

#	Article	IF	CITATIONS
1	Olfactomedin Domain-Containing Proteins: Possible Mechanisms of Action and Functions in Normal Development and Pathology. Molecular Neurobiology, 2009, 40, 122-138.	1.9	127
2	Molecular complexity of primary open angle glaucoma: current concepts. Journal of Genetics, 2009, 88, 451-467.	0.4	60
3	Trimethylamine <i>N</i> à€oxide influence on the backbone of proteins: An oligoglycine model. Proteins: Structure, Function and Bioinformatics, 2010, 78, 695-704.	1.5	85
4	Backbone additivity in the transfer model of protein solvation. Protein Science, 2010, 19, 1011-1022.	3.1	71
5	Rescue of Glaucoma-Causing Mutant Myocilin Thermal Stability by Chemical Chaperones. ACS Chemical Biology, 2010, 5, 477-487.	1.6	49
6	Improving Binding Specificity of Pharmacological Chaperones That Target Mutant Superoxide Dismutase-1 Linked to Familial Amyotrophic Lateral Sclerosis Using Computational Methods. Journal of Medicinal Chemistry, 2010, 53, 2709-2718.	2.9	41
7	The Stability of Myocilin Olfactomedin Domain Variants Provides New Insight into Glaucoma as a Protein Misfolding Disorder. Biochemistry, 2011, 50, 5824-5833.	1.2	47
8	Biophysical Characterization of the Olfactomedin Domain of Myocilin, an Extracellular Matrix Protein Implicated in Inherited Forms of Glaucoma. PLoS ONE, 2011, 6, e16347.	1.1	34
9	Keeping an Eye on Myocilin: A Complex Molecule Associated with Primary Open-Angle Glaucoma Susceptibility. Molecules, 2011, 16, 5402-5421.	1.7	29
10	New direction for glaucoma therapeutics: focus on the olfactomedin domain of myocilin. Future Medicinal Chemistry, 2012, 4, 2131-2134.	1.1	3
11	Glucose-regulated Protein 94 Triage of Mutant Myocilin through Endoplasmic Reticulum-associated Degradation Subverts a More Efficient Autophagic Clearance Mechanism. Journal of Biological Chemistry, 2012, 287, 40661-40669.	1.6	66
12	Chemical Chaperones Improve Protein Secretion and Rescue Mutant Factor VIII in Mice with Hemophilia A. PLoS ONE, 2012, 7, e44505.	1.1	32
13	In Vitro Amyloid Aggregate Forming Ability of TGFBI Mutants that Cause Corneal Dystrophies., 2012, 53, 5890.		24
14	Amyloid Fibril Formation by the Glaucoma-Associated Olfactomedin Domain of Myocilin. Journal of Molecular Biology, 2012, 421, 242-255.	2.0	48
15	The cell stress machinery and retinal degeneration. FEBS Letters, 2013, 587, 2008-2017.	1.3	126
16	Endoplasmic reticulum stress and the unfolded protein responses in retinal degeneration. Experimental Eye Research, 2014, 125, 30-40.	1.2	116
17	Proteomics Analysis of Molecular Risk Factors in the Ocular Hypertensive Human Retina., 2015, 56, 5816.		37
18	Organic Osmolytes in Elasmobranchs. Fish Physiology, 2015, 34, 221-277.	0.2	8

