Made-to-order spiking neuron model equipped with a r

Frontiers in Computational Neuroscience

3, 9

DOI: 10.3389/neuro.10.009.2009

Citation Report

#	Article	IF	CITATIONS
1	The Languages of Neurons: An Analysis of Coding Mechanisms by Which Neurons Communicate, Learn and Store Information. Entropy, 2009, 11, 782-797.	2.2	22
2	How Good Are Neuron Models?. Science, 2009, 326, 379-380.	12.6	220
3	Fitting a stochastic spiking model to neuronal current injection data. Neural Networks, 2010, 23, 764-769.	5.9	7
4	Dynamics of Excitability over Extended Timescales in Cultured Cortical Neurons. Journal of Neuroscience, 2010, 30, 16332-16342.	3.6	94
5	GPGPU implementation of a synaptically optimized, anatomically accurate spiking network simulator. , 2010, , .		3
6	Improved Similarity Measures for Small Sets of Spike Trains. Neural Computation, 2011, 23, 3016-3069.	2.2	37
7	Elemental Spiking Neuron Model for Reproducing Diverse Firing Patterns and Predicting Precise Firing Times. Frontiers in Computational Neuroscience, 2011, 5, 42.	2.1	32
8	Neuronal Response Clamp. Frontiers in Neuroengineering, 2011, 4, 3.	4.8	45
9	An Efficient Simulation Environment for Modeling Large-Scale Cortical Processing. Frontiers in Neuroinformatics, 2011, 5, 19.	2.5	53
10	Fitting Neuron Models to Spike Trains. Frontiers in Neuroscience, 2011, 5, 9.	2.8	62
11	Nonlinear Dynamic Modeling of Synaptically Driven Single Hippocampal Neuron Intracellular Activity. IEEE Transactions on Biomedical Engineering, 2011, 58, 1303-1313.	4.2	16
12	Comparison of different neuron models to conductance-based post-stimulus time histograms obtained in cortical pyramidal cells using dynamic-clamp in vitro. Biological Cybernetics, 2011, 105, 167-180.	1.3	16
13	Estimation of Time-Dependent Input from Neuronal Membrane Potential. Neural Computation, 2011, 23, 3070-3093.	2.2	28
14	A multi-timescale adaptive threshold model for the SAI tactile afferent to predict response to mechanical vibration. , 2011, , 152-155.		2
15	Estimating nonstationary input signals from a single neuronal spike train. Physical Review E, 2012, 86, 051903.	2.1	13
16	Prediction of single neuron spiking activity using an optimized nonlinear dynamic model. , 2012, 2012, 2543-6.		0
17	The Performance (and Limits) of Simple Neuron Models: Generalizations of the Leaky Integrate-and-Fire Model. , 2012, , 163-192.		7
18	Virtues, Pitfalls, and Methodology of Neuronal Network Modeling and Simulations on Supercomputers. , 2012, , 283-315.		18

