SIRT6 stabilizes DNA-dependent Protein Kinase at chro repair

Aging 1, 109-121 DOI: 10.18632/aging.100011

Citation Report

#	Article	IF	CITATIONS
1	The sirtuin SIRT6 deacetylates H3 K56Ac in vivo to promote genomic stability. Cell Cycle, 2009, 8, 2662-2663.	2.6	229
2	Cell cycle-dependent deacetylation of telomeric histone H3 lysine K56 by human SIRT6. Cell Cycle, 2009, 8, 2664-2666.	2.6	339
3	The ageing epigenome: Damaged beyond repair?. Ageing Research Reviews, 2009, 8, 189-198.	10.9	77
4	Therapeutic potential of activators and inhibitors of sirtuins. BioFactors, 2010, 36, 383-393.	5.4	46
5	Functional dissection of SIRT6: Identification of domains that regulate histone deacetylase activity and chromatin localization. Mechanisms of Ageing and Development, 2010, 131, 185-192.	4.6	104
6	Ku80 facilitates chromatin binding of the telomere binding protein, TRF2. Cell Cycle, 2010, 9, 3822-3830.	2.6	15
8	SIRT6 in mouse spermatogenesis is modulated by diet-induced obesity. Reproduction, Fertility and Development, 2011, 23, 929.	0.4	87
9	SIRT6 Promotes DNA Repair Under Stress by Activating PARP1. Science, 2011, 332, 1443-1446.	12.6	717
11	Histone Deacetylases: the Biology and Clinical Implication. Handbook of Experimental Pharmacology, 2011, , .	1.8	7
12	Characterization of Nuclear Sirtuins: Molecular Mechanisms and Physiological Relevance. Handbook of Experimental Pharmacology, 2011, 206, 189-224.	1.8	42
13	Combined Exercise and Insulin-Like Growth Factor-1 Supplementation Induces Neurogenesis in Old Rats, but Do Not Attenuate Age-Associated DNA Damage. Rejuvenation Research, 2011, 14, 585-596.	1.8	43
14	Induction and persistence of radiation-induced DNA damage is more pronounced in young animals than in old animals. Aging, 2011, 3, 609-620.	3.1	42
15	Cancer, Senescence, and Aging: Translation from Basic Research to Clinics. Journal of Aging Research, 2011, 2011, 1-2.	0.9	1
16	Relationship Between DNA Damage and Energy Metabolism: Evidence from DNA Repair Deficiency Syndromes. , 2011, , .		2
17	Structure-based development of novel sirtuin inhibitors. Aging, 2011, 3, 852-872.	3.1	59
19	Pathways for Ischemic Cytoprotection: Role of Sirtuins in Caloric Restriction, Resveratrol, and Ischemic Preconditioning. Journal of Cerebral Blood Flow and Metabolism, 2011, 31, 1003-1019.	4.3	119
20	Chromatin regulation and genome maintenance by mammalian SIRT6. Trends in Biochemical Sciences, 2011, 36, 39-46.	7.5	136
21	SIRT1 and AMPK in regulating mammalian senescence: A critical review and a working model. FEBS Letters, 2011, 585, 986-994.	2.8	147

#	Article	IF	CITATIONS
22	Age-dependent changes in 8-oxoguanine-DNA glycosylase activity are modulated by adaptive responses to physical exercise in human skeletal muscle. Free Radical Biology and Medicine, 2011, 51, 417-423.	2.9	82
23	Exogenous NADP increases the level of histone H2AX phosphorylation in mouse heart cells after ionizing radiation. Cell and Tissue Biology, 2011, 5, 383-387.	0.4	0
24	Dietary phytochemicals, HDAC inhibition, and DNA damage/repair defects in cancer cells. Clinical Epigenetics, 2011, 3, 4.	4.1	177
25	The H2B ubiquitin ligase RNF40 cooperates with SUPT16H to induce dynamic changes in chromatin structure during DNA double-strand break repair. Cell Cycle, 2011, 10, 3495-3504.	2.6	68
26	SIRT6 overexpression induces massive apoptosis in cancer cells but not in normal cells. Cell Cycle, 2011, 10, 3153-3158.	2.6	130
27	Structure and Biochemical Functions of SIRT6. Journal of Biological Chemistry, 2011, 286, 14575-14587.	3.4	239
28	Sirtuins, Bioageing, and Cancer. Journal of Aging Research, 2011, 2011, 1-11.	0.9	40
29	The Dual Role of Sirtuins in Cancer. Genes and Cancer, 2011, 2, 648-662.	1.9	281
30	A dual role for A-type lamins in DNA double-strand break repair. Cell Cycle, 2011, 10, 2549-2560.	2.6	124
31	Sirtuins at a glance. Journal of Cell Science, 2011, 124, 833-838.	2.0	262
32	SIRT6 is required for maintenance of telomere position effect in human cells. Nature Communications, 2011, 2, 433.	12.8	126
33	Dynamic Chromatin Localization of Sirt6 Shapes Stress- and Aging-Related Transcriptional Networks. PLoS Genetics, 2011, 7, e1002153.	3.5	82
34	DNA Damage and Repair in Atherosclerosis: Current Insights and Future Perspectives. International Journal of Molecular Sciences, 2012, 13, 16929-16944.	4.1	52
35	Pygo2 regulates histone gene expression and H3 K56 acetylation in human mammary epithelial cells. Cell Cycle, 2012, 11, 79-87.	2.6	25
36	Overexpression of SIRT6 in Porcine Fetal Fibroblasts Attenuates Cytotoxicity and Premature Senescence Caused by D-Galactose and Tert-Butylhydroperoxide. DNA and Cell Biology, 2012, 31, 745-752.	1.9	11
37	Targeted gene therapies: tools, applications, optimization. Critical Reviews in Biochemistry and Molecular Biology, 2012, 47, 264-281.	5.2	30
38	HDAC Inhibitors. Advances in Cancer Research, 2012, 116, 87-129.	5.0	114
39	Sirtuins, Metabolism, and Cancer. Frontiers in Pharmacology, 2012, 3, 22.	3.5	63

