Pathophysiologic Response to Severe Burn Injury

Annals of Surgery 248, 387-401 DOI: 10.1097/sla.0b013e3181856241

Citation Report

#	Article	IF	CITATIONS
1	The Hepatic Response to Thermal Injury: Is the Liver Important for Postburn Outcomes?. Molecular Medicine, 2009, 15, 337-351.	4.4	140
2	Abnormal Insulin Sensitivity Persists up to Three Years in Pediatric Patients Post-Burn. Journal of Clinical Endocrinology and Metabolism, 2009, 94, 1656-1664.	3.6	162
3	Glycemic Control in the Burn Intensive Care Unit: Focus on the Role of Anemia in Glucose Measurement. Journal of Diabetes Science and Technology, 2009, 3, 1319-1329.	2.2	14
4	Insulin drips or glucose control for burn patients. Surgery, 2009, 146, 965-966.	1.9	0
5	Modulation of the Hypermetabolic Response to Trauma: Temperature, Nutrition, and Drugs. Journal of the American College of Surgeons, 2009, 208, 489-502.	0.5	115
6	Anesthetic considerations for major burn injury in pediatric patients. Paediatric Anaesthesia, 2009, 19, 202-211.	1.1	118
7	Nonsteroidal Selective Androgen Receptor Modulators (SARMs): Dissociating the Anabolic and Androgenic Activities of the Androgen Receptor for Therapeutic Benefit. Journal of Medicinal Chemistry, 2009, 52, 3597-3617.	6.4	191
8	Bench-to-bedside review: Burn-induced cerebral inflammation – a neglected entity?. Critical Care, 2009, 13, 215.	5.8	41
9	The leading causes of death after burn injury in a single pediatric burn center. Critical Care, 2009, 13, R183.	5.8	274
10	Cytokine expression profile over time in burned mice. Cytokine, 2009, 45, 20-25.	3.2	107
11	The year in burns 2008. Burns, 2009, 35, 1057-1070.	1.9	7
13	The Hypermetabolic Response to Burn Injury and Interventions to Modify this Response. Clinics in Plastic Surgery, 2009, 36, 583-596.	1.5	177
14	Efficacy of Propranolol in Wound Healing for Hospitalized Burn Patients. Journal of Burn Care and Research, 2009, PAP, 1013-7.	0.4	53
15	Glucose Control in Severely Thermally Injured Pediatric Patients. Annals of Surgery, 2010, 252, 521-528.	4.2	60
16	Types of Wounds and Infections. , 2010, , 219-232.		9
17	THE ROLE OF HYPERGLYCEMIA IN BURNED PATIENTS. Shock, 2010, 33, 5-13.	2.1	67
18	Effects of Exercise Training on Resting Energy Expenditure and Lean Mass During Pediatric Burn Rehabilitation. Journal of Burn Care and Research, 2010, 31, 400-408.	0.4	64
19	IMPACT OF ANESTHESIA, ANALGESIA, AND EUTHANASIA TECHNIQUE ON THE INFLAMMATORY CYTOKINE	2.1	48

