary fibres occurs at the species level. BMC Biology, 2016, 14, 3.	1.7	308
240	Probiotics and Prebiotics for Promoting Health. , 2016, , 75-85.		8
241	Prebiotics: why definitions matter. Current Opinion in Biotechnology, 2016, 37, 1-7.	3.3	326
242	Selection of potential probiotic bifidobacteria and prebiotics for elderly by using in vitro faecal batch cultures. European Food Research and Technology, 2017, 243, 157-165.	1.6	17
243	Glucomannans and nutrition. Food Hydrocolloids, 2017, 68, 246-254.	5.6	44
244	Gut microbiota, diet, and obesityâ€related disorders—The good, the bad, and the future challenges. Molecular Nutrition and Food Research, 2017, 61, 1600252.	1.5	143
245	Effect of chickpea husk dietary supplementation on blood and cecal parameters in rats. Animal Science Journal, 2017, 88, 372-378.	0.6	15
246	Pepsin egg white hydrolysate modulates gut microbiota in Zucker obese rats. Food and Function, 2017, 8, 437-443.	2.1	35
247	Intestinal Proportion of <i>Blautia</i> sp. is Associated with Clinical Stage and Histoprognostic Grade in Patients with Farly-Stage Breast Cancer, Nutrition and Cancer, 2017, 69, 267-275	0.9	124

#	Article	IF	CITATIONS
248	Prebiotic inulin-type fructans induce specific changes in the human gut microbiota. Gut, 2017, 66, 1968-1974.	6.1	370
249	Dietary fiber and prebiotics and the gastrointestinal microbiota. Gut Microbes, 2017, 8, 172-184.	4.3	1,027
250	Supplementing a yeast probiotic to pre-weaning Holstein calves: Feed intake, growth and fecal biomarkers of gut health. Animal Feed Science and Technology, 2017, 226, 81-87.	1.1	29
251	Effects of potato dextrin on the composition and metabolism of the gut microbiota in rats fed standard and high-fat diets. Journal of Functional Foods, 2017, 34, 398-407.	1.6	23
252	Coarse particle inclusion and lignocellulose-rich fiber addition in feed benefit performance and health of broiler chickens. Poultry Science, 2017, 96, 3272-3281.	1.5	58
253	Interâ€individual differences determine the outcome of wheat bran colonization by the human gut microbiome. Environmental Microbiology, 2017, 19, 3251-3267.	1.8	88
254	Chlorogenic acid versus amaranth's caffeoylisocitric acid – Gut microbial degradation of caffeic acid derivatives. Food Research International, 2017, 100, 375-384.	2.9	30
255	Prebiotics Reduce Body Fat and Alter Intestinal Microbiota in Children Who Are Overweight or With Obesity. Gastroenterology, 2017, 153, 711-722.	0.6	358
256	Fermentable Carbohydrates [FODMAPs] Exacerbate Functional Gastrointestinal Symptoms in Patients With Inflammatory Bowel Disease: A Randomised, Double-blind, Placebo-controlled, Cross-over, Re-challenge Trial. Journal of Crohn's and Colitis, 2017, 11, 1420-1429.	0.6	100
257	Pasture flock chicken cecal microbiome responses to prebiotics and plum fiber feed amendments. Poultry Science, 2017, 96, 1820-1830.	1.5	29
258	The natural feed additives as immunostimulants in monogastric animal nutrition – a review. Annals of Animal Science, 2017, 17, 605-625.	0.6	62
259	Nonalcoholic Fatty Liver Disease, the Gut Microbiome, and Diet. Advances in Nutrition, 2017, 8, 240-252.	2.9	125
260	Microbial nutrient niches in the gut. Environmental Microbiology, 2017, 19, 1366-1378.	1.8	258
261	The gut microbiome composition associates with bipolar disorder and illness severity. Journal of Psychiatric Research, 2017, 87, 23-29.	1.5	222
262	Understanding the Molecular Mechanisms of the Interplay Between Herbal Medicines and Gut Microbiota. Medicinal Research Reviews, 2017, 37, 1140-1185.	5.0	241
263	<i>Faecalibacterium prausnitzii</i> : from microbiology to diagnostics and prognostics. ISME Journal, 2017, 11, 841-852.	4.4	510
264	Dietary sugarcane bagasse and coarse particle size of corn are beneficial to performance and gizzard development in broilers fed normal and high sodium diets. Poultry Science, 2017, 96, 4006-4016.	1.5	27
265	Impact of <i>β</i> 2-1 fructan on faecal community change: results from a placebo-controlled, randomised, double-blinded, cross-over study in healthy adults. British Journal of Nutrition, 2017, 118, 441-453.	1.2	18

#	Article	IF	CITATIONS
266	Metagenomic insights into the effects of oligosaccharides on the microbial composition of cecal contents in constipated mice. Journal of Functional Foods, 2017, 38, 486-496.	1.6	33
267	Inulin-type fructan degradation capacity of <i>Clostridium</i> cluster IV and XIVa butyrate-producing colon bacteria and their associated metabolic outcomes. Beneficial Microbes, 2017, 8, 473-490.	1.0	48
268	Action and function of Faecalibacterium prausnitzii in health and disease. Bailliere's Best Practice and Research in Clinical Gastroenterology, 2017, 31, 643-648.	1.0	297
269	Shortâ€ŧerm feeding of fermentable dietary fibres influences the gut microbiota composition and metabolic activity in rats. International Journal of Food Science and Technology, 2017, 52, 2572-2581.	1.3	20
270	Dietary pomegranate extract and inulin affect gut microbiome differentially in mice fed an obesogenic diet. Anaerobe, 2017, 48, 184-193.	1.0	39
271	Microbial Metabolic Networks at the Mucus Layer Lead to Diet-Independent Butyrate and Vitamin B ₁₂ Production by Intestinal Symbionts. MBio, 2017, 8, .	1.8	269
272	Impact of the Microbiota on Bacterial Infections during Cancer Treatment. Trends in Microbiology, 2017, 25, 992-1004.	3.5	36
273	Starchâ€based carbohydrates display the bifidogenic and butyrogenic properties in pHâ€controlled faecal fermentation. International Journal of Food Science and Technology, 2017, 52, 2647-2653.	1.3	25
274	Does Modification of the Large Intestinal Microbiome Contribute to the Anti-inflammatory Activity of Fermentable Fiber?. Current Developments in Nutrition, 2017, 2, cdn.117.001180.	0.1	6
275	Variability in gut microbiota response to an inulin-type fructan prebiotic within an in vitro three-stage continuous colonic model system. Bioactive Carbohydrates and Dietary Fibre, 2017, 11, 26-37.	1.5	11
276	Effect of Bacillus subtilis and Bacillus licheniformis supplementation in diets with low- and high-protein content on ileal crude protein and amino acid digestibility and intestinal microbiota composition of growing pigs. Journal of Animal Science and Biotechnology, 2017, 8, 37.	2.1	46
277	Feeding the microbiota-gut-brain axis: diet, microbiome, and neuropsychiatry. Translational Research, 2017, 179, 223-244.	2.2	351
278	Lactate- and acetate-based cross-feeding interactions between selected strains of lactobacilli, bifidobacteria and colon bacteria in the presence of inulin-type fructans. International Journal of Food Microbiology, 2017, 241, 225-236.	2.1	123
279	Effects of sc <scp>FOS</scp> on the composition of fecal microbiota and anxiety in patients with irritable bowel syndrome: a randomized, double blind, placebo controlled study. Neurogastroenterology and Motility, 2017, 29, e12911.	1.6	95
280	Mucosaâ€associated biohydrogenating microbes protect the simulated colon microbiome from stress associated with high concentrations of polyâ€unsaturated fat. Environmental Microbiology, 2017, 19, 722-739.	1.8	18
281	Effect of inulin-type fructans on blood lipid profile and glucose level: a systematic review and meta-analysis of randomized controlled trials. European Journal of Clinical Nutrition, 2017, 71, 9-20.	1.3	114
282	Interindividual variability in gut microbiota and host response to dietary interventions. Nutrition Reviews, 2017, 75, 1059-1080.	2.6	155
283	Shift of hindgut microbiota and microbial short chain fatty acids profiles in dairy calves from birth to pre-weaning. FEMS Microbiology Ecology, 2018, 94, .	1.3	61

