Mantle Shear-Wave Velocity Structure Beneath the Have

Science 326, 1388-1390 DOI: 10.1126/science.1180165

Citation Report

	DODT	
Article	IF	CITATIONS
Lowâ€productivity Hawaiian volcanism between Kauaâ€~i and Oâ€~ahu. Geochemistry, Geophysics, Geosystems, 2010, 11, .	1.0	25
Source side seismic tomography (3STomo): A novel method to image the subsurface structure beneath seismically active region. Earthquake Science, 2010, 23, 637-643.	0.4	0
Underplating of the Hawaiian Swell: evidence from teleseismic receiver functions. Geophysical Journal International, 2010, 183, 313-329.	1.0	83
Intraplate Seamounts as a Window into Deep Earth Processes. Oceanography, 2010, 23, 42-57.	0.5	53
Dynamics and internal structure of the Hawaiian plume. Earth and Planetary Science Letters, 2010, 295, 231-240.	1.8	86
Geochemistry of sulfides in Hawaiian garnet pyroxenite xenoliths: Implications for highly siderophile elements in the oceanic mantle. Chemical Geology, 2010, 273, 180-192.	1.4	25
Variety of plumes and the fate of subducted basaltic crusts. Physics of the Earth and Planetary Interiors, 2010, 183, 366-375.	0.7	8
Age and geochemistry of volcanic rocks from the Hikurangi and Manihiki oceanic Plateaus. Geochimica Et Cosmochimica Acta, 2010, 74, 7196-7219.	1.6	140
Mantle plumes persevere. Nature Geoscience, 2011, 4, 816-817.	5.4	24
Age systematics of two young en echelon Samoan volcanic trails. Geochemistry, Geophysics, Geosystems, 2011, 12, n/a-n/a.	1.0	56
A data-adaptive, multiscale approach of finite-frequency, traveltime tomography with special		

11	A data-adaptive, multiscale approach of finite-frequency, traveltime tomography with special reference to <i>P</i> and <i>S</i> wave data from central Tibet. Journal of Geophysical Research, 2011, 116, .	3.3	59
12	Joint Receiver Function/ScS Reverberation Analysis for Examining Discontinuity Structure beneath Ocean Islands. Bulletin of the Seismological Society of America, 2011, 101, 908-914.	1.1	3
13	Identification of Source Lithology in the Hawaiian and Canary Islands: Implications for Origins. Journal of Petrology, 2011, 52, 113-146.	1.1	422
14	Role of the deep mantle in generating the compositional asymmetry of the Hawaiian mantle plume. Nature Geoscience, 2011, 4, 831-838.	5.4	195
15	Geochemical zoning of volcanic chains associated with Pacific hotspots. Nature Geoscience, 2011, 4, 874-878.	5.4	88
16	Oceanic Volcanism from the Low-velocity Zone – without Mantle Plumes. Journal of Petrology, 2011, 52, 1533-1546.	1.1	34
17	Mantle P-wave velocity structure beneath the Hawaiian hotspot. Earth and Planetary Science Letters, 2011, 303, 267-280.	1.8	64
18	Synthetic images of dynamically predicted plumes and comparison with a global tomographic model. Earth and Planetary Science Letters, 2011, 311, 351-363.	1.8	28

