Amygdala activity can be modulated by unexpected cho

NeuroReport 19, 1815-1819 DOI: 10.1097/wnr.0b013e32831a8722

Citation Report

#	Article	IF	CITATIONS
1	The Role of Harmonic Expectancy Violations in Musical Emotions: Evidence from Subjective, Physiological, and Neural Responses. Journal of Cognitive Neuroscience, 2006, 18, 1380-1393.	2.3	334
2	A Neuroscientific Perspective on Music Therapy. Annals of the New York Academy of Sciences, 2009, 1169, 374-384.	3.8	249
3	The Birth of Musical Emotion. Annals of the New York Academy of Sciences, 2009, 1169, 336-341.	3.8	18
4	Being Together in Time: Musical Experience and the Mirror Neuron System. Music Perception, 2009, 26, 489-504.	1.1	338
5	Electroencephalographic dynamics of musical emotion perception revealed by independent spectral components. NeuroReport, 2010, 21, 410-415.	1.2	49
6	Listening to Filtered Music as a Treatment Option for Tinnitus: A Review. Music Perception, 2010, 27, 327-330.	1.1	14
7	Common carp (Cyprinus carpio) response to two pieces of music ("Eine Kleine Nachtmusik―and) Tj ETQq0 C Biochemistry, 2010, 36, 539-554.	0 rgBT /C 2.3	overlock 10 T 29
8	Music listening while you learn: No influence of background music on verbal learning. Behavioral and Brain Functions, 2010, 6, 3.	3.3	58
9	Towards a neural basis of music-evoked emotions. Trends in Cognitive Sciences, 2010, 14, 131-137.	7.8	457
10	Music and Emotion. Springer Handbook of Auditory Research, 2010, , 129-164.	0.7	76
11	Music Perception. Springer Handbook of Auditory Research, 2010, , .	0.7	13
12	Musical anhedonia: Selective loss of emotional experience in listening to music. Neurocase, 2011, 17, 410-417.	0.6	55
13	Effects of Music Listening on Cortisol Levels and Propofol Consumption during Spinal Anesthesia. Frontiers in Psychology, 2011, 2, 58.	2.1	85
14	The Perception of Musical Spontaneity in Improvised and Imitated Jazz Performances. Frontiers in Psychology, 2011, 2, 83.	2.1	35
15	Expectation and temperament moderate amygdala and dorsal anterior cingulate cortex responses to fear faces. Cognitive, Affective and Behavioral Neuroscience, 2011, 11, 13-21.	2.0	27
16	Towards a neural basis of processing musical semantics. Physics of Life Reviews, 2011, 8, 89-105.	2.8	71
17	Musical Interests and Abilities in Individuals with Developmental Disabilities. International Review of Research in Developmental Disabilities, 2011, 41, 265-312.	0.8	10
18	Mapping Aesthetic Musical Emotions in the Brain. Cerebral Cortex, 2012, 22, 2769-2783.	2.9	213

#	Article	IF	CITATIONS
19	Ever-changing cycles of musical pleasure: The role of dopamine and anticipation Psychomusicology: Music, Mind and Brain, 2012, 22, 152-167.	0.3	153
20	Functional Neuroimaging of Stimulation by Music Using Positron Emission Tomography. Current Medical Imaging, 2012, 8, 314-321.	0.8	0
21	Emotions, Arousal, and Frontal Alpha Rhythm Asymmetry During Beethoven's 5th Symphony. Brain Topography, 2012, 25, 423-430.	1.8	59
22	A gray matter of taste: Sound perception, music cognition, and Baumgarten's aesthetics. Studies in History and Philosophy of Science Part C:Studies in History and Philosophy of Biological and Biomedical Sciences, 2012, 43, 594-601.	1.3	5
23	Neuronal connectivity and interactions between the auditory and limbic systems. Effects of noise and tinnitus. Hearing Research, 2012, 288, 34-46.	2.0	206
24	Probabilistic models of expectation violation predict psychophysiological emotional responses to live concert music. Cognitive, Affective and Behavioral Neuroscience, 2013, 13, 533-553.	2.0	146
25	The neuroaesthetics of music Psychology of Aesthetics, Creativity, and the Arts, 2013, 7, 48-61.	1.3	163
26	Corticostriatal Contributions to Musical Expectancy Perception. Journal of Cognitive Neuroscience, 2013, 25, 1062-1077.	2.3	50
27	Personality traits modulate neural responses to emotions expressed in music. Brain Research, 2013, 1523, 68-76.	2.2	36
28	Neural interactions that give rise to musical pleasure Psychology of Aesthetics, Creativity, and the Arts, 2013, 7, 62-75.	1.3	56
29	A Systematic Review on the Neural Effects of Music on Emotion Regulation: Implications for Music Therapy Practice. Journal of Music Therapy, 2013, 50, 198-242.	0.9	153
30	The Influence of Different Structural Features on Felt Musical Tension in Two Piano Pieces by Mozart and Mendelssohn. Music Perception, 2013, 31, 171-185.	1.1	23
31	Music, perceived arousal, and intensity: Psychophysiological reactions to <scp>C</scp> hopin's " <scp>T</scp> ristesse― Psychophysiology, 2013, 50, 909-919.	2.4	17
32	A Review of Music and Emotion Studies: Approaches, Emotion Models, and Stimuli. Music Perception, 2013, 30, 307-340.	1.1	204
33	Current Emotion Research in Behavioral Neuroscience: The Role(s) of the Amygdala. Emotion Review, 2013, 5, 104-115.	3.4	37
34	Cognitive Neuroscience of Music. , 2013, , .		0
35	The Gray Matter Volume of the Amygdala Is Correlated with the Perception of Melodic Intervals: A Voxel-Based Morphometry Study. PLoS ONE, 2014, 9, e99889.	2.5	8
36	Mozart, Music and Medicine. Medical Principles and Practice, 2014, 23, 403-412.	2.4	51