#	Article	IF	CITATIONS
20	A Review of metabolic staging in severely injured patients. Scandinavian Journal of Trauma, Resuscitation and Emergency Medicine, 2010, 18, 27.	2.6	32
21	An evaluation of nutritional practice in a paediatric burns unit. South African Medical Journal, 2010, 100, 383.	0.6	5
22	Plasma Proteome Response to Severe Burn Injury Revealed by ¹⁸ O-Labeled "Universal― Reference-Based Quantitative Proteomics. Journal of Proteome Research, 2010, 9, 4779-4789.	3.7	54
23	Burn severity and post-burn infertility in men. Burns, 2010, 36, 367-371.	1.9	7
24	Whole body protein kinetics measured with a non-invasive method in severely burned children. Burns, 2010, 36, 1006-1012.	1.9	18
25	Malnutrition among pediatric burn patients: A consequence of delayed admissions. Burns, 2010, 36, 1185-1189.	1.9	12
26	Measurement of Body Composition in Burned Children: Is There a Gold Standard?. Journal of Parenteral and Enteral Nutrition, 2010, 34, 55-63.	2.6	23
27	Intensive Insulin Therapy in Severely Burned Pediatric Patients. American Journal of Respiratory and Critical Care Medicine, 2010, 182, 351-359.	5.6	181
28	Burn and Inhalation Injuries. , 2011, , 1489-1499.		0
29	Anti-inflammatory Triterpenes from the Leaves of <i>Rosa laevigata</i> . Journal of Natural Products, 2011, 74, 732-738.	3.0	58
30	Burn-induced alterations in toll-like receptor-mediated responses by bronchoalveolar lavage cells. Cytokine, 2011, 55, 396-401.	3.2	24
31	mTOR partly mediates insulin resistance by phosphorylation of insulin receptor substrate-1 on serine307 residues after burn. Burns, 2011, 37, 86-93.	1.9	11
32	Burns and fire disasters from leaking petroleum pipes in Lagos, Nigeria: An 8-year experience. Burns, 2011, 37, 145-152.	1.9	17
33	Characteristics of paediatric burns seen at a tertiary centre in a low income country: A five year (2004–2008) study. Burns, 2011, 37, 528-534.	1.9	34
34	Pulmonary function, exercise capacity and physical activity participation in adults following burn. Burns, 2011, 37, 1326-1333.	1.9	51
35	What, How, and How Much Should Patients with Burns be Fed?. Surgical Clinics of North America, 2011, 91, 609-629.	1.5	66
36	Insulin Protects against Hepatic Damage Postburn. Molecular Medicine, 2011, 17, 516-522.	4.4	37
37	The Hepatic Acute Phase Response to Thermal Injury. , 2011, , .		0

#	Article	IF	CITATIONS
38	Challenges of Gastrointestinal Endoscopy in Resource-Poor Countries. , 0, , .		5
39	Long-Term Persistance of the Pathophysiologic Response to Severe Burn Injury. PLoS ONE, 2011, 6, e21245.	2.5	487
40	STAT3 Activation in Skeletal Muscle Links Muscle Wasting and the Acute Phase Response in Cancer Cachexia. PLoS ONE, 2011, 6, e22538.	2.5	284
41	Skeletal Muscle Is Anabolically Unresponsive to an Amino Acid Infusion in Pediatric Burn Patients 6 Months Postinjury. Annals of Surgery, 2011, 253, 592-597.	4.2	18
42	Burns: where are we standing with propranolol, oxandrolone, recombinant human growth hormone, and the new incretin analogs?. Current Opinion in Clinical Nutrition and Metabolic Care, 2011, 14, 176-181.	2.5	60
43	Changes in Cardiac Physiology After Severe Burn Injury. Journal of Burn Care and Research, 2011, 32, 269-274.	0.4	100
45	Propranolol decreases cardiac work in a dose-dependent manner in severely burned children. Surgery, 2011, 149, 231-239.	1.9	71
46	Long-term oxandrolone treatment increases muscle protein net deposition via improving amino acid utilization in pediatric patients 6 months after burn injury. Surgery, 2011, 149, 645-653.	1.9	35
47	Evaluation of human brain damage in fire fatality by quantification of basic fibroblast growth factor (bFGF), glial fibrillary acidic protein (GFAP) and single-stranded DNA (ssDNA) immunoreactivities. Forensic Science International, 2011, 211, 19-26.	2.2	11
48	In situ metabolic flux analysis to quantify the liver metabolic response to experimental burn injury. Biotechnology and Bioengineering, 2011, 108, 839-852.	3.3	25
49	Clinical Year in Review I:: Interstitial Lung Disease, Occupational and Environmental Lung Disease, Education of Residents and Fellows, and Pediatrics. Proceedings of the American Thoracic Society, 2011, 8, 389-397.	3.5	2
50	Average Daily Risk Range as a Measure of Glycemic Risk is Associated with Mortality in the Intensive Care Unit: A Retrospective Study in a Burn Intensive Care Unit. Journal of Diabetes Science and Technology, 2011, 5, 1087-1098.	2.2	8
51	Nutrition in Burns. Journal of Parenteral and Enteral Nutrition, 2011, 35, 704-714.	2.6	105
52	Anesthesia for burned patients. , 2012, , 173-198.e6.		3
53	The immunological response and strategies for intervention. , 2012, , 265-276.e6.		2
54	The hepatic response to thermal injury. , 2012, , 301-312.e4.		1
55	Modulation of the hypermetabolic response after burn injury. , 2012, , 355-360.e4.		6
56	Critical care in the severely burned. , 2012, , 377-395.e3.		0

