Star formation and mass assembly in high redshift galax

Astronomy and Astrophysics 504, 751-767 DOI: 10.1051/0004-6361/200811434

Citation Report

#	Article	IF	CITATIONS
1	THE <i>XMM</i> CLUSTER SURVEY: ACTIVE GALACTIC NUCLEI AND STARBURST GALAXIES IN XMMXCS J2215.9–1738 AT <i>z</i> = 1.46. Astrophysical Journal, 2010, 718, 133-147.	1.6	110
2	Mid- and far-infrared luminosity functions and galaxy evolution from multiwavelength <i>Spitzer</i> observations up to <i>z</i> ~ 2.5. Astronomy and Astrophysics, 2010, 515, A8.	2.1	146
3	The unusual N IV] -emitter galaxy GDSÂJ033218.92-275302.7: star formation or AGN-driven winds from a massive galaxy at <i>z</i> = 5.56. Astronomy and Astrophysics, 2010, 513, A20.	2.1	52
4	GALAXY DOWNSIZING EVIDENCED BY HYBRID EVOLUTIONARY TRACKS. Astrophysical Journal, 2010, 723, 755-766.	1.6	31
5	The environmental dependence of galaxy properties at <i>z</i> Â=Â2. Astronomy and Astrophysics, 2010, 518, A18.	2.1	37
6	THE GREAT OBSERVATORIES ORIGINS DEEP SURVEY: CONSTRAINTS ON THE LYMAN CONTINUUM ESCAPE FRACTION DISTRIBUTION OF LYMAN-BREAK GALAXIES AT 3.4 < <i>z</i> < 4.5. Astrophysical Journal, 2010, 725, 1011-1031.	1.6	129
7	Cosmic evolution of submillimeter galaxies and their contribution to stellar mass assembly. Astronomy and Astrophysics, 2010, 514, A67.	2.1	197
8	MASS AND ENVIRONMENT AS DRIVERS OF GALAXY EVOLUTION IN SDSS AND zCOSMOS AND THE ORIGIN OF THE SCHECHTER FUNCTION. Astrophysical Journal, 2010, 721, 193-221.	1.6	1,485
9	The first <i>Herschel</i> view of the mass-SFR link in high- <i>z</i> galaxies. Astronomy and Astrophysics, 2010, 518, L25.	2.1	222
10	MOIRCS DEEP SURVEY. VIII. EVOLUTION OF STAR FORMATION ACTIVITY AS A FUNCTION OF STELLAR MASS IN GALAXIES SINCE <i>z</i> â^1/4 3. Astrophysical Journal, 2010, 723, 129-145.	1.6	55
11	A DETAILED STUDY OF PHOTOMETRIC REDSHIFTS FOR GOODS-SOUTH GALAXIES. Astrophysical Journal, 2010, 724, 425-447.	1.6	83
12	GALAXY STELLAR MASS ASSEMBLY BETWEEN 0.2 < <i>z</i> < 2 FROM THE S-COSMOS SURVEY. Astrophysical Journal, 2010, 709, 644-663.	1.6	573
13	A WIDE AREA SURVEY FOR HIGH-REDSHIFT MASSIVE GALAXIES. II. NEAR-INFRARED SPECTROSCOPY OF <i>BzK</i> -SELECTED MASSIVE STAR-FORMING GALAXIES. Astrophysical Journal, 2010, 715, 385-405.	1.6	27
14	THE EVOLUTION OF THE ULTRAVIOLET LUMINOSITY FUNCTION FROM <i>z</i> â^¼ 0.75 TO <i>z</i> â^¼ 2.5 USI <i>HST</i> ERS WFC3/UVIS OBSERVATIONS. Astrophysical Journal Letters, 2010, 725, L150-L155.	NG 3.0	112
15	Asymptotic giant branch stars at low metallicity: the challenging interplay between the mass-loss and molecular opacities. Monthly Notices of the Royal Astronomical Society, 2010, 408, 2476-2486.	1.6	61
16	The active and passive populations of extremely red objects. Monthly Notices of the Royal Astronomical Society, 2010, , .	1.6	3
17	Escape of about five per cent of Lyman-α photons from high-redshift star-forming galaxies. Nature, 2010, 464, 562-565.	13.7	148
18	Physical and morphological properties of <i>z</i> ~ 3 Lyman break galaxies: dependence on Ly <i>α</i> line emission. Astronomy and Astrophysics, 2010, 514, A64.	2.1	48

#	Article	IF	CITATIONS
19	The dust content of high- <i>z</i> submillimeter galaxies revealed by <i>Herschel</i> . Astronomy and Astrophysics, 2010, 518, L154.	2.1	74
20	Stellar mass and velocity functions of galaxies. Astronomy and Astrophysics, 2010, 522, A18.	2.1	17
21	MORPHOLOGIES OF LOCAL LYMAN BREAK GALAXY ANALOGS. II. A COMPARISON WITH GALAXIES AT <i>z</i> àê‰ 2–4 IN ACS AND WFC3 IMAGES OF THE HUBBLE ULTRA DEEP FIELD. Astrophysical Journal, 2010, 710, 979-991.	^f _{1.6}	77
22	THE IMPACT OF COLD GAS ACCRETION ABOVE A MASS FLOOR ON GALAXY SCALING RELATIONS. Astrophysical Journal, 2010, 718, 1001-1018.	1.6	483
23	A NEW EXTENSIVE CATALOG OF OPTICALLY VARIABLE ACTIVE GALACTIC NUCLEI IN THE GOODS FIELDS AND A NEW STATISTICAL APPROACH TO VARIABILITY SELECTION. Astrophysical Journal, 2010, 723, 737-754.	1.6	47
24	Evidence of a fast evolution of the UV luminosity function beyond redshift 6 from a deep HAWK-I survey of the GOODS-S field. Astronomy and Astrophysics, 2010, 511, A20.	2.1	67
25	Galaxy protocluster candidates at 1.6 Â<Â <i>z</i> Â≲Â 2. Astronomy and Astrophysics, 2	010, 522,	A 58.
26	Ly\$mathsf{alpha}\$ emitters in the GOODS-S field. Astronomy and Astrophysics, 2010, 510, A109.	2.1	33
27	The star-formation rates of 1.5 < z < 2.5 massive galaxies. Astronomy and Astrophysics, 2010, 518, L24.	2.1	99
28	On the physical properties of <i>zâ‰^</i> 6–8 galaxies. Astronomy and Astrophysics, 2010, 515, A73.	2.1	158
29	UV-DROPOUT GALAXIES IN THE GOODS-SOUTH FIELD FROM WFC3 EARLY RELEASE SCIENCE OBSERVATIONS. Astrophysical Journal, 2010, 720, 1708-1716.	1.6	70
30	DISCOVERY OF STRONG IRON KÎ \pm EMITTING COMPTON THICK QUASARS AT <i>z</i> = 2.5 AND 2.9. Astrophysical Journal Letters, 2011, 729, L4.	3.0	44
31	Population synthesis modelling of luminous infrared galaxies at intermediate redshift. Astronomy and Astrophysics, 2011, 525, A150.	2.1	53
32	The effect of environment on star forming galaxies at redshift. Astronomy and Astrophysics, 2011, 532, A145.	2.1	45
33	An X-ray underluminous cluster of galaxies in the 4Ms CDFS observations. Astronomy and Astrophysics, 2011, 530, A27.	2.1	14
34	Building the cosmic infrared background brick by brick with <i>Herschel</i> /PEP. Astronomy and Astrophysics, 2011, 532, A49.	2.1	151
35	On Ly <i>α</i> emission in <i>z</i> Â~ 3–6 UV-selected galaxies. Astronomy and Astrophysics, 2011, 536, A72.	2.1	35
36	ACTIVE AND PASSIVE GALAXIES AT <i>z</i> â^1/4 2: REST-FRAME OPTICAL MORPHOLOGIES WITH WFC3. Astrophysical Journal, 2011, 743, 146.	1.6	52