# 285	ARTICLE Significance of Microbiota in Obesity and Metabolic Diseases and the Modulatory Potential by Medicinal Plant and Food Ingredients. Frontiers in Pharmacology, 2017, 8, 387.	IF 1.6	Citations 85
287	Prebiotic Dietary Fiber and Gut Health: Comparing the in Vitro Fermentations of Beta-Glucan, Inulin and Xylooligosaccharide. Nutrients, 2017, 9, 1361.	1.7	151
288	Host–Microbiota Mutualism in Metabolic Diseases. Frontiers in Endocrinology, 2017, 8, 267.	1.5	20
289	Trophic Interactions of Infant Bifidobacteria and Eubacterium hallii during L-Fucose and Fucosyllactose Degradation. Frontiers in Microbiology, 2017, 8, 95.	1.5	131
290	Gut Microbiota Modulation and Its Relationship with Obesity Using Prebiotic Fibers and Probiotics: A Review. Frontiers in Microbiology, 2017, 8, 563.	1.5	262
291	Functional Characterization of Novel Faecalibacterium prausnitzii Strains Isolated from Healthy Volunteers: A Step Forward in the Use of F. prausnitzii as a Next-Generation Probiotic. Frontiers in Microbiology, 2017, 8, 1226.	1.5	320
292	Development of Human Breast Milk Microbiota-Associated Mice as a Method to Identify Breast Milk Bacteria Capable of Colonizing Gut. Frontiers in Microbiology, 2017, 8, 1242.	1.5	16
293	Human Gut Microbiota: Toward an Ecology of Disease. Frontiers in Microbiology, 2017, 8, 1265.	1.5	110
294	How to Feed the Mammalian Gut Microbiota: Bacterial and Metabolic Modulation by Dietary Fibers. Frontiers in Microbiology, 2017, 8, 1749.	1.5	86
295	The Role of Supplemental Complex Dietary Carbohydrates and Gut Microbiota in Promoting Cardiometabolic and Immunological Health in Obesity: Lessons from Healthy Non-Obese Individuals. Frontiers in Nutrition, 2017, 4, 34.	1.6	31
296	Changes in Gut Microbial Ecology and Immunological Responses of Mice Fed the Insoluble Fraction of <i>Brassica rapa</i> L. that was Fermented or Not. Microbes and Environments, 2017, 32, 268-274.	0.7	6
297	Different Intestinal Microbial Profile in Over-Weight and Obese Subjects Consuming a Diet with Low Content of Fiber and Antioxidants. Nutrients, 2017, 9, 551.	1.7	36
298	Increasing corn distillers solubles alters the liquid fraction of the ruminal microbiome. Journal of Animal Science, 2017, 95, 3540-3551.	0.2	2
299	Effects of different thickening agents on infant gut microbiota. Food and Function, 2018, 9, 1768-1778.	2.1	24
300	Complementary Mechanisms for Degradation of Inulin-Type Fructans and Arabinoxylan Oligosaccharides among Bifidobacterial Strains Suggest Bacterial Cooperation. Applied and Environmental Microbiology, 2018, 84, .	1.4	62
301	The functionality of prebiotics as immunostimulant: Evidences from trials on terrestrial and aquatic animals. Fish and Shellfish Immunology, 2018, 76, 272-278.	1.6	172
302	The Role of Human Gut Microbiota in Obesity. , 2018, , 71-76.		0
303	Supplementation with grape pomace in healthy women: Changes in biochemical parameters, gut microbiota and related metabolic biomarkers. Journal of Functional Foods, 2018, 45, 34-46.	1.6	29

#	Article	IF	CITATIONS
304	The Influence of the Gut Microbiome on Cancer, Immunity, and Cancer Immunotherapy. Cancer Cell, 2018, 33, 570-580.	7.7	911
305	Prebiotics, Probiotics, and Synbiotics: A Bifidobacterial View. , 2018, , 271-293.		3
306	Habitual dietary fibre intake influences gut microbiota response to an inulin-type fructan prebiotic: a randomised, double-blind, placebo-controlled, cross-over, human intervention study. British Journal of Nutrition, 2018, 119, 176-189.	1.2	163
307	Pathogens, microbiome and the host: emergence of the ecological Koch's postulates. FEMS Microbiology Reviews, 2018, 42, 273-292.	3.9	103
308	Effect of oat hulls as a free choice feeding on broiler performance, short chain fatty acids and microflora under a mild necrotic enteritis challenge. Animal Nutrition, 2018, 4, 65-72.	2.1	27
309	Insights into <i>Roseburia intestinalis</i> which alleviates experimental colitis pathology by inducing antiâ€inflammatory responses. Journal of Gastroenterology and Hepatology (Australia), 2018, 33, 1751-1760.	1.4	88
310	Milk Glycans and Their Interaction with the Infant-Gut Microbiota. Annual Review of Food Science and Technology, 2018, 9, 429-450.	5.1	95
311	The role of the gut microbiota in the pathology and prevention of liver disease. Journal of Nutritional Biochemistry, 2018, 60, 1-8.	1.9	31
312	Understanding the prebiotic potential of different dietary fibers using an in vitro continuous adult fermentation model (PolyFermS). Scientific Reports, 2018, 8, 4318.	1.6	125
313	Metabolic adaptations to HFHS overfeeding: how whole body and tissues postprandial metabolic flexibility adapt in Yucatan mini-pigs. European Journal of Nutrition, 2018, 57, 119-135.	1.8	15
314	Roles of Probiotic Lactobacilli Inclusion in Helping Piglets Establish Healthy Intestinal Inter-environment for Pathogen Defense. Probiotics and Antimicrobial Proteins, 2018, 10, 243-250.	1.9	43
315	Effect of cellobiose supplementation on in vitro fermentation activity and bacterial numbers of porcine inocula. Journal of Animal Physiology and Animal Nutrition, 2018, 102, 474-482.	1.0	5
316	Cryopreservation of artificial gut microbiota produced with <i>inÂvitro</i> fermentation technology. Microbial Biotechnology, 2018, 11, 163-175.	2.0	34
317	Insights on the impact of diet-mediated microbiota alterations on immunity and diseases. American Journal of Transplantation, 2018, 18, 550-555.	2.6	6
318	Changes in Gut Microbiota Linked to a Reduction in Systolic Blood Pressure in Spontaneously Hypertensive Rats Fed an Extra Virgin Olive Oil-Enriched Diet. Plant Foods for Human Nutrition, 2018, 73, 1-6.	1.4	39
319	Specific substrate-driven changes in human faecal microbiota composition contrast with functional redundancy in short-chain fatty acid production. ISME Journal, 2018, 12, 610-622.	4.4	173
320	Porcine Small and Large Intestinal Microbiota Rapidly Hydrolyze the Masked Mycotoxin Deoxynivalenol-3-Glucoside and Release Deoxynivalenol in Spiked Batch Cultures <i>In Vitro</i> . Applied and Environmental Microbiology, 2018, 84, .	1.4	30
321	The influence of in vitro pectin fermentation on the human fecal microbiome. AMB Express, 2018, 8, 98.	1.4	79

ARTICLE IF CITATIONS ROLE OF GUT MICROBIOTA IN LIPID METABOLISM. Asian Journal of Pharmaceutical and Clinical Research, 322 0.3 4 2018, 11, 4. Whole grain diet reduces systemic inflammation. Medicine (United States), 2018, 97, e12995. 0.4 Metagenomic Approaches for Investigating the Role of the Microbiome in Gut Health and Inflammatory 324 1 Diseases. , 2018, , . Causal Relationship between Diet-Induced Gut Microbiota Changes and Diabetes: A Novel Strategy to Transplant Faecalibacterium prausnitzii in Preventing Diabetes. International Journal of Molecular 1.8 138 Sciences, 2018, 19, 3720. Impact of a Healthy Dietary Pattern on Gut Microbiota and Systemic Inflammation in Humans. 326 1.7 71 Nutrients, 2018, 10, 1783. Resveratrol, Metabolic Syndrome, and Gut Microbiota. Nutrients, 2018, 10, 1651. 1.7 A multicenter, randomized controlled comparison of three renutrition strategies for the 328 management of moderate acute malnutrition among children aged from 6 to 24Âmonths (the MALINEA) Tj ETQq0 0.0 rgBT /@verlock 10 Characterisation of gut, lung, and upper airways microbiota in patients with non-small cell lung 329 0.4 carcinoma. Medicine (United States), 2018, 97, e13676. Prebiotic-Like Effects of Water Soluble Chitosan on the Intestinal Microflora in Mice. International 330 0.7 6 Journal of Food Engineering, 2018, 14, . Residual feed intake in beef cattle and its association with carcass traits, ruminal solid-fraction 2.1 bacteria, and epithelium gene expression. Journal of Animal Science and Biotechnology, 2018, 9, 67. The Effect of White Rice and White Bread as Staple Foods on Gut Microbiota and Host Metabolism. 332 1.7 15 Nutrients, 2018, 10, 1323. Impact of carbohydrate substrate complexity on the diversity of the human colonic microbiota. FEMS 1.3 28 Microbiology Ecology, 2019, 95, . Preparation, characterization and improvement in intestinal function of polysaccharide fractions 334 1.6 39 from okra. Journal of Functional Foods, 2018, 50, 147-157. In Vitro Fermentation of Selected Prebiotics and Their Effects on the Composition and Activity of the 1.8 Adult Gut Microbiota. International Journal of Molecular Sciences, 2018, 19, 3097 1-Kestose, the Smallest Fructooligosaccharide Component, Which Efficiently Stimulates 336 1.9 49 Faecalibacterium prausnitzii as Well as Bifidobacteria in Humans. Foods, 2018, 7, 140. The effect of inulin and wheat bran on intestinal health and microbiota in the early life of broiler 1.5 28 chickens. Poultry Science, 2018, 97, 3156-3165. Dietary mung bean protein reduces high-fat diet-induced weight gain by modulating host bile acid metabolism in a gut microbiota-dependent manner. Biochemical and Biophysical Research 338 1.0 56 Communications, 2018, 501, 955-961. 339 Diet Effects on Gut Microbiome Composition, Function, and Host Physiology., 2018, , 755-766.

