Quantitative 3D Video Microscopy of HIV Transfer Acro

Science 323, 1743-1747 DOI: 10.1126/science.1167525

Citation Report

#	Article	IF	CITATIONS
2	Simultaneous Cell-to-Cell Transmission of Human Immunodeficiency Virus to Multiple Targets through Polysynapses. Journal of Virology, 2009, 83, 6234-6246.	1.5	207
3	Formation of Syncytia Is Repressed by Tetraspanins in Human Immunodeficiency Virus Type 1-Producing Cells. Journal of Virology, 2009, 83, 7467-7474.	1.5	85
4	Dynamics of HIV-1 Assembly and Release. PLoS Pathogens, 2009, 5, e1000652.	2.1	178
5	Assembly of the Murine Leukemia Virus Is Directed towards Sites of Cell–Cell Contact. PLoS Biology, 2009, 7, e1000163.	2.6	85
6	Human Immunodeficiency Virus Type 1 Envelope gp120-Induced Partial T-Cell Receptor Signaling Creates an F-Actin-Depleted Zone in the Virological Synapse. Journal of Virology, 2009, 83, 11341-11355.	1.5	68
7	HIV endocytosis after dendritic cell to T cell viral transfer leads to productive virus infection. Antiviral Research, 2009, 83, 94-98.	1.9	26
9	Cell Carriers for Oncolytic Viruses: Fed Ex for Cancer Therapy. Molecular Therapy, 2009, 17, 1667-1676.	3.7	148
10	HIV Entry Revisited. Cell, 2009, 137, 402-404.	13.5	15
11	The Cell Biology of HIV-1 Virion Genesis. Cell Host and Microbe, 2009, 5, 550-558.	5.1	175
12	On the steps of cell-to-cell HIV transmission between CD4 T cells. Retrovirology, 2009, 6, 89.	0.9	38
13	HTLV-1–Tax and ICAM-1 act on T-cell signal pathways to polarize the microtubule-organizing center at		
	the virological synapse. Blood, 2009, 114, 1016-1025.	0.6	90
14		0.6	90 0
14 15	the virological synapse. Blood, 2009, 114, 1016-1025.	0.6	
	 the virological synapse. Blood, 2009, 114, 1016-1025. Applying Biophotonics Science and Technology in Medicine and the Life Sciences. , 2009, , . HIV-1 (co)Receptors: Implications for Vaccine and Therapy Design. Current Pharmaceutical Design, 2010, 		0
15	 the virological synapse. Blood, 2009, 114, 1016-1025. Applying Biophotonics Science and Technology in Medicine and the Life Sciences. , 2009, , . HIV-1 (co)Receptors: Implications for Vaccine and Therapy Design. Current Pharmaceutical Design, 2010, 16, 3701-3715. Potent and broad neutralizing activity of a single chain antibody fragment against cell-free and 	0.9	0 5
15 16	 the virological synapse. Blood, 2009, 114, 1016-1025. Applying Biophotonics Science and Technology in Medicine and the Life Sciences. , 2009, , . HIV-1 (co)Receptors: Implications for Vaccine and Therapy Design. Current Pharmaceutical Design, 2010, 16, 3701-3715. Potent and broad neutralizing activity of a single chain antibody fragment against cell-free and cell-associated HIV-1. MAbs, 2010, 2, 266-274. Cranberry and Grape Juice Drinks Affect Infectivity, Integrity, and Pathology of Enteric Viruses in an 	0.9 2.6	0 5 21
15 16 17	 the virological synapse. Blood, 2009, 114, 1016-1025. Applying Biophotonics Science and Technology in Medicine and the Life Sciences. , 2009, , . HIV-1 (co)Receptors: Implications for Vaccine and Therapy Design. Current Pharmaceutical Design, 2010, 16, 3701-3715. Potent and broad neutralizing activity of a single chain antibody fragment against cell-free and cell-associated HIV-1. MAbs, 2010, 2, 266-274. Cranberry and Grape Juice Drinks Affect Infectivity, Integrity, and Pathology of Enteric Viruses in an Animal Model. ACS Symposium Series, 2010, 177-195. Visualizing Cell-to-cell Transfer of HIV using Fluorescent Clones of HIV and Live Confocal 	0.9 2.6 0.5	0 5 21 3

#	Article	IF	CITATIONS
21	Human immunodeficiency virus (HIV)-1 infects human hepatic stellate cells and promotes collagen I and monocyte chemoattractant protein-1 expression: Implications for the pathogenesis of HIV/hepatitis C virus-induced liver fibrosis. Hepatology, 2010, 52, 612-622.	3.6	182
22	Manipulating CD4 ⁺ T cells by optical tweezers for the initiation of cellâ€cell transfer of HIVâ€1. Journal of Biophotonics, 2010, 3, 216-223.	1.1	32
23	Polymer live-cell array for real-time kinetic imaging of immune cells. Biomaterials, 2010, 31, 5022-5029.	5.7	24
24	Immunology and the elusive AIDS vaccine. Nature, 2010, 464, 224-231.	13.7	163
25	Virological Synapse-Mediated Spread of Human Immunodeficiency Virus Type 1 between T Cells Is Sensitive to Entry Inhibition. Journal of Virology, 2010, 84, 3516-3527.	1.5	177
26	Rapid Dissociation of HIV-1 from Cultured Cells Severely Limits Infectivity Assays, Causes the Inactivation Ascribed to Entry Inhibitors, and Masks the Inherently High Level of Infectivity of Virions. Journal of Virology, 2010, 84, 3106-3110.	1.5	57
27	Tracking the green invaders: advances in imaging virus infection in plants. Biochemical Journal, 2010, 430, 21-37.	1.7	20
28	Directional Spread of Surface-Associated Retroviruses Regulated by Differential Virus-Cell Interactions. Journal of Virology, 2010, 84, 3248-3258.	1.5	36
29	Virus Cell-to-Cell Transmission. Journal of Virology, 2010, 84, 8360-8368.	1.5	296
30	HIV-1 Virological Synapse is not Simply a Copycat of the Immunological Synapse. Viruses, 2010, 2, 1239-1260.	1.5	46
31	Cell-to-Cell Spread of Retroviruses. Viruses, 2010, 2, 1306-1321.	1.5	112
32	Quantitative Comparison of HTLV-1 and HIV-1 Cell-to-Cell Infection with New Replication Dependent Vectors. PLoS Pathogens, 2010, 6, e1000788.	2.1	180
33	Tetherin Restricts Productive HIV-1 Cell-to-Cell Transmission. PLoS Pathogens, 2010, 6, e1000955.	2.1	141
34	Nucleocapsid Promotes Localization of HIV-1 Gag to Uropods That Participate in Virological Synapses between T Cells. PLoS Pathogens, 2010, 6, e1001167.	2.1	68
35	Macrophages and Cell-Cell Spread of HIV-1. Viruses, 2010, 2, 1603-1620.	1.5	39
36	T Cell Polarization at the Virological Synapse. Viruses, 2010, 2, 1261-1278.	1.5	26
37	The HTLV-1 Virological Synapse. Viruses, 2010, 2, 1427-1447.	1.5	54
38	HIV-1 Virological Synapse: Live Imaging of Transmission. Viruses, 2010, 2, 1666-1680.	1.5	40

#	Article	IF	CITATIONS
39	ADS-J1 Inhibits HIV-1 Entry by Interacting with gp120 and Does Not Block Fusion-Active gp41 Core Formation. Antimicrobial Agents and Chemotherapy, 2010, 54, 4487-4492.	1.4	25
40	Cell-Cell Spread of Human Immunodeficiency Virus Type 1 Overcomes Tetherin/BST-2-Mediated Restriction in T cells. Journal of Virology, 2010, 84, 12185-12199.	1.5	172
41	Protease Cleavage Sites in HIV-1 gp120 Recognized by Antigen Processing Enzymes Are Conserved and Located at Receptor Binding Sites. Journal of Virology, 2010, 84, 1513-1526.	1.5	29
42	Within 1 h, HIV-1 uses viral synapses to enter efficiently the inner, but not outer, foreskin mucosa and engages Langerhans–T cell conjugates. Mucosal Immunology, 2010, 3, 506-522.	2.7	138
43	Tetherin restricts direct cell-to-cell infection of HIV-1. Retrovirology, 2010, 7, 115.	0.9	88
44	HIV-1 assembly in macrophages. Retrovirology, 2010, 7, 29.	0.9	65
45	In silico modeling indicates the development of HIV-1 resistance to multiple shRNA gene therapy differs to standard antiretroviral therapy. Retrovirology, 2010, 7, 83.	0.9	16
46	Relationships between plasma membrane microdomains and HIVâ€∎ assembly. Biology of the Cell, 2010, 102, 335-350.	0.7	103
47	Molecular Fluorescence, Phosphorescence, and Chemiluminescence Spectrometry. Analytical Chemistry, 2010, 82, 4865-4894.	3.2	49
48	Endocytosis of HIV: anything goes. Trends in Microbiology, 2010, 18, 543-551.	3.5	70
49	HIV-1 assembly at the plasma membrane. Vaccine, 2010, 28, B55-B59.	1.7	36
50	The direct passage of animal viruses between cells. Current Opinion in Virology, 2011, 1, 396-402.	2.6	68
51	Cell-to-Cell Transfer of HIV-1 via Virological Synapses Leads to Endosomal Virion Maturation that Activates Viral Membrane Fusion. Cell Host and Microbe, 2011, 10, 551-562.	5.1	117
52	For HIV, It's Never Too Late to Grow Up. Cell Host and Microbe, 2011, 10, 527-528.	5.1	1
53	Live-cell real-time imaging reveals role of mitochondria in cell-to-cell transmission of HIV-1. Biochemical and Biophysical Research Communications, 2011, 415, 384-389.	1.0	9
54	Lensfree super-resolution holographic microscopy using wetting films on a chip. Optics Express, 2011, 19, 17378.	1.7	52
55	Molecular Determinants that Regulate Plasma Membrane Association of HIV-1 Gag. Journal of Molecular Biology, 2011, 410, 512-524.	2.0	110
56	Visualizing HIV-1 Assembly. Journal of Molecular Biology, 2011, 410, 501-511.	2.0	73