#

1

3

5

7

9

#	Article	IF	CITATIONS
19	Displaced helium and carbon in the Hawaiian plume. Earth and Planetary Science Letters, 2011, 312, 226-236.	1.8	26
20	Bent-shaped plumes and horizontal channel flow beneath the 660 km discontinuity. Earth and Planetary Science Letters, 2011, 312, 348-359.	1.8	42
21	On the rise of strongly tilted mantle plume tails. Physics of the Earth and Planetary Interiors, 2011, 184, 63-79.	0.7	6
22	Wavefront healing renders deep plumes seismically invisible. Geophysical Journal International, 2011, 187, 273-277.	1.0	36
23	Asymmetric shallow mantle structure beneath the Hawaiian Swell-evidence from Rayleigh waves recorded by the PLUME network. Geophysical Journal International, 2011, 187, 1725-1742.	1.0	43
24	Inferring nonlinear mantle rheology from the shape of the Hawaiian swell. Nature, 2011, 473, 501-504.	13.7	19
25	Crustally-derived granites in the Panzhihua region, SW China: Implications for felsic magmatism in the Emeishan large igneous province. Lithos, 2011, 123, 145-157.	0.6	67
26	Plate tectonics began in Neoproterozoic time, and plumes from deep mantle have never operated. Lithos, 2011, 123, 1-20.	0.6	161
27	Supercontinents, mantle dynamics and plate tectonics: A perspective based on conceptual vs. numerical models. Earth-Science Reviews, 2011, 105, 1-24.	4.0	109
28	Hawaii, Boundary Layers and Ambient Mantle—Geophysical Constraints. Journal of Petrology, 2011, 52, 1547-1577.	1.1	55
29	Seismic Imaging of Transition Zone Discontinuities Suggests Hot Mantle West of Hawaii. Science, 2011, 332, 1068-1071.	6.0	75
30	Spatial and temporal variability in Hawaiian hotspot volcanism induced by small-scale convection. Nature Geoscience, 2011, 4, 457-460.	5.4	105
31	The Ethiopia Afar Geoscientific Lithospheric Experiment (EAGLE): Probing the transition from continental rifting to incipient seafloor spreading. , 2011, , .		34
32	Fossils from above. Nature Geoscience, 2012, 5, 239-239.	5.4	0
33	Plume's buoyancy and heat fluxes from the deep mantle estimated by an instantaneous mantle flow simulation based on the S40RTS global seismic tomography model. Physics of the Earth and Planetary Interiors, 2012, 210-211, 63-74.	0.7	10
34	Passive-margin prolonged volcanism, East Australian Plate: outbursts, progressions, plate controls and suggested causes. Australian Journal of Earth Sciences, 2012, 59, 983-1005.	0.4	41
35	P-wave tomography of the western United States: Insight into the Yellowstone hotspot and the Juan de Fuca slab. Physics of the Earth and Planetary Interiors, 2012, 200-201, 72-84.	0.7	45
36	Are â€~hot spots' hot spots?. Journal of Geodynamics, 2012, 58, 1-28.	0.7	42

#	Article	IF	CITATIONS
37	Shear wave splitting at the Hawaiian hot spot from the PLUME land and ocean bottom seismometer deployments. Geochemistry, Geophysics, Geosystems, 2012, 13, .	1.0	24
38	Shallow lithospheric contribution to mantle plumes revealed by integrating seismic and geochemical data. Geochemistry, Geophysics, Geosystems, 2012, 13, .	1.0	15
39	Toward quantifying uncertainty in travel time tomography using the nullâ€space shuttle. Journal of Geophysical Research, 2012, 117, .	3.3	22
40	Novel inversion approach to constrain plume sedimentation from tephra deposit data: Application to the 17 June 1996 eruption of Ruapehu volcano, New Zealand. Journal of Geophysical Research, 2012, 117, .	3.3	11
41	On the location of hotspots in the framework of mantle convection. Geophysical Research Letters, 2012, 39, .	1.5	11
42	How double volcanic chains sample geochemical anomalies from the lowermost mantle. Earth and Planetary Science Letters, 2012, 359-360, 240-247.	1.8	52
43	New constraints on the origin of the Hawaiian swell from wavelet analysis of the geoid to	1.8	20
44	Opening wide the magma spigot. Nature Geoscience, 2012, 5, 238-239.	5.4	0
45	The Yellowstone Hotspot: Plume or Not?. Geology, 2012, 40, 479-480.	2.0	38
46	Imaging mantle plumes with instantaneous phase measurements of diffracted waves. Geophysical Journal International, 2012, 190, 650-664.	1.0	45
47	The role of Poiseuille flow in creating depth-variation of asthenospheric shear. Geophysical Journal International, 2012, 190, 1297-1310.	1.0	32
48	Seismic imaging of melt in a displaced HawaiianÂplume. Nature Geoscience, 2013, 6, 657-660.	5.4	78
49	Constraints on past plate and mantle motion from new ages for the Hawaiianâ€Emperor Seamount Chain. Geochemistry, Geophysics, Geosystems, 2013, 14, 4564-4584.	1.0	95
50	Dynamics of plumes in a compressible mantle with phase changes: Implications for phase boundary topography. Physics of the Earth and Planetary Interiors, 2013, 224, 21-31.	0.7	16
51	The global endo-drainage system: Prospects of seismic prediction. Izvestiya - Atmospheric and Oceanic Physics, 2013, 49, 745-759.	0.2	3
52	Evolution of the Archean MohoroviÄić discontinuity from a synaccretionary 4.5Ga protocrust. Tectonophysics, 2013, 609, 706-733.	0.9	16
53	Global mantle heterogeneity and its influence on teleseismic regional tomography. Gondwana Research, 2013, 23, 595-616.	3.0	120
54	Implications for the origin of Hawaiian volcanism from a converted wave analysis of the mantle transition zone. Earth and Planetary Science Letters, 2013, 373, 194-204.	1.8	18