		CITATION RE	EPORT	
#	Article		IF	CITATIONS
40	Regulation and protection of mitochondrial physiology by sirtuins. Mitochondrion, 202	12, 12, 66-76.	3.4	39
41	Recognition, signaling, and repair of DNA double-strand breaks produced by ionizing ra mammalian cells: The molecular choreography. Mutation Research - Reviews in Mutatio 2012, 751, 158-246.		5.5	307
42	DNA methylation profiling identifies epigenetic dysregulation in pancreatic islets from patients. EMBO Journal, 2012, 31, 1405-1426.	type 2 diabetic	7.8	355
43	Over Expression of Wild Type or a Catalytically Dead Mutant of SIRTUIN 6 Does Not In Responses. PLoS ONE, 2012, 7, e39847.	fluence NFκB	2.5	29
44	Cre-Mediated Stress Affects Sirtuin Expression Levels, Peroxisome Biogenesis and Met Antioxidant and Proinflammatory Signaling Pathways. PLoS ONE, 2012, 7, e41097.	abolism,	2.5	26
45	Identification of Novel Interacting Partners of Sirtuin6. PLoS ONE, 2012, 7, e51555.		2.5	23
46	Regulation of Sirtuin Function by Posttranslational Modifications. Frontiers in Pharmac 3, 29.	:ology, 2012,	3.5	112
47	Emerging roles of SIRT6 on telomere maintenance, DNA repair, metabolism and mamn Molecular and Cellular Biochemistry, 2012, 364, 345-350.	halian aging.	3.1	65
48	SIRT6 Recruits SNF2H to DNA Break Sites, Preventing Genomic Instability through Chr Remodeling. Molecular Cell, 2013, 51, 454-468.	omatin	9.7	324
50	Proteomic analysis of the SIRT6 interactome: novel links to genome maintenance and signaling. Scientific Reports, 2013, 3, 3085.	cellular stress	3.3	38
51	SIRT6 modulates paclitaxel and epirubicin resistance and survival in breast cancer. Car 2013, 34, 1476-1486.	cinogenesis,	2.8	147
52	The Ubiquitin Ligase CHIP Prevents SirT6 Degradation through Noncanonical Ubiquitir Molecular and Cellular Biology, 2013, 33, 4461-4472.	ation.	2.3	72
53	Sirtuin Deacetylases as Therapeutic Targets in the Nervous System. Neurotherapeutics 605-620.	, 2013, 10 ,	4.4	28
54	SIRT6, a protein with many faces. Biogerontology, 2013, 14, 629-639.		3.9	80
55	Seven sirtuins for seven deadly diseases ofaging. Free Radical Biology and Medicine, 20)13, 56, 133-171.	2.9	332
56	Epigenetics and aging. Maturitas, 2013, 74, 130-136.		2.4	72
57	Sirtuin 6: a review of biological effects and potential therapeutic properties. Molecular 2013, 9, 1789.	BioSystems,	2.9	81
58	Inhibition of SIRT6 in prostate cancer reduces cell viability and increases sensitivity to chemotherapeutics. Protein and Cell, 2013, 4, 702-710.		11.0	99

#	Article	IF	CITATIONS
59	The sirtuin SIRT6 regulates stress granules formation in C. elegans and in mammals. Journal of Cell Science, 2013, 126, 5166-77.	2.0	58
60	SIRT2 directs the replication stress response through CDK9 deacetylation. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110, 13546-13551.	7.1	87
61	SIRT6 protects human endothelial cells from DNA damage, telomere dysfunction, and senescence. Cardiovascular Research, 2013, 97, 571-579.	3.8	153
62	The emerging and diverse roles of sirtuins in cancer: a clinical perspective. OncoTargets and Therapy, 2013, 6, 1399.	2.0	118
63	Effects of hyperglycemia and aging on nuclear sirtuins and DNA damage of mouse hepatocytes. Molecular Biology of the Cell, 2013, 24, 2467-2476.	2.1	25
64	A Tale of Metabolites: The Cross-Talk between Chromatin and Energy Metabolism. Cancer Discovery, 2013, 3, 497-501.	9.4	66
65	The Role of SIRT6 Protein in Aging and Reprogramming of Human Induced Pluripotent Stem Cells. Journal of Biological Chemistry, 2013, 288, 18439-18447.	3.4	113
66	SIRT6 exhibits nucleosome-dependent deacetylase activity. Nucleic Acids Research, 2013, 41, 8537-8545.	14.5	113
67	Hepatic SREBP-2 and cholesterol biosynthesis are regulated by FoxO3 and Sirt6. Journal of Lipid Research, 2013, 54, 2745-2753.	4.2	149
68	Sirtuins and Cancer: New Insights and Cell Signaling. Cancer Investigation, 2013, 31, 645-653.	1.3	7
69	The Diversity of Histone Versus Nonhistone Sirtuin Substrates. Genes and Cancer, 2013, 4, 148-163.	1.9	119
70	Sirt6 regulates postnatal growth plate differentiation and proliferation via Ihh signaling. Scientific Reports, 2013, 3, 3022.	3.3	38
71	Rejuvenating Sirtuins: The Rise of a New Family of Cancer Drug Targets. Current Pharmaceutical Design, 2013, 19, 614-623.	1.9	49
72	Sirtuins in Hematological Aging and Malignancy. Critical Reviews in Oncogenesis, 2013, 18, 531-547.	0.4	28
73	Acute Exercise Leads to Regulation of Telomere-Associated Genes and MicroRNA Expression in Immune Cells. PLoS ONE, 2014, 9, e92088.	2.5	88
74	C. eleganssirtuin SIR-2.4 and its mammalian homolog SIRT6 in stress response. Worm, 2014, 3, e29102.	1.0	4
75	Changes in human sirtuin 6 gene promoter methylation during aging. Biomedical Reports, 2014, 2, 574-578.	2.0	16