#	Article	IF	CITATIONS
37	A PANCHROMATIC STUDY OF BLAST COUNTERPARTS: TOTAL STAR FORMATION RATE, MORPHOLOGY, ACTIVE GALACTIC NUCLEUS FRACTION, AND STELLAR MASS. Astrophysical Journal, 2011, 727, 83.	1.6	10
38	VARIABILITY AND MULTIWAVELENGTH-DETECTED ACTIVE GALACTIC NUCLEI IN THE GOODS FIELDS. Astrophysical Journal, 2011, 731, 97.	1.6	30
39	THE zCOSMOS-SINFONI PROJECT. I. SAMPLE SELECTION AND NATURAL-SEEING OBSERVATIONS. Astrophysical Journal, 2011, 743, 86.	1.6	86
40	A CANDELS WFC3 GRISM STUDY OF EMISSION-LINE GALAXIES AT <i>z</i> â ⁻ /4 2: A MIX OF NUCLEAR ACTIVITY AN LOW-METALLICITY STAR FORMATION. Astrophysical Journal, 2011, 743, 144.	D 1.6	53
41	THE DEEPEST <i>HUBBLE SPACE TELESCOPE</i> COLOR-MAGNITUDE DIAGRAM OF M32. EVIDENCE FOR INTERMEDIATE-AGE POPULATIONS. Astrophysical Journal, 2011, 727, 55.	1.6	28
42	ON STAR FORMATION RATES AND STAR FORMATION HISTORIES OF GALAXIES OUT TO <i>z</i> â ¹ /4 3. Astrophysical Journal, 2011, 738, 106.	1.6	356
43	EARLY-TYPE GALAXIES AT <i>z</i> â ¹ /4 1.3. II. MASSES AND AGES OF EARLY-TYPE GALAXIES IN DIFFERENT ENVIRONMENTS AND THEIR DEPENDENCE ON STELLAR POPULATION MODEL ASSUMPTIONS. Astrophysical Journal, 2011, 732, 12.	1.6	30
44	THE STAR FORMATION HISTORY OF MASS-SELECTED GALAXIES IN THE COSMOS FIELD. Astrophysical Journal, 2011, 730, 61.	1.6	515
45	THE SPECIFIC STAR FORMATION RATE AND STELLAR MASS FRACTION OF LOW-MASS CENTRAL GALAXIES IN COSMOLOGICAL SIMULATIONS. Astrophysical Journal, 2011, 736, 134.	1.6	34
46	AGN UNIFICATION AT <i>z</i> â ⁻¹ ⁄4 1: <i>u</i> – <i>R</i> COLORS AND GRADIENTS IN X-RAY AGN HOSTS. Astrophysical Journal, 2011, 740, 3.	1.6	12
47	Evolution of the dusty infrared luminosity function from <i>z</i> Â=Â <i>O</i> to <i>z</i> Â=Â <i observations from<i>Spitzer</i>. Astronomy and Astrophysics, 2011, 528, A35.</i 	>2.3u	sing 273
48	The dependence of star formation activity on environment and stellar mass at zâ^¼ 1 from the HiZELS-Hα surveyâ~ Monthly Notices of the Royal Astronomical Society, 2011, 411, 675-692.	1.6	141
49	Dependence of star formation activity on stellar mass and environment from the Redshift One LDSS-3 Emission line Survey. Monthly Notices of the Royal Astronomical Society, 2011, 411, 1869-1879.	1.6	24
50	A weak lensing detection of the cosmological distance-redshift relation behind three massive clustersâ~ Monthly Notices of the Royal Astronomical Society, 2011, 414, 1840-1850.	1.6	27
51	[O ii] emitters in the GOODS field at zâ^¼ 1.85: a homogeneous measure of evolving star formation. Monthly Notices of the Royal Astronomical Society, 2011, 413, 2883-2894.	1.6	18
52	Hα emitters in zâ [^] 1⁄4 2 protoclusters: evidence for faster evolution in dense environments. Monthly Notices of the Royal Astronomical Society, 2011, 415, 2993-3005.	1.6	89
53	The PEP survey: clustering of infrared-selected galaxies and structure formation at z â^1⁄4 2 in GOODS-South☠Monthly Notices of the Royal Astronomical Society, 2011, 416, 1105-1117.	1.6	27
54	On the impact of empirical and theoretical star formation laws on galaxy formation. Monthly Notices of the Royal Astronomical Society, 2011, 416, 1566-1584.	1.6	139

