Monitoring of rootâ€zone water content in the laborate

Journal of Plant Nutrition and Soil Science 171, 927-935

DOI: 10.1002/jpln.200700145

Citation Report

#	Article	IF	CITATIONS
1	Correlation of electrical resistivity, electrical conductivity and soil parameters at a longâ€term fertilization experiment. Near Surface Geophysics, 2009, 7, 5-14.	0.6	20
2	The effect of compaction on soil electrical resistivity: a laboratory investigation. European Journal of Soil Science, 2010, 61, 1043-1055.	1.8	67
3	Threeâ€Dimensional Electrical Resistivity Tomography to Monitor Root Zone Water Dynamics. Vadose Zone Journal, 2011, 10, 412-424.	1.3	102
4	Electrical resistivity tomography as a non-destructive method for mapping root biomass in an orchard. European Journal of Soil Science, 2011, 62, 206-215.	1.8	52
5	Numerical and experimental mapping of small root zones using optimized surface and borehole resistivity tomography. Geophysics, 2011, 76, G25-G35.	1.4	30
6	Phenotyping for drought tolerance of crops in the genomics era. Frontiers in Physiology, 2012, 3, 347.	1.3	448
7	Evaluating Experimental Design of ERT for Soil Moisture Monitoring in Contour Hedgerow Intercropping Systems. Vadose Zone Journal, 2012, 11, vzj2011.0186.	1.3	30
8	Geophysical Imaging Techniques. , 2012, , 151-188.		5
9	Design of a pipeline sensor-based platform for soil water content monitoring. Biosystems Engineering, 2012, 113, 1-10.	1.9	13
10	Noninvasive Monitoring of Soil Static Characteristics and Dynamic States: A Case Study Highlighting Vegetation Effects on Agricultural Land. Vadose Zone Journal, 2012, 11, vzj2011.0195.	1.3	42
11	Evidence for spatial variability in hydraulic redistribution within an oak–pine forest from resistivity imaging. Journal of Hydrology, 2012, 430-431, 69-79.	2.3	51
12	Monitoring Soil-plant Interactions in an Apple Orchard Using 3D Electrical Resistivity Tomography. Procedia Environmental Sciences, 2013, 19, 394-402.	1.3	19
13	Noninvasive Monitoring of Soil Water Dynamics in Mixed Cropping Systems: A Case Study in Ratchaburi Province, Thailand. Vadose Zone Journal, 2013, 12, 1-12.	1.3	49
14	Methane fluxes measured by eddy covariance and static chamber techniques at a temperate forest in central Ontario, Canada. Biogeosciences, 2013, 10, 4371-4382.	1.3	58
15	Three-dimensional monitoring of soil water content in a maize field using Electrical Resistivity Tomography. Hydrology and Earth System Sciences, 2013, 17, 595-609.	1.9	112
16	Drought and Heat Tolerance Evaluation in Potato (Solanum tuberosum L.). Potato Research, 2014, 57, 225-247.	1.2	28
17	Horizontal monitoring of soil water content using a novel automated and mobile electromagnetic access-tube sensor. Journal of Hydrology, 2014, 516, 50-55.	2.3	18
18	Plantâ€soil interactions in salt marsh environments: Experimental evidence from electrical resistivity tomography in the Venice Lagoon. Geophysical Research Letters, 2014, 41, 6160-6166.	1.5	28

