Bile Acids and Metabolic Regulation

Diabetes Care 32, S237-S245

DOI: 10.2337/dc09-s355

Citation Report

#	Article	IF	CITATIONS
1	How to modulate FXR activity to treat the Metabolic Syndrome. Drug Discovery Today Disease Mechanisms, 2009, 6, e55-e64.	0.8	9
2	Colesevelam: an improved bile acid sequestrant for treating hypercholesterolemia and improving diabetes. Expert Review of Endocrinology and Metabolism, 2010, 5, 825-834.	1.2	2
3	Initial Combination Therapy with Metformin and Colesevelam for Achievement of Glycemic and Lipid Goals Min Early Type 2 Diabetes. Endocrine Practice, 2010, 16, 629-640.	1.1	31
4	Development and Validation of a High-Throughput Screening Assay for Human Long-Chain Fatty Acid Transport Proteins 4 and 5. Journal of Biomolecular Screening, 2010, 15, 488-497.	2.6	17
5	Bile Acid Sequestrants: Glucose-Lowering Mechanisms. Metabolic Syndrome and Related Disorders, 2010, 8, S-3-S-8.	0.5	23
6	TGR5 : un nouveau récepteur aux acides biliaires aux propriétés métaboliques. Medecine Des Maladies Metaboliques, 2011, 5, 37.	0.1	1
7	Type 2 diabetes mellitusâ€"current therapies and the emergence of surgical options. Nature Reviews Endocrinology, 2011, 7, 408-419.	4.3	61
9	Tratamiento de la hipercolesterolemia y prevención de las enfermedades cardiovasculares mediante la inhibición de la reabsorción de ácidos biliares con resincolestiramina. ClÃnica E Investigación En Arteriosclerosis, 2011, 23, 9-16.	0.4	2
11	Pitavastatin Increases ABCA1 Expression by Dual Mechanisms: SREBP2-Driven Transcriptional Activation and PPARα-Dependent Protein Stabilization but Without Activating LXR in Rat Hepatoma McARH7777 Cells. Journal of Pharmacological Sciences, 2011, 116, 107-115.	1.1	28
12	Bile Acids Regulate Cardiovascular Function. Clinical and Translational Science, 2011, 4, 210-218.	1.5	117
13	Plasma metabolomic profile in nonalcoholic fatty liver disease. Metabolism: Clinical and Experimental, 2011, 60, 404-413.	1.5	433
14	Delineation of biochemical, molecular, and physiological changes accompanying bile acid pool size restoration in $Cyp7a1a^2/a^2 mice fed low levels of cholic acid. American Journal of Physiology - Renal Physiology, 2012, 303, G263-G274.$	1.6	17
15	Soy Germ Protein With or Without-Zn Improve Plasma Lipid Profile in Metabolic Syndrome Women. HAYATI Journal of Biosciences, 2012, 19, 25-30.	0.1	2
16	Review article: the emerging interplay among the gastrointestinal tract, bile acids and incretins in the pathogenesis of diabetes and nonâ€alcoholic fatty liver disease. Alimentary Pharmacology and Therapeutics, 2012, 36, 909-921.	1.9	91
17	Colesevelam for type 2 diabetes mellitus. The Cochrane Library, 2012, 12, CD009361.	1.5	23
18	Colesevelam hydrochloride: evidence for its use in the treatment of hypercholesterolemia and type 2 diabetes mellitus with insights into mechanism of action. Core Evidence, 2012, 7, 61.	4.7	19
19	The Effect of a Bile Acid Sequestrant on Glucose Metabolism in Subjects With Type 2 Diabetes. Diabetes, 2013, 62, 1094-1101.	0.3	78
20	The Role of Bariatric Surgery in the Treatment of Type 2 Diabetes: Current Evidence and Clinical Guidelines. Current Atherosclerosis Reports, 2013, 15, 366.	2.0	9

#	ARTICLE	IF	CITATIONS
21	Plasma and urine metabolic fingerprinting of type 1 diabetic children. Electrophoresis, 2013, 34, 2882-2890.	1.3	52
22	Managing Cardiovascular Risk in Overweight Children and Adolescents. Paediatric Drugs, 2013, 15, 181-190.	1.3	23
23	Platycodin D attenuates bile duct ligation-induced hepatic injury and fibrosis in mice. Food and Chemical Toxicology, 2013, 51, 364-369.	1.8	22
24	The alpha-glucosidase inhibitor miglitol affects bile acid metabolism and ameliorates obesity and insulin resistance in diabetic mice. Metabolism: Clinical and Experimental, 2013, 62, 734-742.	1.5	26
25	Polymeric bile acid sequestrants—Synthesis using conventional methods and new approaches based on "controlledâ€∦iving radical polymerization. Progress in Polymer Science, 2013, 38, 445-461.	11.8	33
26	Use and indications of cholestyramine and bile acid sequestrants. Internal and Emergency Medicine, 2013, 8, 205-210.	1.0	7 5
27	Higher circulating bile acid concentrations in obese patients with type 2 diabetes. Annals of Clinical Biochemistry, 2013, 50, 360-364.	0.8	68
28	Diurnal Glucose Profiles Using Continuous Glucose Monitoring to Identify the Glucose-Lowering Characteristics of Colesevelam HCL (WELCHOL). Endocrine Practice, 2013, 19, 275-283.	1.1	5
29	MECHANISMS IN ENDOCRINOLOGY: Bile acid sequestrants in type 2 diabetes: potential effects on GLP1 secretion. European Journal of Endocrinology, 2014, 171, R47-R65.	1.9	62
30	Are add-on agents to statin therapy necessary in hypercholesterolemia?. Clinical Lipidology, 2014, 9, 695-707.	0.4	0
31	MPINet: Metabolite Pathway Identification via Coupling of Global Metabolite Network Structure and Metabolomic Profile. BioMed Research International, 2014, 2014, 1-14.	0.9	12
32	Phase IV Prospective Clinical Study to Evaluate the Effect of Taurine on Liver Function in Postsurgical Adult Patients Requiring Parenteral Nutrition. Nutrition in Clinical Practice, 2014, 29, 672-680.	1.1	6
33	Expanded Colesevelam Administration Options With Oral Suspension Formulation for Patients With Diabetes and Hypercholesterolemia. Postgraduate Medicine, 2014, 126, 126-134.	0.9	8
34	Pulsatile exposure to simulated reflux leads to changes in gene expression in a 3 <scp>D</scp> model of oesophageal mucosa. International Journal of Experimental Pathology, 2014, 95, 216-228.	0.6	11
35	Celastrol suppresses obesity process via increasing antioxidant capacity and improving lipid metabolism. European Journal of Pharmacology, 2014, 744, 52-58.	1.7	80
36	Statin intolerance: diagnosis, treatment and alternative therapies. Clinical Lipidology, 2014, 9, 355-367.	0.4	3
37	Structural elucidation of the hormonal inhibition mechanism of the bile acid cholate on human carbonic anhydrase II. Acta Crystallographica Section D: Biological Crystallography, 2014, 70, 1758-1763.	2.5	19
38	Colesevelam for Type 2 diabetes mellitus: an abridged Cochrane review*. Diabetic Medicine, 2014, 31, 2-14.	1.2	36