ARTICLE IF CITATIONS # On the composition and origin depth of basaltic magma in the upper mantle. Russian Geology and 55 0.3 3 Geophysics, 2013, 54, 297-311. Double layering of a thermochemical plume in the upper mantle beneath Hawaii. Earth and Planetary 1.8 Science Letters, 2013, 376, 155-164. Studying deep sources of volcanism using multiscale seismic tomography. Journal of Volcanology and 57 0.8 21 Geothermal Research, 2013, 257, 205-226. New observational and experimental evidence for a plume-fed asthenosphere boundary layer in mantle 1.8 convection. Earth and Planetary Science Letters, 2013, 366, 99-111. Earth science: Under the volcano. Nature, 2013, 504, 206-207. 59 13.7 2 Small-scale convection in a plume-fed low-viscosity layer beneath a moving plate. Geophysical Journal International, 2013, 194, 591-610. 1.0 61 The persistent mantle plume myth. Australian Journal of Earth Sciences, 2013, 60, 657-673. 0.4 32 Caveats on tomographic images. Terra Nova, 2013, 25, 259-281. 94 63 Investigating La Réunion Hot Spot From Crust to Core. Eos, 2013, 94, 205-207. 0.1 46 Dynamics of a laminar plume in a cavity: The influence of boundaries on the steady state stem 64 1.0 structure. Geochemistry, Geophysics, Geosystems, 2013, 14, 158-178. Seismic evidence for a mantle plume beneath the Cape Verde hotspot. International Geology Review, 1.1 66 20 2014, 56, 1213-1225. Plume–plate interaction. Canadian Journal of Earth Sciences, 2014, 51, 208-221. Fast deformation cycles in the lithosphere and catastrophic earthquakes: Was it possible to prevent 68 0.2 4 the Fukushima tragedy?. Izvestiya - Atmospheric and Oceanic Physics, 2014, 50, 805-823. Large-Scale and Long-Term Volcanism on Oceanic Lithosphere. Developments in Marine Geology, 2014, , 0.4 553-597. Broadband Ocean-Bottom Seismology. Annual Review of Earth and Planetary Sciences, 2014, 42, 27-43. 70 43 4.6 Mantle updrafts and mechanisms of oceanic volcanism. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111, E4298-304. Hotspot swells revisited. Physics of the Earth and Planetary Interiors, 2014, 235, 66-83. 72 0.7 88 Seismic Tomography and the Assessment of Uncertainty. Advances in Geophysics, 2014, , 1-76. 1.1