#	Article	IF	CITATIONS
57	Optimized methods for imaging membrane nanotubes between T cells and trafficking of HIV-1. Methods, 2011, 53, 27-33.	1.9	50
58	Tracking and quantitation of fluorescent HIV during cell-to-cell transmission. Methods, 2011, 53, 20-26.	1.9	21
59	Can viruses form biofilms?. Trends in Microbiology, 2011, 19, 257-262.	3.5	64
60	New Insights into HIV Assembly and Trafficking. Physiology, 2011, 26, 236-251.	1.6	79
61	How HIV-1 Takes Advantage of the Cytoskeleton during Replication and Cell-to-Cell Transmission. Viruses, 2011, 3, 1757-1776.	1.5	39
62	HIV Envelope gp120 Activates LFA-1 on CD4 T-Lymphocytes and Increases Cell Susceptibility to LFA-1-Targeting Leukotoxin (LtxA). PLoS ONE, 2011, 6, e23202.	1.1	32
63	Tamiflu-Resistant but HA-Mediated Cell-to-Cell Transmission through Apical Membranes of Cell-Associated Influenza Viruses. PLoS ONE, 2011, 6, e28178.	1.1	20
64	Novel imaging technologies in the study of HIV. Future Virology, 2011, 6, 929-940.	0.9	2
65	The Activity of Matrix Metalloproteinase-9 is Part of the Mechanism of Cell-to-Cell HIV-1 Endocytosis in Dendritic Cells. Current Drug Discovery Technologies, 2011, 8, 112-118.	0.6	2
66	Investigating the Life Cycle of HIV with Fluorescent Proteins. Springer Series on Fluorescence, 2011, , 249-277.	0.8	0
67	HIVâ€l Transmission in the Male Genital Tract. American Journal of Reproductive Immunology, 2011, 65, 284-291.	1.2	61
68	Cell-to-cell transmission of retroviruses: Innate immunity and interferon-induced restriction factors. Virology, 2011, 411, 251-259.	1.1	39
69	Cellular entry via an actin and clathrin-dependent route is required for Lv2 restriction of HIV-2. Virology, 2011, 415, 47-55.	1.1	14
70	Vpu-mediated tetherin antagonism of ongoing HIV-1 infection in CD4+ T-cells is not directly related to the extent of tetherin cell surface downmodulation. Virology, 2011, 417, 353-361.	1.1	8
71	Nef does not inhibit F-actin remodelling and HIV-1 cell–cell transmission at the T lymphocyte virological synapse. European Journal of Cell Biology, 2011, 90, 913-921.	1.6	24
72	Modelling two different therapy strategies for drug T-20 on HIV-1 patients. Applied Mathematics and Mechanics (English Edition), 2011, 32, 419-436.	1.9	11
73	Early Events of HIV-1 Infection: Can Signaling be the Next Therapeutic Target?. Journal of NeuroImmune Pharmacology, 2011, 6, 269-283.	2.1	9
74	Coreceptors and HIV-1 Pathogenesis. Current HIV/AIDS Reports, 2011, 8, 45-53.	1.1	118

#	Article	IF	CITATIONS
75	WFDC1 expression identifies memory CD4 T- lymphocytes rendered vulnerable to cell-cell HIV-1 transfer by promoting intercellular adhesive junctions. Retrovirology, 2011, 8, 29.	0.9	12
76	Membrane Fusion Mediated by Human Immunodeficiency Virus Envelope Glycoprotein. Current Topics in Membranes, 2011, 68, 81-106.	0.5	57
78	Effect of different modes of viral spread on the dynamics of multiply infected cells in human immunodeficiency virus infection. Journal of the Royal Society Interface, 2011, 8, 289-300.	1.5	30
79	HIV-1 Entry into Renal Epithelia. Journal of the American Society of Nephrology: JASN, 2011, 22, 399-402.	3.0	2
80	Effect of multiple infection of cells on the evolutionary dynamics of HIV <i>in vivo</i> : implications for host adaptation mechanisms. Experimental Biology and Medicine, 2011, 236, 926-937.	1.1	10
81	Viral Determinants of Polarized Assembly for the Murine Leukemia Virus. Journal of Virology, 2011, 85, 7672-7682.	1.5	20
82	Extracellular ATP acts on P2Y2 purinergic receptors to facilitate HIV-1 infection. Journal of Experimental Medicine, 2011, 208, 1823-1834.	4.2	156
83	Multiploid Inheritance of HIV-1 during Cell-to-Cell Infection. Journal of Virology, 2011, 85, 7169-7176.	1.5	150
84	Host factors involved in retroviral budding and release. Nature Reviews Microbiology, 2011, 9, 519-531.	13.6	169
85	Virological Synapses Allow HIV-1 Uptake and Gene Expression in Renal Tubular Epithelial Cells. Journal of the American Society of Nephrology: JASN, 2011, 22, 496-507.	3.0	76
86	Innate Sensing of HIV-Infected Cells. PLoS Pathogens, 2011, 7, e1001284.	2.1	171
87	The Regulated Secretory Pathway in CD4+ T cells Contributes to Human Immunodeficiency Virus Type-1 Cell-to-Cell Spread at the Virological Synapse. PLoS Pathogens, 2011, 7, e1002226.	2.1	65
88	Quantitative Live-Cell Imaging of Human Immunodeficiency Virus (HIV-1) Assembly. Viruses, 2012, 4, 777-799.	1.5	24
89	Cell-Cell Transmission Enables HIV-1 to Evade Inhibition by Potent CD4bs Directed Antibodies. PLoS Pathogens, 2012, 8, e1002634.	2.1	189
90	Nanofluidic preconcentration and detection of nanoparticles. Journal of Applied Physics, 2012, 112, 14304.	1.1	8
91	Mobilization of HIV Spread by Diaphanous 2 Dependent Filopodia in Infected Dendritic Cells. PLoS Pathogens, 2012, 8, e1002762.	2.1	88
92	Dynamic Association between HIV-1 Gag and Membrane Domains. Molecular Biology International, 2012, 2012, 1-13.	1.7	18
93	HIV-1 Gag Directed Assembly of Retroviral Particles Investigated by Quantitative Fluorescence Imaging. Springer Series on Fluorescence, 2012, , 457-478.	0.8	0