#	Article	IF	CITATIONS
57	Special considerations of age. , 2012, , 405-414.e2.		3
58	Mitigation of burn-induced hypermetabolic and catabolic response during convalescence. , 2012, , 565-570.e1.		0
59	The effect of obesity on adverse outcomes and metabolism in pediatric burn patients. International Journal of Obesity, 2012, 36, 485-490.	3.4	29
60	Pediatric burn injuries. International Journal of Critical Illness and Injury Science, 2012, 2, 128.	0.6	65
61	Severe Injury Is Associated With Insulin Resistance, Endoplasmic Reticulum Stress Response, and Unfolded Protein Response. Annals of Surgery, 2012, 255, 370-378.	4.2	99
62	Intensive exercise after thermal injury improves physical, functional, and psychological outcomes. Journal of Trauma and Acute Care Surgery, 2012, 73, 186-194.	2.1	52
63	Surfactant Therapy for Acute Respiratory Distress in Severe Pediatric Burn Injury. Journal of Burn Care and Research, 2012, 33, e88-e91.	0.4	7
64	Burn size and survival probability in paediatric patients in modern burn care: a prospective observational cohort study. Lancet, The, 2012, 379, 1013-1021.	13.7	157
65	Inflammation, organomegaly, and muscle wasting despite hyperphagia in a mouse model of burn cachexia. Journal of Cachexia, Sarcopenia and Muscle, 2012, 3, 199-211.	7.3	58
66	Burns: an update on current pharmacotherapy. Expert Opinion on Pharmacotherapy, 2012, 13, 2485-2494.	1.8	65
67	Severe burn injury, burn shock, and smoke inhalation injury in small animals. Part 1: Burn classification and pathophysiology. Journal of Veterinary Emergency and Critical Care, 2012, 22, 179-186.	1.1	47
68	Severe burn injury, burn shock, and smoke inhalation injury in small animals. Part 2: diagnosis, therapy, complications, and prognosis. Journal of Veterinary Emergency and Critical Care, 2012, 22, 187-200.	1.1	24
69	Thermal Injury Activates the eEF2K-Dependent eEF2 Pathway in Pediatric Patients. Journal of Parenteral and Enteral Nutrition, 2012, 36, 596-602.	2.6	5
70	The protective role of ascorbic acid in burn-induced testicular damage in rats. Burns, 2012, 38, 113-119.	1.9	12
71	Incidence of early burn-induced effects on liver function as reflected by the plasma disappearance rate of indocyanine green: A prospective descriptive cohort study. Burns, 2012, 38, 214-224.	1.9	14
72	The effect of exercise training on pulmonary function and aerobic capacity in adults with burn. Burns, 2012, 38, 607-613.	1.9	45
73	Role of the PPAR-α agonist fenofibrate in severe pediatric burn. Burns, 2012, 38, 481-486.	1.9	30
74	Pathophysiology of burn injury. , 2012, , 131-149.		1

