Powertrain System of Honda FCX Clarity Fuel Cell Vehic

World Electric Vehicle Journal 3, 820-829 DOI: 10.3390/wevj3040820

Citation Report

ARTICLE

IF CITATIONS

0

1	A hybrid vehicle with Reversible Cell and battery., 2011,
-	in yona venicie man neverbible ben ana battery, 2011, j.

2	Requirements for a Hydrogen Powered All-Electric Manned Helicopter. , 2012, , .		7
3	Electric cars: technical characteristics and environmental impacts. Environmental Sciences Europe, 2012, 24, .	5.5	156
4	Modeling and Analysis of a Fuel Cell Hybrid Vehicle. Lecture Notes in Electrical Engineering, 2013, , 847-858.	0.4	4
5	Testing of Lightweight Fuel Cell Vehicles System at Low Speeds with Energy Efficiency Analysis. IOP Conference Series: Materials Science and Engineering, 2013, 53, 012040.	0.6	1
6	Development of the anode bipolar plate/membrane assembly unit for air breathing PEMFC stack using silicone adhesive bonding. Journal of Power Sources, 2016, 315, 86-95.	7.8	28
7	Optimum design of the carbon composite bipolar plate (BP) for the open cathode of an air breathing PEMFC. Composite Structures, 2016, 140, 675-683.	5.8	9
8	Grid to wheel energy efficiency analysis of battery- and fuel cell-powered vehicles. International Journal of Energy Research, 2018, 42, 2021-2028.	4.5	13
9	Noble Metal Electrocatalysts for Anode and Cathode in Polymer Electrolyte Fuel Cells. , 2018, , 171-197.		1
10	Development of Propulsion System Models for Electric-VTOL Aircraft. , 2018, , .		2
11	Metallic bipolar plate with a multi-hole structure in the rib regions for polymer electrolyte membrane fuel cells. Applied Energy, 2018, 212, 333-339.	10.1	32
12	Current Advances and Applications of Fuel Cell Technologies. , 2018, , 303-337.		13
13	Hydrogen Fuel Cells and Batteries for Electric-Vertical Takeoff and Landing Aircraft. Journal of Aircraft, 2019, 56, 1765-1782.	2.4	33
14	Three-dimensional simulation of a new cooling strategy for proton exchange membrane fuel cell stack using a non-isothermal multiphase model. Applied Energy, 2019, 255, 113865.	10.1	83
15	Visualization of fast "hydrogen pump―in core–shell nanostructured Mg@Pt through hydrogen-stabilized Mg ₃ Pt. Journal of Materials Chemistry A, 2019, 7, 14629-14637.	10.3	62
16	Fuel cell vehicle energy management strategy based on the cost of ownership. IET Electrical Systems in Transportation, 2019, 9, 226-236.	2.4	17
17	A Study of Energy Losses in the World's Most Fuel Efficient Vehicle. , 2019, , .		1
18	Development of cathode cooling fins with a multi-hole structure for open-cathode polymer electrolyte membrane fuel cells. Applied Energy, 2020, 279, 115815.	10.1	20

#	Article	IF	CITATIONS
19	An Energy Consumption Model for Designing an AGV Energy Storage System with a PEMFC Stack. Energies, 2020, 13, 3435.	3.1	22
20	Influence of different carbon materials on electrical properties of epoxy-based composite for bipolar plate applications. Materials Today: Proceedings, 2020, 33, 2003-2007.	1.8	6
21	Optimization of porous media flow field for proton exchange membrane fuel cell using a data-driven surrogate model. Energy Conversion and Management, 2020, 226, 113513.	9.2	39
22	Energy Efficiency Comparison of Hybrid Powertrain Systems for Fuel-Cell-Based Electric Vehicles. , 2020, , .		4
23	ELECTRIMACS 2019. Lecture Notes in Electrical Engineering, 2020, , .	0.4	0
24	Multi-Stack Lifetime Improvement through Adapted Power Electronic Architecture in a Fuel Cell Hybrid System. Mathematics, 2020, 8, 739.	2.2	20
25	Liquid cooling techniques in proton exchange membrane fuel cell stacks: A detailed survey. AEJ - Alexandria Engineering Journal, 2020, 59, 635-655.	6.4	87
26	Three-dimensional multi-phase simulation of PEM fuel cell considering the full morphology of metal foam flow field. International Journal of Hydrogen Energy, 2021, 46, 2978-2989.	7.1	86
27	Drive Cycle Energy Efficiency of Fuel Cell/Supercapacitor Passive Hybrid Vehicle System. IEEE Transactions on Industry Applications, 2021, 57, 894-903.	4.9	21
28	Thermal management of polymer electrolyte membrane fuel cells: A review of cooling methods, material properties, and durability. Applied Energy, 2021, 286, 116496.	10.1	120
29	A comprehensive three-dimensional model coupling channel multi-phase flow and electrochemical reactions in proton exchange membrane fuel cell. Advances in Applied Energy, 2021, 2, 100033.	13.2	31
30	Study of converging-diverging channel induced convective mass transport in a proton exchange membrane fuel cell. Energy Conversion and Management, 2021, 237, 114095.	9.2	25
31	Fuel Cell Electric Vehicle (FCEV) Energy Flow Analysis in Real Driving Conditions (RDC). Energies, 2021, 14, 5018.	3.1	22
32	Design and Modeling of Metallic Bipolar Plates for a Fuel Cell Range Extender. Energies, 2021, 14, 5484.	3.1	1
33	Reinforcement of protonâ€exchange membrane fuel cell performance through a novel flow field design with auxiliary channels and a hole array. AICHE Journal, 2022, 68, e17461.	3.6	8
34	Thermal Management of PEM Fuel Cells in Electric Vehicles. SpringerBriefs in Applied Sciences and Technology, 2018, , 93-112.	0.4	4
35	A Progress Review on Heating Methods and Influence Factors of Cold Start for Automotive PEMFC System. , 0, , .		10
36	Chapter 9. Electric Cars: Technical Characteristics and Environmental Impacts. , 2016, , 207-242.		1