#	Article	IF	CITATIONS
94	Antiretroviral Agents Effectively Block HIV Replication after Cell-to-Cell Transfer. Journal of Virology, 2012, 86, 8773-8780.	1.5	37
95	Role of O-Glycosylation and Expression of CD43 and CD45 on the Surfaces of Effector T Cells in Human T Cell Leukemia Virus Type 1 Cell-to-Cell Infection. Journal of Virology, 2012, 86, 2447-2458.	1.5	36
96	Alphaherpesvirus axon-to-cell spread involves limited virion transmission. Proceedings of the National Academy of Sciences of the United States of America, 2012, 109, 17046-17051.	3.3	76
97	Trans-infection but Not Infection from within Endosomal Compartments after Cell-to-cell HIV-1 Transfer to CD4+ T Cells. Journal of Biological Chemistry, 2012, 287, 32017-32026.	1.6	12
98	Nevirapine Inhibits Cell-Free Human Immunodeficiency Virus (HIV)-1 Infection In Vitro More Efficiently Than Cell–Cell HIV Infection at Concentrations Found in Human Breastmilk. Breastfeeding Medicine, 2012, , .	0.8	0
99	HIV Cell-to-Cell Transmission Requires the Production of Infectious Virus Particles and Does Not Proceed through Env-Mediated Fusion Pores. Journal of Virology, 2012, 86, 3924-3933.	1.5	51
100	Neutralizing antibodies inhibit HIV-1 transfer from primary dendritic cells to autologous CD4 T lymphocytes. Blood, 2012, 120, 3708-3717.	0.6	33
101	Innate Immune Recognition of HIV-1. Immunity, 2012, 37, 389-398.	6.6	68
102	Ectopic ATP synthase facilitates transfer of HIV-1 from antigen-presenting cells to CD4+ target cells. Blood, 2012, 120, 1246-1253.	0.6	25
103	As Good As It Gets? The Problem of HIV Persistence despite Antiretroviral Drugs. Cell Host and Microbe, 2012, 12, 132-138.	5.1	35
104	Tetherin/BST-2 Is Essential for the Formation of the Intracellular Virus-Containing Compartment in HIV-Infected Macrophages. Cell Host and Microbe, 2012, 12, 360-372.	5.1	70
105	Macrophage Internal HIV-1 Is Protected from Neutralizing Antibodies. Journal of Virology, 2012, 86, 2826-2836.	1.5	69
106	Modulation of HIV pathogenesis and T-cell signaling by HIV-1 Nef. Future Virology, 2012, 7, 609-620.	0.9	6
107	A hybrid stochastic–deterministic computational model accurately describes spatial dynamics and virus diffusion in HIV-1 growth competition assay. Journal of Theoretical Biology, 2012, 312, 120-132.	0.8	10
108	A mutant retroviral receptor restricts virus superinfection interference and productive infection. Retrovirology, 2012, 9, 51.	0.9	2
109	Increased burst size in multiply infected cells can alter basic virus dynamics. Biology Direct, 2012, 7, 16.	1.9	18
110	In vivo imaging of virological synapses. Nature Communications, 2012, 3, 1320.	5.8	64
111	HIV-specific antibody-dependent cellular cytotoxicity: a novel vaccine modality. Expert Review of Clinical Immunology, 2012, 8, 767-774.	1.3	7

		CITATION R	EPORT	
#	Article		IF	CITATIONS
112	T cell virological synapses and HIV-1 pathogenesis. Immunologic Research, 2012, 54, 1	.33-139.	1.3	25
113	HIV-1 Assembly, Budding, and Maturation. Cold Spring Harbor Perspectives in Medicin a006924-a006924.	e, 2012, 2,	2.9	605
114	HIV: Cell Binding and Entry. Cold Spring Harbor Perspectives in Medicine, 2012, 2, a00	6866-a006866.	2.9	438
115	Cannabinoid Receptor 2-Mediated Attenuation of CXCR4-Tropic HIV Infection in Prima PLoS ONE, 2012, 7, e33961.	ry CD4+ T Cells.	1.1	65
116	Intercellular Adhesion Molecule 1 Promotes HIV-1 Attachment but Not Fusion to Targe ONE, 2012, 7, e44827.	rt Cells. PLoS	1.1	20
117	Effect of Synaptic Transmission on Viral Fitness in HIV Infection. PLoS ONE, 2012, 7, e	48361.	1.1	29
118	Pathways of cell-cell transmission of HTLV-1. Frontiers in Microbiology, 2012, 3, 378.		1.5	115
119	HIV-infected T cells are migratory vehicles for viral dissemination. Nature, 2012, 490, 2	83-287.	13.7	290
120	Design of a high sensitivity emitter-detector avalanche photodiode imager using very h transmittance, back-illuminated, silicon-on-sapphire. Optical Engineering, 2012, 51, 06	nigh 3206.	0.5	2
121	Neutralization Resistance of Virological Synapse-Mediated HIV-1 Infection Is Regulated Cytoplasmic Tail. Journal of Virology, 2012, 86, 7484-7495.	by the gp41	1.5	62
122	Stable and transient periodic oscillations in a mathematical model for CTL response to infection. Journal of Mathematical Biology, 2012, 65, 181-199.	HTLV-I	0.8	36
123	Real-time optical detection of single human and bacterial viruses based on dark-field ir Biosensors and Bioelectronics, 2012, 31, 499-504.	terferometry.	5.3	32
124	Infection of HIV-specific CD4 T helper cells and the clonal composition of the response Theoretical Biology, 2012, 304, 143-151.	. Journal of	0.8	12
125	Forced virus evolution reveals functional crosstalk between the disulfide bonded regio membrane proximal ectodomain region of HIV-1 gp41. Retrovirology, 2013, 10, 44.	n and	0.9	5
127	Intravital Microscopy in BLT-Humanized Mice to Study Cellular Dynamics in HIV Infecti Infectious Diseases, 2013, 208, S137-S144.	on. Journal of	1.9	13
128	The immunological synapse: the gateway to the <scp>HIV</scp> reservoir. Immunolog 2013, 254, 305-325.	ical Reviews,	2.8	38
129	Immune adaptor ADAP in T cells regulates HIV-1 transcription and cell-cell viral spread co-receptors. Retrovirology, 2013, 10, 101.	via different	0.9	7
130	HIV-1 Nef promotes the localization of Gag to the cell membrane and facilitates viral c transfer. Retrovirology, 2013, 10, 80.	ell-to-cell	0.9	23

#	Article	IF	CITATIONS
131	Protease inhibitors effectively block cell-to-cell spread of HIV-1 between T cells. Retrovirology, 2013, 10, 161.	0.9	69
132	Specific antibodyâ€dependent cellular cytotoxicity responses associated with slow progression of <scp>HIV</scp> infection. Immunology, 2013, 138, 116-123.	2.0	139
133	A Doubly Fluorescent HIV-1 Reporter Shows that the Majority of Integrated HIV-1 Is Latent Shortly after Infection. Journal of Virology, 2013, 87, 4716-4727.	1.5	88
134	Cell-to-cell spread of HIV-1 and evasion of neutralizing antibodies. Vaccine, 2013, 31, 5789-5797.	1.7	71
135	Cell–cell transmission allows human T-lymphotropic virus 1 to circumvent tetherin restriction. Virology, 2013, 436, 201-209.	1.1	25
136	Virus dynamics in the presence of synaptic transmission. Mathematical Biosciences, 2013, 242, 161-171.	0.9	61
137	A sensitive real-time PCR based assay to estimate the impact of amino acid substitutions on the competitive replication fitness of human immunodeficiency virus type 1 in cell culture. Journal of Virological Methods, 2013, 189, 157-166.	1.0	13
138	Spatial Aspects of HIV Infection. Lecture Notes on Mathematical Modelling in the Life Sciences, 2013, , 3-31.	0.1	10
139	Transfer of extracellular vesicles during immune cell ell interactions. Immunological Reviews, 2013, 251, 125-142.	2.8	271
140	Mechanisms of enhanced <scp>HIV</scp> spread through Tâ€cell virological synapses. Immunological Reviews, 2013, 251, 113-124.	2.8	56
141	Investigation of <scp>HIV</scp> â€1 Assembly and Release Using Modern Fluorescence Imaging Techniques. Traffic, 2013, 14, 15-24.	1.3	16
142	Live cell imaging of viral entry. Current Opinion in Virology, 2013, 3, 34-43.	2.6	61
143	Cell-to-cell transmission of viruses. Current Opinion in Virology, 2013, 3, 44-50.	2.6	185
144	Multiple proviral integration events after virological synapse-mediated HIV-1 spread. Virology, 2013, 443, 143-149.	1.1	45
145	The participation of plasma membrane hemichannels to purinergic signaling. Biochimica Et Biophysica Acta - Biomembranes, 2013, 1828, 79-93.	1.4	151
146	Fusion of Mature HIV-1 Particles Leads to Complete Release of a Gag-GFP-Based Content Marker and Raises the Intraviral pH. PLoS ONE, 2013, 8, e71002.	1.1	49
147	Can Non-lytic CD8+ T Cells Drive HIV-1 Escape?. PLoS Pathogens, 2013, 9, e1003656.	2.1	29
148	Relative contribution of free-virus and synaptic transmission to the spread of HIV-1 through target cell populations. Biology Letters, 2013, 9, 20121049.	1.0	48