#	Article	IF	CITATIONS
74	Mantle flow and multistage melting beneath the Galápagos hotspot revealed by seismic imaging. Nature Geoscience, 2014, 7, 151-156.	5.4	67
75	Plume-lithosphere interaction in the generation of the Tarim large igneous province, NW China: Geochronological and geochemical constraints. Numerische Mathematik, 2014, 314, 314-356.	0.7	120
77	Weak elastic anisotropy in global seismology. Special Paper of the Geological Society of America, 0, , 39-50.	0.5	6
78	Seismic evidence for a chemically distinct thermochemical reservoir in Earth's deep mantle beneath Hawaii. Earth and Planetary Science Letters, 2015, 426, 143-153.	1.8	29
79	Hydrous upwelling across the mantle transition zone beneath the Afar Triple Junction. Geochemistry, Geophysics, Geosystems, 2015, 16, 834-846.	1.0	39
80	Water in <scp>H</scp> awaiian peridotite minerals: A case for a dry metasomatized oceanic mantle lithosphere. Geochemistry, Geophysics, Geosystems, 2015, 16, 1211-1232.	1.0	51
81	Hotspots and Mantle Plumes. , 2015, , 139-184.		1
82	Dominant influence of volcanic loading on vertical motions of the Hawaiian Islands. Earth and Planetary Science Letters, 2015, 418, 149-171.	1.8	26
83	Water disequilibrium in olivines from Hawaiian peridotites: Recent metasomatism, H diffusion and magma ascent rates. Geochimica Et Cosmochimica Acta, 2015, 154, 98-117.	1.6	74
84	Plate Tectonics. , 2015, , 45-93.		12
84 85	Plate Tectonics. , 2015, , 45-93. Evidence for primordial water in Earth's deep mantle. Science, 2015, 350, 795-797.	6.0	12 159
		6.0	
85	Evidence for primordial water in Earth's deep mantle. Science, 2015, 350, 795-797.	6.0	159
85 86	Evidence for primordial water in Earth's deep mantle. Science, 2015, 350, 795-797. Multiscale Seismic Tomography. , 2015, , .	6.0	159 76
85 86 89	Evidence for primordial water in Earth's deep mantle. Science, 2015, 350, 795-797. Multiscale Seismic Tomography., 2015, ,. Imaging Mantle Heterogeneity with Upper Mantle Seismic Discontinuities., 2015, , 79-104.	6.0	159 76 14
85 86 89 90	Evidence for primordial water in Earth's deep mantle. Science, 2015, 350, 795-797. Multiscale Seismic Tomography., 2015, , . Imaging Mantle Heterogeneity with Upper Mantle Seismic Discontinuities., 2015, , 79-104. The Generation of Plate Tectonics from Mantle Dynamics., 2015, , 271-318.	6.0	159 76 14 64
85 86 89 90 91	Evidence for primordial water in Earth's deep mantle. Science, 2015, 350, 795-797. Multiscale Seismic Tomography., 2015, , . Imaging Mantle Heterogeneity with Upper Mantle Seismic Discontinuities., 2015, , 79-104. The Generation of Plate Tectonics from Mantle Dynamics., 2015, , 271-318. Mantle Dynamics: An Introduction and Overview., 2015, , 1-22.	5.8	159 76 14 64 5

#	Article	IF	CITATIONS
97	Isotopes, DUPAL, LLSVPs, and Anekantavada. Chemical Geology, 2015, 419, 10-28.	1.4	105
98	Topography of upper mantle seismic discontinuities beneath the North Atlantic: The Azores, Canary and Cape Verde plumes. Earth and Planetary Science Letters, 2015, 409, 193-202.	1.8	52
99	Isotopic heterogeneity of oceanic, arc and continental basalts and its implications for mantle dynamics. Gondwana Research, 2015, 27, 1131-1152.	3.0	309
100	Smallâ€scale thermal upwellings under the northern East African Rift from <i>S</i> travel time tomography. Journal of Geophysical Research: Solid Earth, 2016, 121, 7395-7408.	1.4	22
101	Bayesian estimation of magma supply, storage, and eruption rates using a multiphysical volcano model: Kīlauea Volcano, 2000–2012. Earth and Planetary Science Letters, 2016, 447, 161-171.	1.8	77
102	Teleseismic imaging of the mantle beneath southernmost China: New insights into the Hainan plume. Gondwana Research, 2016, 36, 46-56.	3.0	105
103	Representing anisotropic subduction zones with isotropic velocity models: A characterization of the problem and some steps on a possible path forward. Geochemistry, Geophysics, Geosystems, 2016, 17, 3164-3189.	1.0	40
104	Seismic evidence of the Hainan mantle plume by receiver function analysis in southern China. Geophysical Research Letters, 2016, 43, 8978-8985.	1.5	49
105	Dynamics of plume–triple junction interaction: Results from a series of threeâ€dimensional numerical models and implications for the formation of oceanic plateaus. Journal of Geophysical Research: Solid Earth, 2016, 121, 1316-1342.	1.4	13
106	Infragravity waves and horizontal seafloor compliance. Journal of Geophysical Research: Solid Earth, 2016, 121, 260-278.	1.4	16
107	<i>P</i> - and <i>S</i> -wave delays caused by thermal plumes. Geophysical Journal International, 2016, 206, 1169-1178.	1.0	27
108	The long-wavelength mantle structure and dynamics and implications for large-scale tectonics and volcanism in the Phanerozoic. Condwana Research, 2016, 29, 83-104.	3.0	28
109	Lower mantle hydrogen partitioning between periclase and perovskite: A quantum chemical modelling. Geochimica Et Cosmochimica Acta, 2016, 173, 304-318.	1.6	8
110	Fracture Alignments in Marine Sediments Off Vancouver Island fromPsSplitting Analysis. Bulletin of the Seismological Society of America, 2017, 107, 387-402.	1.1	5
111	Signals of 660Âkm topography and harzburgite enrichment in seismic images of wholeâ€nantle upwellings. Geophysical Research Letters, 2017, 44, 3600-3607.	1.5	13
112	Mapping the mantle transition zone beneath Hawaii from Ps receiver functions: Evidence for a hot plume and cold mantle downwellings. Earth and Planetary Science Letters, 2017, 474, 226-236.	1.8	33
113	Crust and Mantle Structure Beneath the Azores Hotspot—Evidence from Geophysics. Active Volcanoes of the World, 2018, , 71-87.	1.0	7
114	On the relative motions of long-lived Pacific mantle plumes. Nature Communications, 2018, 9, 854.	5.8	55