#	Article	IF	CITATIONS
340	Association of residual feed intake with abundance of ruminal bacteria and biopolymer hydrolyzing enzyme activities during the peripartal period and early lactation in Holstein dairy cows. Journal of Animal Science and Biotechnology, 2018, 9, 43.	2.1	32
341	The Potential of Gut Commensals in Reinforcing Intestinal Barrier Function and Alleviating Inflammation. Nutrients, 2018, 10, 988.	1.7	380
342	The effects of a wool hydrolysate on short-chain fatty acid production and fecal microbial composition in the domestic cat (Felis catus). Food and Function, 2018, 9, 4107-4121.	2.1	9
343	Searching for the Bacterial Effector: The Example of the Multi-Skilled Commensal Bacterium Faecalibacterium prausnitzii. Frontiers in Microbiology, 2018, 9, 346.	1.5	84
344	Gut Microbiome Composition in Non-human Primates Consuming a Western or Mediterranean Diet. Frontiers in Nutrition, 2018, 5, 28.	1.6	125
345	Targeted Approaches for In Situ Gut Microbiome Manipulation. Genes, 2018, 9, 351.	1.0	36
346	Probiotic Bifidobacterium strains and galactooligosaccharides improve intestinal barrier function in obese adults but show no synergism when used together as synbiotics. Microbiome, 2018, 6, 121.	4.9	202
347	Gastrointestinal Transit Time, Glucose Homeostasis and Metabolic Health: Modulation by Dietary Fibers. Nutrients, 2018, 10, 275.	1.7	188
348	Rumen-protected methionine during the peripartal period in dairy cows and its effects on abundance of major species of ruminal bacteria. Journal of Animal Science and Biotechnology, 2018, 9, 17.	2.1	20
349	Dietary proline supplementation alters colonic luminal microbiota and bacterial metabolite composition between days 45 and 70 of pregnancy in Huanjiang mini-pigs. Journal of Animal Science and Biotechnology, 2018, 9, 18.	2.1	56
350	The role of the microbiome for human health: from basic science to clinical applications. European Journal of Nutrition, 2018, 57, 1-14.	1.8	664
351	Dietary fiber intervention on gut microbiota composition in healthy adults: a systematic review and meta-analysis. American Journal of Clinical Nutrition, 2018, 107, 965-983.	2.2	408
352	Predictability and persistence of prebiotic dietary supplementation in a healthy human cohort. Scientific Reports, 2018, 8, 12699.	1.6	37
353	Dietary soybean protein ameliorates high-fat diet-induced obesity by modifying the gut microbiota-dependent biotransformation of bile acids. PLoS ONE, 2018, 13, e0202083.	1.1	45
354	In vitro co-cultures of human gut bacterial species as predicted from co-occurrence network analysis. PLoS ONE, 2018, 13, e0195161.	1.1	41
355	Intestinal-Based Diseases and Peripheral Infection Risk Associated with Gut Dysbiosis: Therapeutic use of Pre- and Probiotics and Fecal Microbiota Transplantation. , 2018, , 197-288.		0
356	Dysbiosis of the Microbiota: Therapeutic Strategies Utilizing Dietary Modification, Pro- and Prebiotics and Fecal Transplant Therapies in Promoting Normal Balance and Local GI Functions. , 2018, , 381-419.		3
357	Detrimental Effect of Broad-spectrum Antibiotics on Intestinal Microbiome Diversity in Patients After Allogeneic Stem Cell Transplantation: Lack of Commensal Sparing Antibiotics. Clinical Infectious Diseases, 2019, 68, 1303-1310.	2.9	69

#	Article	IF	CITATIONS
358	Two different Clostridium perfringens strains produce different levels of necrotic enteritis in broiler chickens. Poultry Science, 2019, 98, 6422-6432.	1.5	34
359	Microbiome and Melanoma. , 2019, , 287-302.		0
360	Microbiota: Novel Gateway Towards Personalised Medicine. Europeanization and Globalization, 2019, , 107-120.	0.1	0
361	Soluble fibre supplementation with and without a probiotic in adults with asthma: A 7-day randomised, double blind, three way cross-over trial. EBioMedicine, 2019, 46, 473-485.	2.7	67
362	Species Deletions from Microbiome Consortia Reveal Key Metabolic Interactions between Gut Microbes. MSystems, 2019, 4, .	1.7	79
363	Dietary Factors and Modulation of Bacteria Strains of Akkermansia muciniphila and Faecalibacterium prausnitzii: A Systematic Review. Nutrients, 2019, 11, 1565.	1.7	109
364	Pectin as an Alternative Feed Additive and Effects on Microbiota. , 2019, , 305-319.		1
365	In silico Approach for Unveiling the Glycoside Hydrolase Activities in Faecalibacterium prausnitzii Through a Systematic and Integrative Large-Scale Analysis. Frontiers in Microbiology, 2019, 10, 517.	1.5	8
366	Feruloylated oligosaccharides modulate the gut microbiota in vitro via the combined actions of oligosaccharides and ferulic acid. Journal of Functional Foods, 2019, 60, 103453.	1.6	40
367	A heritable subset of the core rumen microbiome dictates dairy cow productivity and emissions. Science Advances, 2019, 5, eaav8391.	4.7	218
368	Alleviation of Intestinal Inflammation by Oral Supplementation With 2-Fucosyllactose in Mice. Frontiers in Microbiology, 2019, 10, 1385.	1.5	49
369	The application of multi-particulate microcapsule containing probiotic bacteria and inulin nanoparticles in enhancing the probiotic survivability in yoghurt. Biocatalysis and Agricultural Biotechnology, 2019, 22, 101391.	1.5	29
370	Concentrates of two subsets of extracellular vesicles from cow's milk modulate symptoms and inflammation in experimental colitis. Scientific Reports, 2019, 9, 14661.	1.6	39
371	Characterization of the Cultivable Microbiota in Fresh and Stored Mature Human Breast Milk. Frontiers in Microbiology, 2019, 10, 2666.	1.5	16
372	The Microbiota-Gut-Brain Axis. Physiological Reviews, 2019, 99, 1877-2013.	13.1	2,304
373	A Reasonable Diet Promotes Balance of Intestinal Microbiota: Prevention of Precolorectal Cancer. BioMed Research International, 2019, 2019, 1-10.	0.9	37
374	Effect of Inulin-Type Carbohydrates on Insulin Resistance in Patients with Type 2 Diabetes and Obesity: A Systematic Review and Meta-Analysis. Journal of Diabetes Research, 2019, 2019, 1-13.	1.0	47
375	Microbial Mechanistic Insights into the Role of Sweet Potato Vine on Improving Health in Chinese Meishan Gilt Model. Animals, 2019, 9, 632.	1.0	6

#	Article	IF	CITATIONS
376	The gut microbiome and cardiovascular disease: current knowledge and clinical potential. American Journal of Physiology - Heart and Circulatory Physiology, 2019, 317, H923-H938.	1.5	82
377	Alcohol or Gut Microbiota: Who Is the Guilty?. International Journal of Molecular Sciences, 2019, 20, 4568.	1.8	106
378	<p>Butyrate production in patients with end-stage renal disease</p> . International Journal of Nephrology and Renovascular Disease, 2019, Volume 12, 87-101.	0.8	14
379	Dietary Fiber in Bilberry Ameliorates Pre-Obesity Events in Rats by Regulating Lipid Depot, Cecal Short-Chain Fatty Acid Formation and Microbiota Composition. Nutrients, 2019, 11, 1350.	1.7	17
380	The rapid chemically induced corrosion of concrete sewers at high H2S concentration. Water Research, 2019, 162, 95-104.	5.3	55
381	A Small In Vitro Fermentation Model for Screening the Gut Microbiota Effects of Different Fiber Preparations. International Journal of Molecular Sciences, 2019, 20, 1925.	1.8	38
382	Effects of synbiotics containing <i>Bifidobacterium animalis</i> subsp. <i>lactis</i> GCL2505 and inulin on intestinal bifidobacteria: A randomized, placebo ontrolled, crossover study. Food Science and Nutrition, 2019, 7, 1828-1837.	1.5	23
383	Effect of raw potato starch on the gut microbiome and metabolome in mice. International Journal of Biological Macromolecules, 2019, 133, 37-43.	3.6	35
384	Procyanidin—Cell Wall Interactions within Apple Matrices Decrease the Metabolization of Procyanidins by the Human Gut Microbiota and the Anti-Inflammatory Effect of the Resulting Microbial Metabolome In Vitro. Nutrients, 2019, 11, 664.	1.7	42
385	Microbiome and Melanoma. , 2019, , 1-16.		0
386	Gut Microbiota and Healthy Aging. , 2019, , .		0
387	Simplified Intestinal Microbiota to Study Microbe-Diet-Host Interactions in a Mouse Model. Cell Reports, 2019, 26, 3772-3783.e6.	2.9	61
388	Dietary raisin intake has limited effect on gut microbiota composition in adult volunteers. Nutrition Journal, 2019, 18, 14.	1.5	20
389	A prospective randomized, double-blind, placebo-controlled, dose-response relationship study to investigate efficacy of fructo-oligosaccharides (FOS) on human gut microflora. Scientific Reports, 2019, 9, 5473.	1.6	96
390	The role of diet and intestinal microbiota in the development of metabolic syndrome. Journal of Nutritional Biochemistry, 2019, 70, 1-27.	1.9	116
391	Chapter 18 Cross-feeding during human colon fermentation. , 2019, , 313-338.		1
392	L-Arabinose Elicits Gut-Derived Hydrogen Production and Ameliorates Metabolic Syndrome in C57BL/6J Mice on High-Fat-Diet. Nutrients, 2019, 11, 3054.	1.7	37
393	Nondigestible carbohydrates, butyrate, and butyrate-producing bacteria. Critical Reviews in Food Science and Nutrition, 2019, 59, S130-S152.	5.4	271