^	n			
LITATIO	NR	FP	ORT	

#	Article	IF	CITATIONS
55	Star formation in a stellar mass-selected sample of galaxies to z= 3 from the GOODS-NICMOS Survey. Monthly Notices of the Royal Astronomical Society, 2011, 417, 289-303.	1.6	55
56	THE CHANDRA DEEP FIELD-SOUTH SURVEY: 4 Ms SOURCE CATALOGS. Astrophysical Journal, Supplement Series, 2011, 195, 10.	3.0	488
57	UV-TO-FIR ANALYSIS OF <i>SPITZER</i> /IRAC SOURCES IN THE EXTENDED GROTH STRIP. II. PHOTOMETRIC REDSHIFTS, STELLAR MASSES, AND STAR FORMATION RATES. Astrophysical Journal, Supplement Series, 2011, 193, 30.	3.0	97
58	UV-TO-FIR ANALYSIS OF <i>SPITZER</i> /IRAC SOURCES IN THE EXTENDED GROTH STRIP. I. MULTI-WAVELENGTH PHOTOMETRY AND SPECTRAL ENERGY DISTRIBUTIONS. Astrophysical Journal, Supplement Series, 2011, 193, 13.	3.0	98
59	A Method of Identifying AGNs Based on Emission-Line Excess and the Nature of Low-Luminosity AGNs in the Sloan Digital Sky Survey. II. The Nature of Low-Luminosity AGNs. Publication of the Astronomical Society of Japan, 2012, 64, .	1.0	11
60	Star Formation and AGN Activity in Galaxies Classified Using the 1.6 μm Bump and PAH Features at <i>z</i> = 0.4–2. Publication of the Astronomical Society of Japan, 2012, 64, .	1.0	31
61	SPECTRAL CLASSIFICATION OF GALAXIES AT 0.5 ⩽ <i>z</i> ੽ 1 IN THE CDFS: THE ARTIFICIAL NEURAL NET APPROACH. Astronomical Journal, 2012, 144, 172.	NORK 1.9	13
62	THE SUB-mJy RADIO POPULATION OF THE E-CDFS: OPTICAL AND INFRARED COUNTERPART IDENTIFICATION. Astrophysical Journal, Supplement Series, 2012, 203, 15.	3.0	36
63	CLUSTERING OF STAR-FORMING GALAXIES DETECTED IN MID-INFRARED WITH THE <i>SPITZER</i> WIDE-AREA SURVEY. Astrophysical Journal, 2012, 751, 126.	1.6	18
64	The XMM deep survey in the CDF-S. Astronomy and Astrophysics, 2012, 546, A84.	2.1	45
65	The evolution of the star formation activity per halo mass up to redshift Â~1.6 as seen by <i>Herschel</i> . Astronomy and Astrophysics, 2012, 537, A58.	2.1	60
66	The mean star formation rate of X-ray selected active galaxies and its evolution from <i>z</i> Â~ 2.5: results from PEP- <i>Herschel</i> . Astronomy and Astrophysics, 2012, 545, A45.	2.1	250
67	Faint high-redshift AGN in the <i>Chandra</i> deep field south: the evolution of the AGN luminosity function and black hole demography. Astronomy and Astrophysics, 2012, 537, A16.	2.1	136
68	The evolving slope of the stellar mass function at 0.6 â‰Â <i>z</i> < 4.5 from deep WFC3 data. Astronomy and Astrophysics, 2012, 538, A33.	2.1	110
69	NEW ISOLATED PLANETARY-MASS OBJECTS AND THE STELLAR AND SUBSTELLAR MASS FUNCTION OF THE If ORIONIS CLUSTER. Astrophysical Journal, 2012, 754, 30.	1.6	116
70	GOODS- <i>HERSCHEL</i> : IMPACT OF ACTIVE GALACTIC NUCLEI AND STAR FORMATION ACTIVITY ON INFRARED SPECTRAL ENERGY DISTRIBUTIONS AT HIGH REDSHIFT. Astrophysical Journal, 2012, 759, 139.	1.6	148
71	A NEW INFRARED COLOR CRITERION FOR THE SELECTION OF 0 < <i>z</i> < 7 AGNs: APPLICATION TO DEEP FIELDS AND IMPLICATIONS FOR <i>JWST</i> SURVEYS. Astrophysical Journal, 2012, 754, 120.	1.6	41
72	The blue UV slopes of <i>z</i> Â~Â 4 Lyman break galaxies: implications for the corrected star formation rate density. Astronomy and Astrophysics, 2012, 540, A39.	2.1	85

#	Article	IF	CITATIONS
73	EXPANDED SEARCH FOR <i>z</i> â ¹ /4 10 GALAXIES FROM HUDF09, ERS, AND CANDELS DATA: EVIDENCE FOR ACCELERATED EVOLUTION AT <i>z</i> > 8?. Astrophysical Journal, 2012, 745, 110.	1.6	98
74	THE EVOLVING INTERSTELLAR MEDIUM OF STAR-FORMING GALAXIES SINCE <i>z</i> = 2 AS PROBED BY THEIR INFRARED SPECTRAL ENERGY DISTRIBUTIONS. Astrophysical Journal, 2012, 760, 6.	1.6	418
75	EARLY-TYPE GALAXIES AT <i>z</i> â ¹ /4 1.3. IV. SCALING RELATIONS IN DIFFERENT ENVIRONMENTS. Astrophysical Journal, 2012, 745, 130.	1.6	45
76	The spectral energy distributions, host galaxies and environments of variability-selected active galactic nuclei in GOODS-South. Monthly Notices of the Royal Astronomical Society, 2012, 426, 360-376.	1.6	23
77	[Oii] emitters atzâ^¼ 4.6 in the GOODS field: a homogeneous measure of evolving star formation. Monthly Notices of the Royal Astronomical Society, 2012, 426, 2178-2188.	1.6	3
78	Accreting supermassive black holes in the COSMOS field and the connection to their host galaxies. Monthly Notices of the Royal Astronomical Society, 2012, 427, 3103-3133.	1.6	202
79	THE IMPACT OF EVOLVING INFRARED SPECTRAL ENERGY DISTRIBUTIONS OF GALAXIES ON STAR FORMATION RATE ESTIMATES. Astrophysical Journal, 2012, 745, 182.	1.6	85
80	ON THE DETECTION OF IONIZING RADIATION ARISING FROM STAR-FORMING GALAXIES AT REDSHIFT <i>z</i> â ¹ /4 3-4: LOOKING FOR ANALOGS OF "STELLAR RE-IONIZERS― Astrophysical Journal, 2012, 751, 70.	1.6	117
81	<i>Herschel</i> -PACS far-infrared detections of Lyman- <i>α</i> emitters at 2.0 Â≲Â <i>z</i> Â≲ 3.5. Astror and Astrophysics, 2012, 541, A65.	10my 2.19	22
82	A <i>Herschel</i> view of the far-infrared properties of submillimetre galaxies. Astronomy and Astrophysics, 2012, 539, A155.	2.1	232
83	Enriched haloes at redshiftâ€,zâ€,=â€,2â€,with no star formation: implications for accretion and wind scenariosâ~ Monthly Notices of the Royal Astronomical Society, 2012, 419, 2-13.	1.6	55
84	GOODS-Herschel: the far-infrared view of star formation in active galactic nucleus host galaxies sinceâ€,zâ€,â‰^ 3. Monthly Notices of the Royal Astronomical Society, 2012, 419, 95-115.	1.6	226
85	On the evolution of the star formation rate function of massive galaxies: constraints at from the GOODS-MUSIC catalogue. Monthly Notices of the Royal Astronomical Society, 2012, , no-no.	1.6	8
86	KECK SPECTROSCOPY OF 3 < <i>z</i> < 7 FAINT LYMAN BREAK GALAXIES: THE IMPORTANCE OF NEBULAR EMISSION IN UNDERSTANDING THE SPECIFIC STAR FORMATION RATE AND STELLAR MASS DENSITY. Astrophysical Journal, 2013, 763, 129.	1.6	371
87	Modeling the Panchromatic Spectral Energy Distributions of Galaxies. Annual Review of Astronomy and Astrophysics, 2013, 51, 393-455.	8.1	626
88	THE FAR-INFRARED, UV, AND MOLECULAR GAS RELATION IN GALAXIES UP TO <i>z</i> = 2.5. Astrophysical Journal, 2013, 762, 125.	1.6	44
89	The Herschel census of infrared SEDs through cosmic timeâ~ Monthly Notices of the Royal Astronomical Society, 2013, 431, 2317-2340.	1.6	134
90	An X-Ray Detected Group of Quiescent Early-Type Galaxies at $\langle i \rangle z \langle i \rangle = 1.6$ in the Chandra Deep Field South Publication of the Astronomical Society of Japan 2013 65	1.0	39