#	Article	IF	CITATIONS
19	Parameter extraction and classification of three cortical neuron types reveals two distinct adaptation mechanisms. Journal of Neurophysiology, 2012, 107, 1756-1775.	1.8	91
20	Evidence Accumulator or Decision Threshold – Which Cortical Mechanism are We Observing?. Frontiers in Psychology, 2012, 3, 183.	2.1	29
21	Integration and transmission of distributed deterministic neural activity in feed-forward networks. Brain Research, 2012, 1434, 17-33.	2.2	16
22	Nonlinear Dynamic Modeling of Neuron Action Potential Threshold During Synaptically Driven Broadband Intracellular Activity. IEEE Transactions on Biomedical Engineering, 2012, 59, 706-716.	4.2	9
23	Neurons as ideal change-point detectors. Journal of Computational Neuroscience, 2012, 32, 137-146.	1.0	5
24	Impact of network topology on inference of synaptic connectivity from multi-neuronal spike data simulated by a large-scale cortical network model. Journal of Computational Neuroscience, 2013, 35, 109-124.	1.0	34
25	Firing-rate models for neurons with a broad repertoire of spiking behaviors. BMC Neuroscience, 2013, 14, .	1.9	1
26	Modelling cerebellar Purkinje cells with simple neuron models of the threshold type. BMC Neuroscience, 2013, 14, .	1.9	0
27	Estimating inputs and an internal neuronal parameter from a single spike train. , 2013, 2013, 7096-9.		0
28	A new technique to optimize single neuron models using experimental spike train data. , 2013, , .		2
29	Short-Term Memory in Networks of Dissociated Cortical Neurons. Journal of Neuroscience, 2013, 33, 1940-1953.	3.6	81
30	Stochastic Integrate and Fire Models: A Review on Mathematical Methods and Their Applications. Lecture Notes in Mathematics, 2013, , 99-148.	0.2	37
31	Modifying spiking precision in conductance-based neuronal models. Network: Computation in Neural Systems, 2013, 24, 1-26.	3.6	3
32	Predicting spike timing in highly synchronous auditory neurons at different sound levels. Journal of Neurophysiology, 2013, 110, 1672-1688.	1.8	13
33	Liquid computing on and off the edge of chaos with a striatal microcircuit. Frontiers in Computational Neuroscience, 2014, 8, 130.	2.1	7
34	Threshold curve for the excitability of bidimensional spiking neurons. Physical Review E, 2014, 90, 022701.	2.1	11
35	Estimating parameters and predicting membrane voltages with conductance-based neuron models. Biological Cybernetics, 2014, 108, 495-516.	1.3	56
36	Computationally EfficientBio-realistic Reconstructions of Cerebellar Neuron Spiking Patterns. , 2014, ,		9

		CITATION REPORT		
#	Article		IF	Citations
37	Silicon central pattern generators for cardiac diseases. Journal of Physiology, 2015, 593	, 763-774.	2.9	17
38	A minimum-error, energy-constrained neural encoder predicts an instantaneous spike-ra Neuroscience, 2015, 16, .	ite code. BMC	1.9	0
39	A stimulus-dependent spike threshold is an optimal neural coder. Frontiers in Computat Neuroscience, 2015, 9, 61.	ional	2.1	10
40	Parameter estimation of neuron models using in-vitro and in-vivo electrophysiological d Frontiers in Neuroinformatics, 2015, 9, 10.	ata.	2.5	27
41	How slow K+ currents impact on spike generation mechanism?. BMC Neuroscience, 202	15, 16, .	1.9	0
42	Automated High-Throughput Characterization of Single Neurons by Means of Simplified Models. PLoS Computational Biology, 2015, 11, e1004275.	Spiking	3.2	68
43	Where's the Noise? Key Features of Spontaneous Activity and Neural Variability Aris in a Deterministic Network. PLoS Computational Biology, 2015, 11, e1004640.	e through Learning	3.2	48
44	A constrained linear approach to identify a multi-timescale adaptive threshold neuronal , \cdot	model. , 2015,		1
45	Activity of Excitatory Neuron with Delayed Feedback Stimulated with Poisson Stream is Journal of Statistical Physics, 2015, 160, 1507-1518.	Non-Markov.	1.2	5
46	Minimum squared-error, energy-constrained encoding by adaptive threshold models of 2015, , .	neurons. ,		4
47	A Lognormal Recurrent Network Model for Burst Generation during Hippocampal Sharp Journal of Neuroscience, 2015, 35, 14585-14601.	Waves.	3.6	53
48	Enhanced Sensitivity to Rapid Input Fluctuations by Nonlinear Threshold Dynamics in N Pyramidal Neurons. PLoS Computational Biology, 2016, 12, e1004761.	eocortical	3.2	32
49	Induction and Consolidation of Calcium-Based Homo- and Heterosynaptic Potentiation Depression. PLoS ONE, 2016, 11, e0161679.	and	2.5	14
50	A method to implement wireless communication between areas of electronic neurons. ,	.2016, , .		0
51	Hybrid Scheme for Modeling Local Field Potentials from Point-Neuron Networks. Cerebr 2016, 26, 4461-4496.	al Cortex,	2.9	89
52	Estimation of excitatory and inhibitory synaptic conductance variations in motoneurons locomotor-like rhythmic activity. Neuroscience, 2016, 335, 72-81.	s during	2.3	9
53	Input-output relationship in social communications characterized by spike train analysis Review E, 2016, 94, 042313.	s. Physical	2.1	16
54	Automatic Construction of Predictive Neuron Models through Large Scale Assimilation Electrophysiological Data. Scientific Reports, 2016, 6, 32749.	of	3.3	36

