SORN: a Self-organizing Recurrent Neural Network

Frontiers in Computational Neuroscience

3,23

DOI: 10.3389/neuro.10.023.2009

Citation Report

#	Article	IF	CITATIONS
1	STDP in recurrent neuronal networks. Frontiers in Computational Neuroscience, 2010, 4, .	1.2	64
2	Homeostatic plasticity and STDP: keeping a neuron's cool in a fluctuating world. Frontiers in Synaptic Neuroscience, 2010, 2, 5.	1.3	157
3	Irregular Dynamics in Up and Down Cortical States. PLoS ONE, 2010, 5, e13651.	1.1	44
4	Dendritic Discrimination of Temporal Input Sequences in Cortical Neurons. Science, 2010, 329, 1671-1675.	6.0	398
5	Excitatory, Inhibitory, and Structural Plasticity Produce Correlated Connectivity in Random Networks Trained to Solve Paired-Stimulus Tasks. Frontiers in Computational Neuroscience, 2011, 5, 37.	1.2	31
6	Spike Train Auto-Structure Impacts Post-Synaptic Firing and Timing-Based Plasticity. Frontiers in Computational Neuroscience, 2011, 5, 60.	1.2	0
7	A unified computational model of the genetic regulatory networks underlying synaptic, intrinsic and homeostatic plasticity. BMC Neuroscience, 2011, 12, .	0.8	0
8	Emerging Bayesian Priors in a Self-Organizing Recurrent Network. Lecture Notes in Computer Science, 2011, , 127-134.	1.0	7
9	Calcium control of triphasic hippocampal STDP. Journal of Computational Neuroscience, 2012, 33, 495-514.	0.6	15
10	Unsupervised Formation of Vocalization-Sensitive Neurons: A Cortical Model Based on Short-Term and Homeostatic Plasticity. Neural Computation, 2012, 24, 2579-2603.	1.3	17
11	A Developmental Approach to Structural Self-Organization in Reservoir Computing. IEEE Transactions on Autonomous Mental Development, 2012, 4, 273-289.	2.3	29
12	Information processing in echo state networks at the edge of chaos. Theory in Biosciences, 2012, 131, 205-213.	0.6	205
13	Recurrent coupling improves discrimination of temporal spike patterns. Frontiers in Computational Neuroscience, 2012, 6, 25.	1.2	2
14	Recognizing recurrent neural networks (rRNN): Bayesian inference for recurrent neural networks. Biological Cybernetics, 2012, 106, 201-217.	0.6	17
15	Differential Subcellular Targeting of Glutamate Receptor Subtypes during Homeostatic Synaptic Plasticity. Journal of Neuroscience, 2013, 33, 13547-13559.	1.7	66
16	Cortical dynamics revisited. Trends in Cognitive Sciences, 2013, 17, 616-626.	4.0	186
17	Effects of Cellular Homeostatic Intrinsic Plasticity on Dynamical and Computational Properties of Biological Recurrent Neural Networks. Journal of Neuroscience, 2013, 33, 15032-15043.	1.7	26
18	Distributed recurrent self-organization for tracking the state of non-stationary partially observable dynamical systems. Biologically Inspired Cognitive Architectures, 2013, 3, 87-104.	0.9	2