		CITATION REPORT		
#	Article		IF	Citations
77	Bypassing the Requirement for an Essential MYST Acetyltransferase. Genetics, 2014, 19	97, 851-863.	2.9	13
78	SIRT6: A Promising Target for Cancer Prevention and Therapy. Advances in Experimenta Biology, 2014, 818, 181-196.	l Medicine and	1.6	11
79	Interplay between sirtuins, MYC and hypoxia-inducible factor in cancer-associated meta reprogramming. DMM Disease Models and Mechanisms, 2014, 7, 1023-32.	bolic	2.4	73
80	MDM2-mediated degradation of SIRT6 phosphorylated by AKT1 promotes tumorigenes trastuzumab resistance in breast cancer. Science Signaling, 2014, 7, ra71.	is and	3.6	90
81	Sirtuins in stress response: guardians of the genome. Oncogene, 2014, 33, 3764-3775.		5.9	91
82	Comparative interactomes of <scp>SIRT</scp> 6 and <scp>SIRT</scp> 7: Implication of to aging. Proteomics, 2014, 14, 1610-1622.	functional links	2.2	69
83	Differential effects of binge methamphetamine injections on the mRNA expression of h deacetylases (HDACs) in the rat striatum. NeuroToxicology, 2014, 45, 178-184.	istone	3.0	27
84	A Proteomic Perspective of Sirtuin 6 (SIRT6) Phosphorylation and Interactions and Thei on Its Catalytic Activity. Molecular and Cellular Proteomics, 2014, 13, 168-183.	Dependence	3.8	48
85	DNA Damage Response and Metabolic Disease. Cell Metabolism, 2014, 20, 967-977.		16.2	203
86	SIRT6 Promotes COX-2 Expression and Acts as an Oncogene in Skin Cancer. Cancer Res 5925-5933.	search, 2014, 74,	0.9	96
87	Histone demethylase KDM5B is a key regulator of genome stability. Proceedings of the Academy of Sciences of the United States of America, 2014, 111, 7096-7101.	National	7.1	121
88	Tumor suppressor p53 cooperates with SIRT6 to regulate gluconeogenesis by promotir exclusion. Proceedings of the National Academy of Sciences of the United States of Am 10684-10689.	g FoxO1 nuclear erica, 2014, 111,	7.1	193
89	Regulation of Akt Signaling by Sirtuins. Circulation Research, 2014, 114, 368-378.		4.5	222
90	Sirtuins, metabolism, and DNA repair. Current Opinion in Genetics and Development, 2	014, 26, 24-32.	3.3	116
91	Chromatin and beyond: the multitasking roles for SIRT6. Trends in Biochemical Science	s, 2014, 39, 72-81.	7.5	300
92	Sorting out functions of sirtuins in cancer. Oncogene, 2014, 33, 1609-1620.		5.9	212
93	NICOTINAMIDE RIBOSIDE DELIVERY GENERATES NAD+ RESERVES TO PROTECT VASCU OXIDATIVE DAMAGE. Canadian Journal of Cardiology, 2015, 31, S226.	LAR CELLS AGAINST	1.7	0
94	Lamin A Is an Endogenous SIRT6 Activator and Promotes SIRT6-Mediated DNA Repair. C 13, 1396-1406.	Cell Reports, 2015,	6.4	117