#	Article	IF	CITATIONS
91	The Herschelâ~ PEP/HerMES luminosity function – I. Probing the evolution of PACS selected Galaxies to z ≃ 4. Monthly Notices of the Royal Astronomical Society, 2013, 432, 23-52.	1.6	341
92	X-ray detections of submillimetre galaxies: active galactic nuclei versus starburst contribution. Monthly Notices of the Royal Astronomical Society, 2013, 431, 662-682.	1.6	23
93	On the mass assembly of low-mass galaxies in hydrodynamical simulations of structure formation. Monthly Notices of the Royal Astronomical Society, 2013, 435, 2736-2752.	1.6	18
94	The insignificance of major mergers in driving star formation at <i>z</i> â‰f 2. Monthly Notices of the Royal Astronomical Society: Letters, 2013, 429, L40-L44.	1.2	59
95	X-ray properties of BzK-selected galaxies in the deepest X-ray fields. Monthly Notices of the Royal Astronomical Society, 2013, 428, 3089-3103.	1.6	30
96	The lack of star formation gradients in galaxy groups up to z â^¼ 1.6. Monthly Notices of the Royal Astronomical Society, 2013, 434, 3089-3103.	1.6	31
97	On the evolution and environmental dependence of the star formation rate versus stellar mass relation since zÂâ^1⁄4 2. Monthly Notices of the Royal Astronomical Society, 2013, 434, 423-436.	1.6	146
98	The star-forming progenitors of massive red galaxies. Monthly Notices of the Royal Astronomical Society, 2013, 430, 686-698.	1.6	11
99	CANDELS MULTI-WAVELENGTH CATALOGS: SOURCE DETECTION AND PHOTOMETRY IN THE GOODS-SOUTH FIELD. Astrophysical Journal, Supplement Series, 2013, 207, 24.	3.0	400
100	A REST-FRAME OPTICAL VIEW ON <i>z</i> â ¹ /4 4 GALAXIES. I. COLOR AND AGE DISTRIBUTIONS FROM DEEP IRAC PHOTOMETRY OF THE IUDF10 AND GOODS SURVEYS. Astrophysical Journal, 2013, 772, 136.	1.6	50
101	NUCLEAR ACTIVITY IS MORE PREVALENT IN STAR-FORMING GALAXIES. Astrophysical Journal, 2013, 771, 63.	1.6	96
102	A POPULATION OF MASSIVE, LUMINOUS GALAXIES HOSTING HEAVILY DUST-OBSCURED GAMMA-RAY BURSTS: IMPLICATIONS FOR THE USE OF GRBs AS TRACERS OF COSMIC STAR FORMATION. Astrophysical Journal, 2013, 778, 128.	1.6	160
103	THE ERA OF STAR FORMATION IN GALAXY CLUSTERS. Astrophysical Journal, 2013, 779, 138.	1.6	166
104	BIASES IN PHYSICAL PARAMETER ESTIMATES THROUGH DIFFERENTIAL LENSING MAGNIFICATION. Astrophysical Journal, 2013, 770, 110.	1.6	3
105	The high-redshift (z > 3) active galactic nucleus population in the 4-Ms Chandra Deep Field-South. Monthly Notices of the Royal Astronomical Society, 2013, 428, 354-369.	1.6	37
106	The numbers of z â^1⁄4 2 star-forming and passive galaxies in 2.5 square degrees of deep CFHT imaging. Monthly Notices of the Royal Astronomical Society, 2013, 435, 845-860.	1.6	16
107	Massive starburst galaxies in a z = 2.16 proto-cluster unveiled by panoramic Hα mapping. Monthly Notices of the Royal Astronomical Society, 2013, 428, 1551-1564.	1.6	82
108	ACTIVE GALACTIC NUCLEUS FEEDBACK WORKS BOTH WAYS. Astrophysical Journal, 2013, 774, 66.	1.6	74

#	Article	IF	CITATIONS
109	CANDELS MULTIWAVELENGTH CATALOGS: SOURCE IDENTIFICATION AND PHOTOMETRY IN THE CANDELS UKIDSS ULTRA-DEEP SURVEY FIELD. Astrophysical Journal, Supplement Series, 2013, 206, 10.	3.0	252
110	PHYSICAL PROPERTIES, STAR FORMATION, AND ACTIVE GALACTIC NUCLEUS ACTIVITY IN BALMER BREAK GALAXIES AT 0 < <i>z</i> < 1. Astrophysical Journal, 2013, 771, 7.	1.6	7
111	CLASH: THREE STRONGLY LENSED IMAGES OF A CANDIDATE <i>z</i> â‰^11 GALAXY. Astrophysical Journal, 2013, 762, 32.	1.6	301
112	STELLAR POPULATIONS OF LYMAN BREAK GALAXIES AT <i>z</i> â‰f 1-3 IN THE <i>HST</i> /WFC3 EARLY RELEASE SCIENCE OBSERVATIONS. Astrophysical Journal, 2013, 765, 88.	1.6	31
113	CANDELS: THE PROGENITORS OF COMPACT QUIESCENT GALAXIES AT <i>z</i> â^1/4 2. Astrophysical Journal, 2013, 765, 104.	1.6	367
114	Properties of <i>z</i> Â~Â3–6 Lyman break galaxies. Astronomy and Astrophysics, 2013, 549, A4.	2.1	79
115	Galaxy And Mass Assembly (GAMA): linking star formation histories and stellar mass growth. Monthly Notices of the Royal Astronomical Society, 2013, 434, 209-221.	1.6	81
116	The XMM deep survey in the CDF-S. Astronomy and Astrophysics, 2013, 555, A43.	2.1	56
117	The deepest <i>Herschel</i> -PACS far-infrared survey: number counts and infrared luminosity functions from combined PEP/GOODS-H observations. Astronomy and Astrophysics, 2013, 553, A132.	2.1	345
118	Far-infrared-detected Lyman-break galaxies at <i>z</i> ~ 3. Astronomy and Astrophysics, 2013, 554, L3.	2.1	34
119	Probing AGN triggering mechanisms through the starburstiness of the host galaxies. Astronomy and Astrophysics, 2013, 559, A56.	2.1	17
120	Molecular gas mass functions of normal star-forming galaxies since <i>z</i> Â~ÂÂ3. Astronomy and Astrophysics, 2013, 555, L8.	2.1	27
121	The evolution of the AGN content in groups up to <i>z</i> ~ 1. Astronomy and Astrophysics, 2013, 552, A111.	2.1	19
122	Hidden starbursts and active galactic nuclei at 0 < <i>z</i> < 4 from the <i>Herschel</i> -VVDS-CFHTLS-D1 field: Inferences on coevolution and feedback. Astronomy and Astrophysics, 2014, 572, A90.	2.1	34
123	A HIGHLY CONSISTENT FRAMEWORK FOR THE EVOLUTION OF THE STAR-FORMING "MAIN SEQUENCE―FRO <i>z</i> â^¼ 0-6. Astrophysical Journal, Supplement Series, 2014, 214, 15.	M 3.0	1,091
124	Cosmic star formation probed via parametric stack-fitting of known sources to radio imaging. Monthly Notices of the Royal Astronomical Society, 2014, 439, 1286-1293.	1.6	6
125	The evolution of the star-forming sequence in hierarchical galaxy formation models. Monthly Notices of the Royal Astronomical Society, 2014, 444, 2637-2664.	1.6	53
126	Black hole accretion preferentially occurs in gas-rich galaxies*. Monthly Notices of the Royal Astronomical Society, 2014, 441, 1059-1065.	1.6	49