ITATION REDO

#	Article	IF	CITATIONS
19	Model for a flexible motor memory based on a self-active recurrent neural network. Human Movement Science, 2013, 32, 880-898.	0.6	5
20	Extreme-value statistics of networks with inhibitory and excitatory couplings. Physical Review E, 2013, 87, 042714.	0.8	14
21	A theoretical and experimental study of neuromorphic atomic switch networks for reservoir computing. Nanotechnology, 2013, 24, 384004.	1.3	178
22	Biologically plausible models of homeostasis and STDP: Stability and learning in spiking neural networks. , 2013, , .		25
23	Network Self-Organization Explains the Statistics and Dynamics of Synaptic Connection Strengths in Cortex. PLoS Computational Biology, 2013, 9, e1002848.	1.5	83
24	Neuronal Avalanches Differ from Wakefulness to Deep Sleep – Evidence from Intracranial Depth Recordings in Humans. PLoS Computational Biology, 2013, 9, e1002985.	1.5	170
25	Synaptic Plasticity in Neural Networks Needs Homeostasis with a Fast Rate Detector. PLoS Computational Biology, 2013, 9, e1003330.	1.5	144
26	Emergence of Dynamic Memory Traces in Cortical Microcircuit Models through STDP. Journal of Neuroscience, 2013, 33, 11515-11529.	1.7	88
27	Chronic electrical stimulation homeostatically decreases spontaneous activity, but paradoxically increases evoked network activity. Journal of Neurophysiology, 2013, 109, 1824-1836.	0.9	14
28	Adaptive learning in a compartmental model of visual cortexââ,¬â€how feedback enables stable category learning and refinement. Frontiers in Psychology, 2014, 5, 1287.	1.1	5
29	Behavior control in the sensorimotor loop with short-term synaptic dynamics induced by self-regulating neurons. Frontiers in Neurorobotics, 2014, 8, 19.	1.6	15
30	Phase synchrony facilitates binding and segmentation of natural images in a coupled neural oscillator network. Frontiers in Computational Neuroscience, 2014, 7, 195.	1.2	12
31	Emergence of task-dependent representations in working memory circuits. Frontiers in Computational Neuroscience, 2014, 8, 57.	1.2	11
32	Robust development of synfire chains from multiple plasticity mechanisms. Frontiers in Computational Neuroscience, 2014, 8, 66.	1.2	40
33	Self-organization and Emergence of Dynamical Structures in Neuromorphic Atomic Switch Networks. , 2014, , 173-209.		12
34	Nonlinear Dynamics Analysis of a Self-Organizing Recurrent Neural Network: Chaos Waning. PLoS ONE, 2014, 9, e86962.	1.1	9
35	Spatiotemporal Computations of an Excitable and Plastic Brain: Neuronal Plasticity Leads to Noise-Robust and Noise-Constructive Computations. PLoS Computational Biology, 2014, 10, e1003512.	1.5	28
36	Developmental Self-Construction and -Configuration of Functional Neocortical Neuronal Networks. PLoS Computational Biology, 2014, 10, e1003994.	1.5	24

#	Article	IF	CITATIONS
37	Effective connectivity at synaptic level in humans: a review and future prospects. Biological Cybernetics, 2014, 108, 713-733.	0.6	7
38	Guided Self-Organization of Input-Driven Recurrent Neural Networks. Emergence, Complexity and Computation, 2014, , 319-340.	0.2	5
39	Mimicking human neuronal pathways in silico: an emergent model on the effective connectivity. Journal of Computational Neuroscience, 2014, 36, 235-257.	0.6	9
40	Self-organization and lateral interaction in echo state network reservoirs. Neurocomputing, 2014, 138, 297-309.	3.5	19
41	Formation and maintenance of neuronal assemblies through synaptic plasticity. Nature Communications, 2014, 5, 5319.	5.8	246
42	Tuning into diversity of homeostatic synaptic plasticity. Neuropharmacology, 2014, 78, 31-37.	2.0	41
43	The Use of Hebbian Cell Assemblies for Nonlinear Computation. Scientific Reports, 2015, 5, 12866.	1.6	29
44	Seven neurons memorizing sequences of alphabetical images via spike-timing dependent plasticity. Scientific Reports, 2015, 5, 14149.	1.6	14
45	Emergence of (bi)multi-partiteness in networks having inhibitory and excitatory couplings. Europhysics Letters, 2015, 112, 48003.	0.7	4
46	Self-organization of complex cortex-like wiring in a spiking neural network model. BMC Neuroscience, 2015, 16, .	0.8	0
47	RM-SORN: a reward-modulated self-organizing recurrent neural network. Frontiers in Computational Neuroscience, 2015, 9, 36.	1.2	11
48	A framework for plasticity implementation on the SpiNNaker neural architecture. Frontiers in Neuroscience, 2014, 8, 429.	1.4	45
49	Stability of Neuronal Networks with Homeostatic Regulation. PLoS Computational Biology, 2015, 11, e1004357.	1.5	27
50	Self-Organization of Microcircuits in Networks of Spiking Neurons with Plastic Synapses. PLoS Computational Biology, 2015, 11, e1004458.	1.5	64
51	Where's the Noise? Key Features of Spontaneous Activity and Neural Variability Arise through Learning in a Deterministic Network. PLoS Computational Biology, 2015, 11, e1004640.	1.5	48
52	Multiple harmonic-source classification using a Self-Organization Feature Map network with voltage–current wavelet transformation patterns. Applied Mathematical Modelling, 2015, 39, 5849-5861.	2.2	7
53	Precise Synaptic Efficacy Alignment Suggests Potentiation Dominated Learning. Frontiers in Neural Circuits, 2016, 9, 90.	1.4	8
54	Does the Cerebral Cortex Exploit High-Dimensional, Non-linear Dynamics for Information Processing?. Frontiers in Computational Neuroscience, 2016, 10, 99.	1.2	31