#	Article	IF	CITATIONS
37	Tension-related activity in the orbitofrontal cortex and amygdala: an fMRI study with music. Social Cognitive and Affective Neuroscience, 2014, 9, 1515-1523.	3.0	73
38	Music, feelings, and the human brain Psychomusicology: Music, Mind and Brain, 2014, 24, 92-102.	0.3	47
39	The role of expectation in music: from the score to emotions and the brain. Wiley Interdisciplinary Reviews: Cognitive Science, 2014, 5, 105-113.	2.8	15
40	Intact brain processing of musical emotions in autism spectrum disorder, but more cognitive load and arousal in happy vs. sad music. Frontiers in Neuroscience, 2014, 8, 192.	2.8	73
41	Brain correlates of music-evoked emotions. Nature Reviews Neuroscience, 2014, 15, 170-180.	10.2	819
42	Professional musicians listen differently to music. Neuroscience, 2014, 268, 102-111.	2.3	56
43	The role of the medial temporal limbic system in processing emotions in voice and music. Progress in Neurobiology, 2014, 123, 1-17.	5.7	115
44	Getting the beat: Entrainment of brain activity by musical rhythm and pleasantness. NeuroImage, 2014, 103, 55-64.	4.2	89
45	Toward a general psychological model of tension and suspense. Frontiers in Psychology, 2015, 6, 79.	2.1	102
46	Relaxation and Executive Control Processes in Listeners: An Exploratory Study of Music-Induced Transient Suppression of Skin Conductance Responses. Empirical Studies of the Arts, 2015, 33, 125-143.	1.7	0
47	Pain sensitivity and tactile spatial acuity are altered in healthy musicians as in chronic pain patients. Frontiers in Human Neuroscience, 2014, 8, 1016.	2.0	28
48	Theory-guided Therapeutic Function of Music to facilitate emotion regulation development in preschool-aged children. Frontiers in Human Neuroscience, 2015, 9, 572.	2.0	12
49	Music and literature: are there shared empathy and predictive mechanisms underlying their affective impact?. Frontiers in Psychology, 2015, 6, 1250.	2.1	25
50	Music in Research and Rehabilitation of Disorders of Consciousness: Psychological and Neurophysiological Foundations. Frontiers in Psychology, 2015, 6, 1763.	2.1	22
51	Tension–resolution patterns as a key element of aesthetic experience: Psychological principles and underlying brain mechanisms. , 2015, , 285-302.		8
52	Harmonic expectancy violations elicit not-just-right-experiences: A paradigm for investigating obsessive-compulsive characteristics?. Cognitive Neuroscience, 2015, 6, 8-15.	1.4	6
53	Music and emotions: from enchantment to entrainment. Annals of the New York Academy of Sciences, 2015, 1337, 212-222.	3.8	152
54	Musicâ€evoked emotions: principles, brain correlates, and implications for therapy. Annals of the New York Academy of Sciences, 2015, 1337, 193-201.	3.8	91