#	Article	IF	CITATIONS
127	Large-scale clustering measurements with photometric redshifts: comparing the dark matter haloes of X-ray AGN, star-forming and passive galaxies at z â‰^ 1. Monthly Notices of the Royal Astronomical Society, 2014, 443, 3327-3340.	1.6	27
128	A multiwavelength consensus on the main sequence of star-forming galaxies at zÂâ^¼Â2. Monthly Notices of the Royal Astronomical Society, 2014, 443, 19-30.	1.6	104
129	Tracing the cosmic growth of supermassive black holes to zÂâ^¼Â3 with Herschelâ~ Monthly Notices of the Royal Astronomical Society, 2014, 439, 2736-2754.	1.6	150
130	A z = 2.5 protocluster associated with the radio galaxy MRC 2104-242: star formation and differing mass functions in dense environments. Monthly Notices of the Royal Astronomical Society, 2014, 440, 3262-3274.	1.6	58
131	The evolution of star formation activity in galaxy groups. Monthly Notices of the Royal Astronomical Society, 2014, 445, 2725-2745.	1.6	15
132	Spectral detection of multiple stellar populations in z â ⁻¹ ⁄4 1 early-type galaxies. Monthly Notices of the Royal Astronomical Society, 2014, 444, 2048-2064.	1.6	16
133	Linking the X-ray and infrared properties of star-forming galaxies at zÂ<Â1.5a~ Monthly Notices of the Royal Astronomical Society, 2014, 443, 3728-3740.	1.6	33
134	Dynamics and metallicity of far-infrared selected galaxies. Monthly Notices of the Royal Astronomical Society, 2014, 443, 3780-3794.	1.6	14
135	THE ENVIRONMENTAL IMPACTS ON THE STAR FORMATION MAIN SEQUENCE: AN H $\hat{1}$ ± STUDY OF THE NEWLY DISCOVERED RICH CLUSTER AT <i>z</i> = 1.52. Astrophysical Journal, 2014, 789, 18.	1.6	38
136	EVOLUTION OF THE FRACTION OF CLUMPY GALAXIES AT 0.2 < <i>z</i> < 1.0 IN THE COSMOS FIELD. Astrophysical Journal, 2014, 786, 15.	1.6	39
137	REGULARITY UNDERLYING COMPLEXITY: A REDSHIFT-INDEPENDENT DESCRIPTION OF THE CONTINUOUS VARIATION OF GALAXY-SCALE MOLECULAR GAS PROPERTIES IN THE MASS-STAR FORMATION RATE PLANE. Astrophysical Journal, 2014, 793, 19.	1.6	263
138	ULTRALUMINOUS INFRARED GALAXIES IN THE <i>AKARI</i> ALL-SKY SURVEY. Astrophysical Journal, 2014, 797, 54.	1.6	30
139	Morphologies of zÂâ^¼Â0.7 AGN host galaxies in CANDELS: no trend of merger incidence with AGN luminosity. Monthly Notices of the Royal Astronomical Society, 2014, 439, 3342-3356.	1.6	132
140	CANDELS+3D-HST: COMPACT SFGs AT <i>z</i> â ¹ /4 2-3, THE PROGENITORS OF THE FIRST QUIESCENT GALAXIES. Astrophysical Journal, 2014, 791, 52.	1.6	142
141	The ultraviolet to far-infrared spectral energy distribution of star-forming galaxies in the redshift desert. Monthly Notices of the Royal Astronomical Society, 2014, 439, 1337-1363.	1.6	16
142	SIMULATIONS OF ISOLATED DWARF GALAXIES FORMED IN DARK MATTER HALOS WITH DIFFERENT MASS ASSEMBLY HISTORIES. Astrophysical Journal, 2014, 785, 58.	1.6	18
143	A UNIFORM HISTORY FOR GALAXY EVOLUTION. Astrophysical Journal, 2014, 796, 25.	1.6	18
144	STAR FORMATION AT 4 < <i>z</i> < 6 FROM THE <i>SPITZER</i> LARGE AREA SURVEY WITH HYPER-SUPRIME-CAM (SPLASH). Astrophysical Journal Letters, 2014, 791, L25.	3.0	158

(ITATION REDODI			<u> </u>	
	(ΊΤΑΤ	ION	KED	ORT

#	Article	IF	CITATIONS
145	Larger sizes of massive quiescent early-type galaxies in clusters than in the field at 0.8Â<ÂzÂ<Â1.5. Monthly Notices of the Royal Astronomical Society, 2014, 441, 203-223.	1.6	69
146	VIMOS Ultra-Deep Survey (VUDS): Witnessing the assembly of a massive cluster at <i>z</i> ~ 3.3. Astronomy and Astrophysics, 2014, 572, A41.	2.1	54
147	The evolution of the dust and gas content in galaxies. Astronomy and Astrophysics, 2014, 562, A30.	2.1	220
148	FIRST INFRARED-BASED IMPLICATIONS FOR THE DUST ATTENUATION AND STAR FORMATION OF TYPICAL Ly <i>\hat{i} + $\langle i \rangle$ EMITTERS. Astrophysical Journal Letters, 2015, 800, L29.</i>	3.0	21
149	High redshift galaxies in the ALHAMBRA survey. Astronomy and Astrophysics, 2015, 576, A25.	2.1	10
150	THE MOSDEF SURVEY: DISSECTING THE STAR FORMATION RATE VERSUS STELLAR MASS RELATION USING H <i>α</i> AND H <i>β</i> EMISSION LINES AT <i>z</i> â ¹ ⁄4 2. Astrophysical Journal, 2015, 815, 98.	1.6	101
151	Star formation properties of sub-mJy radio sources. Monthly Notices of the Royal Astronomical Society, 2015, 453, 1079-1094.	1.6	57
152	The evolving relation between star formation rate and stellar mass in the VIDEO survey since <i>z</i> Â=Â3. Monthly Notices of the Royal Astronomical Society, 2015, 453, 2541-2558.	1.6	57
153	The systematic search for zÂ≳Â5 active galactic nuclei in the Chandra Deep Field South. Monthly Notices of the Royal Astronomical Society, 2015, 448, 3167-3195.	1.6	67
154	The very wide-field <i>gzK</i> galaxy survey – I. Details of the clustering properties of star-forming galaxies at <i>z</i> â^1⁄4 2. Monthly Notices of the Royal Astronomical Society, 2015, 454, 213-225.	1.6	15
155	The <i>Herschel</i> view of the dominant mode of galaxy growth from <i>z</i> = 4 to the present day. Astronomy and Astrophysics, 2015, 575, A74.	2.1	582
156	Lower mass normalization of the stellar initial mass function for dense massive early-type galaxies at <i>z</i> ~ 1.4. Astronomy and Astrophysics, 2015, 573, A110.	2.1	6
157	Mapping the average AGN accretion rate in the SFR–M* plane for Herschelâ~selected galaxies at OÂ<ÂzÂâ‰Â2.5. Monthly Notices of the Royal Astronomical Society, 2015, 449, 373-389.	1.6	73
158	Star formation in <i>Herschel</i> 's Monsters versus semi-analytic models. Monthly Notices of the Royal Astronomical Society, 2015, 451, 3419-3426.	1.6	64
159	FRONTIER FIELDS: HIGH-REDSHIFT PREDICTIONS AND EARLY RESULTS. Astrophysical Journal, 2015, 800, 84.	1.6	99
160	GOODS- <i>HERSCHEL</i> : STAR FORMATION, DUST ATTENUATION, AND THE FIR–RADIO CORRELATION ON THE MAIN SEQUENCE OF STAR-FORMING GALAXIES UP TO <i>z</i> ≃ 4. Astrophysical Journal, 2015, 807, 141.	1.6	174
161	Combining physical galaxy models with radio observations to constrain the SFRs of high-z dusty star-forming galaxies. Monthly Notices of the Royal Astronomical Society, 2015, 447, 3442-3466.	1.6	9
162	AN OBJECTIVE DEFINITION FOR THE MAIN SEQUENCE OF STAR-FORMING GALAXIES. Astrophysical Journal Letters, 2015, 801, L29.	3.0	273