		CITATION REPORT		
#	Article		IF	CITATIONS
55	Plasticity-Driven Self-Organization under Topological Constraints Accounts for Non-random Features of Cortical Synaptic Wiring. PLoS Computational Biology, 2016, 12, e1004759.		1.5	52
56	Computational analysis of memory capacity in echo state networks. Neural Networks, 2016,	83, 109-120.	3.3	50
57	Simbrain 3.0: A flexible, visually-oriented neural network simulator. Neural Networks, 2016, 8	33, 1-10.	3.3	16
58	AP-STDP: A novel self-organizing mechanism for efficient reservoir computing. , 2016, , .			14
59	Temporal sequence recognition in a self-organizing recurrent network. , 2016, , .			0
60	Temporal Interval Learning in Cortical Cultures Is Encoded in Intrinsic Network Dynamics. Ne 2016, 91, 320-327.	uron,	3.8	43
61	A Review on Synergistic Learning. IEEE Access, 2016, 4, 119-134.		2.6	11
62	Liquid computing of spiking neural network with multi-clustered and active-neuron-dominant structure. Neurocomputing, 2017, 243, 155-165.		3.5	7
63	Hebbian plasticity requires compensatory processes on multiple timescales. Philosophical Transactions of the Royal Society B: Biological Sciences, 2017, 372, 20160259.		1.8	151
64	Synaptic patterning and the timescales of cortical dynamics. Current Opinion in Neurobiolog 43, 156-165.	y, 2017,	2.0	37
65	The temporal paradox of Hebbian learning and homeostatic plasticity. Current Opinion in Neurobiology, 2017, 43, 166-176.		2.0	138
66	Neuromorphic computation in multi-delay coupled models. IBM Journal of Research and Deve 2017, 61, 8:7-8:9.	elopment,	3.2	2
67	Understanding neural circuit development through theory and models. Current Opinion in Neurobiology, 2017, 46, 39-47.		2.0	19
68	Sensory Stream Adaptation in Chaotic Networks. Scientific Reports, 2017, 7, 16844.		1.6	1
69	On the memory properties of recurrent neural models. , 2017, , .			0
70	Structural Plasticity and the Generation of Bidirectional Connectivity. , 2017, , 247-260.			0
71	Self-organization based on auditory feedback promotes acquisition of babbling. , 2017, , .			1
72	SYNCHRONIZED NEURAL FIRING FOR CONTROLLING CYBER PHYSICAL SYSTEM. Asian Journa Pharmaceutical and Clinical Research, 2017, 10, 282.	ll of	0.3	0