#	Article	IF	CITATIONS
75	The Effect of Ketoconazole on Post-Burn Inflammation, Hypermetabolism and Clinical Outcomes. PLoS ONE, 2012, 7, e35465.	2.5	24
76	Hyperglycemia Exacerbates Burn-Induced Liver Inflammation via Noncanonical Nuclear Factor-κB Pathway Activation. Molecular Medicine, 2012, 18, 948-956.	4.4	16
77	Immunohistochemistry of Neuronal Apoptosis in Fatal Traumas: The Contribution of Forensic Molecular Pathology in Medical Science. , 0, , .		1
78	Skin regeneration with conical and hair follicle structure of deep second-degree scalding injuries via combined expression of the EPO receptor and beta common receptor by local subcutaneous injection of nanosized rhEPO. International Journal of Nanomedicine, 2012, 7, 1227.	6.7	20
79	Five-Year Outcomes after Oxandrolone Administration in Severely Burned Children: A Randomized Clinical Trial of Safety and Efficacy. Journal of the American College of Surgeons, 2012, 214, 489-502.	0.5	111
80	Proteomics Improves the Prediction of Burns Mortality: Results from Regression Spline Modeling. Clinical and Translational Science, 2012, 5, 243-249.	3.1	18
81	Endoplasmic reticulum stress and insulin resistance postâ€trauma: similarities to type 2 diabetes. Journal of Cellular and Molecular Medicine, 2012, 16, 437-444.	3.6	32
82	Molecular pathology of brain edema after severe burns in forensic autopsy cases with special regard to the importance of reference gene selection. International Journal of Legal Medicine, 2013, 127, 881-889.	2.2	21
83	Understanding the causes of hyperglycemia in burn patients. Journal of Surgical Research, 2013, 182, 205-206.	1.6	1
84	The impact of severe burns on skeletal muscle mitochondrial function. Burns, 2013, 39, 1039-1047.	1.9	61
85	Acetylation and deacetylation—novel factors in muscle wasting. Metabolism: Clinical and Experimental, 2013, 62, 1-11.	3.4	58
86	Medical management of paediatric burn injuries: Best practice part 2. Journal of Paediatrics and Child Health, 2013, 49, E397-404.	0.8	8
87	Clinical review: Glucose control in severely burned patients - current best practice. Critical Care, 2013, 17, 232.	5.8	42
88	Association of Postburn Fatty Acids and Triglycerides with Clinical Outcome in Severely Burned Children. Journal of Clinical Endocrinology and Metabolism, 2013, 98, 314-321.	3.6	39
89	Fenofibrate does not affect burn-induced hepatic endoplasmic reticulum stress. Journal of Surgical Research, 2013, 185, 733-739.	1.6	0
90	17β-Estradiol reappropriates mass lost to the hypermetabolic state in thermally injured rats. Journal of Surgical Research, 2013, 181, 136-141.	1.6	7
91	Is Propranolol of Benefit in Pediatric Burn Patients?. Advances in Surgery, 2013, 47, 177-197.	1.3	28
92	The IL-6 Trans-Signaling-STAT3 Pathway Mediates ECM and Cellular Proliferation in Fibroblasts from Hypertrophic Scar. Journal of Investigative Dermatology, 2013, 133, 1212-1220.	0.7	86