#	Article	IF	CITATIONS
55	Predictions and the brain: how musical sounds become rewarding. Trends in Cognitive Sciences, 2015, 19, 86-91.	7.8	277
56	It's Sad but I Like It: The Neural Dissociation Between Musical Emotions and Liking in Experts and Laypersons. Frontiers in Human Neuroscience, 2015, 9, 676.	2.0	105
57	Basic, specific, mechanistic? Conceptualizing musical emotions in the brain. Journal of Comparative Neurology, 2016, 524, 1676-1686.	1.6	14
58	Independent component processes underlying emotions during natural music listening. Social Cognitive and Affective Neuroscience, 2016, 11, 1428-1439.	3.0	44
59	The sound of emotions—Towards a unifying neural network perspective of affective sound processing. Neuroscience and Biobehavioral Reviews, 2016, 68, 96-110.	6.1	151
60	Understanding the Influence of Music on Emotions: A Historical Review. Music Therapy Perspectives, 2016, , miw026.	0.5	1
61	Structural neuroplasticity in expert pianists depends on the age of musical training onset. NeuroImage, 2016, 126, 106-119.	4.2	109
62	Results May Vary: Overcoming Variability in Consumer Response to Advertising Music. Psychology and Marketing, 2017, 34, 19-39.	8.2	23
63	Pitch Syntax Violations Are Linked to Greater Skin Conductance Changes, Relative to Timbral Violations – The Predictive Role of the Reward System in Perspective of Cortico–subcortical Loops. Frontiers in Psychology, 2017, 8, 586.	2.1	8
64	Emotional Responses to Music: Shifts in Frontal Brain Asymmetry Mark Periods of Musical Change. Frontiers in Psychology, 2017, 8, 2044.	2.1	36
65	Harmonicity: Behavioral and Neural Evidence for Functionality in Auditory Scene Analysis. Auditory Perception & Cognition, 2018, 1, 150-172.	1.1	3
66	Effectiveness of a musical training programme in promoting happiness and quality of life of underprivileged preschool children. Journal of Clinical Nursing, 2019, 28, 4412-4423.	3.0	8
67	Uncertainty and Surprise Jointly Predict Musical Pleasure and Amygdala, Hippocampus, and Auditory Cortex Activity. Current Biology, 2019, 29, 4084-4092.e4.	3.9	119
68	Predictability and Uncertainty in the Pleasure of Music: A Reward for Learning?. Journal of Neuroscience, 2019, 39, 9397-9409.	3.6	105
69	Human amygdala response to unisensory and multisensory emotion input: No evidence for superadditivity from intracranial recordings. Neuropsychologia, 2019, 131, 9-24.	1.6	12
70	Intracranial Recordings and Computational Modeling of Music Reveal the Time Course of Prediction Error Signaling in Frontal and Temporal Cortices. Journal of Cognitive Neuroscience, 2019, 31, 855-873.	2.3	27
71	Surprise-related activation in the nucleus accumbens interacts with music-induced pleasantness. Social Cognitive and Affective Neuroscience, 2019, 14, 459-470.	3.0	64
72	Music predictability and liking enhance pupil dilation and promote motor learning in non-musicians. Scientific Reports, 2019, 9, 17060.	3.3	15

#	Article	IF	CITATIONS
76	Mutual Constitution of Culture and the Mind. , 2020, , 88-119.		4
77	Being There. , 2020, , 120-158.		1
79	Culture in Mind – An Enactivist Account. , 2020, , 163-187.		10
80	The Brain as a Cultural Artifact. , 2020, , 188-222.		12
81	Cultural Priming Effects and the Human Brain. , 2020, , 223-243.		2
82	Culture, Self, and Agency. , 2020, , 244-272.		2
84	Neuroanthropological Perspectives on Culture, Mind, and Brain. , 2020, , 277-299.		3
85	The Neural Mechanisms Underlying Social Norms. , 2020, , 300-324.		0
86	Ritual and Religion as Social Technologies of Cooperation. , 2020, , 325-362.		2
88	The Cultural Brain as Historical Artifact. , 2020, , 367-374.		0
89	Experience-Dependent Plasticity in the Hippocampus. , 2020, , 375-388.		0
90	Liminal Brains in Uncertain Futures. , 2020, , 389-401.		1
91	The Reward of Musical Emotions and Expectations. , 2020, , 402-415.		1
92	Literary Analysis and Weak Theories. , 2020, , 416-425.		0
93	Capturing Context Is Not Enough. , 2020, , 426-437.		1
94	Social Neuroscience in Global Mental Health. , 2020, , 438-449.		0
95	Cities, Psychosis, and Social Defeat. , 2020, , 450-460.		0
96	Internet Sociality 2020 461-476		1