3

#	Article	IF	CITATIONS
39	Bile Metabolism and Lithogenesis. Surgical Clinics of North America, 2014, 94, 361-375.	0.5	31
40	Diabetic dyslipidemia. Metabolism: Clinical and Experimental, 2014, 63, 1469-1479.	1.5	344
41	Bile acid-controlled transgene expression in mammalian cells and mice. Metabolic Engineering, 2014, 21, 81-90.	3.6	21
42	Targeting fatty acid metabolism to improve glucose metabolism. Obesity Reviews, 2015, 16, 715-757.	3.1	113
43	In Vitro and in Vivo Evaluation of Novel Cross-Linked Saccharide Based Polymers as Bile Acid Sequestrants. Molecules, 2015, 20, 3716-3729.	1.7	12
44	Treatment of Nonalcoholic Steatohepatitis in Adults: Present and Future. Gastroenterology Research and Practice, 2015, 2015, 1-14.	0.7	25
45	Current Recommendations for Surgical Treatment of Diabetes. , 2015, , .		0
46	Bile acid binding resin improves hepatic insulin sensitivity by reducing cholesterol but not triglyceride levels in the liver. Diabetes Research and Clinical Practice, 2015, 109, 85-94.	1.1	20
47	Loss of <i>Cyp8b1</i> Improves Glucose Homeostasis by Increasing GLP-1. Diabetes, 2015, 64, 1168-1179.	0.3	89
48	Differential antioxidative and hypocholesterolemic responses to two fish protein hydrolysates (Sardina pilchardus and Boops boops) in cholesterol-fed rats. Nutrition and Food Science, 2015, 45, 448-466.	0.4	5
49	The amelioration of metabolic disorders in early stage diabetic rats by resveratrol is associated with mTORC1 regulation. Journal of Functional Foods, 2015, 18, 737-745.	1.6	2
50	Fatty acid-binding protein 5 regulates diet-induced obesity via GIP secretion from enteroendocrine K cells in response to fat ingestion. American Journal of Physiology - Endocrinology and Metabolism, 2015, 308, E583-E591.	1.8	42
51	Zonation of hepatic fatty acid metabolism â€" The diversity of its regulation and the benefit of modeling. Biochimica Et Biophysica Acta - Molecular and Cell Biology of Lipids, 2015, 1851, 641-656.	1.2	55
52	Chenodeoxycholic acid, an endogenous FXR ligand alters adipokines and reverses insulin resistance. Molecular and Cellular Endocrinology, 2015, 414, 19-28.	1.6	48
53	Effect of Bile Acid Sequestrants on the Risk of Cardiovascular Events. Circulation: Cardiovascular Genetics, 2015, 8, 618-627.	5.1	61
54	SLC transporters as therapeutic targets: emerging opportunities. Nature Reviews Drug Discovery, 2015, 14, 543-560.	21.5	584
55	Metabolomics – the complementary field in systems biology: a review on obesity and type 2 diabetes. Molecular BioSystems, 2015, 11, 1742-1774.	2.9	103
56	Serum bile acids concentration in captive American flamingos (Phoenicopterus ruber). Comparative Clinical Pathology, 2015, 24, 1343-1346.	0.3	1