	CITATION	CITATION REPORT	
#	Article	IF	CITATIONS
394	Yeast cultures expressing the Ffase from Schwanniomyces occidentalis, a simple system to produce the potential prebiotic sugar 6-kestose. Applied Microbiology and Biotechnology, 2019, 103, 279-289.	1.7	17
395	Whole grain-rich diet reduces body weight and systemic low-grade inflammation without inducing major changes of the gut microbiome: a randomised cross-over trial. Gut, 2019, 68, 83-93.	6.1	278
396	The effect of resistant dextrin as a prebiotic on metabolic parameters and androgen level in women with polycystic ovarian syndrome: a randomized, triple-blind, controlled, clinical trial. European Journal of Nutrition, 2019, 58, 629-640.	1.8	54
397	Potential for enriching next-generation health-promoting gut bacteria through prebiotics and other dietary components. Gut Microbes, 2020, 11, 1-20.	4.3	174
398	Untapped "-omics― the microbial metagenome, estrobolome, and their influence on the development of breast cancer and response to treatment. Breast Cancer Research and Treatment, 2020, 179, 287-300.	1.1	33
399	Impact of kestose supplementation on the healthy adult microbiota in inÂvitro fecal batch cultures. Anaerobe, 2020, 61, 102076.	1.0	11
400	Developments in understanding and applying prebiotics in research and practice—an ISAPP conference paper. Journal of Applied Microbiology, 2020, 128, 934-949.	1.4	85
401	Anthocyanin-enriched bilberry extract attenuates glycaemic response in overweight volunteers without changes in insulin. Journal of Functional Foods, 2020, 64, 103597.	1.6	29
402	<i>Faecalibacterium prausnitzii</i> â€derived microbial antiâ€inflammatory molecule regulates intestinal integrity in diabetes mellitus mice via modulating tight junction protein expression. Journal of Diabetes, 2020, 12, 224-236.	0.8	107
403	Gut microbiome and cancer immunotherapy. Journal of Cellular Physiology, 2020, 235, 4082-4088.	2.0	30
404	Microbial succession during wheat bran fermentation and colonisation by human faecal microbiota as a result of niche diversification. ISME Journal, 2020, 14, 584-596.	4.4	30
405	Microbiotaâ€dependent and â€independent effects of dietary fibre on human health. British Journal of Pharmacology, 2020, 177, 1363-1381.	2.7	72
406	Riboflavin Supplementation in Patients with Crohn's Disease [the RISE-UP study]. Journal of Crohn's and Colitis, 2020, 14, 595-607.	0.6	63
407	Roseburia spp. Abundance Associates with Alcohol Consumption in Humans and Its Administration Ameliorates Alcoholic Fatty Liver in Mice. Cell Host and Microbe, 2020, 27, 25-40.e6.	5.1	131
408	An evaluation of the prebiotic potential of microbial levans from Erwinia sp. 10119. Journal of Functional Foods, 2020, 64, 103668.	1.6	34
409	Kestose supplementation exerts bifidogenic effect within fecal microbiota and increases fecal butyrate concentration in dogs. Journal of Veterinary Medical Science, 2020, 82, 1-8.	0.3	22
410	Health and disease markers correlate with gut microbiome composition across thousands of people. Nature Communications, 2020, 11, 5206.	5.8	378
411	Interactive effect of 2 dietary calcium and phytase levels on broilers challenged with subclinical necrotic enteritis: part 1—broiler performance, gut lesions and pH, bacterial counts, and apparent ileal digestibility. Poultry Science, 2020, 99, 4861-4873.	1.5	9

ARTICLE IF CITATIONS # Whole grain cereal fibers and their support of the gut commensal Clostridia for health. Bioactive 412 1.5 9 Carbohydrates and Dietary Fibre, 2020, 24, 100245. Exploiting the gut microbiota's fermentation capabilities towards disease prevention. Journal of 1.4 Pharmaceutical and Biomedical Analysis, 2020, 189, 113469. Effects of banana powder (Musa acuminata Colla) on the composition of human fecal microbiota and 414 1.5 6 metabolic output using in vitro fermentation. Journal of Food Science, 2020, 85, 2554-2564. Prebiotics, Synbiotics, and Colonic Foods., 2020, , 797-808.e4. Characterization of the Extracellular Fructanase FruA in <i>Lactobacillus crispatus</i> Contribution to Fructan Hydrolysis in Breadmaking. Journal of Agricultural and Food Chemistry, 416 2.4 24 2020, 68, 8637-8647. A novel distinctive form of identification for differential diagnosis of irritable bowel syndrome, 0.3 inflammatory bowel disease, and healthy controls. GastroHep, 2020, 2, 193-204. Maturation of the gut microbiome during the first year of life contributes to the protective farm 418 202 15.2effect on childhood asthma. Nature Medicine, 2020, 26, 1766-1775. Association of Moderate Beer Consumption with the Gut Microbiota and SCFA of Healthy Adults. 419 1.7 14 Molecules, 2020, 25, 4772. Effects of Low and High FODMAP Diets on Human Gastrointestinal Microbiota Composition in Adults 420 1.6 41 with Intestinal Diseases: A Systematic Review. Microorganisms, 2020, 8, 1638. Prevalent Human Gut Bacteria Hydrolyse and Metabolise Important Food-Derived Mycotoxins and 1.5 Masked Mycotoxins. Toxins, 2020, 12, 654. Gut Microbiota Resilience: Definition, Link to Health and Strategies for Intervention. Frontiers in 422 1.5 82 Microbiology, 2020, 11, 572921. Short chain fatty acids in human gut and metabolic health. Beneficial Microbes, 2020, 11, 411-455. 1.0 435 Salmonella enterica Serovar Typhimurium Temporally Modulates the Enteric Microbiota and Host 424 Responses To Overcome Colonization Resistance in Swine. Applied and Environmental Microbiology, 1.4 18 2020, 86, . Association of Bacteroides acidifaciens relative abundance with high-fibre diet-associated 425 1.7 radiosensitisation. BMC Biology, 2020, 18, 102. Yeast Î²-glucan, a potential prebiotic, showed a similar probiotic activity to inulin. Food and Function, 426 37 2.1 2020, 11, 10386-10396. High-Dietary Fiber Intake Alleviates Antenatal Obesity-Induced Postpartum Depression: Roles of Gut 427 Microbiota and Microbial Metabolite Short-chain Fatty Acid Involved. Journal of Agricultural and 2.4 Food Chemistry, 2020, 68, 13697-13710. The Influence of Probiotics on the Firmicutes/Bacteroidetes Ratio in the Treatment of Obesity and 428 1.6 713 Inflammatory Bowel disease. Microorganisms, 2020, 8, 1715. Feruloylated oligosaccharides and ferulic acid alter gut microbiome to alleviate diabetic syndrome. 429 Food Research International, 2020, 137, 109410.

ARTICLE IF CITATIONS # The critical role of Faecalibacterium prausnitzii in human health: An overview. Microbial 430 1.3 102 Pathogenesis, 2020, 149, 104344. Over-processed meat and bone meal and phytase effects on broilers challenged with subclinical necrotic enteritis: Part 1. Performance, intestinal lesions and pH, bacterial counts and apparent ileal 2.1 digestibility. Animal Nutrition, 2020, 6, 313-324. Isolation and Quantification of Uremic Toxin Precursor-Generating Gut Bacteria in Chronic Kidney 432 1.8 67 Disease Patients. International Journal of Molecular Sciences, 2020, 21, 1986. A Novel Non-Digestible, Carrot-Derived Polysaccharide (cRG-I) Selectively Modulates the Human Gut Microbiota while Promoting Gut Barrier Integrity: An Integrated In Vitro Approach. Nutrients, 2020, 44 12, 1917. Cecal Butyrate (Not Propionate) Was Connected with Metabolism-Related Chemicals of Mice, Based on 434 the Different Effects of the Two <i>Inonotus obliguus</i> Extracts on Obesity and Their Mechanisms. 12 1.6 ACS Omega, 2020, 5, 16690-16700. Effects of Rich in Î'-Glucans Edible Mushrooms on Aging Gut Microbiota Characteristics: An In Vitro Study. Molecules, 2020, 25, 2806. 1.7 High-resolution temporal profiling of the human gut microbiome reveals consistent and cascading 436 3.6 18 alterations in response to dietary glycans. Genome Medicine, 2020, 12, 59. Biochemical characterization of a novel thermostable DFA I-forming inulin fructotransferases from 1.6 Streptomyces peucetius subsp. caesius ATCC 27952. Enzyme and Microbial Technology, 2020, 137, 109519. Rational use of prebiotics for gut microbiota alterations: Specific bacterial phylotypes and related 438 70 1.6 mechanisms. Journal of Functional Foods, 2020, 66, 103838. Microbiome and Breast Cancer: New Role for an Ancient Population. Frontiers in Oncology, 2020, 10, 1.3 120. Study of the gut Microbiome Profile in Children with Autism Spectrum Disorder: a Single Tertiary 440 1.1 39 Hospital Experience. Journal of Molecular Neuroscience, 2020, 70, 887-896. The effects of carbohydrate structure on the composition and functionality of the human gut microbiota. Trends in Food Science and Technology, 2020, 97, 233-248. Synbiotics Alter Fecal Microbiomes, But Not Liver Fat or Fibrosis, in a Randomized Trial of Patients 442 0.6 123 With Nonalcoholic Fatty Liver Disease. Gastroenterology, 2020, 158, 1597-1610.e7. Microbial-Based and Microbial-Targeted Therapies for Inflammatory Bowel Diseases. Digestive Diseases 443 1.1 and Sciences, 2020, 65, 757-788 Prebiotics metabolism by gut-isolated probiotics. Journal of Food Science and Technology, 2020, 57, 444 1.4 27 2786-2799. Effect of amount of milk replacer fed and the processing of corn in starter on growth performance, 445 nutrient digestibility, and rumen and fecal fibrolytic bacteria of dairy calves. Journal of Dairy Science, 1.4 2020, 103, 2186-2199. Role of Dietary Nutrients in the Modulation of Gut Microbiota: A Narrative Review. Nutrients, 2020, 446 1.7 265 12, 381. Effect of fructans, prebiotics and fibres on the human gut microbiome assessed by 16S rRNA-based 447