#	Article	IF	CITATIONS
95	ATM and SIRT6/SNF2H Mediate Transient H2AX Stabilization When DSBs Form by Blocking HUWE1 to Allow Efficient γH2AX Foci Formation. Cell Reports, 2015, 13, 2728-2740.	6.4	87
96	Intracellular Mono-ADP-Ribosylation in Signaling and Disease. Cells, 2015, 4, 569-595.	4.1	82
97	SIRTain regulators of premature senescence and accelerated aging. Protein and Cell, 2015, 6, 322-333.	11.0	27
98	Depletion of SIRT6 causes cellular senescence, DNA damage, and telomere dysfunction in human chondrocytes. Osteoarthritis and Cartilage, 2015, 23, 1412-1420.	1.3	81
99	Putative tumor suppression function of SIRT6 in endometrial cancer. FEBS Letters, 2015, 589, 2274-2281.	2.8	31
100	Effects of Aging and Cardiovascular Disease Risk Factors on the Expression of Sirtuins in the Human Corpus Cavernosum. Journal of Sexual Medicine, 2015, 12, 2141-2152.	0.6	14
101	Sirtuins in Epigenetic Regulation. Chemical Reviews, 2015, 115, 2350-2375.	47.7	205
102	Role of sirtuins in chronic obstructive pulmonary disease. Archives of Pharmacal Research, 2015, 38, 1-10.	6.3	46
103	Epigenetic Mechanisms of Sirtuins in Dermatology. , 2015, , 137-175.		1
104	SIRT6 rescues the age related decline in base excision repair in a PARP1-dependent manner. Cell Cycle, 2015, 14, 269-276.	2.6	96
105	The role of mammalian sirtuins in cancer metabolism. Seminars in Cell and Developmental Biology, 2015, 43, 33-42.	5.0	39
106	Sirtuins, aging, and cardiovascular risks. Age, 2015, 37, 9804.	3.0	27
107	Protective effects of sirtuins in cardiovascular diseases: from bench to bedside. European Heart Journal, 2015, 36, 3404-3412.	2.2	354
108	Restoring SIRT6 Expression in Hutchinson-Gilford Progeria Syndrome Cells Impedes Premature Senescence and Formation of Dysmorphic Nuclei. Pathobiology, 2015, 82, 9-20.	3.8	22
109	Quinazolinedione SIRT6 inhibitors sensitize cancer cells to chemotherapeutics. European Journal of Medicinal Chemistry, 2015, 102, 530-539.	5.5	78
110	SIRT6 protein deacetylase interacts with MYH DNA glycosylase, APE1 endonuclease, and Rad9–Rad1–Hus1 checkpoint clamp. BMC Molecular Biology, 2015, 16, 12.	3.0	41
111	The multifaceted functions of sirtuins in cancer. Nature Reviews Cancer, 2015, 15, 608-624.	28.4	381
112	Stem cell aging in adult progeria. Cell Regeneration, 2015, 4, 4:6.	2.6	7

#	Article	IF	CITATIONS
113	Sirtuin 7 in cell proliferation, stress and disease: Rise of the Seventh Sirtuin!. Cellular Signalling, 2015, 27, 673-682.	3.6	97
114	Biochemical Characterization of Sirtuin 6 in the Brain and Its Involvement in Oxidative Stress Response. Neurochemical Research, 2015, 40, 59-69.	3.3	27
115	Sirtuinâ€dependent epigenetic regulation in the maintenance of genome integrity. FEBS Journal, 2015, 282, 1745-1767.	4.7	114
116	Sirtuins and their interactions with transcription factors and poly(ADP-ribose) polymerases. Folia Neuropathologica, 2016, 3, 212-233.	1.2	31
117	Two tagSNPs rs352493 and rs3760908 withinSIRT6Gene Are Associated with the Severity of Coronary Artery Disease in a Chinese Han Population. Disease Markers, 2016, 2016, 1-8.	1.3	8
118	SIRT6 Depletion Suppresses Tumor Growth by Promoting Cellular Senescence Induced by DNA Damage in HCC. PLoS ONE, 2016, 11, e0165835.	2.5	43
119	XIAP-associating factor 1, a transcriptional target of BRD7, contributes to endothelial cell senescence. Oncotarget, 2016, 7, 5118-5130.	1.8	29
120	SIRT6 protects against endothelial dysfunction and atherosclerosis in mice. Aging, 2016, 8, 1064-1082.	3.1	88
121	MicroRNA-3666-induced suppression of SIRT7 inhibits the growth of non-small cell lung cancer cells. Oncology Reports, 2016, 36, 3051-3057.	2.6	57
122	LncPRESS1 Is a p53-Regulated LncRNA that Safeguards Pluripotency by Disrupting SIRT6-Mediated De-acetylation of Histone H3K56. Molecular Cell, 2016, 64, 967-981.	9.7	176
123	Sirtuins in metabolism, DNA repair and cancer. Journal of Experimental and Clinical Cancer Research, 2016, 35, 182.	8.6	124
124	Sensitization strategies in lung cancer. Oncology Letters, 2016, 12, 3669-3673.	1.8	2
125	<scp>SIRT</scp> 7 promotes genome integrity and modulates nonâ€homologous end joining <scp>DNA</scp> repair. EMBO Journal, 2016, 35, 1488-1503.	7.8	211
126	Diverse Roles for SIRT6 in Mammalian Healthspan and Longevity. , 2016, , 149-170.		1
127	Interaction of hepatitis B virus X protein with PARP1 results in inhibition of DNA repair in hepatocellular carcinoma. Oncogene, 2016, 35, 5435-5445.	5.9	40
128	SIRT6 deacetylates H3K18ac at pericentric chromatin to prevent mitotic errors and cellular senescence. Nature Structural and Molecular Biology, 2016, 23, 434-440.	8.2	174
129	Evidence for a role of the histone deacetylase SIRT6 in DNA damage response of multiple myeloma cells. Blood, 2016, 127, 1138-1150.	1.4	89
130	JNK Phosphorylates SIRT6 to Stimulate DNA Double-Strand Break Repair in Response to Oxidative Stress by Recruiting PARP1 to DNA Breaks. Cell Reports, 2016, 16, 2641-2650.	6.4	104