ARTICLE IF CITATIONS # Cell-Cell Contact-Mediated Hepatitis C Virus (HCV) Transfer, Productive Infection, and Replication and 149 1.5 18 Their Requirement for HCV Receptors. Journal of Virology, 2013, 87, 8545-8558. Basic Residues in the Matrix Domain and Multimerization Target Murine Leukemia Virus Gag to the 1.5 Virological Synapse. Journal of Virology, 2013, 87, 7113-7126. Loss of a Tyrosine-Dependent Trafficking Motif in the Simian Immunodeficiency Virus Envelope Cytoplasmic Tail Spares Mucosal CD4 Cells but Does Not Prevent Disease Progression. Journal of 151 1.5 32 Vírology, 2013, 87, 1528-1543. HIV-1 Gag Associates with Specific Uropod-Directed Microdomains in a Manner Dependent on Its MA Highly Basic Region. Journal of Virology, 2013, 87, 6441-6454. Productive Entry of HIV-1 during Cell-to-Cell Transmission via Dynamin-Dependent Endocytosis. 153 1.5 55 Journal of Virology, 2013, 87, 8110-8123. Clustering and Mobility of HIV-1 Env at Viral Assembly Sites Predict Its Propensity To Induce Cell-Cell Fusion. Journal of Virology, 2013, 87, 7516-7525. 1.5 79 HIV-1<i>Trans</i>Infection of CD4⁺T Cells by Professional Antigen Presenting Cells. 155 0.6 34 Scientifica, 2013, 2013, 1-30. Distinguishing immature and mature HIV-1 particles by superresolution optical fluorescence microscopy., 2013,,. Actin-binding Protein Drebrin Regulates HIV-1-triggered Actin Polymerization and Viral Infection. 157 1.6 28 Journal of Biological Chemistry, 2013, 288, 28382-28397. Is specific HIV eradication from the brain possible or needed?. Expert Opinion on Biological Therapy, 1.4 2013, 13, 403-409. Evidence of ongoing replication in a human immunodeficiency virus type 1 persistently infected cell 159 1.3 5 line. Journal of General Virology, 2013, 94, 944-954. Synaptic transmission and the susceptibility of HIV infection to anti-viral drugs. Scientific Reports, 1.6 34 2013, 3, 2103. Intracellular Nucleic Acid Delivery by the Supercharged Dengue Virus Capsid Protein. PLoS ONE, 2013, 161 1.1 36 8, e81450. Cell-to-Cell Transmission Can Overcome Multiple Donor and Target Cell Barriers Imposed on Cell-Free 1.1 140 HIV. PLoS ONE, 2013, 8, e53138. Cellular and Biochemical Mechanisms of the Retroviral Restriction Factor SAMHD1., 2013, 2013, 1-11. 163 18 Prostaglandin E2 Reduces the Release and Infectivity of New Cell-Free Virions and Cell-To-Cell HIV-1 164 1.1 Transfer. PLoS ONE, 2014, 9, e85230. Live Cell Imaging of Retroviral Entry. Annual Review of Virology, 2014, 1, 501-515. 165 3.07 A comparison of elasticities of viral levels to specific immune response mechanisms in human immunodeficiency virus infection. BMC Research Notes, 2014, 7, 737.

#	Article	IF	CITATIONS
167	Early and late HIV-1 membrane fusion events are impaired by sphinganine lipidated peptides that target the fusion site. Biochemical Journal, 2014, 461, 213-222.	1.7	13
168	Which Antibody Functions are Important for an HIV Vaccine?. Frontiers in Immunology, 2014, 5, 289.	2.2	47
169	Highly Active Antiretroviral Therapies Are Effective against HIV-1 Cell-to-Cell Transmission. PLoS Pathogens, 2014, 10, e1003982.	2.1	86
170	Unique Features of HIV-1 Spread through T Cell Virological Synapses. PLoS Pathogens, 2014, 10, e1004513.	2.1	42
171	Three-Dimensional Imaging of HIV-1 Virological Synapses Reveals Membrane Architectures Involved in Virus Transmission. Journal of Virology, 2014, 88, 10327-10339.	1.5	61
172	Modeling Mucosal Cell-Associated HIV Type 1 Transmission in Vitro. Journal of Infectious Diseases, 2014, 210, S648-S653.	1.9	16
173	Renal epithelial cells produce and spread HIV-1 via T-cell contact. Aids, 2014, 28, 2345-2353.	1.0	32
174	Ezrin Is a Component of the HIV-1 Virological Presynapse and Contributes to the Inhibition of Cell-Cell Fusion. Journal of Virology, 2014, 88, 7645-7658.	1.5	35
175	HIV entry: a game of hide-and-fuse?. Current Opinion in Virology, 2014, 4, 1-7.	2.6	97
176	Immunoinformatics. Methods in Molecular Biology, 2014, 1184, vii-xi.	0.4	7
177	Three-Dimensional Imaging of Viral Infections. Annual Review of Virology, 2014, 1, 453-473.	3.0	49
178	Cell-to-cell transfer of HIV infection: implications for HIV viral persistence. Journal of General Virology, 2014, 95, 2346-2355.	1.3	29
179	Distinct Mechanisms Regulate Exposure of Neutralizing Epitopes in the V2 and V3 Loops of HIV-1 Envelope. Journal of Virology, 2014, 88, 12853-12865.	1.5	53
180	P2X-Selective Purinergic Antagonists Are Strong Inhibitors of HIV-1 Fusion during both Cell-to-Cell and Cell-Free Infection. Journal of Virology, 2014, 88, 11504-11515.	1.5	45
181	Role of the nucleocapsid region in HIV-1 Gag assembly as investigated by quantitative fluorescence-based microscopy. Virus Research, 2014, 193, 78-88.	1.1	14
182	Probing the Effect of Force on HIV-1 Receptor CD4. ACS Nano, 2014, 8, 10313-10320.	7.3	24
183	Advances in the pathogenesis of HIV-associated kidney diseases. Kidney International, 2014, 86, 266-274.	2.6	46
184	Adding new dimensions: towards an integrative understanding of HIV-1 spread. Nature Reviews Microbiology, 2014, 12, 563-574.	13.6	66

#	Article	IF	CITATIONS
185	Dendritic Cell-Lymphocyte Cross Talk Downregulates Host Restriction Factor SAMHD1 and Stimulates HIV-1 Replication in Dendritic Cells. Journal of Virology, 2014, 88, 5109-5121.	1.5	34
186	Modeling HIV-1 Virus Dynamics with Both Virus-to-Cell Infection and Cell-to-Cell Transmission. SIAM Journal on Applied Mathematics, 2014, 74, 898-917.	0.8	151
187	<scp>HIV</scp> â€1 Vaginal Transmission: Cellâ€Free or Cellâ€Associated Virus?. American Journal of Reproductive Immunology, 2014, 71, 589-599.	1.2	26
188	Characterizing natural hydrogel for reconstruction of threeâ€dimensional lymphoid stromal network to model Tâ€cell interactions. Journal of Biomedical Materials Research - Part A, 2015, 103, 2701-2710.	2.1	15
189	Cell-to-cell contact facilitates HIV transmission from lymphocytes to astrocytes via CXCR4. Aids, 2015, 29, 755-766.	1.0	45
190	HIV-1-Induced Small T Cell Syncytia Can Transfer Virus Particles to Target Cells through Transient Contacts. Viruses, 2015, 7, 6590-6603.	1.5	56
191	HIV-1 Cell-to-Cell Transmission and Antiviral Strategies: An Overview. Current Drug Targets, 2015, 17, 65-75.	1.0	8
192	Exosomes Are Unlikely Involved in Intercellular Nef Transfer. PLoS ONE, 2015, 10, e0124436.	1.1	31
193	Capacity of Broadly Neutralizing Antibodies to Inhibit HIV-1 Cell-Cell Transmission Is Strain- and Epitope-Dependent. PLoS Pathogens, 2015, 11, e1004966.	2.1	74
194	Commentary: Questioning the HIV-AIDS Hypothesis: 30 Years of Dissent. Frontiers in Public Health, 2015, 3, 193.	1.3	3
195	Distinct Requirements for HIV-Cell Fusion and HIV-mediated Cell-Cell Fusion. Journal of Biological Chemistry, 2015, 290, 6558-6573.	1.6	38
196	Basic Motifs Target PSGL-1, CD43, and CD44 to Plasma Membrane Sites Where HIV-1 Assembles. Journal of Virology, 2015, 89, 454-467.	1.5	24
197	Intracellular FRET-based probes: a review. Methods and Applications in Fluorescence, 2015, 3, 042006.	1.1	80
198	Cell–cell contact viral transfer contributes to HIV infection and persistence in astrocytes. Journal of NeuroVirology, 2015, 21, 66-80.	1.0	48
199	Contribution of HIV-1 genomes that do not integrate to the basic reproductive ratio of the virus. Journal of Theoretical Biology, 2015, 367, 222-229.	0.8	4
200	Receptors and routes of dengue virus entry into the host cells. FEMS Microbiology Reviews, 2015, 39, 155-170.	3.9	231
201	Monitoring HIV-1 Protein Oligomerization by FLIM FRET Microscopy. Springer Series in Chemical Physics, 2015, , 277-307.	0.2	5
202	Modeling multiple infection of cells by viruses: Challenges and insights. Mathematical Biosciences, 2015, 264, 21-28.	0.9	17