#	ARTICLE	IF	CITATIONS
57	Chenodeoxycholic Acid as a Potential Prognostic Marker for Roux-en-Y Gastric Bypass in Chinese Obese Patients. Journal of Clinical Endocrinology and Metabolism, 2015, 100, 4222-4230.	1.8	40
58	The Influence of Bariatric Surgery on Serum Bile Acids in Humans and Potential Metabolic and Hormonal Implications: a Systematic Review. Current Obesity Reports, 2015, 4, 441-450.	3.5	28
59	Impact of physiological levels of chenodeoxycholic acid supplementation on intestinal and hepatic bile acid and cholesterol metabolism in Cyp7a1-deficient mice. Steroids, 2015, 93, 87-95.	0.8	19
60	Plasma Metabolomic Profiles of Breast Cancer Patients after Short-term Limonene Intervention. Cancer Prevention Research, 2015, 8, 86-93.	0.7	34
61	Metabolism of bile acids in the post-prandial state. Essays in Biochemistry, 2016, 60, 409-418.	2.1	9
62	Unusual Steroid Constituents from the Tropical Starfish Leiaster sp. Natural Product Communications, 2016, 11, 1934578X1601100.	0.2	1
63	Metabolomicsâ€guided insights on bariatric surgery versus behavioral interventions for weight loss. Obesity, 2016, 24, 2451-2466.	1.5	45
64	Elevated First-Trimester Total Bile Acid is Associated with the Risk of Subsequent Gestational Diabetes. Scientific Reports, 2016, 6, 34070.	1.6	16
65	Metabolic responses, performance, and reticuloruminal pH of early-lactating cows fed concentrates treated with lactic acid, with or without inorganic phosphorus supplementation. Journal of Dairy Science, 2016, 99, 6237-6250.	1.4	6
66	Serum bile acids concentration in captive black-tailed prairie dogs (Cynomys ludovicianus). Comparative Clinical Pathology, 2016, 25, 47-51.	0.3	4
67	Bile acid-lowering properties of Lactobacillus plantarum Sanriku–SU3 isolated from Japanese surfperch fish. Food Bioscience, 2016, 14, 41-46.	2.0	19
68	Association between Circulating Vitamin D Metabolites and Fecal Bile Acid Concentrations. Cancer Prevention Research, 2016, 9, 589-597.	0.7	9
69	Treatment with a human recombinant monoclonal IgG antibody against oxidized LDL in atherosclerosis-prone pigs reduces cathepsin S in coronary lesions. International Journal of Cardiology, 2016, 215, 506-515.	0.8	20
70	Association Between Lowering LDL-C and Cardiovascular Risk Reduction Among Different Therapeutic Interventions. JAMA - Journal of the American Medical Association, 2016, 316, 1289.	3.8	974
71	Common medications used by patients with type 2 diabetes mellitus: what are their effects on the lipid profile?. Cardiovascular Diabetology, 2016, 15, 95.	2.7	52
72	Identification of the anti-oxidant components in a two-step solvent extract of bovine bile lipid: Application of reverse phase HPLC, mass spectrometry and fluorimetric assays. Journal of Chromatography B: Analytical Technologies in the Biomedical and Life Sciences, 2016, 1019, 83-94.	1.2	6
73	The Effect of Sustained Inflammation on Hepatic Mevalonate Pathway Results in Hyperglycemia. Cell, 2016, 165, 343-356.	13.5	92
74	Multiplatform metabolomic fingerprinting as a tool for understanding hypercholesterolemia in Wistar rats. European Journal of Nutrition, 2016, 55, 997-1010.	1.8	14

#	ARTICLE	IF	CITATIONS
75	Identification of novel MRP3 inhibitors based on computational models and validation using an in vitro membrane vesicle assay. European Journal of Pharmaceutical Sciences, 2017, 103, 52-59.	1.9	17
76	Bile acids and bariatric surgery. Molecular Aspects of Medicine, 2017, 56, 75-89.	2.7	99
77	Circulating bile acids predict outcome in critically ill patients. Annals of Intensive Care, 2017, 7, 48.	2.2	49
78	Regulation of Energy Homeostasis After Gastric Bypass Surgery. Annual Review of Biomedical Engineering, 2017, 19, 459-484.	5.7	9
79	Lithocholic Acid Hydroxyamide Destabilizes Cyclin D1 and Induces G 0 \mid G 1 Arrest by Inhibiting Deubiquitinase USP2a. Cell Chemical Biology, 2017, 24, 458-470.e18.	2.5	41
80	Self-Assembly of a Bile Acid Dimer in Aqueous Solutions: From Nanofibers to Nematic Hydrogels. Langmuir, 2017, 33, 1084-1089.	1.6	23
81	Bile acid profiles in neonatal intrahepatic cholestasis caused by citrin deficiency. Clinica Chimica Acta, 2017, 475, 28-35.	0.5	12
82	The Gastrointestinal Tract as an Integrator of Mechanical and Hormonal Response to Nutrient Ingestion. Diabetes, 2017, 66, 2729-2737.	0.3	30
83	The microbiota–gut–brain axis in obesity. The Lancet Gastroenterology and Hepatology, 2017, 2, 747-756.	3.7	408
84	Discriminant biomarkers of acute respiratory distress syndrome associated to H1N1 influenza identified by metabolomics HPLCâ€QTOFâ€MS/MS platform. Electrophoresis, 2017, 38, 2341-2348.	1.3	12
85	Increased Secondary/Primary Bile Acid Ratio in Chronic Heart Failure. Journal of Cardiac Failure, 2017, 23, 666-671.	0.7	98
86	Liver morphometrics and metabolic blood profile across divergent phenotypes for feed efficiency in the bovine. Acta Veterinaria Scandinavica, 2017, 59, 24.	0.5	20
87	Bile acid signaling and bariatric surgery. Liver Research, 2017, 1, 208-213.	0.5	14
88	Steroid-photosensitizer conjugates: Syntheses and applications. Journal of Porphyrins and Phthalocyanines, 2017, 21, 701-730.	0.4	7
89	Regulation of Ca2+-Sensitive K+ Channels by Cholesterol and Bile Acids via Distinct Channel Subunits and Sites. Current Topics in Membranes, 2017, 80, 53-93.	0.5	10
90	Influence of Bile Salts as Excipients in Ranitidine, Aminophylline and Phenobarbital Tablets on Dissolution Rate. Clinical Pharmacology & Biopharmaceutics, 2017, 06, .	0.2	2
91	Deoxycholylglycine, a conjugated secondary bile acid, reduces vascular tone by attenuating Ca2+ sensitivity via rho kinase pathway. Toxicology and Applied Pharmacology, 2018, 348, 14-21.	1.3	5
92	Virtual screening, Docking, ADMET and System Pharmacology studies on Garcinia caged Xanthone derivatives for Anticancer activity. Scientific Reports, 2018, 8, 5524.	1.6	71