#	Article	IF	CITATIONS
131	Sirtuins and Stress Response in Skin Cancer, Aging, and Barrier Function. , 2016, , 251-263.		0
132	NAD + Replenishment Improves Lifespan and Healthspan in Ataxia Telangiectasia Models via Mitophagy and DNA Repair. Cell Metabolism, 2016, 24, 566-581.	16.2	420
134	Role of Sirtuins in Maintenance of Genomic Stability: Relevance to Cancer and Healthy Aging. DNA and Cell Biology, 2016, 35, 542-575.	1.9	25
135	The multifaceted influence of histone deacetylases on DNA damage signalling and DNA repair. Nucleic Acids Research, 2016, 44, gkw922.	14.5	94
136	ATRIP Deacetylation by SIRT2 Drives ATR Checkpoint Activation by Promoting Binding to RPA-ssDNA. Cell Reports, 2016, 14, 1435-1447.	6.4	54
137	DNA double strand break repair, aging and the chromatin connection. Mutation Research - Fundamental and Molecular Mechanisms of Mutagenesis, 2016, 788, 2-6.	1.0	73
138	Nuclear DNA damage signalling to mitochondria in ageing. Nature Reviews Molecular Cell Biology, 2016, 17, 308-321.	37.0	294
139	The complex role of SIRT6 in carcinogenesis. Carcinogenesis, 2016, 37, 108-118.	2.8	76
140	Neuroprotective Functions for the Histone Deacetylase SIRT6. Cell Reports, 2017, 18, 3052-3062.	6.4	123
141	Sirtuins and DNA damage repair: SIRT7 comes to play. Nucleus, 2017, 8, 107-115.	2.2	68
142	Sirt6 Promotes DNA End Joining in iPSCs Derived from Old Mice. Cell Reports, 2017, 18, 2880-2892.	6.4	37
143	Dual Effects of Resveratrol on Cell Death and Proliferation of Colon Cancer Cells. Nutrition and Cancer, 2017, 69, 1019-1027.	2.0	38
144	SIRT6 inhibitors with salicylate-like structure show immunosuppressive and chemosensitizing effects. Bioorganic and Medicinal Chemistry, 2017, 25, 5849-5858.	3.0	37
145	SIRT6 promotes osteogenic differentiation of mesenchymal stem cells through BMP signaling. Scientific Reports, 2017, 7, 10229.	3.3	21
146	Emerging Roles of Sirtuins in Ischemic Stroke. Translational Stroke Research, 2017, 8, 405-423.	4.2	31
147	SIRT6: Novel Mechanisms and Links to Aging and Disease. Trends in Endocrinology and Metabolism, 2017, 28, 168-185.	7.1	209
149	Dictyostelium discoideum: A Model System to Study Autophagy Mediated Life Extension. , 2017, , 35-55.		1
150	Multiple pathways of SIRT6 at the crossroads in the control of longevity, cancer, and cardiovascular diseases. Ageing Research Reviews, 2017, 35, 301-311.	10.9	81

#	Article	IF	CITATIONS
151	Downregulation of SIRT7 by 5-fluorouracil induces radiosensitivity in human colorectal cancer. Theranostics, 2017, 7, 1346-1359.	10.0	59
152	MicroRNA-3666 inhibits breast cancer cell proliferation by targeting sirtuin 7. Molecular Medicine Reports, 2017, 16, 8493-8500.	2.4	14
153	Sirtuins and Accelerated Aging in Scleroderma. Current Rheumatology Reports, 2018, 20, 16.	4.7	24
154	Depletion of SIRT6 enzymatic activity increases acute myeloid leukemia cells' vulnerability to DNA-damaging agents. Haematologica, 2018, 103, 80-90.	3.5	48
155	Mammalian target of rapamycin complex 2 (mTORC2) controls glycolytic gene expression by regulating Histone H3 Lysine 56 acetylation. Cell Cycle, 2018, 17, 110-123.	2.6	28
156	Low Rap1-interacting factor 1 and sirtuin 6 expression predict poor outcome in radiotherapy-treated Hodgkin lymphoma patients. Leukemia and Lymphoma, 2018, 59, 679-689.	1.3	3
157	Sirtuins and NAD ⁺ in the Development and Treatment of Metabolic and Cardiovascular Diseases. Circulation Research, 2018, 123, 868-885.	4.5	276
158	Multitasking Roles of the Mammalian Deacetylase SIRT6. , 2018, , 117-130.		2
159	A Review of the Recent Advances Made with SIRT6 and its Implications on Aging Related Processes, Major Human Diseases, and Possible Therapeutic Targets. Biomolecules, 2018, 8, 44.	4.0	52
160	Telomere Biology and Thoracic Aortic Aneurysm. International Journal of Molecular Sciences, 2018, 19, 3.	4.1	29
161	DNA-dependent protein kinase: Epigenetic alterations and the role in genomic stability of cancer. Mutation Research - Reviews in Mutation Research, 2019, 780, 92-105.	5.5	11
162	The sirtuin family in cancer. Cell Cycle, 2019, 18, 2164-2196.	2.6	47
163	Current role of mammalian sirtuins in DNA repair. DNA Repair, 2019, 80, 85-92.	2.8	54
164	Preserving genome integrity and function: the DNA damage response and histone modifications. Critical Reviews in Biochemistry and Molecular Biology, 2019, 54, 208-241.	5.2	63
165	Mitochondrial regulation of cardiac aging. Biochimica Et Biophysica Acta - Molecular Basis of Disease, 2019, 1865, 1853-1864.	3.8	25
166	DNA damage and repair in the female germline: contributions to ART. Human Reproduction Update, 2019, 25, 180-201.	10.8	46
167	Poly(ADP-Ribose) Polymerases in Host-Pathogen Interactions, Inflammation, and Immunity. Microbiology and Molecular Biology Reviews, 2019, 83, .	6.6	31
168	NAD ⁺ Metabolism in Aging and Cancer. Annual Review of Cancer Biology, 2019, 3, 105-130.	4.5	48