CITATION REPORT

approaches: a review. Beneficial Microbes, 2020, 11, 101-129.

#	Article	IF	CITATIONS
448	Mechanisms of Action of Prebiotics and Their Effects on Gastro-Intestinal Disorders in Adults. Nutrients, 2020, 12, 1037.	1.7	108
450	Gut microbiome: A possible common therapeutic target for treatment of atherosclerosis and cancer. Seminars in Cancer Biology, 2021, 70, 85-97.	4.3	21
451	Bacillus amyloliquefaciens CECT 5940 improves performance and gut function in broilers fed different levels of protein and/or under necrotic enteritis challenge. Animal Nutrition, 2021, 7, 185-197.	2.1	16
452	Probiotics as Live Bio-therapeutics: Prospects and Perspectives. Microorganisms for Sustainability, 2021, , 83-120.	0.4	3
453	MiR-21 Is Remotely Governed by the Commensal Bacteria and Impairs Anti-TB Immunity by Down-Regulating IFN-Î ³ . Frontiers in Microbiology, 2020, 11, 512581.	1.5	6
454	Gut microbiome changes induced by a diet rich in fruits and vegetables. International Journal of Food Sciences and Nutrition, 2021, 72, 665-669.	1.3	34
455	Dietary fibre in gastrointestinal health and disease. Nature Reviews Gastroenterology and Hepatology, 2021, 18, 101-116.	8.2	367
456	Review article: Probiotics, prebiotics and dietary approaches during COVID-19 pandemic. Trends in Food Science and Technology, 2021, 108, 187-196.	7.8	74
457	Gut Microbiome and Gastrointestinal Disorders. The Microbiomes of Humans, Animals, Plants, and the Environment, 2021, , 41-91.	0.2	0
458	Gut Microbiome and Diet. , 2021, , 12-12.		Ο
459	Human Gut Microbiota and the Influence of Probiotics, Prebiotics, and Micronutrients. , 2022, , 271-288.		1
460	Enteropathogenic Infections: Organoids Go Bacterial. Stem Cells International, 2021, 2021, 1-14.	1.2	7
461	Inulin as a Clinical Therapeutic Intervention in Metabolic Associated Fatty Liver Disease. Food Reviews International, 0, , 1-13.	4.3	0
462	Resveratrol as Anti-Obesity and Anticancer Agent. , 2021, , 185-208.		2
463	Application of genomics, transcriptomics, and proteomics in probiotic research. , 2021, , 235-256.		1
465	Fecal Microbiota Nutrient Utilization Potential Suggests Mucins as Drivers for Initial Gut Colonization of Mother-Child-Shared Bacteria. Applied and Environmental Microbiology, 2021, 87, .	1.4	5
466	Dietary phytochemicals that influence gut microbiota: Roles and actions as anti-Alzheimer agents. Critical Reviews in Food Science and Nutrition, 2022, 62, 5140-5166.	5.4	5
467	Study of gut microbiome in Egyptian patients with autoimmune thyroid diseases. International Journal of Clinical Practice, 2021, 75, e14038.	0.8	17

#	Article	IF	CITATIONS
468	Impact of 2′-Fucosyllactose on Gut Microbiota Composition in Adults with Chronic Gastrointestinal Conditions: Batch Culture Fermentation Model and Pilot Clinical Trial Findings. Nutrients, 2021, 13, 938.	1.7	21
469	Dietary Influences on the Microbiota–Gut–Brain Axis. International Journal of Molecular Sciences, 2021, 22, 3502.	1.8	37
470	Association between Dietary Habits and Fecal Microbiota Composition in Irritable Bowel Syndrome Patients: A Pilot Study. Nutrients, 2021, 13, 1479.	1.7	15
471	The importance of prebiotics in the regulation of metabolic syndrome disorders. Ukrainian Therapeutical Journal, 2021, , .	0.0	0
472	High-Fiber, Whole-Food Dietary Intervention Alters the Human Gut Microbiome but Not Fecal Short-Chain Fatty Acids. MSystems, 2021, 6, .	1.7	69
473	Next-Generation Probiotics and Their Metabolites in COVID-19. Microorganisms, 2021, 9, 941.	1.6	35
474	The metabolic profile of Bifidobacterium dentium reflects its status as a human gut commensal. BMC Microbiology, 2021, 21, 154.	1.3	13
475	Monoglyceride Blend Reduces Mortality, Improves Nutrient Digestibility, and Intestinal Health in Broilers Subjected to Clinical Necrotic Enteritis Challenge. Animals, 2021, 11, 1432.	1.0	8
476	Gut microbiome variation modulates the effects of dietary fiber on host metabolism. Microbiome, 2021 9, 117	4.9	61
477	Dietary Fibre Modulates the Gut Microbiota. Nutrients, 2021, 13, 1655.	1.7	225
477 479	Dietary Fibre Modulates the Gut Microbiota. Nutrients, 2021, 13, 1655. The Modification of the Gut Microbiota via Selected Specific Diets in Patients with Crohn's Disease. Nutrients, 2021, 13, 2125.	1.7	225 18
477 479 480	 Dietary Fibre Modulates the Gut Microbiota. Nutrients, 2021, 13, 1655. The Modification of the Gut Microbiota via Selected Specific Diets in Patients with Crohn's Disease. Nutrients, 2021, 13, 2125. Emerging prospects of macro- and microalgae as prebiotic. Microbial Cell Factories, 2021, 20, 112. 	1.7 1.7 1.9	225 18 68
477 479 480 481	 Dietary Fibre Modulates the Gut Microbiota. Nutrients, 2021, 13, 1655. The Modification of the Gut Microbiota via Selected Specific Diets in Patients with Crohn's Disease. Nutrients, 2021, 13, 2125. Emerging prospects of macro- and microalgae as prebiotic. Microbial Cell Factories, 2021, 20, 112. Possible actions of inulin as prebiotic polysaccharide: A review. Food Frontiers, 2021, 2, 407-416. 	1.7 1.7 1.9 3.7	225 18 68 35
477 479 480 481 482	Dietary Fibre Modulates the Gut Microbiota. Nutrients, 2021, 13, 1655. The Modification of the Gut Microbiota via Selected Specific Diets in Patients with Crohn's Disease. Nutrients, 2021, 13, 2125. Emerging prospects of macro- and microalgae as prebiotic. Microbial Cell Factories, 2021, 20, 112. Possible actions of inulin as prebiotic polysaccharide: A review. Food Frontiers, 2021, 2, 407-416. Highlighting the Relevance of Gut Microbiota Manipulation in Inflammatory Bowel Disease. Diagnostics, 2021, 11, 1090.	1.7 1.7 1.9 3.7 1.3	225 18 68 35
477 479 480 481 482 483	Dietary Fibre Modulates the Cut Microbiota. Nutrients, 2021, 13, 1655. The Modification of the Cut Microbiota via Selected Specific Diets in Patients with Crohn's Disease. Nutrients, 2021, 13, 2125. Emerging prospects of macro- and microalgae as prebiotic. Microbial Cell Factories, 2021, 20, 112. Possible actions of inulin as prebiotic polysaccharide: A review. Food Frontiers, 2021, 2, 407-416. Highlighting the Relevance of Cut Microbiota Manipulation in Inflammatory Bowel Disease. Diagnostics, 2021, 11, 1090. Role of prebiotics in enhancing the function of next-generation probiotics in gut microbiota. Critical Reviews in Food Science and Nutrition, 2023, 63, 1037-1054.	1.7 1.7 1.9 3.7 1.3 5.4	 225 18 68 35 43 27
477 479 480 481 482 483 483	 Dietary Fibre Modulates the Gut Microbiota. Nutrients, 2021, 13, 1655. The Modification of the Gut Microbiota via Selected Specific Diets in Patients with Crohn's Disease. Nutrients, 2021, 13, 2125. Emerging prospects of macro- and microalgae as prebiotic. Microbial Cell Factories, 2021, 20, 112. Possible actions of inulin as prebiotic polysaccharide: A review. Food Frontiers, 2021, 2, 407-416. Highlighting the Relevance of Gut Microbiota Manipulation in Inflammatory Bowel Disease. Diagnostics, 2021, 11, 1090. Role of prebiotics in enhancing the function of next-generation probiotics in gut microbiota. Critical Reviews in Food Science and Nutrition, 2023, 63, 1037-1054. Nutrient, Fibre, and FODMAP Intakes and Food-related Quality of Life in Patients with Inflammatory Bowel Disease, Journal of Crohn's and Colitis, 2021, 15, 2041-2053. 	1.7 1.7 1.9 3.7 1.3 5.4	225 18 68 35 43 27 23
 477 479 480 481 482 483 484 485 	Dietary Fibre Modulates the Cut Microbiota. Nutrients, 2021, 13, 1655. The Modification of the Gut Microbiota via Selected Specific Diets in Patients with Crohn's Disease. Nutrients, 2021, 13, 2125. Emerging prospects of macro- and microalgae as prebiotic. Microbial Cell Factories, 2021, 20, 112. Possible actions of inulin as prebiotic polysaccharide: A review. Food Frontiers, 2021, 2, 407-416. Highlighting the Relevance of Gut Microbiota Manipulation in Inflammatory Bowel Disease. Diagnostics, 2021, 11, 1090. Role of prebiotics in enhancing the function of next-generation probiotics in gut microbiota. Critical Reviews in Food Science and Nutrition, 2023, 63, 1037-1054. Nutrient, Fibre, and FODMAP Intakes and Food-related Quality of Life in Patients with Inflammatory Bowel Disease, and Their Relationship with Gastrointestinal Symptoms of Differing Aetiologies. Journal of Crohn's and Colitis, 2021, 15, 2041-2053. A Microencapsulated Mixture of Eugenol and Garlic Tincture Supplementation Mitigates the Effect of Necrotic Enteritis on Intestinal Integrity and Increases Goblet Cells in Broilers. Microorganisms, 2021, 9, 1451.	1.7 1.7 1.9 3.7 1.3 5.4 0.6 1.6	 225 18 68 35 43 27 23 6