		CITATION RE	PORT	
#	Article		IF	CITATIONS
203	Human Immunodeficiency Virus Infection–Associated Cancer and Mycotoxins in Foc	od., 2015, , 59-77.		0
204	MIV-150/Zinc Acetate Gel Inhibits Cell-Associated Simian-Human Immunodeficiency Vi Transcriptase Infection in a Macaque Vaginal Explant Model. Antimicrobial Agents and 2015, 59, 3829-3837.	rus Reverse Chemotherapy,	1.4	13
205	Hybrid Spreading Mechanisms and T Cell Activation Shape the Dynamics of HIV-1 Infec Computational Biology, 2015, 11, e1004179.	tion. PLoS	1.5	29
206	In-cell infection: a novel pathway for Epstein-Barr virus infection mediated by cell-in-cel Cell Research, 2015, 25, 785-800.	l structures.	5.7	36
207	HIV cell-to-cell transmission: effects on pathogenesis and antiretroviral therapy. Trends Microbiology, 2015, 23, 289-295.	; in	3.5	89
208	Dressing up Nanoparticles: A Membrane Wrap to Induce Formation of the Virological S Nano, 2015, 9, 4182-4192.	Synapse. ACS	7.3	26
209	Development of a graded index microlens based fiber optical trap and its characterizat principal component analysis. Biomedical Optics Express, 2015, 6, 1512.	ion using	1.5	8
210	Retroviruses use CD169-mediated trans-infection of permissive lymphocytes to establi Science, 2015, 350, 563-567.	sh infection.	6.0	155
211	Contact-Induced Mitochondrial Polarization Supports HIV-1 Virological Synapse Forma of Virology, 2015, 89, 14-24.	tion. Journal	1.5	22
212	Rapid 3D fluorescence imaging of individual optically trapped living immune cells. Jour Biophotonics, 2015, 8, 208-216.	nal of	1.1	10
213	Recent Insights into the HIV/AIDS Pandemic. Microbial Cell, 2016, 3, 450-474.		1.4	41
214	Where in the Cell Are You? Probing HIV-1 Host Interactions through Advanced Imaging Viruses, 2016, 8, 288.	; Techniques.	1.5	8
215	Visualization of Content Release from Cell Surface-Attached Single HIV-1 Particles Carr Extra-Viral Fluorescent pH-Sensor. PLoS ONE, 2016, 11, e0148944.	ying an	1.1	18
216	HIV Cell-to-Cell Spread Results in Earlier Onset of Viral Gene Expression by Multiple Info Cell. PLoS Pathogens, 2016, 12, e1005964.	ections per	2.1	62
217	Cell-Free versus Cell-to-Cell Infection by Human Immunodeficiency Virus Type 1 and Hu T-Lymphotropic Virus Type 1: Exploring the Link among Viral Source, Viral Trafficking, a Replication. Journal of Virology, 2016, 90, 7607-7617.		1.5	41
218	Oscillation and Optical Properties of Viruses and Other Pathogenic Microorganisms: A Article. NATO Science for Peace and Security Series B: Physics and Biophysics, 2016, ,		0.2	0
219	HIV-1 Gag, Envelope, and Extracellular Determinants Cooperate To Regulate the Stabil of Virological Synapses. Journal of Virology, 2016, 90, 6583-6597.	ity and Turnover	1.5	18
220	Stability analysis in delayed within-host viral dynamics with both viral and cellular infec Journal of Mathematical Analysis and Applications, 2016, 442, 642-672.	tions.	0.5	66

#	Article	IF	CITATIONS
222	Modeling Viral Spread. Annual Review of Virology, 2016, 3, 555-572.	3.0	79
223	The Glycosylphosphatidylinositol-Anchored Variable Region of Llama Heavy Chain-Only Antibody JM4 Efficiently Blocks both Cell-Free and T Cell-T Cell Transmission of Human Immunodeficiency Virus Type 1. Journal of Virology, 2016, 90, 10642-10659.	1.5	13
224	Cell-to-Cell Spread of HIV and Viral Pathogenesis. Advances in Virus Research, 2016, 95, 43-85.	0.9	26
225	InÂVivo HIV-1 Cell-to-Cell Transmission Promotes Multicopy Micro-compartmentalized Infection. Cell Reports, 2016, 15, 2771-2783.	2.9	101
226	Optical micro-particle size detection by phase-generated carrier demodulation. Optics Express, 2016, 24, 11458.	1.7	8
227	HIV Envelope gp120 Alters T Cell Receptor Mobilization in the Immunological Synapse of Uninfected CD4 T Cells and Augments T Cell Activation. Journal of Virology, 2016, 90, 10513-10526.	1.5	10
228	LFA-1 Engagement Triggers T Cell Polarization at the HIV-1 Virological Synapse. Journal of Virology, 2016, 90, 9841-9854.	1.5	25
229	Alpha-1-antitrypsin interacts with gp41 to block HIV-1 entry into CD4+ T lymphocytes. BMC Microbiology, 2016, 16, 172.	1.3	21
230	Viruses exploit the tissue physiology of the host to spread in vivo. Current Opinion in Cell Biology, 2016, 41, 81-90.	2.6	20
231	A new cell line for high throughput HIV-specific antibody-dependent cellular cytotoxicity (ADCC) and cell-to-cell virus transmission studies. Journal of Immunological Methods, 2016, 433, 51-58.	0.6	37
232	Recent advances in human viruses imaging studies. Journal of Basic Microbiology, 2016, 56, 591-607.	1.8	5
233	Measuring T Cell-to-T Cell HIV-1 Transfer, Viral Fusion, and Infection Using Flow Cytometry. Methods in Molecular Biology, 2016, 1354, 21-38.	0.4	12
234	HIV-1 Nucleocapsid Mimics the Membrane Adaptor Syntenin PDZ to Gain Access to ESCRTs and Promote Virus Budding. Cell Host and Microbe, 2016, 19, 336-348.	5.1	21
235	HIV-1 resistance to neutralizing antibodies: Determination of antibody concentrations leading to escape mutant evolution. Virus Research, 2016, 218, 57-70.	1.1	14
236	Exploring the benefits of antibody immune response in HIV-1 infection using a discrete model. Mathematical Medicine and Biology, 2016, 33, 189-210.	0.8	1
237	Controlling Multicycle Replication of Live-Attenuated HIV-1 Using an Unnatural Genetic Switch. ACS Synthetic Biology, 2017, 6, 721-731.	1.9	35
238	HIV-1 Activates T Cell Signaling Independently of Antigen to Drive Viral Spread. Cell Reports, 2017, 18, 1062-1074.	2.9	39
239	High sensitivity detection and sorting of infectious human immunodeficiency virus (HIV-1) particles by flow virometry. Virology, 2017, 505, 80-90.	1.1	40

#	Article	IF	Citations
240	Reduced Potency and Incomplete Neutralization of Broadly Neutralizing Antibodies against Cell-to-Cell Transmission of HIV-1 with Transmitted Founder Envs. Journal of Virology, 2017, 91, .	1.5	57
241	New Connections: Cell-to-Cell HIV-1 Transmission, Resistance to Broadly Neutralizing Antibodies, and an Envelope Sorting Motif. Journal of Virology, 2017, 91, .	1.5	6
242	Mechanism of Anti-rotavirus Synergistic Activity by Epigallocatechin Gallate and a Proanthocyanidin-Containing Nutraceutical. Food and Environmental Virology, 2017, 9, 434-443.	1.5	24
243	Pyroptosis, superinfection, and the maintenance of the latent reservoir in HIV-1 infection. Scientific Reports, 2017, 7, 3834.	1.6	9
244	Stability of a general delayed virus dynamics model with humoral immunity and cellular infection. AIP Advances, 2017, 7, .	0.6	12
245	Further Characterization of the Bifunctional HIV Entry Inhibitor sCD4-FI T45. Molecular Therapy - Nucleic Acids, 2017, 7, 387-395.	2.3	5
246	T Cell-Macrophage Fusion Triggers Multinucleated Giant Cell Formation for HIV-1 Spreading. Journal of Virology, 2017, 91, .	1.5	69
247	On the Whereabouts of HIV-1 Cellular Entry and Its Fusion Ports. Trends in Molecular Medicine, 2017, 23, 932-944.	3.5	20
248	Tunneling nanotubes (TNT) mediate long-range gap junctional communication: Implications for HIV cell to cell spread. Scientific Reports, 2017, 7, 16660.	1.6	68
249	Transmembrane TNF-α Facilitates HIV-1 Infection of Podocytes Cultured from Children with HIV-Associated Nephropathy. Journal of the American Society of Nephrology: JASN, 2017, 28, 862-875.	3.0	22
250	Analysis of an age structured HIV infection model with virus-to-cell infection and cell-to-cell transmission. Nonlinear Analysis: Real World Applications, 2017, 34, 75-96.	0.9	99
251	Mathematical analysis of an HIV latent infection model including both virus-to-cell infection and cell-to-cell transmission. Journal of Biological Dynamics, 2017, 11, 455-483.	0.8	75
252	Visualization of HIV T Cell Virological Synapses and Virus-Containing Compartments by Three-Dimensional Correlative Light and Electron Microscopy. Journal of Virology, 2017, 91, .	1.5	26
253	Spatial and temporal epithelial ovarian cancer cell heterogeneity impacts Maraba virus oncolytic potential. BMC Cancer, 2017, 17, 594.	1.1	23
254	Non-Neutralizing Antibodies Directed against HIV and Their Functions. Frontiers in Immunology, 2017, 8, 1590.	2.2	48
255	Quantitative analysis and comparison of 3D morphology between viable and apoptotic MCF-7 breast cancer cells and characterization of nuclear fragmentation. PLoS ONE, 2017, 12, e0184726.	1.1	16
256	Dendritic cell maturation, but not type I interferon exposure, restricts infection by HTLV-1, and viral transmission to T-cells. PLoS Pathogens, 2017, 13, e1006353.	2.1	30
257	Resolving T cell — T cell transfer of HIV-1 by optical nanoscopy. , 2017, , .		0