#	Article	IF	CITATIONS
55	The Gamma renewal process as an output of the diffusion leaky integrate-and-fire neuronal model. Biological Cybernetics, 2016, 110, 193-200.	1.3	16
56	Impact of slow K+ currents on spike generation can be described by an adaptive threshold model. Journal of Computational Neuroscience, 2016, 40, 347-362.	1.0	20
57	A minimum-error, energy-constrained neural code is an instantaneous-rate code. Journal of Computational Neuroscience, 2016, 40, 193-206.	1.0	6
58	Bioinspired Control Method Based on Spiking Neural Networks and SMA Actuator Wires for LASER Spot Tracking. Studies in Systems, Decision and Control, 2016, , 13-38.	1.0	1
59	A single spike deteriorates synaptic conductance estimation. BioSystems, 2017, 161, 41-45.	2.0	2
60	Evolution of moments and correlations in nonrenewal escape-time processes. Physical Review E, 2017, 95, 052127.	2.1	7
61	Emergent dynamics of spiking neurons with fluctuating threshold. Communications in Nonlinear Science and Numerical Simulation, 2017, 46, 126-134.	3.3	5
62	Fitting of adaptive neuron model to electrophysiological recordings using particle swarm optimization algorithm. International Journal of Modern Physics B, 2017, 31, 1750023.	2.0	4
63	Electronic neural network for modelling the Pavlovian conditioning. , 2017, , .		2
64	Estimation of Synaptic Conductances in Presence of Nonlinear Effects Caused by Subthreshold Ionic Currents. Frontiers in Computational Neuroscience, 2017, 11, 69.	2.1	10
65	The Neuroid revisited: A heuristic approach to model neural spike trains. Research on Biomedical Engineering, 2017, 33, 331-343.	2.2	1
66	Colored noise and a stochastic fractional model for correlated inputs and adaptation in neuronal firing. Biological Cybernetics, 2018, 112, 25-39.	1.3	20
67	Computational Neuroscience: Mathematical and Statistical Perspectives. Annual Review of Statistics and Its Application, 2018, 5, 183-214.	7.0	48
68	Analysis of information flow in MISO neuro-spike communication channel with synaptic plasticity. , 2018, , .		2
69	VIOLA—A Multi-Purpose and Web-Based Visualization Tool for Neuronal-Network Simulation Output. Frontiers in Neuroinformatics, 2018, 12, 75.	2.5	12
70	Optimal Localist and Distributed Coding of Spatiotemporal Spike Patterns Through STDP and Coincidence Detection. Frontiers in Computational Neuroscience, 2018, 12, 74.	2.1	16
71	Firing-rate models for neurons with a broad repertoire of spiking behaviors. Journal of Computational Neuroscience, 2018, 45, 103-132.	1.0	13
72	Sum Rate of MISO Neuro-Spike Communication Channel With Constant Spiking Threshold. IEEE Transactions on Nanobioscience, 2018, 17, 342-351.	3.3	18