#	Article	IF	CITATIONS
73	Learning to Generate Sequences with Combination of Hebbian and Non-hebbian Plasticity in Recurrent Spiking Neural Networks. Frontiers in Neuroscience, 2017, 11, 693.	1.4	30
74	Hebbian learning of hand-centred representations in a hierarchical neural network model of the primate visual system. PLoS ONE, 2017, 12, e0178304.	1.1	8
75	Criticality meets learning: Criticality signatures in a self-organizing recurrent neural network. PLoS ONE, 2017, 12, e0178683.	1.1	52
76	Online Adaptation and Energy Minimization for Hardware Recurrent Spiking Neural Networks. ACM Journal on Emerging Technologies in Computing Systems, 2018, 14, 1-21.	1.8	9
77	Computational modeling of spiking neural network with learning rules from STDP and intrinsic plasticity. Physica A: Statistical Mechanics and Its Applications, 2018, 491, 716-728.	1.2	21
78	Efficient Reward-Based Learning through Body Representation in a Spiking Neural Network. , 2018, , .		1
79	Storage fidelity for sequence memory in the hippocampal circuit. PLoS ONE, 2018, 13, e0204685.	1.1	9
80	Recurrent Spiking Neural Network Learning Based on a Competitive Maximization of Neuronal Activity. Frontiers in Neuroinformatics, 2018, 12, 79.	1.3	36
81	Operating in a Reverberating Regime Enables Rapid Tuning of Network States to Task Requirements. Frontiers in Systems Neuroscience, 2018, 12, 55.	1.2	40
82	Theoretical Models of Neural Development. IScience, 2018, 8, 183-199.	1.9	14
82	Theoretical Models of Neural Development. IScience, 2018, 8, 183-199. Unsupervised clustering of temporal patterns in high-dimensional neuronal ensembles using a novel dissimilarity measure. PLoS Computational Biology, 2018, 14, e1006283.	1.9 1.5	14 26
	Unsupervised clustering of temporal patterns in high-dimensional neuronal ensembles using a novel		
83	Unsupervised clustering of temporal patterns in high-dimensional neuronal ensembles using a novel dissimilarity measure. PLoS Computational Biology, 2018, 14, e1006283.	1.5	26
83 84	Unsupervised clustering of temporal patterns in high-dimensional neuronal ensembles using a novel dissimilarity measure. PLoS Computational Biology, 2018, 14, e1006283. Homeostatic Plasticity and External Input Shape Neural Network Dynamics. Physical Review X, 2018, 8, . Winnerless competition in clustered balanced networks: inhibitory assemblies do the trick. Biological	1.5 2.8	26 38
83 84 85	Unsupervised clustering of temporal patterns in high-dimensional neuronal ensembles using a novel dissimilarity measure. PLoS Computational Biology, 2018, 14, e1006283. Homeostatic Plasticity and External Input Shape Neural Network Dynamics. Physical Review X, 2018, 8, . Winnerless competition in clustered balanced networks: inhibitory assemblies do the trick. Biological Cybernetics, 2018, 112, 81-98. Bridging structure and function: A model of sequence learning and prediction in primary visual	1.5 2.8 0.6	26 38 27
83 84 85 86	 Unsupervised clustering of temporal patterns in high-dimensional neuronal ensembles using a novel dissimilarity measure. PLoS Computational Biology, 2018, 14, e1006283. Homeostatic Plasticity and External Input Shape Neural Network Dynamics. Physical Review X, 2018, 8, . Winnerless competition in clustered balanced networks: inhibitory assemblies do the trick. Biological Cybernetics, 2018, 112, 81-98. Bridging structure and function: A model of sequence learning and prediction in primary visual cortex. PLoS Computational Biology, 2018, 14, e1006187. Hybrid neuromorphic circuits exploiting non-conventional properties of RRAM for massively parallel 	1.5 2.8 0.6 1.5	26 38 27 22
83 84 85 86 87	 Unsupervised clustering of temporal patterns in high-dimensional neuronal ensembles using a novel dissimilarity measure. PLoS Computational Biology, 2018, 14, e1006283. Homeostatic Plasticity and External Input Shape Neural Network Dynamics. Physical Review X, 2018, 8, . Winnerless competition in clustered balanced networks: inhibitory assemblies do the trick. Biological Cybernetics, 2018, 112, 81-98. Bridging structure and function: A model of sequence learning and prediction in primary visual cortex. PLoS Computational Biology, 2018, 14, e1006187. Hybrid neuromorphic circuits exploiting non-conventional properties of RRAM for massively parallel local plasticity mechanisms. APL Materials, 2019, 7, . Modelling of innovative environment of Industrial complexes due to neural networks and genetic 	1.5 2.8 0.6 1.5 2.2	26 38 27 22 31