#	Article	IF	CITATIONS
258	Distinct functions for the membrane-proximal ectodomain region (MPER) of HIV-1 gp41 in cell-free and cell–cell fusion. Journal of Biological Chemistry, 2018, 293, 6099-6120.	1.6	12
259	In vitro methods for testing antiviral drugs. Biotechnology Advances, 2018, 36, 557-576.	6.0	39
260	Glycosyl-Phosphatidylinositol-Anchored Anti-HIV Env Single-Chain Variable Fragments Interfere with HIV-1 Env Processing and Viral Infectivity. Journal of Virology, 2018, 92, .	1.5	8
261	A reaction–diffusion within-host HIV model with cell-to-cell transmission. Journal of Mathematical Biology, 2018, 76, 1831-1872.	0.8	88
262	Impacts of the Cell-Free and Cell-to-Cell Infection Modes on Viral Dynamics. Journal of Dynamics and Differential Equations, 2018, 30, 1817-1836.	1.0	50
263	Analysis and computation of multi-pathways and multi-delays HIV-1 infection model. Applied Mathematical Modelling, 2018, 54, 517-536.	2.2	25
264	An age-structured virus model with two routes of infection in heterogeneous environments. Nonlinear Analysis: Real World Applications, 2018, 39, 464-491.	0.9	11
265	An age-structured within-host HIV-1 infection model with virus-to-cell and cell-to-cell transmissions. Journal of Biological Dynamics, 2018, 12, 89-117.	0.8	12
266	Modeling Cell-to-Cell Spread of HIV-1 with Nonlocal Infections. Complexity, 2018, 2018, 1-10.	0.9	13
267	Cytosolic Recognition of Microbes and Pathogens: Inflammasomes in Action. Microbiology and Molecular Biology Reviews, 2018, 82, .	2.9	124
268	The Role of Lipids in Retroviral Replication. , 2018, , 353-399.		1
269	All-Round Manipulation of the Actin Cytoskeleton by HIV. Viruses, 2018, 10, 63.	1.5	46
270	Incomplete inhibition of HIV infection results in more HIV infected lymph node cells by reducing cell death. ELife, 2018, 7, .	2.8	12
271	Super-resolution fluorescence microscopy studies of human immunodeficiency virus. Retrovirology, 2018, 15, 41.	0.9	37
272	HIV-1 cell-to-cell transmission and broadly neutralizing antibodies. Retrovirology, 2018, 15, 51.	0.9	43
273	Mechanisms for Cell-to-Cell Transmission of HIV-1. Frontiers in Immunology, 2018, 9, 260.	2.2	133
274	Priming of dendritic cells by DNA-containing extracellular vesicles from activated T cells through antigen-driven contacts. Nature Communications, 2018, 9, 2658.	5.8	242
275	HTLV-1, the Other Pathogenic Yet Neglected Human Retrovirus: From Transmission to Therapeutic Treatment. Viruses, 2018, 10, 1.	1.5	256

#	Article	IF	CITATIONS
276	Live-Cell Imaging of Early Steps of Single HIV-1 Infection. Viruses, 2018, 10, 275.	1.5	31
277	Visualizing Viral Infection In Vivo by Multi-Photon Intravital Microscopy. Viruses, 2018, 10, 337.	1.5	15
278	Synaptic transmission may provide an evolutionary benefit to HIV through modulation of latency. Journal of Theoretical Biology, 2018, 455, 261-268.	0.8	4
279	Live Imaging of HIV-1 Transfer across T Cell Virological Synapse to Epithelial Cells that Promotes Stromal Macrophage Infection. Cell Reports, 2018, 23, 1794-1805.	2.9	35
280	The role of spatial heterogeneity in the evolution of local and global infections of viruses. PLoS Computational Biology, 2018, 14, e1005952.	1.5	7
281	Within-Host Viral Dynamics in a Multi-compartmental Environment. Bulletin of Mathematical Biology, 2019, 81, 4271-4308.	0.9	2
282	Efficient HIV-1 Trans Infection of CD4+ T Cells Occurs in the Presence of Antiretroviral Therapy. Open Forum Infectious Diseases, 2019, 6, ofz253.	0.4	6
283	Dynamics of an HIVâ€1 virus model with both virusâ€toâ€cell and cellâ€toâ€cell transmissions, general incidence rate, intracellular delay, and CTL immune responses. Mathematical Methods in the Applied Sciences, 2019, 42, 6385-6406.	1.2	8
284	Mechanisms for Controlling HIV-1 Infection: A Gene Therapy Approach. , 0, , .		3
285	Antigen structure affects cellular routing through DC-SIGN. Proceedings of the National Academy of Sciences of the United States of America, 2019, 116, 14862-14867.	3.3	43
286	HIV Infection Stabilizes Macrophage-T Cell Interactions To Promote Cell-Cell HIV Spread. Journal of Virology, 2019, 93, .	1.5	19
287	Optimal control in a multi-pathways HIV-1 infection model: a comparison between mono-drug and multi-drug therapies. International Journal of Control, 2021, 94, 2047-2064.	1.2	8
288	On the efficiency of HIV transmission: Insights through discrete time HIV models. PLoS ONE, 2019, 14, e0222574.	1.1	3
289	CD4-Dependent Modulation of HIV-1 Entry by LY6E. Journal of Virology, 2019, 93, .	1.5	22
290	Experimental and computational analyses reveal that environmental restrictions shape HIV-1 spread in 3D cultures. Nature Communications, 2019, 10, 2144.	5.8	60
291	Tat expression led to increased histone 3 tri-methylation at lysine 27 and contributed to HIV latency in astrocytes through regulation of MeCP2 and Ezh2 expression. Journal of NeuroVirology, 2019, 25, 508-519.	1.0	4
292	EWI-2 Inhibits Cell–Cell Fusion at the HIV-1 Virological Presynapse. Viruses, 2019, 11, 1082.	1.5	8
293	Development of Immature CD4+CD8+T Cells Into Mature CD4+ T Cells Requires Alpha-1 Antitrypsin as Observed by Treatment in HIV-1 Infected and Uninfected Controls. Frontiers in Cell and Developmental Biology, 2019, 7, 278.	1.8	6