#	Article	IF	CITATIONS
169	Toward understanding genomic instability, mitochondrial dysfunction and aging. FEBS Journal, 2019, 286, 1058-1073.	4.7	52
170	Post-translational modifications of nuclear sirtuins. Genome Instability & Disease, 2020, 1, 34-45.	1.1	8
171	SIRT6, a Mammalian Deacylase with Multitasking Abilities. Physiological Reviews, 2020, 100, 145-169.	28.8	130
172	Granulosa-Lutein Cell Sirtuin Gene Expression Profiles Differ between Normal Donors and Infertile Women. International Journal of Molecular Sciences, 2020, 21, 295.	4.1	16
173	Proteomics of Long‣ived Mammals. Proteomics, 2020, 20, 1800416.	2.2	8
174	Fight to the bitter end: DNA repair and aging. Ageing Research Reviews, 2020, 64, 101154.	10.9	32
175	A unifying mechanism of ketogenic diet action: The multiple roles of nicotinamide adenine dinucleotide. Epilepsy Research, 2020, 167, 106469.	1.6	15
176	Multivalent interactions drive nucleosome binding and efficient chromatin deacetylation by SIRT6. Nature Communications, 2020, 11, 5244.	12.8	36
177	Deacetylation of a deacetylase drives the DNA damage response. Genome Instability & Disease, 2020, 1, 151-154.	1.1	2
178	Chrysophanol Alleviates Metabolic Syndrome by Activating the SIRT6/AMPK Signaling Pathway in Brown Adipocytes. Oxidative Medicine and Cellular Longevity, 2020, 2020, 1-14.	4.0	14
179	The SIRT6 activator MDLâ€800 improves genomic stability and pluripotency of old murineâ€derived iPS cells. Aging Cell, 2020, 19, e13185.	6.7	22
180	Peroxisome Proliferator-Activated Receptors and Caloric Restriction—Common Pathways Affecting Metabolism, Health, and Longevity. Cells, 2020, 9, 1708.	4.1	39
181	The Epigenome of Aging. , 2020, , 135-158.		0
182	The Chromatin Response to Double-Strand DNA Breaks and Their Repair. Cells, 2020, 9, 1853.	4.1	43
183	Biological and catalytic functions of sirtuin 6 as targets for small-molecule modulators. Journal of Biological Chemistry, 2020, 295, 11021-11041.	3.4	43
184	Advances in DNA Repair—Emerging Players in the Arena of Eukaryotic DNA Repair. International Journal of Molecular Sciences, 2020, 21, 3934.	4.1	13
185	Hypothalamic NAD+-Sirtuin Axis: Function and Regulation. Biomolecules, 2020, 10, 396.	4.0	11
186	SIRT6-PARP1 is involved in HMGB1 polyADP-ribosylation and acetylation and promotes chemotherapy-induced autophagy in leukemia. Cancer Biology and Therapy, 2020, 21, 320-331.	3.4	19

#	Article	IF	Citations
187	SIRT6 coordinates with CHD4 to promote chromatin relaxation and DNA repair. Nucleic Acids Research, 2020, 48, 2982-3000.	14.5	52
188	Sirt6 deletion in bone marrow-derived cells increases atherosclerosis – Central role of macrophage scavenger receptor 1. Journal of Molecular and Cellular Cardiology, 2020, 139, 24-32.	1.9	26
189	Research progress on sirtuins family members and cell senescence. European Journal of Medicinal Chemistry, 2020, 193, 112207.	5.5	33
190	New insight in molecular mechanisms regulating SIRT6 expression in diabetes: Hyperglycaemia effects on <i>SIRT6</i> DNA methylation. Journal of Cellular Physiology, 2021, 236, 4604-4613.	4.1	10
191	Sirtuins' control of autophagy and mitophagy in cancer. , 2021, 221, 107748.		58
192	Emerging roles of SIRT6 in human diseases and its modulators. Medicinal Research Reviews, 2021, 41, 1089-1137.	10.5	75
193	Sirtuin signaling in hematologic malignancies. , 2021, , 233-258.		0
194	SIRT6 enhances oxidative phosphorylation in breast cancer and promotes mammary tumorigenesis in mice. Cancer & Metabolism, 2021, 9, 6.	5.0	25
195	Role of sirtuins in bone biology: Potential implications for novel therapeutic strategies for osteoporosis. Aging Cell, 2021, 20, e13301.	6.7	31
196	Sirt6-mediated Nrf2/HO-1 activation alleviates angiotensin II-induced DNA DSBs and apoptosis in podocytes. Food and Function, 2021, 12, 7867-7882.	4.6	19
197	Sirtuins and the prevention of immunosenescence. Vitamins and Hormones, 2021, 115, 221-264.	1.7	3
198	Dual role of sirtuins in cancer. , 2021, , 219-231.		1
199	Sirtuiny – enzymy o wielokierunkowej aktywności katalitycznej. Postepy Higieny I Medycyny Doswiadczalnej, 2021, 75, 152-174.	0.1	3
200	Emerging Therapeutic Potential of SIRT6 Modulators. Journal of Medicinal Chemistry, 2021, 64, 9732-9758.	6.4	38
201	Sirtuin 6: linking longevity with genome and epigenome stability. Trends in Cell Biology, 2021, 31, 994-1006.	7.9	45
202	Targeting the Interplay between HDACs and DNA Damage Repair for Myeloma Therapy. International Journal of Molecular Sciences, 2021, 22, 10406.	4.1	7
203	Histone lysine modifying enzymes and their critical roles in DNA double-strand break repair. DNA Repair, 2021, 107, 103206.	2.8	6
204	Results-I. Lamin A is an Endogenous Activator of SIRT6 in DNA Damage Repair Process. Springer Theses, 2019, , 73-95.	0.1	1

