Modeling Tillageâ€Induced Redistribution of Soil Mass Landscapes

Soil Science Society of America Journal 72, 167-179

DOI: 10.2136/sssaj2006.0418

Citation Report

#	Article	IF	CITATIONS
1	Soil Profile Properties in Relation to Soil Redistribution by Intense Tillage on a Steep Hillslope. Soil Science Society of America Journal, 2008, 72, 1767-1773.	1.2	34
2	Modeling Landscape Evolution Due to Tillage: Model Development. Transactions of the ASABE, 2009, 52, 1505-1522.	1.1	14
3	Modeling tillage-induced morphological features in cultivated landscapes. Soil and Tillage Research, 2009, 103, 33-45.	2.6	22
4	Variations in soil properties and herbicide sorption coefficients with depth in relation to PRZM (pesticide root zone model) calculations. Geoderma, 2009, 150, 267-277.	2.3	39
5	Multi-criteria characterization of recent digital soil mapping and modeling approaches. Geoderma, 2009, 152, 195-207.	2.3	270
6	Selecting and Applying Cesiumâ€137 Conversion Models to Estimate Soil Erosion Rates in Cultivated Fields. Journal of Environmental Quality, 2010, 39, 204-219.	1.0	23
7	Scale-dependent covariance of soil physical properties above and below a soil horizon interface: Pedogenic versus anthropogenic influences on total porosity. Canadian Journal of Soil Science, 2011, 91, 149-159.	0.5	11
8	Understanding and managing the causes of soil variability. Journal of Soils and Water Conservation, 2011, 66, 175A-179A.	0.8	19
9	Dual roles of tillage erosion in lateral SOC movement in the landscape. European Journal of Soil Science, 2012, 63, 165-176.	1.8	30
10	Changes in SOC and nutrients under intensive tillage in two types of slope landscapes. Journal of Mountain Science, 2012, 9, 67-76.	0.8	5
11	Fallout radionuclide-based techniques for assessing the impact of soil conservation measures on erosion control and soil quality: an overview of the main lessons learnt under an FAO/IAEA Coordinated Research Project. Journal of Environmental Radioactivity, 2012, 107, 78-85.	0.9	44
12	Soil redistribution and organic carbon accumulation under longâ€ŧerm (29Âyears) upslope tillage systems. Soil Use and Management, 2013, 29, 365-373.	2.6	8
13	Simulation and ¹³⁷ Cs tracer show tillage erosion translocating soil organic carbon, phosphorus, and potassium. Journal of Plant Nutrition and Soil Science, 2013, 176, 647-654.	1.1	14
14	Using Cesium-137 to investigate soil quality under conservation tillage on steep lands. Journal of Soils and Water Conservation, 2014, 69, 439-448.	0.8	11
15	The effect of cultivation method on erosion in agricultural catchments: integrating AHP in GIS environments. Earth Surface Processes and Landforms, 2015, 40, 711-725.	1.2	10
16	Fractal features of soil particle redistribution along sloping landscapes with hedge berms in the Three Gorges Reservoir Region of China. Soil Use and Management, 2016, 32, 594-602.	2.6	5
17	Impact of tillage erosion on water erosion in a hilly landscape. Science of the Total Environment, 2016, 551-552, 522-532.	3.9	46
18	Effect of tillage erosion on the distribution of CaCO3, phosphorus and the ratio of CaCO3/available phosphorus in the slope landscape. Soil Research, 2017, 55, 630.	0.6	7

#	Article	IF	CITATIONS
19	An interaction between vertical and lateral movements of soil constituents by tillage in a steep-slope landscape. Catena, 2017, 152, 292-298.	2.2	11
20	Short-range variation in a Wisconsin soilscape (USA). Eurasian Soil Science, 2017, 50, 198-209.	0.5	13
21	Effects of Contour Plowing by Rotary Cultivator on Vertical Redistribution of Soil Organic Carbon. IOP Conference Series: Earth and Environmental Science, 2018, 199, 032061.	0.2	0
22	Traditional manual tillage significantly affects soil redistribution and CO2 emission in agricultural plots on the Loess Plateau. Soil Research, 2018, 56, 171.	0.6	5
23	Translocation of Soil Particles during Secondary Soil Tillage along Contour Lines. Water (Switzerland), 2018, 10, 568.	1.2	5
24	Meteoric Berylliumâ€10 as a Tracer of Erosion Due to Postsettlement Land Use in Westâ€Central Minnesota, USA. Journal of Geophysical Research F: Earth Surface, 2019, 124, 874-901.	1.0	15
25	Long-term agricultural management and erosion change soil organic matter chemistry and association with minerals. Science of the Total Environment, 2019, 648, 1500-1510.	3.9	16
26	Surface runoff and nutrient dynamics in cover crop–soybean systems in the Upper Midwest. Journal of Environmental Quality, 2021, 50, 158-171.	1.0	21
28	Rates of Historical Anthropogenic Soil Erosion in the Midwestern United States. Earth's Future, 2022, 10, .	2.4	15
29	Limestone and phosphogypsum are key drivers of eucalypt production in the highly weathered soils of Brazil. Plant and Soil, 0, , .	1.8	3