#	Article	IF	CITATIONS
294	Variable infectivity and conserved engagement in cell-to-cell viral transfer by HIV-1 Env from Clade B transmitted founder clones. Virology, 2019, 526, 189-202.	1.1	7
295	Sequential trafficking of Env and Gag to HIV-1 T cell virological synapses revealed by live imaging. Retrovirology, 2019, 16, 2.	0.9	21
296	Dynamics of a diffusive virus model with general incidence function, cell-to-cell transmission and time delay. Computers and Mathematics With Applications, 2019, 77, 284-301.	1.4	34
297	The Near-Infrared-II Fluorophores and Advanced Microscopy Technologies Development and Application in Bioimaging. Bioconjugate Chemistry, 2020, 31, 260-275.	1.8	75
298	Modern Techniques for the Isolation of Extracellular Vesicles and Viruses. Journal of NeuroImmune Pharmacology, 2020, 15, 459-472.	2.1	51
299	Sensing of HIV-1 by TLR8 activates human T cells and reverses latency. Nature Communications, 2020, 11, 147.	5.8	62
300	A biophysical perspective on receptor-mediated virus entry with a focus on HIV. Biochimica Et Biophysica Acta - Biomembranes, 2020, 1862, 183158.	1.4	12
301	Impact of adaptive immune response and cellular infection on delayed virus dynamics with multi-stages of infected cells. International Journal of Biomathematics, 2020, 13, 2050003.	1.5	1
302	Role of Tunneling Nanotube–like Structures during the Early Events of HIV Infection: Novel Features of Tissue Compartmentalization and Mechanism of HIV Spread. Journal of Immunology, 2020, 205, 2726-2741.	0.4	12
303	M-Sec facilitates intercellular transmission of HIV-1 through multiple mechanisms. Retrovirology, 2020, 17, 20.	0.9	14
304	Dynamics of an HIV Infection Model with Two Infection Routes and Evolutionary Competition between Two Viral Strains. Applied Mathematical Modelling, 2020, 84, 240-264.	2.2	23
305	Environmental Restrictions: A New Concept Governing HIV-1 Spread Emerging from Integrated Experimental-Computational Analysis of Tissue-Like 3D Cultures. Cells, 2020, 9, 1112.	1.8	11
306	Global analysis of a diffusive viral model with cellâ€ŧo ell infection and incubation period. Mathematical Methods in the Applied Sciences, 2020, 43, 5963-5978.	1.2	24
307	Viral diffusion and cell-to-cell transmission: Mathematical analysis and simulation study. Journal Des Mathematiques Pures Et Appliquees, 2020, 137, 290-313.	0.8	26
308	Single-Virus Tracking: From Imaging Methodologies to Virological Applications. Chemical Reviews, 2020, 120, 1936-1979.	23.0	131
309	Interference with HIV infection of the first cell is essential for viral clearance at sub-optimal levels of drug inhibition. PLoS Computational Biology, 2020, 16, e1007482.	1.5	5
310	Loss of Nef-mediated CD3 down-regulation in the HIV-1 lineage increases viral infectivity and spread. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 7382-7391.	3.3	8
311	Threshold dynamics of a delayed nonlocal reaction-diffusion HIV infection model with both cell-free and cell-to-cell transmissions. Journal of Mathematical Analysis and Applications, 2020, 488, 124047.	0.5	34

#	Article	IF	Citations
312	HIV Reactivation in Latently Infected Cells with Virological Synapse-Like Cell Contact. Viruses, 2020, 12, 417.	1.5	6
313	Effect of synaptic cell-to-cell transmission and recombination on the evolution of double mutants in HIV. Journal of the Royal Society Interface, 2020, 17, 20190832.	1.5	6
314	Modeling HIV multiple infection. Journal of Theoretical Biology, 2021, 509, 110502.	0.8	7
315	Explicit numerical approximation for an impulsive stochastic age-structured HIV infection model with Markovian switching. Mathematics and Computers in Simulation, 2021, 182, 86-115.	2.4	9
316	Threshold dynamics of a general delayed within-host viral infection model with humoral immunity and two modes of virus transmission. Discrete and Continuous Dynamical Systems - Series B, 2021, 26, 3835.	0.5	1
317	Quantifying the dynamics of viral recombination during free virus and cell-to-cell transmission in HIV-1 infection. Virus Evolution, 2021, 7, veab026.	2.2	5
318	Autophagy-enhancing drugs limit mucosal HIV-1 acquisition and suppress viral replication ex vivo. Scientific Reports, 2021, 11, 4767.	1.6	13
321	FRET-Based Detection and Quantification of HIV-1 Virion Maturation. Frontiers in Microbiology, 2021, 12, 647452.	1.5	4
323	The Mechanism of PEDV-Carrying CD3+ T Cells Migrate into the Intestinal Mucosa of Neonatal Piglets. Viruses, 2021, 13, 469.	1.5	3
324	Dynamics of a new HIV model with the activation status of infected cells. Journal of Mathematical Biology, 2021, 82, 51.	0.8	3
325	The large extracellular loop of CD63 interacts with gp41 of HIV-1 and is essential for establishing the virological synapse. Scientific Reports, 2021, 11, 10011.	1.6	8
326	Circumcision as an Intervening Strategy against HIV Acquisition in the Male Genital Tract. Pathogens, 2021, 10, 806.	1.2	5
327	Alphataxin, an Orally Available Small Molecule, Decreases LDL Levels in Mice as a Surrogate for the LDL-Lowering Activity of Alpha-1 Antitrypsin in Humans. Frontiers in Pharmacology, 2021, 12, 695971.	1.6	1
328	A diffusive virus model with a fixed intracellular delay and combined drug treatments. Journal of Mathematical Biology, 2021, 83, 19.	0.8	Ο
329	Endocytic Motif on a Biotin-Tagged HIV-1 Env Modulates the Co-Transfer of Env and Gag during Cell-to-Cell Transmission. Viruses, 2021, 13, 1729.	1.5	3
331	An HIV latent infection model with cell-to-cell transmission and stochastic perturbation. Chaos, Solitons and Fractals, 2021, 151, 111215.	2.5	6
332	Mathematical analysis of an HIV model with latent reservoir, delayed CTL immune response and immune impairment. Mathematical Biosciences and Engineering, 2021, 18, 1689-1707.	1.0	4
334	Mechanistic Analysis of the Broad Antiretroviral Resistance Conferred by HIV-1 Envelope Glycoprotein Mutations. MBio, 2021, 12, .	1.8	20

#	Article	IF	CITATIONS
335	Mathematical Models of HIV Replication and Pathogenesis. Methods in Molecular Biology, 2014, 1184, 563-581.	0.4	5
336	Single Virion Tracking Microscopy for the Study of Virus Entry Processes in Live Cells and Biomimetic Platforms. Advances in Experimental Medicine and Biology, 2019, 1215, 13-43.	0.8	14
337	Viral cell-to-cell spread: Conventional and non-conventional ways. Advances in Virus Research, 2020, 108, 85-125.	0.9	29
338	Bottleneck, Isolate, Amplify, Select (BIAS) as a mechanistic framework for intracellular population dynamics of positive-sense RNA viruses. Virus Evolution, 2020, 6, veaa086.	2.2	7
343	Measles Virus Ribonucleoprotein Complexes Rapidly Spread across Well-Differentiated Primary Human Airway Epithelial Cells along F-Actin Rings. MBio, 2019, 10, .	1.8	21
344	Differential Role of Autophagy in CD4 T Cells and Macrophages during X4 and R5 HIV-1 Infection. PLoS ONE, 2009, 4, e5787.	1.1	115
345	Substance P Induces Rapid and Transient Membrane Blebbing in U373MG Cells in a p21-Activated Kinase-Dependent Manner. PLoS ONE, 2011, 6, e25332.	1.1	38
346	An Inducible Cell-Cell Fusion System with Integrated Ability to Measure the Efficiency and Specificity of HIV-1 Entry Inhibitors. PLoS ONE, 2011, 6, e26731.	1.1	32
347	Multilamellar Structures and Filament Bundles Are Found on the Cell Surface during Bunyavirus Egress. PLoS ONE, 2013, 8, e65526.	1.1	15
348	The Cortical Actin Determines Different Susceptibility of NaÃ ⁻ ve and Memory CD4+ T Cells to HIV-1 Cell-to-Cell Transmission and Infection. PLoS ONE, 2013, 8, e79221.	1.1	8
349	Age-structured viral dynamics in a host with multiple compartments. Mathematical Biosciences and Engineering, 2020, 17, 538-574.	1.0	2
350	Global dynamics of an age-structured within-host viral infection model with cell-to-cell transmission and general humoral immunity response. Mathematical Biosciences and Engineering, 2020, 17, 1450-1478.	1.0	10
351	Dynamics of a Within-Host Virus Infection Model with Multiple Pathways: Stability Switch and Global Stability. International Journal of Bifurcation and Chaos in Applied Sciences and Engineering, 2021, 31, .	0.7	3
352	Global Threshold Dynamics of an Infection Age-Space Structured HIV Infection Model with Neumann Boundary Condition. Journal of Dynamics and Differential Equations, 2023, 35, 2279-2311.	1.0	7
353	Live 3D Imaging of HIV-1Transfer through the Virological Synapse. , 2011, , .		0
354	The Visual Touch Regime: Real-Time 3D Image-Guided Robotic Surgery and 4D and "5D―Scientific Illustration at Work. SpringerBriefs in Health Care Management and Economics, 2013, , 21-51.	0.4	1
355	Cell-to-Cell Transmission of HIV. , 2013, , 167-184.		1
356	Synthesis of Functional and Variable HIV-1 Envelope Glycoproteins. , 2013, , 75-122.		Ο