#	Article	IF	CITATIONS
487	Pushing the organic loading rate in electrochemically assisted anaerobic digestion of blackwater at ambient temperature: Insights into microbial community dynamics. Science of the Total Environment, 2021, 781, 146694.	3.9	15
488	Prebiotic fructans have greater impact on luminal microbiology and CD3+ T cells in healthy siblings than patients with Crohn's disease: A pilot study investigating the potential for primary prevention of inflammatory bowel disease. Clinical Nutrition, 2021, 40, 5009-5019.	2.3	12
489	Commensal Clostridiales strains mediate effective anti-cancer immune response against solid tumors. Cell Host and Microbe, 2021, 29, 1573-1588.e7.	5.1	71
490	Buffered formic acid and a monoglyceride blend coordinately alleviate subclinical necrotic enteritis impact in broiler chickens. Poultry Science, 2021, 100, 101214.	1.5	10
491	Are all dietary fibers equal for patients with inflammatory bowel disease? A systematic review of randomized controlled trials. Nutrition Reviews, 2022, 80, 1179-1193.	2.6	14
492	The Prebiotic Potential of Inulin-Type Fructans: A Systematic Review. Advances in Nutrition, 2022, 13, 492-529.	2.9	56
493	Therapeutic Potential of Various Plant-Based Fibers to Improve Energy Homeostasis via the Gut Microbiota. Nutrients, 2021, 13, 3470.	1.7	20
494	The possible role of increased consumption of ultra-processed food products in the development of frailty: a threat for healthy ageing?. British Journal of Nutrition, 2022, 128, 461-466.	1.2	6
495	Organic acid blends improve intestinal integrity, modulate short-chain fatty acids profiles and alter microbiota of broilers under necrotic enteritis challenge. Animal Nutrition, 2022, 8, 82-90.	2.1	22
496	Gut microbiome in cirrhotic hepatitis C virus patients with and without hepatocellular carcinoma. Egyptian Liver Journal, 2021, 11, .	0.3	2
497	Fostering next-generation probiotics in human gut by targeted dietary modulation: An emerging perspective. Food Research International, 2021, 150, 110716.	2.9	43
498	Similarities and differences of oligo/poly-saccharides' impact on human fecal microbiota identified by in vitro fermentation. Applied Microbiology and Biotechnology, 2021, 105, 7475-7486.	1.7	8
499	Mining the Gut Microbiota for Microbial-Based Therapeutic Strategies in Cancer Immunotherapy. Frontiers in Oncology, 2021, 11, 721249.	1.3	3
500	Novel insights in the relationship of gut microbiota and coronary artery diseases. Critical Reviews in Food Science and Nutrition, 2022, 62, 3738-3750.	5.4	14
501	Optimization of probiotic therapeutics using machine learning in an artificial human gastrointestinal tract. Scientific Reports, 2021, 11, 1067.	1.6	17
502	Cashew nut shell liquid potentially mitigates methane emission from the feces of Thai native ruminant livestock by modifying fecal microbiota. Animal Science Journal, 2021, 92, e13614.	0.6	3
503	Gut Microbiome and Obesity. , 2014, , 73-82.		2
504	Gut Microbiome and Obesity. , 2014, , 73-82.		3

#	Article	IF	CITATIONS
505	The Microbiome in Immuno-oncology. Advances in Experimental Medicine and Biology, 2020, 1244, 325-334.	0.8	7
506	Bioactive Carbohydrate: Prebiotics and Colorectal Cancer. , 2016, , 57-82.		2
507	Prebiotic effect of inulin-type fructans on faecal microbiota and short-chain fatty acids in type 2 diabetes: a randomised controlled trial. European Journal of Nutrition, 2020, 59, 3325-3338.	1.8	94
508	The impact of nutrition on intestinal bacterial communities. Current Opinion in Microbiology, 2017, 38, 59-65.	2.3	111
509	Alternatives to antibiotics for farm animals CAB Reviews: Perspectives in Agriculture, Veterinary Science, Nutrition and Natural Resources, 0, , 1-15.	0.6	40
510	The interaction between microbiome and host central nervous system: the gut-brain axis as a potential new therapeutic target in the treatment of obesity and cardiometabolic disease. Expert Opinion on Therapeutic Targets, 2020, 24, 639-653.	1.5	16
511	Effects of n-acetyl-cysteine supplementation in late gestational diet on maternal-placental redox status, placental NLRP3 inflammasome, and fecal microbiota in sows1. Journal of Animal Science, 2019, 97, 1757-1771.	0.2	10
513	Gut microbiome-Mediterranean diet interactions in improving host health. F1000Research, 2019, 8, 699.	0.8	81
514	Prebiotic Effects of Wheat Arabinoxylan Related to the Increase in Bifidobacteria, Roseburia and Bacteroides/Prevotella in Diet-Induced Obese Mice. PLoS ONE, 2011, 6, e20944.	1.1	383
515	Dietary Fat Content and Fiber Type Modulate Hind Gut Microbial Community and Metabolic Markers in the Pig. PLoS ONE, 2013, 8, e59581.	1.1	94
516	Short-Chain Fructo-Oligosaccharides Modulate Intestinal Microbiota and Metabolic Parameters of Humanized Gnotobiotic Diet Induced Obesity Mice. PLoS ONE, 2013, 8, e71026.	1.1	75
517	Functional Metagenomics Reveals Novel Pathways of Prebiotic Breakdown by Human Gut Bacteria. PLoS ONE, 2013, 8, e72766.	1.1	78
518	Antioxidants Keep the Potentially Probiotic but Highly Oxygen-Sensitive Human Gut Bacterium Faecalibacterium prausnitzii Alive at Ambient Air. PLoS ONE, 2014, 9, e96097.	1.1	69
519	First-Pass Meconium Samples from Healthy Term Vaginally-Delivered Neonates: An Analysis of the Microbiota. PLoS ONE, 2015, 10, e0133320.	1.1	134
520	Intestinal Microbiota and Microbial Metabolites Are Changed in a Pig Model Fed a High-Fat/Low-Fiber or a Low-Fat/High-Fiber Diet. PLoS ONE, 2016, 11, e0154329.	1.1	154
521	An In Vitro Approach to Study Effects of Prebiotics and Probiotics on the Faecal Microbiota and Selected Immune Parameters Relevant to the Elderly. PLoS ONE, 2016, 11, e0162604.	1.1	56
522	Comparison of antibiotic supplementation versus a yeast-based prebiotic on the cecal microbiome of commercial broilers. PLoS ONE, 2017, 12, e0182805.	1.1	20
523	Butyrate modulates diabetes-linked gut dysbiosis: epigenetic and mechanistic modifications. Journal of Molecular Endocrinology, 2020, 64, 29-42.	1.1	45