#	Article	IF	CITATIONS
73	Effective and Stable Neuron Model Optimization Based on Aggregated CMA-ES. , 2019, , .		0
74	How Memory Conforms to Brain Development. Frontiers in Computational Neuroscience, 2019, 13, 22.	2.1	14
75	Adaptive integrate-and-fire model reproduces the dynamics of olfactory receptor neuron responses in a moth. Journal of the Royal Society Interface, 2019, 16, 20190246.	3.4	11
76	A stochastic model for interacting neurons in the olfactory bulb. BioSystems, 2019, 185, 104030.	2.0	3
77	A low-threshold potassium current enhances sparseness and reliability in a model of avian auditory cortex. PLoS Computational Biology, 2019, 15, e1006723.	3.2	5
78	A Theoretical Framework to Derive Simple, Firing-Rate-Dependent Mathematical Models of Synaptic Plasticity. Frontiers in Computational Neuroscience, 2019, 13, 26.	2.1	8
79	Modeling activity-dependent reduction in after hyper-polarization with Hodgkin-Huxley equation of action potential. Biomedical Physics and Engineering Express, 2019, 5, 047001.	1.2	3
80	A Semi-Markov Leaky Integrate-and-Fire Model. Mathematics, 2019, 7, 1022.	2.2	10
81	Optimal solid state neurons. Nature Communications, 2019, 10, 5309.	12.8	47
82	The effect of inhibition on rate code efficiency indicators. PLoS Computational Biology, 2019, 15, e1007545.	3.2	10
83	Impact of Long Term Plasticity on Information Transmission Over Neuronal Networks. IEEE Transactions on Nanobioscience, 2020, 19, 25-34.	3.3	4
84	Fluctuation Scaling of Neuronal Firing and Bursting in Spontaneously Active Brain Circuits. International Journal of Neural Systems, 2020, 30, 1950017.	5.2	3
85	Identifiability of a Binomial Synapse. Frontiers in Computational Neuroscience, 2020, 14, 558477.	2.1	9
86	Pre-Synaptic Pool Modification (PSPM): A supervised learning procedure for recurrent spiking neural networks. PLoS ONE, 2020, 15, e0229083.	2.5	0
87	Automated Adaptive Threshold-Based Feature Extraction and Learning for Spiking Neural Networks. IEEE Access, 2021, 9, 97366-97383.	4.2	2
88	Monosynaptic inference via finely-timed spikes. Journal of Computational Neuroscience, 2021, 49, 131-157.	1.0	5
89	Regular spiking in high-conductance states: The essential role of inhibition. Physical Review E, 2021, 103, 022408.	2.1	5
90	Nonlinear effects of intrinsic dynamics on temporal encoding in a model of avian auditory cortex. PLoS Computational Biology, 2021, 17, e1008768.	3.2	1

#	Article	IF	CITATIONS
91	Memory consolidation and improvement by synaptic tagging and capture in recurrent neural networks. Communications Biology, 2021, 4, 275.	4.4	16
94	A convolutional neural network for estimating synaptic connectivity from spike trains. Scientific Reports, 2021, 11, 12087.	3.3	7
95	Parallel and Recurrent Cascade Models as a Unifying Force for Understanding Subcellular Computation. Neuroscience, 2022, 489, 200-215.	2.3	6
96	Low-Activity Supervised Convolutional Spiking Neural Networks Applied to Speech Commands Recognition. , 2021, , .		19
97	On Fractional Stochastic Modeling of Neuronal Activity Including Memory Effects. Lecture Notes in Computer Science, 2018, , 3-11.	1.3	5
98	Transmission of Distributed Deterministic Temporal Information through a Diverging/Converging Three-Layers Neural Network. Lecture Notes in Computer Science, 2010, , 145-154.	1.3	3
100	Emergence of Resonances in Neural Systems: The Interplay between Adaptive Threshold and Short-Term Synaptic Plasticity. PLoS ONE, 2011, 6, e17255.	2.5	38
101	A leaky integrate-and-fire model with adaptation for the generation of a spike train. Mathematical Biosciences and Engineering, 2016, 13, 483-493.	1.9	20
102	Efficient information transfer by Poisson neurons. Mathematical Biosciences and Engineering, 2016, 13, 509-520.	1.9	8
103	A new firing paradigm for integrate and fire stochastic neuronal models. Mathematical Biosciences and Engineering, 2016, 13, 597-611.	1.9	1
104	Approximation of the first passage time density of a Wiener process to an exponentially decaying boundary by two-piecewise linear threshold. Application to neuronal spiking activity. Mathematical Biosciences and Engineering, 2016, 13, 613-629.	1.9	4
105	On a stochastic neuronal model integrating correlated inputs. Mathematical Biosciences and Engineering, 2019, 16, 5206-5225.	1.9	12
106	Distributed Deterministic Temporal Information Propagated by Feedforward Neural Networks. Lecture Notes in Computer Science, 2011, , 258-265.	1.3	0
107	Spike Transmission on Diverging/Converging Neural Network and Its Implementation on a Multilevel Modeling Platform. Lecture Notes in Computer Science, 2012, , 272-279.	1.3	0
108	Pre- and Postsynaptic Properties Regulate Synaptic Competition through Spike-Timing-Dependent Plasticity. Lecture Notes in Computer Science, 2014, , 733-740.	1.3	2
109	Effect of Pre- and Postsynaptic Firing Patterns on Synaptic Competition. Lecture Notes in Computer Science, 2016, , 11-18.	1.3	0
110	Neural Computation with Spiking Neural Networks Composed of Synfire Rings. Lecture Notes in Computer Science, 2017, , 245-253.	1.3	2
111	Streaming Live Neuronal Simulation Data into Visualization and Analysis. Lecture Notes in Computer Science, 2018, , 258-272.	1.3	1