#	Article	IF	CITATIONS
357	Fusion. , 2013, , 1-9.		0
358	Theoretical Analysis and Simulation of Acute and Chronic Phase HIV-1 Dynamics. British Journal of Mathematics & Computer Science, 2014, 4, 1450-1479.	0.3	1
359	The Envelope Cytoplasmic Tail of HIV-1 Subtype C Contributes to Poor Replication Capacity through Low Viral Infectivity and Cell-to-Cell Transmission. PLoS ONE, 2016, 11, e0161596.	1.1	4
362	Fusion. , 2018, , 564-571.		0
365	Clobal dynamics of HIV infection with two disease transmission routes - a mathematical model. Communications in Mathematical Biology and Neuroscience, 0, , .	0.0	2
370	Clobal dynamics of a delayed diffusive virus infection model with cell-mediated immunity and cell-to-cell transmission. Mathematical Biosciences and Engineering, 2020, 17, 4678-4705.	1.0	7
371	Viral infection dynamics in a spatial heterogeneous environment with cell-free and cell-to-cell transmissions. Mathematical Biosciences and Engineering, 2020, 17, 2569-2591.	1.0	2
373	Threshold dynamics of a general delayed HIV model with double transmission modes and latent viral infection. AIMS Mathematics, 2022, 7, 2456-2478.	0.7	0
374	Experimental Models to Study HIV Latency Reversal from Male Genital Myeloid Cells. Methods in Molecular Biology, 2022, 2407, 189-204.	0.4	1
375	Effect of a Δ9-tetrahydrocannabinol (THC)/cannabidiol (CBD) formulation on cell monolayer viability and mitochondria integrity: Significance of the drug carrier/delivery system. Archives of Nursing Practice and Care, 2020, , 042-048.	0.0	0
376	Reaching Out: Supporting Families and Carers Bereaved During COVID-19. Archives of Nursing Practice and Care, 2020, , 049-050.	0.0	0
377	A Conserved Tryptophan in the Envelope Cytoplasmic Tail Regulates HIV-1 Assembly and Spread. Viruses, 2022, 14, 129.	1.5	4
378	HIV-1 and HTLV-1 Transmission Modes: Mechanisms and Importance for Virus Spread. Viruses, 2022, 14, 152.	1.5	18
379	Periodic Solutions of an Infected-Age Structured HIV Model with the Latent Factor and Different Transmission Modes. International Journal of Bifurcation and Chaos in Applied Sciences and Engineering, 2022, 32, .	0.7	3
380	LFA1 and ICAM1 are critical for fusion and spread of murine leukemia virus inÂvivo. Cell Reports, 2022, 38, 110279.	2.9	1
382	Calcium Contributes to Polarized Targeting of HIV Assembly Machinery by Regulating Complex Stability. Jacs Au, 2022, 2, 522-530.	3.6	0
383	T cell migration potentiates HIV infection by enhancing viral fusion and integration. Cell Reports, 2022, 38, 110406.	2.9	6
384	Characterization and distribution of HIV-infected cells in semen. Emerging Microbes and Infections, 2022, 11, 860-872.	3.0	0

		CITATION REPORT		
#	Article		IF	CITATIONS
385	The HIV Env Clycoprotein Conformational States on Cells and Viruses. MBio, 2022, 13, e	20182521.	1.8	11
386	The protein encoded by the duck plague virus UL14 gene regulates virion morphogenes viral replication. Poultry Science, 2022, 101, 101863.	is and affects	1.5	0
387	Uniform Persistence and Global Attractivity in a Delayed Virus Dynamic Model with Apo Both Virus-to-Cell and Cell-to-Cell Infections. Mathematics, 2022, 10, 975.	ptosis and	1.1	1
388	Evolution dynamics of a time-delayed reaction–diffusion HIV latent infection model w and periodic therapies. Nonlinear Analysis: Real World Applications, 2022, 67, 103559.	ith two strains	0.9	4
389	Similarities and Differences between COVID-19-Associated Nephropathy and HIV-Associ Nephropathy. Kidney Diseases (Basel, Switzerland), 2022, 8, 1-12.	ated	1.2	6
390	A Replication-Competent HIV Clone Carrying GFP-Env Reveals Rapid Env Recycling at the Virological Synapse. Viruses, 2022, 14, 38.	e HIV-1 T Cell	1.5	7
391	HIV-1 trans-Infection Mediated by DCs: The Tip of the Iceberg of Cell-to-Cell Viral Transm Pathogens, 2022, 11, 39.	iission.	1.2	4
392	A hybrid stochastic-deterministic approach to explore multiple infection and evolution in Computational Biology, 2021, 17, e1009713.	h HIV. PLoS	1.5	2
393	HIV-1 Vpr drives a tissue residency-like phenotype during selective infection of resting m Cell Reports, 2022, 39, 110650.	iemory TÂcells.	2.9	6
394	Spatiotemporal Dynamics of a Delayed Viral Infection Model with Two Modes of Transm Immune Impairment. Discrete Dynamics in Nature and Society, 2022, 2022, 1-19.	ission and	0.5	0
395	HIV RGB: Automated Single-Cell Analysis of HIV-1 Rev-Dependent RNA Nuclear Export ar Using Image Processing in KNIME. Viruses, 2022, 14, 903.	าd Translation	1.5	1
396	Backward bifurcation and stability analysis in a within-host HIV model with both virus-to infection and cell-to-cell transmission, and anti-retroviral therapy. Mathematics and Con Simulation, 2022, 200, 162-185.		2.4	3
397	Natural Selection, Intracellular Bottlenecks of Virus Populations, and Viral Superinfection Exclusion. Annual Review of Virology, 2022, 9, 121-137.	n	3.0	10
398	Local and global Hopf bifurcation analysis of an age-infection HIV dynamics model with transmission. Waves in Random and Complex Media, 0, , 1-16.	cell-to-cell	1.6	4
399	Development of an HIV reporter virus that identifies latently infected CD4+ TÂcells. Cell Methods, 2022, 2, 100238.	Reports	1.4	2
400	A cellular trafficking signal in the SIV envelope protein cytoplasmic domain is strongly so pathogenic infection. PLoS Pathogens, 2022, 18, e1010507.	elected for in	2.1	4
401	Y RNAs are conserved endogenous RIG-I ligands across RNA virus infection and are targe IScience, 2022, 25, 104599.	eted by HIV-1.	1.9	15
402	A Self-Packaging gRNA ₁ : Gag-Pol ₁₅ Con Genetic Feedback and Enforces HIV Infectivity. SSRN Electronic Journal, 0, , .	mplex Creates	0.4	0

#	Article	IF	CITATIONS
403	A generalized distributed delay model for hepatitis B virus infection with two modes of transmission and adaptive immunity: A mathematical study. Mathematical Methods in the Applied Sciences, 2022, 45, 11614-11634.	1.2	3
404	Galectin-3 facilitates cell-to-cell HIV-1 transmission by altering the composition of membrane lipid rafts in CD4 T cells. Glycobiology, 0, , .	1.3	2
405	Recognition of HIV-1 capsid by PQBP1 licenses an innate immune sensing of nascent HIV-1 DNA. Molecular Cell, 2022, 82, 2871-2884.e6.	4.5	17
407	Nef inhibits HIV transcription and gene expression in astrocytes and HIV transmission from astrocytes to CD4+ T cells. Journal of NeuroVirology, 2022, 28, 552-565.	1.0	1
408	Global stability of an age-structured infection model in vivo with two compartments and two routes. Mathematical Biosciences and Engineering, 2022, 19, 11047-11070.	1.0	0
409	Cost-effective high-speed, three-dimensional live-cell imaging of HIV-1 transfer at the TÂcell virological synapse. IScience, 2022, 25, 105468.	1.9	2
410	Viral infection dynamics with mitosis, intracellular delays and immune response. Mathematical Biosciences and Engineering, 2022, 20, 2937-2963.	1.0	0
411	Optimal Drug Therapy in a Multi-Pathways HIV-1 Infection Model with Immune Response Delay. , 2022, , 119-146.		1
412	Analysis of a stochastic HIV model with cell-to-cell transmission and Ornstein–Uhlenbeck process. Journal of Mathematical Physics, 2023, 64, .	0.5	6
413	Viral dynamics with immune responses: effects of distributed delays and Filippov antiretroviral therapy. Journal of Mathematical Biology, 2023, 86, .	0.8	3
414	Sliding mode dynamics and optimal control for HIV model. Mathematical Biosciences and Engineering, 2023, 20, 7273-7297.	1.0	1
415	Recent progress of second near-infrared (NIR-II) fluorescence microscopy in bioimaging. Frontiers in Physiology, 0, 14, .	1.3	1
416	Packaging and Uncoating of CRISPR/Cas Ribonucleoproteins for Efficient Gene Editing with Viral and Non-Viral Extracellular Nanoparticles. Viruses, 2023, 15, 690.	1.5	5
417	HIV-1 infection of renal epithelial cells: 30Âyears of evidence from transgenic animal models, human studies and in vitro experiments. Retrovirology, 2023, 20, .	0.9	0
432	Relevance of the Entry by Fusion atÂthe Cytoplasmic Membrane vs. Fusion After Endocytosis in the HIV and SARS-Cov-2 Infections. Results and Problems in Cell Differentiation, 2024, , 329-344.	0.2	0
433	Virus-Induced Cell Fusion and Syncytia Formation. Results and Problems in Cell Differentiation, 2024, , 283-318.	0.2	1