#	Article	IF	Citations
524	Shaping the human microbiome with prebiotic foods – current perspectives for continued development. Food Science and Technology Bulletin, 2010, 7, 49-64.	0.5	4
525	N-acetyl cysteine, inulin and the two as a combined therapy ameliorate cognitive decline in testosterone-deprived rats. Aging, 2019, 11, 3445-3462.	1.4	17
526	Influence of functional ingredients of baby food on immunity. Meditsinskiy Sovet, 2019, , 37-44.	0.1	1
527	Dietary Chicory Inulin-Rich Meal Exerts Greater Healing Effects than Fructooligosaccharide Preparation in Rats with Trinitrobenzenesulfonic Acid-Induced Necrotic Colitis. Polish Journal of Food and Nutrition Sciences, 2019, 69, 147-155.	0.6	10
528	Intestinal microbiota, obesity and prebiotics. Polish Journal of Microbiology, 2015, 64, 93-100.	0.6	35
529	Managing the Microbiome: How the Gut Influences Development and Disease. Nutrients, 2021, 13, 74.	1.7	11
530	Probiotics, Prebiotics and Immunomodulation of Gut Mucosal Defences: Homeostasis and Immunopathology. Nutrients, 2013, 5, 1869-1912.	1.7	392
531	Exploring the food-gut axis in immunotherapy response of cancer patients. World Journal of Gastroenterology, 2020, 26, 4919-4932.	1.4	17
532	Galectin-9 Induced by Dietary Prebiotics Regulates Immunomodulation to Reduce Atopic Dermatitis Symptoms in 1-Chloro-2,4-Dinitrobenzene (DNCB)-Treated NC/Nga Mice. Journal of Microbiology and Biotechnology, 2020, 30, 1343-1354.	0.9	7
533	Cross Talk Between Functional Foods and Gut Health. Health Information Systems and the Advancement of Medical Practice in Developing Countries, 0, , 195-216.	0.1	1
534	Nutrition and the gut microbiome during critical illness: A new insight of nutritional therapy. Saudi Journal of Gastroenterology, 2020, 26, 290.	0.5	14
535	The Role of Butyrate in Attenuating Pathobiont-Induced Hyperinflammation. Immune Network, 2020, 20, e15.	1.6	84
536	Bifidobacterium thermophilum RBL67 Inhibits Salmonella enterica Serovar Typhimurium in an In vitro Intestinal Fermentation Model. Journal of Food & Nutritional Disorders, 2014, s1, .	0.1	3
537	— Invited Review — Metagenomic investigation of gastrointestinal microbiome in cattle. Asian-Australasian Journal of Animal Sciences, 2017, 30, 1515-1528.	2.4	41
538	Gut bacteria are rarely shared by co-hospitalized premature infants, regardless of necrotizing enterocolitis development. ELife, 2015, 4, .	2.8	111
539	Inulin-type fructan improves diabetic phenotype and gut microbiota profiles inÂrats. PeerJ, 2018, 6, e4446.	0.9	127
540	Dietary fibre complexity and its influence on functional groups of the human gut microbiota. Proceedings of the Nutrition Society, 2021, 80, 386-397.	0.4	9
541	Shitty food-based world-making: Recasting human microbiome relationships beyond shame and taboo. Futures, 2022, 136, 102853.	1.4	5

#	Article	IF	CITATIONS
542	In vitro Prebiotic Effect of Bread-Making Process in Inflammatory Bowel Disease Microbiome. Frontiers in Microbiology, 2021, 12, 716307.	1.5	3
543	Prebiotics and probiotics: potential strategies for reducing travellers' diarrhoea in athletes competing abroad. Food Science and Technology Bulletin, 2010, 6, 105-114.	0.5	0
544	Impact of Intestinal Microbial Communities upon Health. , 2012, , 243-252.		2
545	Inulin and Health Benefits. , 2015, , 675-715.		3
546	Inflammatory Bowel Diseases: What Do We Still Need to Investigate?. Open Journal of Gastroenterology, 2015, 05, 146-154.	0.1	1
547	Estrategias de suplementacion y función gastrointestinal en atletas de resistencia. Revista Espanola De Nutricion Humana Y Dietetica, 2015, 19, 167.	0.1	1
550	Study of the Gut Enterotypes in Egyptian Children with Autism Spectrum Disorder. Microbiology Research Journal International, 2018, 23, 1-9.	0.2	0
552	How Gut Micro-organisms Make Use of Available Carbohydrates. Fascinating Life Sciences, 2020, , 81-96.	0.5	1
554	Present and Future Therapeutic Approaches to Barrier Dysfunction. Frontiers in Nutrition, 2021, 8, 718093.	1.6	21
556	The Potential Utility of Prebiotics to Modulate Alzheimer's Disease: A Review of the Evidence. Microorganisms, 2021, 9, 2310.	1.6	15
557	Molecular characterization of the gut microbiome in egyptian patients with remitting relapsing multiple sclerosis. Multiple Sclerosis and Related Disorders, 2022, 57, 103354.	0.9	5
558	EDIBLE FRUITS EXTRACTS AFFECT INTESTINAL MICROBIOTA ISOLATED FROM PATIENTS WITH NONCOMMUNICABLE DISEASES ASSOCIATED WITH CHRONIC INFLAMMATION. Biotechnologia Acta, 2020, 13, 87-100.	0.3	2
559	Gastrointestinal Development and Microbiota Responses of Geese to Honeycomb Flavonoids Supplementation. Frontiers in Veterinary Science, 2021, 8, 739237.	0.9	5
560	Health benefits of inulin-type fructan on gut microbiome, digestive health, immunity, and nutrition. , 2022, , 365-376.		1
561	Sources and levels of copper affect liver copper profile, intestinal morphology and cecal microbiota population of broiler chickens fed wheat-soybean meal diets. Scientific Reports, 2022, 12, 2249.	1.6	10
562	An Integrative Multiomics Approach to Characterize Prebiotic Inulin Effects on Faecalibacterium prausnitzii. Frontiers in Bioengineering and Biotechnology, 2022, 10, 825399.	2.0	12
563	Potential for Prebiotic Stabilized Cornus mas L. Lyophilized Extract in the Prophylaxis of Diabetes Mellitus in Streptozotocin Diabetic Rats. Antioxidants, 2022, 11, 380.	2.2	11
564	Gut Microbiota: A Promising Milestone in Enhancing the Efficacy of PD1/PD-L1 Blockade Therapy. Frontiers in Oncology, 2022, 12, 847350.	1.3	6

C	E A 751	ON	DEDC	NDT.
				ו גוו
\sim			ICLI C	

#	Article	IF	CITATIONS
565	Non-starch polysaccharide-degrading enzymes may improve performance when included in wheat- but not maize-based diets fed to broiler chickens under subclinical necrotic enteritis challenge. Animal Nutrition, 2022, 10, 54-67.	2.1	4
566	Higher total faecal short-chain fatty acid concentrations correlate with increasing proportions of butyrate and decreasing proportions of branched-chain fatty acids across multiple human studies. Gut Microbiome, 2022, 3, .	0.8	8
567	Classification of the Occurrence of Dyslipidemia Based on Gut Bacteria Related to Barley Intake. Frontiers in Nutrition, 2022, 9, 812469.	1.6	8
568	Can Supplemented Skim Milk (SKM) Boost Your Gut Health?. Fermentation, 2022, 8, 126.	1.4	5
569	Effect of daily co-exposure to inulin and chlorpyrifos on selected microbiota endpoints in the SHIME® model. Environmental Pollution, 2022, 302, 118961.	3.7	2
570	Restoring an adequate dietary fiber intake by inulin supplementation: a pilot study showing an impact on gut microbiota and sociability in alcohol use disorder patients. Gut Microbes, 2022, 14, 2007042.	4.3	15
571	The Protective Effects of Inulin-Type Fructans Against High-Fat/Sucrose Diet-Induced Gestational Diabetes Mice in Association With Gut Microbiota Regulation. Frontiers in Microbiology, 2022, 13, 832151.	1.5	14
584	Supplementation of reduced protein diets with. Animal Production Science, 2022, 62, 1250-1265.	0.6	4
585	Role of the gut microbiome in three major psychiatric disorders. Psychological Medicine, 2022, 52, 1222-1242.	2.7	37
586	Immunotherapy and Microbiota for Targeting of Liver Tumor-Initiating Stem-like Cells. Cancers, 2022, 14, 2381.	1.7	4
587	Liquorilactobacillus satsumensis from water kefir yields α-glucan polysaccharides with prebiotic and synbiotic qualities. Carbohydrate Polymers, 2022, 290, 119515.	5.1	7
588	Microbiota Composition and Diversity in Weight Loss Population After the Intake of IQP-AE-103 in a Double-Blind, Randomized, Placebo-Controlled Study. Frontiers in Nutrition, 2022, 9, 790045.	1.6	0
589	Insights into endogenous Bifidobacterium species in the human gut microbiota during adulthood. Trends in Microbiology, 2022, 30, 940-947.	3.5	56
590	Changes in the Profile of Fecal Microbiota and Metabolites as Well as Serum Metabolites and Proteome After Dietary Inulin Supplementation in Dairy Cows With Subclinical Mastitis. Frontiers in Microbiology, 2022, 13, 809139.	1.5	7
591	Overview of Nutraceuticals and Cardiometabolic Diseases following Socio-Economic Analysis. Endocrines, 2022, 3, 255-295.	0.4	1
592	Prebiotics and the Human Gut Microbiota: From Breakdown Mechanisms to the Impact on Metabolic Health. Nutrients, 2022, 14, 2096.	1.7	25
593	Dynamic metabolic interactions and trophic roles of human gut microbes identified using a minimal microbiome exhibiting ecological properties. ISME Journal, 2022, 16, 2144-2159.	4.4	16
594	Multi-Omic Analyses Reveal Bifidogenic Effect and Metabolomic Shifts in Healthy Human Cohort Supplemented With a Prebiotic Dietary Fiber Blend. Frontiers in Nutrition, 0, 9, .	1.6	6