#	Article	IF	Citations
93	Bile Acids Increase Doxorubicin Sensitivity in ABCC1-expressing Tumour Cells. Scientific Reports, 2018, 8, 5413.	1.6	11
94	Secondary bile acids inhibit Candida albicans growth and morphogenesis. Pathogens and Disease, 2018, 76, .	0.8	31
95	Interaction of genotype and diet on small intestine microbiota of Japanese quail fed a cholesterol enriched diet. Scientific Reports, 2018, 8, 2381.	1.6	14
96	Development of Multimarker Diagnostic Models from Metabolomics Analysis for Gestational Diabetes Mellitus (GDM). Molecular and Cellular Proteomics, 2018, 17, 431-441.	2.5	43
97	Potential Applications of Gliclazide in Treating Type 1 Diabetes Mellitus: Formulation with Bile Acids and Probiotics. European Journal of Drug Metabolism and Pharmacokinetics, 2018, 43, 269-280.	0.6	23
98	A metabolome-wide characterization of the diabetic phenotype in ZDF rats and its reversal by pioglitazone. PLoS ONE, 2018, 13, e0207210.	1.1	8
99	Overview of Bile Acids Signaling and Perspective on the Signal of Ursodeoxycholic Acid, the Most Hydrophilic Bile Acid, in the Heart. Biomolecules, 2018, 8, 159.	1.8	72
100	Bile acids down-regulate the expression of Augmenter of Liver Regeneration (ALR) via SHP/HNF4α1 and independent of Egr-1. Experimental and Molecular Pathology, 2018, 105, 236-242.	0.9	9
101	Fecal Hyodeoxycholic Acid Is Correlated With Tylosin-Induced Microbiome Changes in Growing Pigs. Frontiers in Veterinary Science, 2018, 5, 196.	0.9	7
102	Dietary fibers, prebiotics, and exopolysaccharides produced by lactic acid bacteria: potential health benefits with special regard to cholesterol-lowering effects. Food and Function, 2018, 9, 3057-3068.	2.1	129
103	Tailoring acyclovir prodrugs with enhanced antiviral activity: rational design, synthesis, human plasma stability and in vitro evaluation. Amino Acids, 2018, 50, 1131-1143.	1.2	4
104	Chemical Digestion, Absorption, and Transport. , 2018, , 871-972.		0
105	Therapeutic modulation of the bile acid pool by <i>Cyp8b1</i> knockdown protects against nonalcoholic fatty liver disease in mice. FASEB Journal, 2018, 32, 3792-3802.	0.2	37
106	$18\hat{i}^2$ -Glycyrrhetinic acid protects against alpha-naphthylisothiocyanate-induced cholestasis through activation of the Sirt1/FXR signaling pathway. Acta Pharmacologica Sinica, 2018, 39, 1865-1873.	2.8	48
107	In Silico Analysis Identifies Intestinal Transit as a Key Determinant of Systemic Bile Acid Metabolism. Frontiers in Physiology, 2018, 9, 631.	1.3	18
108	The Human Gut Microbiome – A Potential Controller of Wellness and Disease. Frontiers in Microbiology, 2018, 9, 1835.	1.5	681
109	What Has Bariatric Surgery Taught Us About the Role of the Upper Gastrointestinal Tract in the Regulation of Postprandial Glucose Metabolism?. Frontiers in Endocrinology, 2018, 9, 324.	1.5	10
110	Polycyclic aromatic hydrocarbon exposure impairs pre-migratory fuelling in captively-dosed Sanderling (Calidris alba). Ecotoxicology and Environmental Safety, 2018, 161, 383-391.	2.9	18

#	Article	IF	CITATIONS
111	Gut Microbiota and Risk of Persistent Nonalcoholic Fatty Liver Diseases. Journal of Clinical Medicine, 2019, 8, 1089.	1.0	48
112	Acute Changes of Bile Acids and FGF19 After Sleeve Gastrectomy and Roux-en-Y Gastric Bypass. Obesity Surgery, 2019, 29, 3605-3621.	1.1	24
113	Drug Discovery and Repurposing Inhibits a Major Gut Pathogen-Derived Oncogenic Toxin. Frontiers in Cellular and Infection Microbiology, 2019, 9, 364.	1.8	10
114	Utilizing Untargeted Ion Mobility-Mass Spectrometry To Profile Changes in the Gut Metabolome Following Biliary Diversion Surgery. Analytical Chemistry, 2019, 91, 14417-14423.	3.2	9
115	Impact of different hypercaloric diets on obesity features in rats: a metagenomics and metabolomics integrative approach. Journal of Nutritional Biochemistry, 2019, 71, 122-131.	1.9	26
116	Apical sodium-dependent bile acid transporter inhibition with volixibat improves metabolic aspects and components of non-alcoholic steatohepatitis in Ldlr-/Leiden mice. PLoS ONE, 2019, 14, e0218459.	1.1	30
117	Targeting Bile Acid-Activated Receptors in Bariatric Surgery. Handbook of Experimental Pharmacology, 2019, 256, 359-378.	0.9	4
118	Plasma Metabolites Associated with Coffee Consumption: A Metabolomic Approach within the PREDIMED Study. Nutrients, 2019, 11, 1032.	1.7	16
119	And three's a party: lysosomes, lipid droplets, and the ER in lipid trafficking and cell homeostasis. Current Opinion in Cell Biology, 2019, 59, 40-49.	2.6	28
120	TGR5 activation ameliorates hyperglycemia-induced cardiac hypertrophy in H9c2 cells. Scientific Reports, 2019, 9, 3633.	1.6	35
121	A potential role for the gut microbiome in substance use disorders. Psychopharmacology, 2019, 236, 1513-1530.	1.5	110
122	The Cross Talk Between Bile Acids and Intestinal Microbiota. , 2019, , 139-145.		0
123	The Microbiome and Metabolome in Metabolic Syndrome., 2019,, 215-225.		0
124	nâ€3 Fatty Acids Abrogate Dyslipidemiaâ€Induced Changes in Bile Acid Uptake, Synthesis, and Transport in Young and Aged Dyslipidemic Rats. Lipids, 2019, 54, 39-51.	0.7	4
125	RNA-Seq of Liver From Pigs Divergent in Feed Efficiency Highlights Shifts in Macronutrient Metabolism, Hepatic Growth and Immune Response. Frontiers in Genetics, 2019, 10, 117.	1.1	43
126	Systemic bile acids induce insulin resistance in a TGR5-independent manner. American Journal of Physiology - Endocrinology and Metabolism, 2019, 316, E782-E793.	1.8	8
127	Metabolomic analyses reveal lipid abnormalities and hepatic dysfunction in non-human primate model for Yersinia pestis. Metabolomics, 2019, 15, 2.	1.4	7
128	Bile acid metabolism is altered in those with insulin resistance after gestational diabetes mellitus. Clinical Biochemistry, 2019, 64, 12-17.	0.8	13