#	Article	IF	CITATIONS
91	Interneuron-specific plasticity at parvalbumin and somatostatin inhibitory synapses onto CA1 pyramidal neurons shapes hippocampal output. Nature Communications, 2020, 11, 4395.	5.8	108
92	The use of neural networks and a genetic algorithm for modeling the innovative environment of enterprises. E3S Web of Conferences, 2020, 164, 10045.	0.2	1
93	Decreased reproducibility and abnormal experience-dependent plasticity of network dynamics in Fragile X circuits. Scientific Reports, 2020, 10, 14535.	1.6	9
94	The self-organized learning of noisy environmental stimuli requires distinct phases of plasticity. Network Neuroscience, 2020, 4, 174-199.	1.4	2
95	Hey, look over there: Distraction effects on rapid sequence recall. PLoS ONE, 2020, 15, e0223743.	1.1	2
96	The Cerebral Cortex: A Delay-Coupled Recurrent Oscillator Network?. Natural Computing Series, 2021, , 3-28.	2.2	3
97	Modeling on Heterosynaptic Plasticity Based on Postsynaptic Membrane Potential and Current Density. Journal of Physics: Conference Series, 2021, 1746, 012004.	0.3	0
98	Local Homeostatic Regulation of the Spectral Radius of Echo-State Networks. Frontiers in Computational Neuroscience, 2021, 15, 587721.	1.2	5
100	Robust cortical criticality and diverse dynamics resulting from functional specification. Physical Review E, 2021, 103, 042407.	0.8	2
101	Self-Organization Toward Criticality by Synaptic Plasticity. Frontiers in Physics, 2021, 9, .	1.0	50
102	Cellular connectomes as arbiters of local circuit models in the cerebral cortex. Nature Communications, 2021, 12, 2785.	5.8	11
103	Self-Organized Structuring of Recurrent Neuronal Networks for Reliable Information Transmission. Biology, 2021, 10, 577.	1.3	1
104	Dendritic normalisation improves learning in sparsely connected artificial neural networks. PLoS Computational Biology, 2021, 17, e1009202.	1.5	6
105	Recurrent dynamics in the cerebral cortex: Integration of sensory evidence with stored knowledge. Proceedings of the National Academy of Sciences of the United States of America, 2021, 118, .	3.3	44
106	Stochastic binary synapses having sigmoidal cumulative distribution functions for unsupervised learning with spike timing-dependent plasticity. Scientific Reports, 2021, 11, 18282.	1.6	5
107	The role of astrocyteâ€mediated plasticity in neural circuit development and function. Neural Development, 2021, 16, 1.	1.1	78
109	An Introduction to Delay-Coupled Reservoir Computing. Springer Series in Bio-/neuroinformatics, 2015, , 63-90.	0.1	7
114	A Theory of Rate Coding Control by Intrinsic Plasticity Effects. PLoS Computational Biology, 2012, 8, e1002349.	1.5	18