ARTICLE IF CITATIONS Fat substitutes and low-calorie fats: A compile of their chemical, nutritional, metabolic and 595 4.3 3 functional properties. Food Reviews International, 2023, 39, 5501-5527. The pig gut microbiota analysis techniques, a comparison. Archiva Zootehnica, 2022, 25, 90-115. 0.3 Probiotics, Prebiotics, Synbiotics, and Fermented Foods as Potential Biotics in Nutrition Improving 597 42 1.4 Health via Microbiome-Gut-Brain Axis. Fermentation, 2022, 8, 303. Bioactive polysaccharides and oligosaccharides from garlic (<i>Allium sativum</i> L.): Production, physicochemical and biological properties, and structure–function relationships. Comprehensive Reviews in Food Science and Food Safety, 2022, 21, 3033-3095. 598 5.9 Effect of chicory-derived inulin-type fructans on abundance of <i>Bifidobacterium</i> and on bowel function: a systematic review with meta-analyses. Critical Reviews in Food Science and Nutrition, 2023, 599 5.4 7 63, 12018-12035. Residual feed intake in peripartal dairy cows is associated with differences in milk fat yield, ruminal bacteria, biopolymer hydrolyzing enzymes, and circulating biomarkers of immunometabolism. Journal of Dairy Science, 2022, 105, 6654-6669. 1.4 Prebiotic Potential of a New Sweetener Based on Galactooligosaccharides and Modified Mogrosides. 601 2.4 10 Journal of Agricultural and Food Chemistry, 2022, 70, 9048-9056. A proof of concept infant-microbiota associated rat model for studying the role of gut microbiota 1.6 and alleviation potential of Cutibacterium avidum in infant colic. Frontiers in Nutrition, 0, 9, . Effect of fructooligosaccharides on the colonization of Lactobacillus rhamnosus AS 1.2466T in the 603 2.2 5 gut of mice. Food Science and Human Wellness, 2023, 12, 607-613. Study and determination of fructan-type polysaccharide content in <i>Erigeron annuus</i> L. Current 604 0.1 Issues in Pharmacy and Medical Sciences, 2022, 35, 95-98. Research trends in ulcerative colitis: A bibliometric and visualized study from 2011 to 2021. Frontiers 605 4 1.6 in Pharmacology, 0, 13, . Diet-driven microbial ecology underpins associations between cancer immunotherapy outcomes and 79 15.2 the gut microbiome. Nature Medicine, 2022, 28, 2344-2352. Is fecal microbiota transplantation a useful therapeutic intervention for psychiatric disorders? A 608 narrative review of clinical and preclinical evidence. Current Medical Research and Opinion, 2023, 39, 0.9 10 161-177. New Insights on the Role of Bioactive Food Derivatives in Neurodegeneration and Neuroprotection. Current Pharmaceutical Design, 2022, 28, 3068-3081. 609 Inulin $\hat{a} \in A$ polysaccharide: Review on its functional and prebiotic efficacy. Journal of Food Biochemistry, 610 1.2 15 2022, 46, . Hybrid metagenome assemblies link carbohydrate structure with function in the human gut 2.0 microbiome. Communications Biology, 2022, 5, . Effects of atherogenic diet supplemented with fermentable carbohydrates on metabolic responses and 612 1.1 0 plaque formation in coronary arteries using a Saddleback pig model. PLoS ONE, 2022, 17, e0275214. Inulin from Globe Artichoke Roots: A Promising Ingredient for the Production of Functional Fresh Pasta. Foods, 2022, 11, 3032.

#	Article	IF	CITATIONS
614	Gut microbiota: A target for prebiotics and probiotics in the intervention and therapy of food allergy. Critical Reviews in Food Science and Nutrition, 0, , 1-15.	5.4	3
615	Inflammatory Bowel Disease and Customized Nutritional Intervention Focusing on Gut Microbiome Balance. Nutrients, 2022, 14, 4117.	1.7	5
616	Characteristic alterations of gut microbiota in uncontrolled gout. Journal of Microbiology, 2022, 60, 1178-1190.	1.3	9
617	Potential Biotics for Nutritional Improvement of Health via Microbiome-Gut-Brain Axis. , 2022, 2022, 1-16.		4
618	The Role of the Gallbladder, the Intestinal Barrier and the Gut Microbiota in the Development of Food Allergies and Other Disorders. International Journal of Molecular Sciences, 2022, 23, 14333.	1.8	4
619	Rapamycin and inulin for third-dose vaccine response stimulation (RIVASTIM): Inulin – study protocol for a pilot, multicentre, randomised, double-blinded, controlled trial of dietary inulin to improve SARS-CoV-2 vaccine response in kidney transplant recipients. BMJ Open, 2022, 12, e062747.	0.8	3
621	Homeostasis and Dysbiosis of the Intestinal Microbiota: Comparing Hallmarks of a Healthy State with Changes in Inflammatory Bowel Disease. Microorganisms, 2022, 10, 2405.	1.6	11
622	A Non-Randomized Trial Investigating the Impact of Brown Rice Consumption on Gut Microbiota, Attention, and Short-Term Working Memory in Thai School-Aged Children. Nutrients, 2022, 14, 5176.	1.7	0
623	Metagenomic insights into the relationship between gut microbiota and residual feed intake of small-sized meat ducks. Frontiers in Microbiology, 0, 13, .	1.5	1
624	The Prebiotic Effect of an Organic Acid Mixture on Faecalibacterium prausnitzii Metabolism and Its Anti-Pathogenic Role against Vibrio parahaemolyticus in Shrimp. Biology, 2023, 12, 57.	1.3	3
625	In Vitro Fermentation of Edible Mushrooms: Effects on Faecal Microbiota Characteristics of Autistic and Neurotypical Children. Microorganisms, 2023, 11, 414.	1.6	1
627	Is there a role for microbiome-based approach in common variable immunodeficiency?. Clinical and Experimental Medicine, 2023, 23, 1981-1998.	1.9	2
628	Definition of a microbial signature as a predictor of endoscopic post-surgical recurrence in patients with Crohn's disease. Frontiers in Molecular Medicine, 0, 3, .	0.6	0
629	Deficient butyrate-producing capacity in the gut microbiome is associated with bacterial network disturbances and fatigue symptoms in ME/CFS. Cell Host and Microbe, 2023, 31, 288-304.e8.	5.1	35
630	The potential role of nondigestible Raffinose family oligosaccharides as prebiotics. Glycobiology, 2023, 33, 274-288.	1.3	3
631	Habitual consumption of high-fibre bread fortified with bean hulls increased plasma indole-3-propionic concentration and decreased putrescine and deoxycholic acid faecal concentrations in healthy volunteers. British Journal of Nutrition, 2023, 130, 1521-1536.	1.2	1
632	Application of Computational Data Modeling to a Large-Scale Population Cohort Assists the Discovery of Inositol as a Strain-Specific Substrate for Faecalibacterium prausnitzii. Nutrients, 2023, 15, 1311.	1.7	0
633	Tissue-resident Lachnospiraceae family bacteria protect against colorectal carcinogenesis by promoting tumor immune surveillance. Cell Host and Microbe, 2023, 31, 418-432.e8.	5.1	44

IF ARTICLE CITATIONS # Dietary and microbiome evidence in multiple myeloma and other plasma cell disorders. Leukemia, 2023, 634 3.3 7 37, 964-980. Mechanism determination on the interactive effects between host immunity and gut microbiome to resist consecutive hydrogen sulfide inhalation of laying hens. Poultry Science, 2023, 102, 102694. 1.5 Feeding citrus flavonoid extracts decreases bacterial endotoxin and systemic inflammation and 636 improves immunometabolic status by modulating hindgut microbiome and metabolome in lactating 2.15 dairy cows. Animal Nutrition, 2023, 13, 386-400. DT-109 ameliorates nonalcoholic steatohepatitis in nonhuman primates. Cell Metabolism, 2023, 35, New gene markers for classification and quantification of <i>Faecalibacterium</i> spp. in the human 638 1.3 1 gut. FEMS Microbiology Ecology, 2023, 99, . The Leap of Inulin Fructans from Food Industry to Medical Application. Chemistry and Biodiversity, 2023, 20, . 1.0 Gut Microbiome Variation Along A Lifestyle Gradient Reveals Threats Faced by Asian Elephants. 640 3.0 3 Genomics, Proteomics and Bioinformatics, 2023, 21, 150-163. Correlating the Gut Microbiome to Health and Disease., 2024, , 1-36. 670