CITATION REPORT

#	Article	IF	CITATIONS
37	Controllability Insurance of the Boost Converters Dedicated to Fuel Cell Management System. Lecture Notes in Electrical Engineering, 2020, , 273-286.	0.4	0
38	Porous media flow field for proton exchange membrane fuel cells. , 2022, , 315-345.		1
39	A Review of the Transition Region of Membrane Electrode Assembly of Proton Exchange Membrane Fuel Cells: Design, Degradation, and Mitigation. Membranes, 2022, 12, 306.	3.0	14
40	Hydrogen Energy as Future of Sustainable Mobility. Frontiers in Energy Research, 0, 10, .	2.3	35
41	Experimental Assessment of Powertrain Components and Energy Flow Analysis of a Fuel Cell Electric Vehicle (FCEV). , 0, , .		2
42	Progress in the proton exchange membrane fuel cells (PEMFCs) water/thermal management: From theory to the current challenges and real-time fault diagnosis methods. , 2022, 1, 100002.		40
43	Structure Design for Ultrahigh Power Density Proton Exchange Membrane Fuel Cell. SSRN Electronic Journal, 0, , .	0.4	1
44	Numerical study on heat transfer enhancement of a proton exchange membrane fuel cell with the dimpled cooling channel. International Journal of Hydrogen Energy, 2023, 48, 3122-3134.	7.1	11
45	Hydrogen-Fuel Cell Hybrid Powertrain: Conceptual Layouts and Current Applications. Machines, 2022, 10, 1121.	2.2	11
46	Structure Design for Ultrahigh Power Density Proton Exchange Membrane Fuel Cell. Small Methods, 2023, 7, .	8.6	16
47	Porous Flow Field for Next-Generation Proton Exchange Membrane Fuel Cells: Materials, Characterization, Design, and Challenges. Chemical Reviews, 2023, 123, 989-1039.	47.7	45
49	Fuel Cell Products for Sustainable Transportation and Stationary Power Generation: Review on Market Perspective. Energies, 2023, 16, 2748.	3.1	2
50	Scaling analysis of diffusion–reaction process in proton exchange membrane fuel cell with the second Damköhler number. Chemical Engineering Journal, 2023, 465, 143011.	12.7	2
51	Performance and mass transfer evaluation of PEM fuel cells with straight and wavy parallel flow channels of various wavelengths using CFD simulation. International Journal of Hydrogen Energy, 2024, 51, 1326-1344.	7.1	3
52	Thermal management of polymer electrolyte membrane fuel cells: comparative assessment of cooling systems. E-Prime, 2023, 4, 100174.	2.0	1
53	Challenges and Solutions of Hydrogen Fuel Cells in Transportation Systems: A Review and Prospects. World Electric Vehicle Journal, 2023, 14, 156.	3.0	6
54	Interaction of cell flow directions and performance in PEM fuel cell systems following an anode based water management approach. Journal of Power Sources, 2023, 580, 233270.	7.8	3
55	Nanofluids as a coolant for polymer electrolyte membrane fuel cells: Recent trends, challenges, and future perspectives. Journal of Cleaner Production, 2023, 424, 138763.	9.3	3

#	Article	IF	CITATIONS
56	A review of plateau environmental adaptation for proton exchange membrane fuel cells. International Journal of Hydrogen Energy, 2024, 50, 744-764.	7.1	0
57	Characterization of bipolar plate-free polymer electrolyte membrane fuel cells operating in low and high relative humidity. Journal of Industrial and Engineering Chemistry, 2024, 131, 240-247.	5.8	0
58	Load Capacity of Nickel–Metal Hydride Battery and Proton-Exchange-Membrane Fuel Cells in the Fuel-Cell-Hybrid-Electric-Vehicle Powertrain. Energies, 2023, 16, 7657.	3.1	0
59	A Review of the Research Progress and Application of Key Components in the Hydrogen Fuel Cell System. Processes, 2024, 12, 249.	2.8	Ο
60	A class of promising fuel cell performance: International status on the application of nanofluids for thermal management systems. Materials Today Sustainability, 2024, 26, 100709.	4.1	0