#	Article	IF	CITATIONS
205	Suppression of Sirt1 sensitizes lung cancer cells to WEE1 inhibitor MK-1775-induced DNA damage and apoptosis. Oncogene, 2017, 36, 6863-6872.	5.9	53
206	SIRT1 Undergoes Alternative Splicing in a Novel Auto-Regulatory Loop with p53. PLoS ONE, 2010, 5, e13502.	2.5	42
207	Impacts on Sirtuin Function and Bioavailability of the Dietary Bioactive Compound Dihydrocoumarin. PLoS ONE, 2016, 11, e0149207.	2.5	6
208	Sirtuins in Cancer: a Balancing Act between Genome Stability and Metabolism. Molecules and Cells, 2015, 38, 750-758.	2.6	56
209	Chromatin modifications: The driving force of senescence and aging?. Aging, 2009, 1, 182-190.	3.1	52
210	Impact papers on aging in 2009. Aging, 2010, 2, 111-121.	3.1	35
211	Cooperation of DNA-PKcs and WRN helicase in the maintenance of telomeric D-loops. Aging, 2010, 2, 274-284.	3.1	27
212	Repairing split ends: SIRT6, mono-ADP ribosylation and DNA repair. Aging, 2011, 3, 829-835.	3.1	57
213	â€~Relax and Repair' to restrain aging. Aging, 2011, 3, 943-954.	3.1	11
214	SIRT6 participates in the quality control of aged oocytes via modulating telomere function. Aging, 2019, 11, 1965-1976.	3.1	27
215	SIRT6 mono-ADP ribosylates KDM2A to locally increase H3K36me2 at DNA damage sites to inhibit transcription and promote repair. Aging, 2020, 12, 11165-11184.	3.1	29
216	An ordered assembly of MYH glycosylase, SIRT6 protein deacetylase, and Rad9-Rad1-Hus1 checkpoint clamp at oxidatively damaged telomeres. Aging, 2020, 12, 17761-17785.	3.1	9
217	DNA Break-Induced Epigenetic Drift as a Cause of Mammalian Aging. SSRN Electronic Journal, 0, , .	0.4	19
218	Zinc Dependent Histone Deacetylase Inhibitors in Cancer Therapeutics: Recent Update. Current Medicinal Chemistry, 2020, 26, 7212-7280.	2.4	16
219	The effects of aging on muscle loss and tissue-specific levels of NF- <i>κ</i> B and SIRT6 proteins in rats. Advances in Aging Research, 2013, 02, 1-9.	0.4	3
220	SIRT6 is a DNA double-strand break sensor. ELife, 2020, 9, .	6.0	90
221	Synergy between SIRT1 and SIRT6 helps recognize DNA breaks and potentiates the DNA damage response and repair in humans and mice. ELife, 2020, 9, .	6.0	49
222	ADP-Ribosylation as Post-Translational Modification of Proteins: Use of Inhibitors in Cancer Control. International Journal of Molecular Sciences, 2021, 22, 10829.	4.1	6