#	Article	IF	CITATIONS
115	Fat Plumes May Reflect the Complex Rheology of the Lower Mantle. Geophysical Research Letters, 2018, 45, 1349-1354.	1.5	12
116	Evaluating the Resolution of Deep Mantle Plumes in Teleseismic Traveltime Tomography. Journal of Geophysical Research: Solid Earth, 2018, 123, 384-400.	1.4	23
117	Active-source seismic survey on the northeastern Hawaiian Arch: insights into crustal structure and mantle reflectors. Earth, Planets and Space, 2018, 70, .	0.9	12
119	Primitive Helium Is Sourced From Seismically Slow Regions in the Lowermost Mantle. Geochemistry, Geophysics, Geosystems, 2019, 20, 4130-4145.	1.0	34
120	Why Is Crustal Underplating Beneath Many Hot Spot Islands Anisotropic?. Geochemistry, Geophysics, Geosystems, 2019, 20, 4779-4809.	1.0	13
121	Evidence for an upwelling mantle plume beneath the Songliao Basin, Northeast China. Physics of the Earth and Planetary Interiors, 2019, 297, 106316.	0.7	6
122	Seismicity and Velocity Structure of LÅ ⁱ ihi Submarine Volcano and Southeastern Hawai'i. Journal of Geophysical Research: Solid Earth, 2019, 124, 11380-11393.	1.4	5
123	Lower Mantle Dynamics Perceived With 50 Years of Hindsight From Plate Tectonics. Geochemistry, Geophysics, Geosystems, 2019, 20, 5619-5649.	1.0	4
124	Investigating the seismic structure and visibility of dynamic plume models with seismic array methods. Geophysical Journal International, 2019, 219, S167-S194.	1.0	9
125	Ubiquitous ultra-depleted domains in Earth's mantle. Nature Geoscience, 2019, 12, 851-855.	5.4	52
126	A high carbon content of the Hawaiian mantle from olivine-hosted melt inclusions. Geochimica Et Cosmochimica Acta, 2019, 254, 156-172.	1.6	51
127	Seismic Structure of Marine Sediments and Upper Oceanic Crust Surrounding Hawaii. Journal of Geophysical Research: Solid Earth, 2019, 124, 2038-2056.	1.4	18
128	Age dependence and anisotropy of surface-wave phase velocities in the Pacific. Geophysical Journal International, 2019, 216, 640-658.	1.0	11
129	A review of large low shear velocity provinces and ultra low velocity zones. Tectonophysics, 2019, 760, 199-220.	0.9	116
130	Origin of Late Permian amphibole syenite from the Panxi area, SW China: high degree fractional crystallization of basaltic magma in the inner zone of the Emeishan mantle plume. International Geology Review, 2020, 62, 210-224.	1.1	7
131	Global mantle structure from multifrequency tomography using P, PP and P-diffracted waves. Geophysical Journal International, 2020, 220, 96-141.	1.0	104
132	Textural and Compositional Changes in the Lithospheric Mantle Atop the Hawaiian Plume: Consequences for Seismic Properties. Geochemistry, Geophysics, Geosystems, 2020, 21, e2020GC009138.	1.0	9
133	Extensive Magmatic Heating of the Lithosphere Beneath the Hawaiian Islands Inferred From Salt Lake Crater Mantle Xenoliths. Geochemistry, Geophysics, Geosystems, 2020, 21, e2020GC009359.	1.0	4