#	Article	IF	CITATIONS
115	A Diffusive Homeostatic Signal Maintains Neural Heterogeneity and Responsiveness in Cortical Networks. PLoS Computational Biology, 2015, 11, e1004389.	1.5	21
116	Optimal Information Representation and Criticality in an Adaptive Sensory Recurrent Neuronal Network. PLoS Computational Biology, 2016, 12, e1004698.	1.5	58
117	Learning Universal Computations with Spikes. PLoS Computational Biology, 2016, 12, e1004895.	1.5	65
118	Spike-Based Bayesian-Hebbian Learning of Temporal Sequences. PLoS Computational Biology, 2016, 12, e1004954.	1.5	41
119	Memory replay in balanced recurrent networks. PLoS Computational Biology, 2017, 13, e1005359.	1.5	64
120	A model of human motor sequence learning explains facilitation and interference effects based on spike-timing dependent plasticity. PLoS Computational Biology, 2017, 13, e1005632.	1.5	10
121	Synergies between Intrinsic and Synaptic Plasticity Based on Information Theoretic Learning. PLoS ONE, 2013, 8, e62894.	1.1	7
122	Persistent Memory in Single Node Delay-Coupled Reservoir Computing. PLoS ONE, 2016, 11, e0165170.	1.1	4
123	Self-Organization and Coherency in Biology and Medicine. Open Journal of Biophysics, 2014, 04, 119-146.	0.7	8
124	Competition for synaptic building blocks shapes synaptic plasticity. ELife, 2018, 7, .	2.8	44
125	Visual exposure enhances stimulus encoding and persistence in primary cortex. Proceedings of the National Academy of Sciences of the United States of America, 2021, 118, .	3.3	12
126	Use of a Sparse Structure to Improve Learning Performance of Recurrent Neural Networks. Lecture Notes in Computer Science, 2011, , 323-331.	1.0	2
127	Towards Self-organized Online Extraction of Invariances Using a Hierarchy of Multiple-timescale Reservoirs. Frontiers in Computational Neuroscience, 0, 5, .	1.2	0
128	A Stable Online Self-Constructing Recurrent Neural Network. Lecture Notes in Computer Science, 2011, , 122-131.	1.0	3
131	Duration Modeling For Telugu Language with Recurrent Neural Network. International Journal of Innovative Research in Computer and Communication Engineering, 2015, 03, 720-725.	0.1	0
136	A Self-Organizing Recurrent Neural Network Based on Dynamic Analysis. , 2017, , .		Ο
137	A Self Organizing Recurrent Neural Network. International Journal of Artificial Intelligence & Applications, 2017, 8, 11-23.	0.3	0
146	PymoNNto: A Flexible Modular Toolbox for Designing Brain-Inspired Neural Networks. Frontiers in Neuroinformatics, 2021, 15, 715131.	1.3	1

	Сіта	TION REPORT	
#	Article	IF	Citations
147	A Spiking Neural Network Based Auto-encoder for Anomaly Detection in Streaming Data. , 2020, , .		2
151	Bridging the Functional and Wiring Properties of V1 Neurons Through Sparse Coding. Neural Computation, 2022, 34, 104-137.	1.3	1
152	Drifting assemblies for persistent memory: Neuron transitions and unsupervised compensation. Proceedings of the National Academy of Sciences of the United States of America, 2021, 118, .	3.3	21
153	Cluster-Based Input Weight Initialization for Echo State Networks. IEEE Transactions on Neural Networks and Learning Systems, 2023, 34, 7648-7659.	7.2	9
155	Deep Learning Methods applied to Intrusion Detection: Survey, Taxonomy and Challenges. , 2021, , .		2
156	Neural kernels for recursive support vector regression as a model for episodic memory. Biological Cybernetics, 2022, 116, 377-386.	0.6	2
158	PyRCN: A toolbox for exploration and application of Reservoir Computing Networks. Engineering Applications of Artificial Intelligence, 2022, 113, 104964.	4.3	7
159	Sequence learning, prediction, and replay in networks of spiking neurons. PLoS Computational Biology, 2022, 18, e1010233.	1.5	8
160	The fractal brain: scale-invariance in structure and dynamics. Cerebral Cortex, 2023, 33, 4574-4605.	1.6	16
161	Self-organization of an inhomogeneous memristive hardware for sequence learning. Nature Communications, 2022, 13, .	5.8	14
162	Insect-Inspired Spiking Neural Controllers for Adaptive Behaviors in Bio-Robots. IEEE Instrumentation and Measurement Magazine, 2022, 25, 19-27.	1.2	0
164	Spike-based statistical learning explains human performance in non-adjacent dependency learning tasks. , 0, 1, .		0
166	Neuromorphic bioelectronic medicine for nervous system interfaces: from neural computational primitives to medical applications. Progress in Biomedical Engineering, 2023, 5, 013002.	2.8	7
168	Degeneracy in epilepsy: multiple routes to hyperexcitable brain circuits and their repair. Communications Biology, 2023, 6, .	2.0	10
172	Non-Standard Echo State Networks for Video Door State Monitoring. , 2023, , .		0
174	An homeostatic activity-dependent structural plasticity algorithm for richer input combination. , 2023, , .		0