	Citation	CITATION REPORT	
#	Article	IF	Citations
97	Neurodiversity as a Conceptual Lens and Topic of Cross-Cultural Study. , 2020, , 477-493.		4
100	A coordinate-based meta-analysis of music-evoked emotions. NeuroImage, 2020, 223, 117350.	4.2	52
101	Perceived Emotions of Harmonic Cadences. Music & Science, 2020, 3, 205920432093863.	1.0	11
102	Culture, Mind, and Brain in Human Evolution. , 2020, , 55-87.		0
103	Does musical interaction in a jazz duet modulate peripersonal space?. Psychological Research, 2021, 85, 2107-2118.	1.7	11
104	The musical brain. , 2020, , 1-40.		1
105	The Cognitive-Emotional Design and Study of Architectural Space: A Scoping Review of Neuroarchitecture and Its Precursor Approaches. Sensors, 2021, 21, 2193.	3.8	46
107	Wait For It. Music Perception, 2021, 38, 345-359.	1.1	0
108	Mathematical Modeling of Brain Activity under Specific Auditory Stimulation. Computational and Mathematical Methods in Medicine, 2021, 2021, 1-20.	1.3	1
109	Contextual prediction modulates musical tension: Evidence from behavioral and neural responses. Brain and Cognition, 2021, 152, 105771.	1.8	2
110	Hierarchical control as a shared neurocognitive mechanism for language and music. Cognition, 2021, 216, 104847.	2.2	19
111	Emotion and Music. , 2013, , 286-303.		15
112	Amygdala and orbitofrontal engagement in breach and resolution of expectancy: A case study Psychomusicology: Music, Mind and Brain, 2015, 25, 357-365.	0.3	9
113	Towards a Neurobiology of Musical Emotions. , 1993, , 99-126.		21
114	Toward a neurobiology of musical emotions. , 2013, , 277-299.		11
115	EFFECT OF MUSIC AND NOISE ON GROWTH AND MATURATION IN FEMALE ALBINO RAT. Al Azhar Medical Journal = Majallat Al-Tibb Al-Azhar, 2016, 45, 717-734.	0.1	2
116	Reading a Suspenseful Literary Text Activates Brain Areas Related to Social Cognition and Predictive Inference. PLoS ONE, 2015, 10, e0124550.	2.5	62
117	History of Music Therapy and Its Contemporary Applications in Cardiovascular Diseases. Southern Medical Journal, 2018, 111, 98-102.	0.7	74

ARTICLE IF CITATIONS # Autism, Emotion Recognition and the Mirror Neuron System: The Case of Music. McGill Journal of 118 0.1 11 Medicine, 2009, 12, . An ALE meta-analytic review of top-down and bottom-up processing of music in the brain. Scientific 3.3 Reports, 2021, 11, 20813. 120 Music on the brain. Nature, O, , . 27.8 0 Origins and Applications of Music in Chronic Illness: Role of the Voice, Ancient Chant Scales, and Autonomic Nervous System. , 2013, , 115-140. Recognition of the Emotional Content of Music Depending on the Characteristics of the Musical 123 0.7 0 Material and Experience of Students. Psychological-Educational Studies, 2014, 6, 33-45. Autism, emotion recognition and the mirror neuron system: the case of music. McCill Journal of 129 0.1 Medicine, 2009, 12, 87. 130 Space oddity: musical syntax is mapped onto visual space. Scientific Reports, 2021, 11, 22343. 3.3 1 Pitch syntax as part of an ancient protolanguage. Lingua, 2022, 271, 103238. 1.0 Neural Correlates of Listening to Varying Synchrony Between Beats in Samba Percussion and 132 2.8 5 Relations to Feeling the Groove. Frontiers in Neuroscience, 2022, 16, 779964. Do Picardy Thirds Smile? Tonal Hierarchy and Tonal Valence. Music Perception, 2022, 39, 443-467. 1.1 Graph theoretical brain connectivity measures to investigate neural correlates of music rhythms 135 3 4.0associated with fear and anger. Cognitive Neurodynamics, 2024, 18, 49-66. Increasing the complexity of isolated musical chords benefits concurrent associative memory 3.3 formation. Scientific Reports, 2023, 13, . Beyond the ears: A review exploring the interconnected brain behind the hierarchical memory of 138 2.8 1 music. Psychonomic Bulletin and Review, 0, , . Cognitive and sensory expectations independently shape musical expectancy and pleasure. Philosophical Transactions of the Royal Society B: Biological Sciences, 2024, 379, . Musical tension is affected by metrical structure dynamically and hierarchically. Cognitive 140 0 4.0 Neurodynamics, 0, , . Exploring the neural underpinnings of chord prediction uncertainty: an electroencephalography 141 (EEG) study. Scientific Reports, 2024, 14, .

CITATION REPORT