#	Article	IF	CITATIONS
163	X-shooter reveals powerful outflows in z â^¼ 1.5 X-ray selected obscured quasi-stellar objects. Monthly Notices of the Royal Astronomical Society, 2015, 446, 2394-2417.	1.6	128
164	Accurate PSF-matched photometry and photometric redshifts for the extreme deep field with the Chebyshev–Fourier functions. Monthly Notices of the Royal Astronomical Society, 2015, 453, 1136-1146.	1.6	7
165	UVUDF: ULTRAVIOLET THROUGH NEAR-INFRARED CATALOG AND PHOTOMETRIC REDSHIFTS OF GALAXIES IN THE HUBBLE ULTRA DEEP FIELD. Astronomical Journal, 2015, 150, 31.	1.9	139
166	An extreme [O III] emitter at <i>z</i> = 3.2: a low metallicity Lyman continuum source. Astronomy and Astrophysics, 2016, 585, A51.	2.1	147
167	Star formation activity in Balmer break galaxies at <i>z</i> < 1.5. Astronomy and Astrophysics, 2016, 587, A136.	2.1	0
168	Dust attenuation in <i>z</i> ~ 1 galaxies from <i>Herschel</i> and 3D-HST H <i>α</i> measurements. Astronomy and Astrophysics, 2016, 586, A83.	2.1	50
169	A new free-floating planet in the Upper Scorpius association. Astronomy and Astrophysics, 2016, 586, A157.	2.1	20
170	THE 2 Ms CHANDRA DEEP FIELD-NORTH SURVEY AND THE 250 Ks EXTENDED CHANDRA DEEP FIELD-SOUTH SURVEY: IMPROVED POINT-SOURCE CATALOGS. Astrophysical Journal, Supplement Series, 2016, 224, 15.	3.0	123
171	The $2\hat{a}\in$ 10 keV unabsorbed luminosity function of AGN from the LSS, CDFS, and COSMOS surveys. Astronomy and Astrophysics, 2016, 590, A80.	2.1	21
172	Hard X-ray emission of the luminous infrared galaxy NGC 6240 as observed by NuSTAR. Astronomy and Astrophysics, 2016, 585, A157.	2.1	39
173	The SCUBA-2 Cosmology Legacy Survey: galaxies in the deep 850Âμm survey, and the star-forming â€~main sequence'. Monthly Notices of the Royal Astronomical Society, 2016, 458, 4321-4344.	1.6	50
174	Is main-sequence galaxy star formation controlled by halo mass accretion?. Monthly Notices of the Royal Astronomical Society, 2016, 455, 2592-2606.	1.6	81
175	The Fundamental Plane of star formation in galaxies revealed by the EAGLE hydrodynamical simulations. Monthly Notices of the Royal Astronomical Society, 2016, 459, 2632-2650.	1.6	84
176	THE CANDIDATE CLUSTER AND PROTOCLUSTER CATALOG (CCPC) OF SPECTROSCOPICALLY IDENTIFIED STRUCTURES SPANNING 2.74 < z < 3.71. Astrophysical Journal, 2016, 817, 158.	1.6	13
177	Galaxy assembly, stellar feedback and metal enrichment: the view from the gaea model. Monthly Notices of the Royal Astronomical Society, 2016, 461, 1760-1785.	1.6	112
178	STAR FORMATION IN INTERMEDIATE REDSHIFT 0.2 < z < 0.7 BRIGHTEST CLUSTER GALAXIES. Astrophysical Journal, 2016, 833, 224.	1.6	18
179	Characterizing elusive, faint dusty star-forming galaxies: a lensed, optically undetected ALMA galaxy atz ~ 3.3. Astronomy and Astrophysics, 2016, 596, A75.	2.1	3
180	The PEP survey: evidence for intense star-forming activity in the majority of radio-selected AGN at <i>z</i> ≳ 1. Monthly Notices of the Royal Astronomical Society, 2016, 456, 431-447.	1.6	16

щ		IC	CITATIONS
#	ARTICLE	IF	CITATIONS
181	1.0Â< <i>z</i> Â<Â1.5. Monthly Notices of the Royal Astronomical Society, 2016, 457, 3743-3768.	1.6	35
182	Host galaxies of luminous <i>z</i> Ââ^¼ÂO.6 quasars: major mergers are not prevalent at the highest AGN luminosities. Monthly Notices of the Royal Astronomical Society, 2017, 466, 812-830.	1.6	96
183	Spitzer's View of the Candidate Cluster and Protocluster Catalog (CCPC). Astrophysical Journal, 2017, 836, 136.	1.6	4
184	AGN wind scaling relations and the co-evolution of black holes and galaxies. Astronomy and Astrophysics, 2017, 601, A143.	2.1	349
185	The MOSDEF Survey: Metallicity Dependence of PAH Emission at High Redshift and Implications for 24 <i>μ</i> m Inferred IR Luminosities and Star Formation Rates at <i>z</i> â^¼ 2. Astrophysical Journal, 2017, 837, 157.	1.6	42
186	Star Formation in Galaxies at zÂâ^1⁄4Â4–5 from the SMUVS Survey: A Clear Starburst/Main-sequence Bimodality for Hα Emitters on the SFR–M* Plane. Astrophysical Journal, 2017, 849, 45.	1.6	62
187	The Chandra deep fields: Lifting the veil on distant active galactic nuclei and X-ray emitting galaxies. New Astronomy Reviews, 2017, 79, 59-84.	5.2	39
188	THE EVOLUTION OF STAR FORMATION ACTIVITY IN CLUSTER GALAXIES OVER 0.15Â<ÂzÂ<Â1.5. Astrophysica Journal, 2017, 834, 53.	 1.6	18
189	CLASH: accurate photometric redshifts with 14 HST bands in massive galaxy cluster cores. Monthly Notices of the Royal Astronomical Society, 2017, 470, 95-113.	1.6	39
190	The Star Formation Main Sequence in the Hubble Space Telescope Frontier Fields. Astrophysical Journal, 2017, 847, 76.	1.6	142
191	AGN-enhanced outflows of low-ionization gas in star-forming galaxies at 1.7Â<ÂzÂ<Â4.6*. Monthly Notices of the Royal Astronomical Society, 2017, 471, 4527-4540.	1.6	30
192	Cluster and field elliptical galaxies at <i>z</i> ~ 1.3. Astronomy and Astrophysics, 2017, 597, A122.	2.1	30
193	llluminating gas inflows/outflows in the MUSE deepest fields: Lyα nebulae around forming galaxies at <i>z</i> â‰f 3.3. Monthly Notices of the Royal Astronomical Society, 2017, 465, 3803-3816.	1.6	45
194	Molecular gas on large circumgalactic scales at z = 3.47. Monthly Notices of the Royal Astronomical Society, 2017, 468, 3468-3483.	1.6	44
195	Characterization of star-forming dwarf galaxies at 0.1 ≲ <i>z </i> ≲ 0.9 in VUDS: probing the low-mass end of the mass-metallicity relation. Astronomy and Astrophysics, 2017, 601, A95.	2.1	33
196	H2-based star formation laws in hierarchical models of galaxy formation. Monthly Notices of the Royal Astronomical Society, 2017, 469, 968-993.	1.6	51
197	A Submillimeter Perspective on the GOODS Fields (SUPER GOODS). III. A Large Sample of ALMA Sources in the GOODS-S. Astrophysical Journal, 2018, 865, 106.	1.6	50
198	The MOSDEF Survey: The Nature of Mid-infrared Excess Galaxies and a Comparison of IR and UV Star Formation Tracers at zÂâ^¼Â2. Astrophysical Journal, 2018, 866, 63.	1.6	21