#	Article	IF	CITATIONS
223	SIRT6 Through the Brain Evolution, Development, and Aging. Frontiers in Aging Neuroscience, 2021, 13, 747989.	3.4	13
224	Sirtuins – universal regulators of cell function. Biopolymers and Cell, 2012, 28, 93-102.	0.4	3
225	Methods to Study the Role of Sirtuins in Genome Stability. Methods in Molecular Biology, 2013, 1077, 273-283.	0.9	2
226	The Sirtuins in Aging and Metabolic Regulation. Food and Nutrition Sciences (Print), 2013, 04, 668-677.	0.4	0
228	The catalytic activity of sirtuins in physiology and disease from the epigenetic point of view. Epigenetics of Degenerative Diseases, 2014, 1, .	2.0	0
229	Sirtuins as a Double-Edged Sword in Cancer: From Molecular Mechanisms to Therapeutic Opportunities. , 2015, , 75-106.		0
230	Theorien und Mechanismen des Alterns. , 2016, , 23-108.		0
231	Sirtuins as Regulators of Cardiac Hypertrophy and Heart Failure. Cardiac and Vascular Biology, 2016, , 263-282.	0.2	0
236	Podocyte Aging: Why and How Getting Old Matters. Journal of the American Society of Nephrology: JASN, 2021, 32, 2697-2713.	6.1	28
237	Loss of Epigenetic Information as a Cause of Mammalian Aging. SSRN Electronic Journal, 0, , .	0.4	0
239	The molecular genetics of sirtuins: association with human longevity and age-related diseases. International Journal of Molecular Epidemiology and Genetics, 2010, 1, 214-25.	0.4	22
241	Expression and function of SIRT6 in muscle invasive urothelial carcinoma of the bladder. International Journal of Clinical and Experimental Pathology, 2014, 7, 6504-13.	0.5	10
242	The Many Faces of Lipids in Genome Stability (and How to Unmask Them). International Journal of Molecular Sciences, 2021, 22, 12930.	4.1	8
244	Versatile role of sirtuins in metabolic disorders: From modulation of mitochondrial function to therapeutic interventions. Journal of Biochemical and Molecular Toxicology, 2022, 36, e23047.	3.0	17
245	NAD+ centric mechanisms and molecular determinants of skeletal muscle disease and aging. Molecular and Cellular Biochemistry, 2022, 477, 1829-1848.	3.1	12
246	Nicotinamide Adenine Dinucleotide as a Central Mediator of Ketogenic Therapy. , 2022, , 371-386.		0
247	Paternal High-Fat Diet Altered Sperm 5'tsRNA-Gly-GCC Is Associated With Enhanced Gluconeogenesis in the Offspring. Frontiers in Molecular Biosciences, 2022, 9, 857875.	3.5	7
248	Epigenetic Modifications and Non-Coding RNA in Diabetes-Mellitus-Induced Coronary Artery Disease: Pathophysiological Link and New Therapeutic Frontiers. International Journal of Molecular Sciences, 2022, 23, 4589.	4.1	14

#	Article	IF	CITATIONS
249	SIRT6 mediates multidimensional modulation to maintain organism homeostasis. Journal of Cellular Physiology, 0, , .	4.1	3
251	Sirtuins as therapeutic targets for improving delayed wound healing in diabetes. Journal of Drug Targeting, 2022, 30, 911-926.	4.4	11
252	Quantitative Acetylomics Reveals Dynamics of Protein Lysine Acetylation in Mouse Livers During Aging and Upon the Treatment of Nicotinamide Mononucleotide. Molecular and Cellular Proteomics, 2022, 21, 100276.	3.8	4
253	DNA damage, sirtuins, and epigenetic marks. , 2022, , 87-108.		0
254	Multifaceted Influence of Histone Deacetylases on DNA Damage Repair: Implications for Hepatocellular Carcinoma. Journal of Clinical and Translational Hepatology, 2022, 000, 000-000.	1.4	2
256	Role of the Histone Acetyl Transferase MOF and the Histone Deacetylase Sirtuins in Regulation of H4K16ac During DNA Damage Repair and Metabolic Programming: Implications in Cancer and Aging. Sub-Cellular Biochemistry, 2022, , 115-141.	2.4	0
257	Role of mitochondria in nuclear DNA damage response. Genome Instability & Disease, 0, , .	1.1	0
258	SIRT6 in Aging, Metabolism, Inflammation and Cardiovascular Diseases. , 2022, 13, 1787.		24
259	Loss of epigenetic information as a cause of mammalian aging. Cell, 2023, 186, 305-326.e27.	28.9	184
260	DNA-PKcs as an upstream mediator of OCT4-induced MYC activation in small cell lung cancer. Biochimica Et Biophysica Acta - Gene Regulatory Mechanisms, 2023, 1866, 194939.	1.9	0
261	The Impact of NAD Bioavailability on DNA Double-Strand Break Repair Capacity in Human Dermal Fibroblasts after Ionizing Radiation. Cells, 2023, 12, 1518.	4.1	0
262	Binding to nucleosome poises human SIRT6 for histone H3 deacetylation. ELife, 0, 12, .	6.0	0
263	DNA-PK is activated by SIRT2 deacetylation to promote DNA double-strand break repair by non-homologous end joining. Nucleic Acids Research, 2023, 51, 7972-7987.	14.5	2
264	The role of mammalian Sirtuin 6 in cardiovascular diseases and diabetes mellitus. Frontiers in Physiology, 0, 14, .	2.8	2
265	SIRT1 and SIRT6: The role in aging-related diseases. Biochimica Et Biophysica Acta - Molecular Basis of Disease, 2023, 1869, 166815.	3.8	8
266	Discovery of a pyrrole-pyridinimidazole derivative as novel SIRT6 inhibitor for sensitizing pancreatic cancer to gemcitabine. Cell Death and Disease, 2023, 14, .	6.3	4
267	Activation of SIRT6 Deacetylation by DNA Strand Breaks. ACS Omega, 0, , .	3.5	0
268	Impaired end joining induces cardiac atrophy in a Hutchinson–Cilford progeria mouse model. Proceedings of the National Academy of Sciences of the United States of America, 2023, 120, .	7.1	0

	Сітл	tation Report		
#	Article	IF	Citations	
269	SIRT6 promotes metastasis and relapse in HER2-positive breast cancer. Scientific Reports, 2023, 13, .	3.3	0	
270	Binding to nucleosome poises human SIRT6 for histone H3 deacetylation. ELife, 0, 12, .	6.0	Ο	