#	Article	IF	CITATIONS
129	Bile acid-induced apoptosis and bile acid synthesis are reduced by over-expression of Augmenter of Liver Regeneration (ALR) in a STAT3-dependent mechanism. Experimental Cell Research, 2019, 374, 189-197.	1.2	21
130	Influence of the Gut Microbiome, Diet, and Environment on Risk of Colorectal Cancer. Gastroenterology, 2020, 158, 322-340.	0.6	408
131	Metabolomic profile overlap in prototypical autoimmune humoral disease: a comparison of myasthenia gravis and rheumatoid arthritis. Metabolomics, 2020, 16, 10.	1.4	25
132	GPCR targets in type 2 diabetes. , 2020, , 367-391.		2
133	Cholestasis: The Close Relationship between Bile Acids and Coenzyme Q10. , 2020, , .		0
134	Bile acid kinetic modeling in end-stage liver support patients. Biocybernetics and Biomedical Engineering, 2020, 40, 764-773.	3.3	2
135	Platycodin D enhances LDLR expression and LDL uptake via down-regulation of IDOL mRNA in hepatic cells. Scientific Reports, 2020, 10, 19834.	1.6	14
136	Endocrine Pathophysiology. , 2020, , .		1
137	Endocannabinoid Receptor-1 and Sympathetic Nervous System Mediate the Beneficial Metabolic Effects of Gastric Bypass. Cell Reports, 2020, 33, 108270.	2.9	31
138	Druggable Lipid GPCRs: Past, Present, and Prospects. Advances in Experimental Medicine and Biology, 2020, 1274, 223-258.	0.8	19
139	\hat{l}^2 -Glucan Metabolic and Immunomodulatory Properties and Potential for Clinical Application. Journal of Fungi (Basel, Switzerland), 2020, 6, 356.	1.5	87
140	Application of Metabolomics in Diagnosis and Treatment of Chronic Liver Diseases. Critical Reviews in Analytical Chemistry, 2022, 52, 906-916.	1.8	6
141	Gypenosides regulate farnesoid X receptor-mediated bile acid and lipid metabolism in a mouse model of non-alcoholic steatohepatitis. Nutrition and Metabolism, 2020, 17, 34.	1.3	26
142	Probiotic Modulation of Lipid Metabolism Disorders Caused by Perfluorobutanesulfonate Pollution in Zebrafish. Environmental Science & Environmental Sc	4.6	64
143	Tissue engineering of the biliary tract and modelling of cholestatic disorders. Journal of Hepatology, 2020, 73, 918-932.	1.8	14
144	Betaine alleviated hepatic and renal injury in diabetic pregnant rats: biochemical and histopathological evidences. Journal of Diabetes and Metabolic Disorders, 2020, 19, 859-867.	0.8	1
145	Amino-functionalized cellulose: a novel and high-efficiency scavenger for sodium cholate sorption. Cellulose, 2020, 27, 4019-4028.	2.4	8
146	Transcriptome analysis indicates a broad range of toxic effects of Deepwater Horizon oil on Seaside Sparrows. Science of the Total Environment, 2020, 720, 137583.	3.9	13

#	ARTICLE	IF	CITATIONS
147	Gut microbiome of a porcine model of metabolic syndrome and HF-pEF. American Journal of Physiology - Heart and Circulatory Physiology, 2020, 318, H590-H603.	1.5	16
148	The gut microbiome in coronary artery disease and heart failure: Current knowledge and future directions. EBioMedicine, 2020, 52, 102649.	2.7	209
149	A higher level of total bile acid in early mid-pregnancy is associated with an increased risk of gestational diabetes mellitus: a prospective cohort study in Wuhan, China. Journal of Endocrinological Investigation, 2020, 43, 1097-1103.	1.8	10
150	The Periodontal Microenvironment: a Potential Reservoir for Intestinal Pathobionts in Crohn's Disease. Current Oral Health Reports, 2020, 7, 37-44.	0.5	4
151	Role of nâ€3 Fatty Acids on Bile Acid Metabolism and Transport in Dyslipidemia: A Review. Lipids, 2021, 56, 125-139.	0.7	2
152	Synthesis of new bioâ€based hydrogels derived from bile acids by freeâ€radical photoâ€polymerization. Polymers for Advanced Technologies, 2021, 32, 220-227.	1.6	11
153	Methods of lipid analysis. , 2021, , 53-83.		1
154	Dietary Modulation of the Gut Microbiomeâ€"Probing the Role of Small RNAs. , 2021, , 380-397.		0
155	Gastrointestinal Physiology and Aging. , 2021, , 1-46.		0
156	Bile acid-inspired oral small molecules drug delivery. , 2021, , 171-186.		2
157	Bile acid transporter as a bioinspired method for oral therapeutics delivery system., 2021,, 105-138.		2
158	Gastrointestinal Physiology and Aging. , 2021, , 155-200.		0
159	Pharmacological and Metabolic Significance of Bile Acids in Retinal Diseases. Biomolecules, 2021, 11, 292.	1.8	8
160	The microbiota–gut–brain axis: A novel nutritional therapeutic target for growth retardation. Critical Reviews in Food Science and Nutrition, 2022, 62, 4867-4892.	5.4	12
161	Biomarkers of human gut microbiota diversity and dysbiosis. Biomarkers in Medicine, 2021, 15, 139-150.	0.6	7
162	Enteral nutrition modulation with n-3 PUFAs directs microbiome and lipid metabolism in mice. PLoS ONE, 2021, 16, e0248482.	1.1	8
163	Metabolomic Changes after Subacute Exposure to Polycyclic Aromatic Hydrocarbons: A Natural Experiment among Healthy Travelers from Los Angeles to Beijing. Environmental Science & Eamp; Technology, 2021, 55, 5097-5105.	4.6	14
164	Synthesis and characterization of bile acid, poly (ε-caprolactone) and ʟ-lysine diisocyanate ethyl ester based polyurethanes and investigation of their biodegradability properties. European Polymer Journal, 2021, 146, 110247.	2.6	13