	Сітатіо	n Report	
#	Article	IF	CITATIONS
199	The MUSE <i>Hubble</i> Ultra Deep Field Survey. Astronomy and Astrophysics, 2018, 619, A27.	2.1	60
200	Galaxy Structure, Stellar Populations, and Star Formation Quenching at 0.6Â≲ÂzÂ≲Â1.2. Astrophysic Journal, 2018, 867, 118.	al 1.6	14
201	High redshift galaxies in the ALHAMBRA survey. Astronomy and Astrophysics, 2018, 614, A129.	2.1	9
202	Probing Star Formation in Galaxies at zÂâ‰^Â1 via a Giant Metrewave Radio Telescope Stacking Analysis. Astrophysical Journal, 2018, 865, 39.	1.6	11
203	First results on the cluster galaxy population from the Subaru Hyper Suprime-Cam survey. I. The role of group or cluster environment in star formation quenching from <i>z</i> = 0.2 to 1.1. Publication of the Astronomical Society of Japan, 2018, 70, .	1.0	33
204	Eight luminous early-type galaxies in nearby pairs and sparse groups. I. Stellar populations spatially analysed. Astrophysics and Space Science, 2018, 363, 1.	0.5	4
205	Bulgeless galaxies in the COSMOS field: environment and star formation evolution at zÂ<Â1. Monthly Notices of the Royal Astronomical Society, 2018, 475, 735-747.	1.6	8
206	The SAMI Galaxy Survey: spatially resolving the main sequence of star formation. Monthly Notices of the Royal Astronomical Society, 2018, 475, 5194-5214.	1.6	89
207	SDSS-IV MaNGA: effects of morphology in the global and local star formation main sequences. Monthly Notices of the Royal Astronomical Society, 2019, 488, 3929-3948.	1.6	63
208	The main sequence of star-forming galaxies – II. A non-evolving slope at the high-mass end. Monthly Notices of the Royal Astronomical Society, 2019, 490, 5285-5299.	1.6	28
209	On the dust temperatures of high-redshift galaxies. Monthly Notices of the Royal Astronomical Society, 2019, 489, 1397-1422.	1.6	97
210	Very high-energy constraints on the infrared extragalactic background light. Astronomy and Astrophysics, 2019, 629, A2.	2.1	14
211	UniverseMachine: The correlation between galaxy growth and dark matter halo assembly from zÂ= 0â~'10. Monthly Notices of the Royal Astronomical Society, 2019, 488, 3143-3194.	1.6	659
212	Passive galaxies in the early Universe: ALMA confirmation of <i>z</i> â^1⁄4 3â^'5 candidates in the CANDELS GOODS-South field. Monthly Notices of the Royal Astronomical Society, 2019, 486, 560-569.	1.6	27
213	The KMOS ^{3D} Survey: Demographics and Properties of Galactic Outflows at zÂ=Â0.6–2.7*. Astrophysical Journal, 2019, 875, 21.	1.6	118
214	Chandra and Hubble Space Telescope observations of dark gamma-ray bursts and their host galaxies. Monthly Notices of the Royal Astronomical Society, 2019, 486, 3105-3117.	1.6	7
215	The star formation activity of IllustrisTNG galaxies: main sequence, UVJ diagram, quenched fractions, and systematics. Monthly Notices of the Royal Astronomical Society, 2019, 485, 4817-4840.	1.6	176
216	Early- and late-stage mergers among main sequence and starburst galaxies at 0.2 ≤ ≤. Monthly Notices of the Royal Astronomical Society, 2019, 485, 5631-5651.	1.6	54

	CHANON	LPORT	
#	Article	IF	CITATIONS
217	PHIBSS2: survey design and <i>z</i> = 0.5 – 0.8 results. Astronomy and Astrophysics, 2019, 622, A105.	2.1	77
218	An Evolving and Mass-dependent σsSFR–M _⋆ Relation for Galaxies. Astrophysical Journal, 2019, 879, 11.	1.6	24
219	Massive galaxies on the road to quenching: ALMA observations of powerful high redshift radio galaxies. Astronomy and Astrophysics, 2019, 621, A27.	2.1	36
220	A Submillimeter Perspective on the GOODS Fields (SUPER GOODS). IV. The Submillimeter Properties of X-Ray Sources in the CDF-S. Astrophysical Journal, 2019, 887, 23.	1.6	10
221	Properties of LBGs with [OIII] detection at <i>z</i> â^¼ 3.5. Astronomy and Astrophysics, 2019, 631, A123.	2.1	12
222	Candidate massive galaxies at <i>z</i> Ââ^¼Â4 in the Dark Energy Survey. Monthly Notices of the Royal Astronomical Society, 2019, 483, 3060-3081.	1.6	18
223	The specific star formation rate function at different mass scales and quenching: a comparison between cosmological models and SDSS. Monthly Notices of the Royal Astronomical Society, 2020, 500, 2036-2048.	1.6	19
224	Stochastic modelling of star-formation histories II: star-formation variability from molecular clouds and gas inflow. Monthly Notices of the Royal Astronomical Society, 2020, 497, 698-725.	1.6	58
225	The role of galaxy mass on AGN emission: a view from the VANDELS survey. Monthly Notices of the Royal Astronomical Society, 2020, 493, 3838-3853.	1.6	14
226	The ISM scaling relations in DustPedia late-type galaxies: A benchmark study for the Local Universe. Astronomy and Astrophysics, 2020, 633, A100.	2.1	48
227	Comparison of Multi-class and Binary Classification Machine Learning Models in Identifying Strong Gravitational Lenses. Publications of the Astronomical Society of the Pacific, 2020, 132, 044501.	1.0	11
228	The high-redshift SFR–M* relation is sensitive to the employed star formation rate and stellar mass indicators: towards addressing the tension between observations and simulations. Monthly Notices of the Royal Astronomical Society, 2020, 492, 5592-5606.	1.6	30
229	S2COSMOS: Evolution of gas mass with redshift using dust emission. Monthly Notices of the Royal Astronomical Society, 2020, 494, 293-315.	1.6	12
230	A panchromatic spatially resolved analysis of nearby galaxies – I. Sub-kpc-scale main sequence in grand-design spirals. Monthly Notices of the Royal Astronomical Society, 2020, 493, 4107-4125.	1.6	22
231	Mass and Environment as Drivers of Galaxy Evolution. IV. On the Quenching of Massive Central Disk Galaxies in the Local Universe. Astrophysical Journal, 2021, 911, 57.	1.6	12
232	The emergence of passive galaxies in the early Universe. Astronomy and Astrophysics, 2021, 652, A30.	2.1	27
233	Black hole growth and starburst activity at <i>z</i> = 0.6–4 in the Chandra Deep Field South. Astronomy and Astrophysics, 2009, 507, 1277-1289.	2.1	86
234	GMASS ultradeep spectroscopy of galaxies at <i>z</i> Â~Â 2. Astronomy and Astrophysics, 2012, 539, A61.	2.1	34