#	Article	IF	CITATIONS
134	Plate Tectonics vs. Plume Tectonics Interplay: Possible Models and Typical Cases. Russian Geology and Geophysics, 2020, 61, 502-526.	0.3	12
135	A Role for Subducted Oceanic Crust in Generating the Depleted Midâ€Ocean Ridge Basalt Mantle. Geochemistry, Geophysics, Geosystems, 2020, 21, e2020GC009148.	1.0	10
136	An OBS Array to Investigate Offshore Seismicity during the 2018ÂKÄ«lauea Eruption. Seismological Research Letters, 2021, 92, 603-612.	0.8	6
137	Mantle Convection. Encyclopedia of Earth Sciences Series, 2021, , 1059-1079.	0.1	0
138	Mantle Plumes. Encyclopedia of Earth Sciences Series, 2021, , 1094-1107.	0.1	0
139	Hot Spots. Advances in Volcanology, 2021, , 495-537.	0.7	0
140	The trials and tribulations of the Hawaii hot spot model. Earth-Science Reviews, 2021, 215, 103544.	4.0	5
141	Workshop report: Exploring deep oceanic crust off Hawai`i. Scientific Drilling, 0, 29, 69-82.	1.0	5
142	Mantle plumes and their role in Earth processes. Nature Reviews Earth & Environment, 2021, 2, 382-401.	12.2	78
143	A tree of Indo-African mantle plumes imaged by seismic tomography. Nature Geoscience, 2021, 14, 612-619.	5.4	43
145	Quantifying Periodic Variations in Hotspot Melt Production. Journal of Geophysical Research: Solid Earth, 2021, 126, e2021JB021726.	1.4	2
146	A process-oriented approach to mantle geochemistry. Chemical Geology, 2021, 579, 120350.	1.4	18
147	Mantle Convection. Encyclopedia of Earth Sciences Series, 2011, , 832-851.	0.1	5
148	Mantle Plumes. Encyclopedia of Earth Sciences Series, 2011, , 857-869.	0.1	5
149	What Lies Deep in the Mantle Below?. Eos, 2015, 96, .	0.1	8
150	Heterogeneity of Seismic Wave Velocity in Earth's Mantle. Annual Review of Earth and Planetary Sciences, 2020, 48, 377-401.	4.6	23
151	Seismicity around the Hawaiian Islands Recorded by the PLUME Seismometer Networks: Insight into Faulting near Maui, Molokai, and Oahu. Bulletin of the Seismological Society of America, 2011, 101, 1742-1758.	1.1	12
152	Performance report of the RHUM-RUM ocean bottom seismometer network around La Réunion, western Indian Ocean. Advances in Geosciences, 0, 41, 43-63.	12.0	55