#	ARTICLE	IF	CITATIONS
165	The gut mycobiome of healthy mice is shaped by the environment and correlates with metabolic outcomes in response to diet. Communications Biology, 2021, 4, 281.	2.0	60
166	Integrated analysis of microbiota with bile acids for the phototherapy treatment of neonatal jaundice. Archives of Medical Science, 2021, , .	0.4	1
167	Fecal Metabolomics Reveals Distinct Profiles of Kidney Transplant Recipients and Healthy Controls. Diagnostics, 2021, 11, 807.	1.3	5
168	Glycoursodeoxycholic Acid Ameliorates Atherosclerosis and Alters Gut Microbiota in Apolipoprotein E–Deficient Mice. Journal of the American Heart Association, 2021, 10, e019820.	1.6	18
169	Circulating bile acids as a link between the gut microbiota and cardiovascular health: impact of prebiotics, probiotics and polyphenol-rich foods. Nutrition Research Reviews, 2022, 35, 161-180.	2.1	50
170	Notoginsenoside Ft1 acts as a TGR5 agonist but FXR antagonist to alleviate high fat diet-induced obesity and insulin resistance in mice. Acta Pharmaceutica Sinica B, 2021, 11, 1541-1554.	5.7	46
171	The Intestinal Microbiota: Impacts of Antibiotics Therapy, Colonization Resistance, and Diseases. International Journal of Molecular Sciences, 2021, 22, 6597.	1.8	37
172	Metabolic surgery in China: present and future. Journal of Molecular Cell Biology, 2021, , .	1.5	1
174	Role of bile acids in inflammatory liver diseases. Seminars in Immunopathology, 2021, 43, 577-590.	2.8	45
176	Autophagy Deficiency by Atg4B Loss Leads to Metabolomic Alterations in Mice. Metabolites, 2021, 11, 481.	1.3	4
177	High Throughput Analysis Reveals Changes in Gut Microbiota and Specific Fecal Metabolomic Signature in Hematopoietic Stem Cell Transplant Patients. Microorganisms, 2021, 9, 1845.	1.6	4
178	Therapeutic Strategies for Diabetes: Immune Modulation in Pancreatic \hat{l}^2 Cells. Frontiers in Endocrinology, 2021, 12, 716692.	1.5	10
179	Current progress in metabolomics of gestational diabetes mellitus. World Journal of Diabetes, 2021, 12, 1164-1186.	1.3	11
180	Serum Glucagon, Bile Acids, and FGF-19: Metabolic Behavior Patterns After Roux-en-Y Gastric Bypass and Vertical Sleeve Gastrectomy. Obesity Surgery, 2021, 31, 4939-4946.	1.1	7
181	Feedback Signaling between Cholangiopathies, Ductular Reaction, and Non-Alcoholic Fatty Liver Disease. Cells, 2021, 10, 2072.	1.8	13
183	Probiotic supplementation mitigates the developmental toxicity of perfluorobutanesulfonate in zebrafish larvae. Science of the Total Environment, 2021, 799, 149458.	3.9	17
185	Colesterol LDL, cuanto más bajo mejor. ClÃnica E Investigación En Arteriosclerosis, 2019, 31, 16-27.	0.4	16
186	Disturbances in Microbial and Metabolic Communication across the Gut–Liver Axis Induced by a Dioxin-like Pollutant: An Integrated Metagenomics and Metabolomics Analysis. Environmental Science & Environmental & E	4.6	40