#	ARTICLE	IF	CITATIONS
235	PEP- <i>Herschel</i> observations. Astronomy and Astrophysics, 2012, 540, A109.	2.1	183
236	Properties of <i>z</i> ~ 3–6 Lyman break galaxies. Astronomy and Astrophysics, 2014, 563, A81.	2.1	118
237	The interaction-driven starburst contribution to the cosmic star formation rate density. Astronomy and Astrophysics, 2013, 552, A44.	2.1	27
238	Panchromatic spectral energy distributions of <i>Herschel</i> sources. Astronomy and Astrophysics, 2013, 551, A100.	2.1	144
239	The dependency of AGN infrared colour-selection on source luminosity and obscuration. Astronomy and Astrophysics, 2014, 562, A144.	2.1	12
240	Constraints on the star-formation rate of <i>z</i> ~ 3 LBGs with measured metallicity in the CANDELS GOODS-South field. Astronomy and Astrophysics, 2014, 566, A19.	2.1	80
241	Ultra-deep catalog of X-ray groups in the Extended <i>Chandra</i> Deep Field South. Astronomy and Astrophysics, 2015, 576, A130.	2.1	39
242	An excess of dusty starbursts related to the Spiderweb galaxy. Astronomy and Astrophysics, 2014, 570, A55.	2.1	105
243	The host galaxies of X-ray selected active galactic nuclei to <i>z</i> = 2.5: Structure, star formation, and their relationships from CANDELS and <i>Herschel</i> /PACS. Astronomy and Astrophysics, 2015, 573, A85.	2.1	58
244	The population of early-type galaxies: how it evolves with time and how it differs from passive and late-type galaxies. Astronomy and Astrophysics, 2014, 570, A102.	2.1	23
245	The evolution of galaxy star formation activity in massive haloes. Astronomy and Astrophysics, 2015, 574, A105.	2.1	18
246	Physical properties of AGN host galaxies as a probe of supermassive black hole feeding mechanisms. Astronomy and Astrophysics, 2015, 576, A32.	2.1	13
247	Evidence for feedback in action from the molecular gas content in the <i>z</i> ~ 1.6 outflowing QSO XID2028. Astronomy and Astrophysics, 2015, 578, A11.	2.1	43
248	GRB hosts through cosmic time. Astronomy and Astrophysics, 2015, 581, A125.	2.1	149
249	Limits on the LyC signal from <i>z</i> ~ 3 sources with secure redshift and HST coverage in the E-CDFS field. Astronomy and Astrophysics, 2016, 587, A133.	2.1	41
250	The WISSH quasars project. Astronomy and Astrophysics, 2021, 645, A33.	2.1	41
251	HOW DO STAR-FORMING GALAXIES AT <i>z</i> > 3 ASSEMBLE THEIR MASSES?. Astrophysical Journal, 2012, 752, 66.	1.6	122
252	First Light And Reionization Epoch Simulations (FLARES) – I. Environmental dependence of high-redshift galaxy evolution. Monthly Notices of the Royal Astronomical Society, 2020, 500, 2127-2145.	1.6	59

#	Article	IF	CITATIONS
253	On the Absence of High-redshift AGNs: Little Growth in the Supermassive Black Hole Population at High Redshifts. Astrophysical Journal, 2020, 891, 69.	1.6	13
254	Quantifying the Effect of Field Variance on the Hα Luminosity Function with the New Numerical Galaxy Catalog (ν ² GC). Astrophysical Journal, 2020, 895, 9.	1.6	3
256	On the Impact of Empirical and Theoretical Star Formation Laws on Galaxy Formation. Springer Theses, 2014, , 39-69.	0.0	0
258	The Main Sequence of Star-Forming Galaxies as Seen by Herschel. Springer Theses, 2016, , 29-86.	0.0	0
259	The Evolving Interstellar Medium of Star-forming Galaxies, as Traced by Stardust*. Astrophysical Journal, 2021, 921, 40.	1.6	28
260	Completing the Census of AGN in GOODS-S/HUDF: New Ultradeep Radio Imaging and Predictions for JWST. Astrophysical Journal, 2020, 901, 168.	1.6	9
261	What is the origin of the radio emission in radio-undetected quasars? Insights from a radio-infrared image stacking analysis. Astronomy and Astrophysics, 0, , .	2.1	2
262	The evolution of brightest cluster galaxies in the nearby Universe II: The star-formation activity and the stellar mass from spectral energy distribution. Monthly Notices of the Royal Astronomical Society, 2022, 512, 2758-2776.	1.6	3
263	The quenching of galaxies, bulges, and disks since cosmic noon. Astronomy and Astrophysics, 2022, 659, A160.	2.1	33
264	The High Fraction of Thin Disk Galaxies Continues to Challenge Ĵ›CDM Cosmology. Astrophysical Journal, 2022, 925, 183.	1.6	15
265	On the quenching of star formation in observed and simulated central galaxies: evidence for the role of integrated AGN feedback. Monthly Notices of the Royal Astronomical Society, 2022, 512, 1052-1090.	1.6	45
266	The Galaxy Starburst/Main-sequence Bimodality over Five Decades in Stellar Mass at z â‰^ 3–6.5. Astrophysical Journal, 2022, 930, 128.	1.6	24
267	Dissecting Nearby Galaxies with piXedfit. II. Spatially Resolved Scaling Relations among Stars, Dust, and Gas. Astrophysical Journal, 2022, 935, 98.	1.6	7
268	<scp>Trinity</scp> I: self-consistently modelling the dark matter halo–galaxy–supermassive black hole connection from <i>z</i> Â= 0–10. Monthly Notices of the Royal Astronomical Society, 2022, 518, 2123-2163.	1.6	19
269	The resolved scaling relations in DustPedia: Zooming in on the local Universe. Astronomy and Astrophysics, 2022, 668, A130.	2.1	13
270	The main sequence of star-forming galaxies across cosmic times. Monthly Notices of the Royal Astronomical Society, 2022, 519, 1526-1544.	1.6	43
271	On the Triggering of Extreme Starburst Events in Low-metallicity Galaxies: A Deep Search for Companions of Green Peas. Astrophysical Journal, 2022, 940, 31.	1.6	2
272	The Stellar Mass Function in CANDELS and Frontier Fields: The Buildup of Low-mass Passive Galaxies since z â^1⁄4 3. Astrophysical Journal, 2022, 940, 135.	1.6	10

		CHAHON REPC	JKI	
#	Article	I.	F	CITATIONS
273	Star Formation History and Transition Epoch of Cluster Galaxies Based on the Horizon-AG Simulation. Astrophysical Journal, 2022, 941, 5.)N 1	1.6	1
274	AGN Selection and Demographics in GOODS-S/HUDF from X-Ray to Radio. Astrophysical 941, 191.	Journal, 2022, 1	L.6	11