#	Article	IF	CITATIONS
153	THE GLOBAL ENDODRAINAGE SYSTEM: SOME FLUID-PHYSICAL MECHANISMS OF GEODYNAMIC PROCESSES. Geodinamika I Tektonofizika, 2019, 10, 53-78.	0.3	4
154	S-Wave Velocities Beneath Jeju Island, Korea, Using Inversion of Receiver Functions and the H-κ Stacking Method. Geophysics and Geophysical Exploration, 2013, 16, 18-26.	0.2	4
155	Evidence for melt leakage from the Hawaiian plume above the mantle transition zone. Physics of the Earth and Planetary Interiors, 2021, 321, 106813.	0.7	2
156	Deep structure imaged under Hawaii. Nature, 0, , .	13.7	3
158	Hawaiian hot spot fuels volcano debate. Nature, 0, , .	13.7	0
159	Hawaii Volcanoes National Park, USA. Coastal Research Library, 2019, , 413-418.	0.2	0
160	Mantle Convection. Encyclopedia of Earth Sciences Series, 2020, , 1-21.	0.1	0
161	Mantle Plumes. Encyclopedia of Earth Sciences Series, 2020, , 1-13.	0.1	0
162	The 1871 LÄnaâ€ĩi Earthquake in the Hawaiian Islands. Seismological Research Letters, 2020, 91, 3612-3621.	0.8	3
163	Melt-affected ocean crust and uppermost mantle near Hawaii—clues from ambient-noise phase velocity and seafloor compliance. Geophysical Journal International, 2020, 224, 843-857.	1.0	2
164	B″ not D″ as the source of intraplate volcanism. , 2022, , .		0
165	Transcranial Ultrasound Estimation of Viscoelasticity and Fluidity of the Soft Matter. Physical Review Applied, 2022, 17, .	1.5	3
166	The effect of seamount chain subduction and accretion. Geological Journal, 2022, 57, 2712-2734.	0.6	7
167	Melt Percolation, Concentration and Dyking in the Hawaiian Mantle Plume and Overriding Lithosphere: Links to the Evolution of Lava Composition along the Volcanic Chain. Journal of Petrology, 2022, 63, .	1.1	0
168	A perisphere/LLAMA model for Hawaiian volcanism. Special Paper of the Geological Society of America, 0, , 305-324.	0.5	0
170	Three-dimensional seismic anisotropy in the Pacific upper mantle from inversion of a surface-wave dispersion data set. Geophysical Journal International, 2022, 231, 355-383.	1.0	7
171	The Geochemical Evolution of Santa Cruz Island, Galápagos Archipelago. Frontiers in Earth Science, 0, 10, .	0.8	2
172	Narrow, Fast, and "Cool―Mantle Plumes Caused by Strainâ€Weakening Rheology in Earth's Lower Mantle. Geochemistry, Geophysics, Geosystems, 2022, 23, .	1.0	О

#	Article	IF	CITATIONS
173	Seismic Constraints on Crustal and Uppermost Mantle Structure Beneath the Hawaiian Swell: Implications for Plumeâ€Lithosphere Interactions. Journal of Geophysical Research: Solid Earth, 2022, 127, .	1.4	4
174	Broad-band ocean bottom seismometer noise properties. Geophysical Journal International, 2022, 233, 297-315.	1.0	8
175	Robust Seismic Images of the Hawaiian Plume. Geophysical Research Letters, 2022, 49, .	1.5	1
176	Constraining the Crustal and Mantle Conductivity Structures Beneath Islands by a Joint Inversion of Multiâ€ S ource Magnetic Transfer Functions. Journal of Geophysical Research: Solid Earth, 2023, 128, .	1.4	8
177	A Mantle Plume Beneath South China Revealed by Electrical Conductivity Obtained from Three-Dimensional Inversion of Geomagnetic Data. Sensors, 2023, 23, 1249.	2.1	0
178	Inference of velocity structures of oceanic crust and upper mantle from surface waveform fitting. Geophysical Journal International, 2023, 233, 1974-1986.	1.0	0
179	Mantle Plumes and Their Interactions. , 2023, , 407-426.		0
180	Energetics of the Solid Earth: Implications for the Structure of Mantle Convection. , 2023, , 35-66.		0
181	An emerging plume head interacting with the Hawaiian plume tail. Innovation(China), 2023, 4, 100404.	5.2	1
182	Plume–ridge interactions: ridgeward versus plate-drag plume flow. Solid Earth, 2023, 14, 353-368.	1.2	0
183	Seismic evidence for a 1000 km mantle discontinuity under the Pacific. Nature Communications, 2023, 14, .	5.8	2
184	æµ®æ¼2œå¼æµıæ՜‹åœ°éœ‡ä»ªå¡«è;¥å⊷æµ·æµæ՜‹åœ°éœ‡å⁰ç¼2'é•;期è§,测空白2. SCIENTIA SINICA Te	erra e, 12023	, ,0