#	Article	IF	CITATIONS
187	Potentials and Limitations of Bile Acids in Type 2 Diabetes Mellitus: Applications of Microencapsulation as a Novel Oral Delivery System. Journal of Endocrinology and Diabetes Mellitus, 0, , .	0.4	4
188	Effects of Deoxycholylglycine, a Conjugated Secondary Bile Acid, on Myogenic Tone and Agonist-Induced Contraction in Rat Resistance Arteries. PLoS ONE, 2012, 7, e32006.	1.1	17
189	Metabolome-Wide Association Study of Neovascular Age-Related Macular Degeneration. PLoS ONE, 2013, 8, e72737.	1.1	99
190	Urine Bile Acids Relate to Glucose Control in Patients with Type 2 Diabetes Mellitus and a Body Mass Index Below 30 kg/m2. PLoS ONE, 2014, 9, e93540.	1.1	26
191	Mass Spectrometry-Based Metabolite Profiling in the Mouse Liver following Exposure to Ultraviolet B Radiation. PLoS ONE, 2014, 9, e109479.	1.1	14
192	Analytical evaluation of three enzymatic assays for measuring total bile acids in plasma using a fully-automated clinical chemistry platform. PLoS ONE, 2017, 12, e0179200.	1.1	22
193	Middle-distance running acutely influences the concentration and composition of serum bile acids: Potential implications for cancer risk?. Oncotarget, 2017, 8, 52775-52782.	0.8	27
194	Krill protein hydrolysate reduces plasma triacylglycerol level with concurrent increase in plasma bile acid level and hepatic fatty acid catabolism in high-fat fed mice. Functional Foods in Health and Disease, 2013, 3, 428.	0.3	6
195	Translational approaches: from fatty liver to non-alcoholic steatohepatitis. World Journal of Gastroenterology, 2014, 20, 9038-49.	1.4	43
196	Mechanisms of triglyceride metabolism in patients with bile acid diarrhea. World Journal of Gastroenterology, 2016, 22, 6757.	1.4	12
197	Integrative Omics Reveals Metabolic and Transcriptomic Alteration of Nonalcoholic Fatty Liver Disease in Catalase Knockout Mice. Biomolecules and Therapeutics, 2019, 27, 134-144.	1.1	11
198	Pathway analysis identifies altered mitochondrial metabolism, neurotransmission, structural pathways and complement cascade in retina/RPE/ choroid in chick model of form-deprivation myopia. PeerJ, 2018, 6, e5048.	0.9	23
199	An Integrated Bile Acids Profile Determination by UHPLC-MS/MS to Identify the Effect of Bile Acids Supplement in High Plant Protein Diet on Common Carp (Cyprinus carpio). Foods, 2021, 10, 2465.	1.9	5
200	Yeast \hat{l}^2 -glucan reduces obesity-associated <i>Bilophila</i> abundance and modulates bile acid metabolism in healthy and high-fat diet mouse models. American Journal of Physiology - Renal Physiology, 2021, 321, G639-G655.	1.6	8
202	Surgical management of diabetes mellitus: future outlook. Endoscopic Surgery, 2017, 23, 46.	0.0	0
203	Bioassay Guided Isolation of Polysaccharide Rich Fraction from Myrmecodia Platytyrae and its Bile Acid Binder Property. Malaysian Journal of Medical and Biological Research, 2019, 6, 31-38.	0.2	0
204	Signs in Disorders of Lipid Metabolism and Obesity. , 2020, , 151-170.		0
206	Taurochenodeoxycholic acid mediates cAMP-PKA-CREB signaling pathway. Chinese Journal of Natural Medicines, 2020, 18, 898-906.	0.7	9

#	Article	IF	CITATIONS
207	The cardiovascular protective effect and mechanism of calycosin and its derivatives. Chinese Journal of Natural Medicines, 2020, 18, 907-915.	0.7	4
209	Review: The bile acids urso- and tauroursodeoxycholic acid as neuroprotective therapies in retinal disease. Molecular Vision, 2019, 25, 610-624.	1.1	33
210	Bile Acid Regulates the Colonization and Dissemination of Candida albicans from the Gastrointestinal Tract by Controlling Host Defense System and Microbiota. Journal of Fungi (Basel, Switzerland), 2021, 7, 1030.	1.5	8
211	Metabolomic profiles in zebrafish larvae following probiotic and perfluorobutanesulfonate coexposure. Environmental Research, 2022, 204, 112380.	3.7	7
212	"Osteomicrobiology― The Nexus Between Bone and Bugs. Frontiers in Microbiology, 2021, 12, 812466.	1.5	12
213	Structures of human bile acid exporter ABCB11 reveal a transport mechanism facilitated by two tandem substrate-binding pockets. Cell Research, 2022, 32, 501-504.	5.7	17
214	Fecal transplantation from young zebrafish donors efficiently ameliorates the lipid metabolism disorder of aged recipients exposed to perfluorobutanesulfonate. Science of the Total Environment, 2022, 823, 153758.	3.9	14
215	LKB1 in Intestinal Epithelial Cells Regulates Bile Acid Metabolism by Modulating FGF15/19 Production. Cellular and Molecular Gastroenterology and Hepatology, 2022, 13, 1121-1139.	2.3	3
216	Gut Microbiome in Non-Alcoholic Fatty Liver Disease: From Mechanisms to Therapeutic Role. Biomedicines, 2022, 10, 550.	1.4	16
217	Therapeutic potential of herbal medicine for the management of hyperlipidemia: latest updates. Environmental Science and Pollution Research, 2022, 29, 40281-40301.	2.7	22
218	The CDKAL1 rs7747752-Bile Acids Interaction Increased Risk of Gestational Diabetes Mellitus: A Nested Case-Control Study. Frontiers in Endocrinology, 2022, 13, 808956.	1.5	3
219	Bile Acid Sequestrants for Hypercholesterolemia Treatment Using Sustainable Biopolymers: Recent Advances and Future Perspectives. Molecular Pharmaceutics, 2022, 19, 1248-1272.	2.3	13
220	Lipid raft-mediated and upregulated coordination pathways assist transport of glycocholic acid-modified nanoparticle in a human breast cancer cell line of SK-BR-3. International Journal of Pharmaceutics, 2022, 617, 121589.	2.6	4
221	Swertiamarin, an active iridoid glycoside from Swertia pseudochinensis H. Hara, protects against alpha-naphthylisothiocyanate-induced cholestasis by activating the farnesoid X receptor and bile acid excretion pathway. Journal of Ethnopharmacology, 2022, 291, 115164.	2.0	12
222	Association of microbial dynamics with urinary estrogens and estrogen metabolites in patients with endometriosis. PLoS ONE, 2021, 16, e0261362.	1.1	14
223	The effect of bile salt diet supplementation on genes related to fat metabolism in yellow-feathered broilers. Veterinary World, 0, , 911-918.	0.7	1
233	Normal Gastrointestinal Tract Physiology. , 2022, , 3-28.		2
234	Familial hypercholesterolemia. , 2022, , 501-524.		0