#	Article	IF	Citations
19	Identification of a novel MYOC mutation in a Chinese family with primary open-angle glaucoma. Gene, 2015, 571, 188-193.	1.0	8
20	TMAO: A small molecule of great expectations. Nutrition, 2015, 31, 1317-1323.	1.1	244
21	Co-evolution of proteins and solutions: protein adaptation versus cytoprotective micromolecules and their roles in marine organisms. Journal of Experimental Biology, 2015, 218, 1880-1896.	0.8	124
22	Discovery of Molecular Therapeutics for Glaucoma: Challenges, Successes, and Promising Directions. Journal of Medicinal Chemistry, 2016, 59, 788-809.	2.9	55
23	Association of WDR36 polymorphisms with primary open angle glaucoma. Medicine (United States), 2017, 96, e7291.	0.4	8
24	Trimethylamine- N -Oxide: Friend, Foe, or Simply Caught in the Cross-Fire?. Trends in Endocrinology and Metabolism, 2017, 28, 121-130.	3.1	149
25	A novel single nucleotide polymorphism in exon 3 of MYOC enhances the risk of glaucoma. PLoS ONE, 2018, 13, e0195157.	1.1	16
26	Potential prophylactic effect of chemical chaperones for alleviation of endoplasmic reticulum stress in experimental diabetic cataract. Bulletin of the National Research Centre, 2019, 43, .	0.7	8
27	Is increased plasma TMAO a compensatory response to hydrostatic and osmotic stress in cardiovascular diseases?. Medical Hypotheses, 2019, 130, 109271.	0.8	23
28	Glaucoma patients have an increased level of trimethylamine, a toxic product of gut bacteria, in the aqueous humor: a pilot study. International Ophthalmology, 2021, 41, 341-347.	0.6	11
29	Molecular Adaptation to High Pressure: Proteins in Deep-Sea Animals. , 2021, , 151-172.		0
30	Common and rare myocilin variants: Predicting glaucoma pathogenicity based on genetics, clinical, and laboratory misfolding data. Human Mutation, 2021, 42, 903-946.	1.1	13
31	Juvenile-onset open-angle glaucoma – A clinical and genetic update. Survey of Ophthalmology, 2022, 67, 1099-1117.	1.7	15
32	Reduction of ER stress via a chemical chaperone prevents disease phenotypes in a mouse model of primary open angle glaucoma. Journal of Clinical Investigation, 2011, 121, 3542-3553.	3.9	249
34	Whole exome sequencing implicates eye development, the unfolded protein response and plasma membrane homeostasis in primary open-angle glaucoma. PLoS ONE, 2017, 12, e0172427.	1.1	8
35	On the Design of Broad Based Screening Assays to Identify Potential Pharmacological Chaperones of Protein Misfolding Diseases. Current Topics in Medicinal Chemistry, 2013, 12, 2504-2522.	1.0	16
36	Glaucoma Genes in East Asian Studies. Essentials in Ophthalmology, 2019, , 357-371.	0.0	0
37	Trimethylamine N-oxide alleviates the severe aggregation and ER stress caused by G98R alphaA-crystallin. Molecular Vision, 2009, 15, 2829-40.	1.1	28

#	Article	IF	CITATIONS
38	Sodium 4-phenylbutyrate ameliorates the effects of cataract-causing mutant gammaD-crystallin in cultured cells. Molecular Vision, 2010, 16, 997-1003.	1.1	16
39	Myocilin mutations in black South Africans with POAG. Molecular Vision, 2011, 17, 1064-9.	1.1	16
40	Unaltered myocilin expression in the blood of primary open angle glaucoma patients. Molecular Vision, 2012, 18, 1004-9.	1.1	13
41	A novel MYOC heterozygous mutation identified in a Chinese Uygur pedigree with primary open-angle glaucoma. Molecular Vision, 2012, 18, 1944-51.	1.1	6
42	Single nucleotide polymorphism of MYOC affected the severity of primary open angle glaucoma. International Journal of Ophthalmology, 2013, 6, 264-8.	0.5	9
44	Accumulation of Asn450Tyr mutant myocilin in ER promotes apoptosis of human trabecular meshwork cells. Molecular Vision, 2020, 26, 563-573.	1.1	5
46	TMAO to the rescue of pathogenic protein variants. Biochimica Et Biophysica Acta - General Subjects, 2022, 1866, 130214.	1.1	1
47	Structure‒function‒pathogenicity analysis of C-terminal myocilin missense variants based on experiments and 3D models. Frontiers in Genetics, 0, 13, .	1.1	1
48	Endoplasmic reticulum stress as an underlying factor in leading causes of blindness and potential therapeutic effects of 4-phenylbutyric acid: from bench to bedside. Expert Review of Ophthalmology, 0, , 1-11.	0.3	0
49	Endoplasmic reticulum stress: molecular mechanism and therapeutic targets. Signal Transduction and Targeted Therapy, 2023, 8, .	7.1	17