#	Article	IF	CITATIONS
19	Rhizosphere Engineering by Plants: Quantifying Soil-Root Interactions. Advances in Agricultural Systems Modeling, 0, , 1-30.	0.3	6
20	Geophysical Methods for Field-Scale Imaging of Root Zone Properties and Processes. SSSA Special Publication Series, 0, , 247-282.	0.2	13
21	The use of soil electrical resistivity to monitor plant and soil water relationships in vineyards. Soil, 2015, 1, 273-286.	2.2	59
22	Monitoring and modelling of soil–plant interactions: the joint use of ERT, sap flow and eddy covariance data to characterize the volume of an orange tree root zone. Hydrology and Earth System Sciences, 2015, 19, 2213-2225.	1.9	76
23	Quantifying spatiotemporal dynamics of root-zone soil water in a mixed forest on subtropical coastal sand dune using surface ERT and spatial TDR. Journal of Hydrology, 2015, 523, 475-488.	2.3	47
25	Nonstationarity of the electrical resistivity and soil moisture relationship in a heterogeneous soil system: a case study. Soil, 2016, 2, 241-255.	2.2	12
26	Examining diel patterns of soil and xylem moisture using electrical resistivity imaging. Journal of Hydrology, 2016, 536, 327-338.	2.3	33
27	Breeding Strategies to Enhance Drought Tolerance in Crops. , 2016, , 397-445.		30
28	Mapping tree root system in dikes using induced polarization: Focus on the influence of soil water content. Journal of Applied Geophysics, 2016, 135, 387-396.	0.9	19
29	Soil–plant interaction monitoring: Small scale example of an apple orchard in Trentino, North-Eastern Italy. Science of the Total Environment, 2016, 543, 851-861.	3.9	39
30	Electrical resistivity and spatial variation in agriculture terraces: statistical correlation between ert and flow direction algorithms. Open Agriculture, 2017, 2, .	0.7	0
31	Use of small scale electrical resistivity tomography to identify soil-root interactions during deficit irrigation. Journal of Hydrology, 2018, 556, 310-324.	2.3	46
32	Modeling Soil-Water-Disease Interactions of Flood-Irrigated Mandarin Orange Trees: Role of Root Distribution Parameters. Vadose Zone Journal, 2018, 17, 170129.	1.3	10
33	Small-scale characterization of vine plant root water uptake via 3-D electrical resistivity tomography and mise-Ã-la-masse method. Hydrology and Earth System Sciences, 2018, 22, 5427-5444.	1.9	35
34	Electrical impedance tomography as a tool for phenotyping plant roots. Plant Methods, 2019, 15, 49.	1.9	39
35	Imaging and functional characterization of crop root systems using spectroscopic electrical impedance measurements. Plant and Soil, 2019, 435, 201-224.	1.8	38
36	Impact of Maize Roots on Soil–Root Electrical Conductivity: A Simulation Study. Vadose Zone Journal, 2019, 18, 190037.	1.3	13
37	Electrical imaging of plant root zone: A review. Computers and Electronics in Agriculture, 2019, 167, 105058.	3.7	22

#	Article	IF	Citations
38	Monitoring Soil Moisture Dynamics Using Electrical Resistivity Tomography under Homogeneous Field Conditions. Sensors, 2020, 20, 5313.	2.1	26
39	Sensing the electrical properties of roots: A review. Vadose Zone Journal, 2020, 19, e20082.	1.3	35
40	Timeâ€intensive geoelectrical monitoring under winter wheat. Near Surface Geophysics, 2020, 18, 413-425.	0.6	7
41	Potential of geoelectrical methods to monitor root zone processes and structure: A review. Geoderma, 2020, 365, 114232.	2.3	32
42	Time-lapse monitoring of root water uptake using electrical resistivity tomography and mise-Ã-la-masse: a vineyard infiltration experiment. Soil, 2020, 6, 95-114.	2.2	27
43	Hydrodynamic characterization of soil compaction using integrated electrical resistivity and Xâ€ray computed tomography. Vadose Zone Journal, 2021, 20, e20109.	1.3	4
44	An overview of multimethod imaging approaches in environmental geophysics. Advances in Geophysics, 2021, , 1-72.	1.1	13
45	Multi-electrode Resistivity Imaging. , 2012, , 189-211.		3
49	Improving Quality Agricultural Practices in Tropical Environments through Integrated Geophysical Methods. IOSR Journal of Applied Geology and Geophysic, 2014, 2, 128-139.	0.1	3
50	A case study on water use efficiency in extreme water-saving cultivation of tomato plants. European Journal of Horticultural Science, 2021, 86, 556-566.	0.3	1
51	Investigation of Pedogeophysical Relationships Using in Situ Measured Electrical Resistivity and Soil Physical and Root. , 2014, , .		0
53	Combining Models of Root-Zone Hydrology and Geoelectrical Measurements: Recent Advances and Future Prospects. Frontiers in Water, 2021, 3, .	1.0	4
54	Monitoring spatiotemporal soil moisture changes in the subsurface of forest sites using electrical resistivity tomography (ERT). Journal of Forestry Research, 2022, 33, 1649-1662.	1.7	8