#	Article	IF	CITATIONS
235	Plasma metabolomic signature of early abuse in middle-aged women. Psychosomatic Medicine, 2022, Publish Ahead of Print, .	1.3	1
237	Development of a Bile Acid-Related Gene Signature for Predicting Survival in Patients with Hepatocellular Carcinoma. Computational and Mathematical Methods in Medicine, 2022, 2022, 1-14.	0.7	1
238	Effects of Fat Type and Exogenous Bile Acids on Growth Performance, Nutrient Digestibility, Lipid Metabolism and Breast Muscle Fatty Acid Composition in Broiler Chickens. Animals, 2022, 12, 1258.	1.0	11
239	Capsaicin regulates lipid metabolism through modulation of bile acid/gut microbiota metabolism in high-fat-fed SD rats. Food and Nutrition Research, 0, 66, .	1.2	13
240	Lowering low-density lipoprotein cholesterol: from mechanisms to therapies. , 2022, 1, 25-38.		10
241	Serum Total Bile Acids in Relation to Gastrointestinal Cancer Risk: A Retrospective Study. Frontiers in Oncology, 0, 12, .	1.3	5
242	Reduced Cytokine Tumour Necrosis Factor by Pharmacological Intervention in a Preclinical Study. Biomolecules, 2022, 12, 877.	1.8	2
243	Variability in fecal metabolome depending on age, PFBS pollutant, and fecal transplantation in zebrafish: A non-invasive diagnosis of health. Journal of Environmental Sciences, 2023, 127, 530-540.	3.2	2
244	Gut microbiota in sarcopenia and heart failure. , 2022, 2, 35.		7
245	Yin-Yang control of energy balance by lipids in the hypothalamus: The endocannabinoids vs bile acids case. Biochimie, 2022, , .	1.3	1
246	Hepatotoxicity caused by methylparaben in adult zebrafish. Aquatic Toxicology, 2022, 250, 106255.	1.9	9
248	The Deficiency of SCARB2/LIMP-2 Impairs Metabolism via Disrupted mTORC1-Dependent Mitochondrial OXPHOS. International Journal of Molecular Sciences, 2022, 23, 8634.	1.8	4
249	Colesevelam $\hat{a}\in$ a bile acid sequestrant for treating hypercholesterolemia and improving hyperglycemia. Expert Opinion on Pharmacotherapy, 2022, 23, 1363-1370.	0.9	2
250	The structure and characterization of human cytochrome P450 8B1 supports future drug design for nonalcoholic fatty liver disease and diabetes. Journal of Biological Chemistry, 2022, 298, 102344.	1.6	7
251	Cholic acid inhibits amyloid fibrillation: Interplay of protonation and deprotonation. International Journal of Biological Macromolecules, 2022, 221, 900-912.	3.6	5
252	Phosphatidylethanolamine N-Methyltransferase Knockout Modulates Metabolic Changes in Aging Mice. Biomolecules, 2022, 12, 1270.	1.8	3
253	Comparative Analysis of Host Metabolic Alterations in Murine Malaria Models with Uncomplicated or Severe Malaria. Journal of Proteome Research, 2022, 21, 2261-2276.	1.8	2
254	Biochemical Indices of Drug Toxicity. , 2022, , 347-367.		0

#	ARTICLE	IF	Citations
255	Resistant starch type-4 intake alters circulating bile acids in human subjects. Frontiers in Nutrition, 0 , 9 , .	1.6	3
256	Systemic Bile Acids Affect the Severity of Acute Pancreatitis in Mice Depending on Their Hydrophobicity and the Disease Pathogenesis. International Journal of Molecular Sciences, 2022, 23, 13592.	1.8	5
257	A pilot reverse virtual screening study suggests toxic exposures caused long-term epigenetic changes in Gulf War Illness. Computational and Structural Biotechnology Journal, 2022, 20, 6206-6213.	1.9	2
258	Effect of modification of polystyrene nanoparticles with different bile acids on their oral transport. Nanomedicine: Nanotechnology, Biology, and Medicine, 2023, 48, 102629.	1.7	3
259	Bile acid-binding capacity of peptide extracts obtained from chicken blood hydrolysates using HPLC. LWT - Food Science and Technology, 2022, , 114381.	2.5	0
260	Bile acids and microbes in metabolic disease. World Journal of Gastroenterology, 0, 28, 6846-6866.	1.4	3
261	Treatment of Dyslipidemia through Targeted Therapy of Gut Microbiota. Nutrients, 2023, 15, 228.	1.7	10
262	Study of anti-hypercholesterolemic and antioxidant activities of Hylocereus polyrhizus fruit extract. AIP Conference Proceedings, 2023, , .	0.3	0
263	Profiling rhythmicity of bile salt hydrolase activity in the gut lumen with a rapid fluorescence assay. Organic and Biomolecular Chemistry, 2023, 21, 4028-4038.	1.5	0
264	Health Benefits Indonesian Fermented Food of Tempeh Gembus Upon National Readiness for Sustainable Development Goals Achievement. Advances in Environmental Engineering and Green Technologies Book Series, 2023, , 41-61.	0.3	1
265	LC-QToF-Based Metabolomics Identifies Aberrant Tissue Metabolites Associated with a Higher-Fat Diet and Their †Reversion to Healthy' with Dietary Probiotic Supplementation. Metabolites, 2023, 13, 358.	1.3	0
266	Microbiota-Derived Natural Products Targeting Cancer Stem Cells: Inside the Gut Pharma Factory. International Journal of Molecular Sciences, 2023, 24, 4997.	1.8	3
267	Constitutive Activation of gp130 in T Cells Results in Senescence and Premature Aging. Journal of Immunology, 2023, 210, 1641-1652.	0.4	2
268	Metabolic Syndrome and the Influence of Bile Acids. , 2023, , 645-651.		O