#	Article	IF	CITATIONS
113	Neuronal Communication Channels. , 2018, , 1-8.		0
114	Information Processing in the Olfactory Bulb. , 2019, , 1-4.		0
117	Neuronal Communication Channels. , 2020, , 1006-1013.		0
120	Communication Theoretical Modeling and Analysis of Tripartite Synapses With Astrocytes in Synaptic Molecular Communication. IEEE Transactions on Molecular, Biological, and Multi-Scale Communications, 2022, 8, 169-177.	2.1	1
121	Large coefficient of variation of inter-spike intervals induced by noise current in the resonate-and-fire model neuron. Cognitive Neurodynamics, 2022, 16, 1461-1470.	4.0	5
122	Capacity per Unit Cost-Achieving Input Distribution of Rated-Inverse Gaussian Biological Neuron. IEEE Transactions on Communications, 2022, 70, 3788-3803.	7.8	1
132	A User's Guide to Generalized Integrate-and-Fire Models. Advances in Experimental Medicine and Biology, 2022, 1359, 69-86.	1.6	2
133	Cortical Representation of Touch in Silico. Neuroinformatics, 2022, 20, 1013-1039.	2.8	4
134	A Little Energy Goes a Long Way: Build an Energy-Efficient, Accurate Spiking Neural Network From Convolutional Neural Network. Frontiers in Neuroscience, 2022, 16, .	2.8	5
135	Approaches to Parameter Estimation from Model Neurons and Biological Neurons. Algorithms, 2022, 15, 168.	2.1	0
136	Organization and Priming of Long-term Memory Representations with Two-phase Plasticity. Cognitive Computation, 2023, 15, 1211-1230.	5.2	4
137	Information Processing in the Olfactory Bulb. , 2022, , 1674-1677.		0
139	A dynamic spike threshold with correlated noise predicts observed patterns of negative interval correlations in neuronal spike trains. Biological Cybernetics, 2022, 116, 611-633.	1.3	1
140	Neuromodulator-dependent synaptic tagging and capture retroactively controls neural coding in spiking neural networks. Scientific Reports, 2022, 12, .	3.3	5
141	Spike frequency adaptation facilitates the encoding of input gradient in insect olfactory projection neurons. BioSystems, 2023, 223, 104802.	2.0	2
144	Navigation and the efficiency of spatial coding: insights from closed-loop simulations. Brain Structure and Function, 2024, 229, 577-592.	2.3	0
145	IDSNN: Towards High-Performance and Low-Latency SNN Training via Initialization and Distillation. Biomimetics, 2023, 8, 375.	3.3	2
146	Short-term neuronal and synaptic plasticity act in synergy for deviance detection in spiking networks. PLoS Computational Biology, 2023, 19, e1011554.	3.2	0

#	Article	IF	CITATIONS
147	Constructing Deep Spiking Neural Networks from Artificial Neural Networks with Knowledge Distillation. , 2023, , .		6
148	An Adaptive Generalized Leaky Integrate-and-Fire Model for Hippocampal CA1 Pyramidal Neurons and Interneurons. Bulletin of Mathematical Biology, 2023, 85, .	1.9	2
149	Spike frequency adaptation: bridging neural models and neuromorphic applications. , 2024, 3, .		0
150	Shared input and recurrency in neural networks for metabolically efficient information transmission. PLoS Computational Biology, 2024, 20, e1011896.	3.2	0