#	Article	IF	CITATIONS
93	Critical Care of Burn Victims Including Inhalation Injury. , 2013, , 67-89.		0
94	Long-Term Pathophysiology and Consequences of a Burn Including Scarring, HTS, Keloids and Scar Treatment, Rehabilitation, Exercise. , 2013, , 157-165.		1
95	Signals from fat after injury: Plasma adipokines and ghrelin concentrations in the severely burned. Cytokine, 2013, 61, 78-83.	3.2	24
96	Bone ultrasound velocity in pediatric intensive care unit: a pilot study. The Ultrasound Journal, 2013, 5, 8.	2.0	0
97	The Surgically Induced Stress Response. Journal of Parenteral and Enteral Nutrition, 2013, 37, 21S-9S.	2.6	262
98	Burns and Frostbite. , 2013, , 461-467.		2
99	A novel stable isotope tracer method to measure muscle protein fractional breakdown rate during a physiological non-steady-state condition. American Journal of Physiology - Endocrinology and Metabolism, 2013, 304, E623-E630.	3.5	13
100	Determination of Burn Patient Outcome by Large-Scale Quantitative Discovery Proteomics. Critical Care Medicine, 2013, 41, 1421-1434.	0.9	55
101	Electroacupuncture improves burnâ€induced impairment in gastric motility mediated via the vagal mechanism in rats. Neurogastroenterology and Motility, 2013, 25, 807.	3.0	37
102	Vagal nerve stimulation protects cardiac injury by attenuating mitochondrial dysfunction in a murine burn injury model. Journal of Cellular and Molecular Medicine, 2013, 17, 664-671.	3.6	26
103	Severe burn and disuse in the rat independently adversely impact body composition and adipokines. Critical Care, 2013, 17, R225.	5.8	17
104	Lc3 Over-Expression Improves Survival and Attenuates Lung Injury Through Increasing Autophagosomal Clearance in Septic Mice. Annals of Surgery, 2013, 257, 352-363.	4.2	97
105	Amino acid infusion fails to stimulate skeletal muscle protein synthesis up to 1 year after injury in children with severe burns. Journal of Trauma and Acute Care Surgery, 2013, 74, 1480-1485.	2.1	20
106	Effects of Metformin on Burn-Induced Hepatic Endoplasmic Reticulum Stress in Male Rats. Molecular Medicine, 2013, 19, 1-6.	4.4	15
107	Thrombocytopenia induces multiple intracranial hemorrhages in patients with severe burns: A review of 16 cases. Experimental and Therapeutic Medicine, 2013, 6, 223-227.	1.8	1
108	The role of TLR4 in the pathogenesis of indirect acute lung injury. Frontiers in Bioscience - Landmark, 2013, 18, 1244.	3.0	50
109	Disruption of Genes Encoding elF4E Binding Proteins-1 And -2 Does Not Alter Basal or Sepsis-Induced Changes in Skeletal Muscle Protein Synthesis in Male or Female Mice. PLoS ONE, 2014, 9, e99582.	2.5	14
110	Establishment and Assessment of New Formulas for Energy Consumption Estimation in Adult Burn Patients. PLoS ONE, 2014, 9, e110409.	2.5	9

# 111	ARTICLE Atrial Fibrillation in Elderly Burn Patients. American Surgeon, 2014, 80, 623-624.	IF 0.8	CITATIONS 3
112	Changes in Fat Distribution in Children Following Severe Burn Injury. Metabolic Syndrome and Related Disorders, 2014, 12, 523-526.	1.3	12
113	Hypoglycemia Is Associated With Increased Postburn Morbidity and Mortality in Pediatric Patients*. Critical Care Medicine, 2014, 42, 1221-1231.	0.9	33
114	An alteration of the gut-liver axis drives pulmonary inflammation after intoxication and burn injury in mice. American Journal of Physiology - Renal Physiology, 2014, 307, G711-G718.	3.4	27
115	Protective Effect of Polydatin Against Burn-Induced Lung Injury in Rats. Respiratory Care, 2014, 59, 1412-1421.	1.6	29
116	Risk Factors for Hypothermia in EMS-treated Burn Patients. Prehospital Emergency Care, 2014, 18, 335-341.	1.8	30
117	Immunonutrition as an adjuvant therapy for burns. The Cochrane Library, 2014, 2014, CD007174.	2.8	17
118	Leukocyte Infiltration and Activation of the NLRP3 Inflammasome in White Adipose Tissue Following Thermal Injury*. Critical Care Medicine, 2014, 42, 1357-1364.	0.9	55
119	Early Rehabilitative Exercise Training in the Recovery from Pediatric Burn. Medicine and Science in Sports and Exercise, 2014, 46, 1710-1716.	0.4	54
120	Alcohol Binging Exacerbates Adipose Tissue Inflammation Following Burn Injury. Alcoholism: Clinical and Experimental Research, 2014, 38, 33-35.	2.4	4
121	Extracorporeal blood purification in burns: A review. Burns, 2014, 40, 1071-1078.	1.9	19
122	Burns in children: standard and new treatments. Lancet, The, 2014, 383, 1168-1178.	13.7	95
123	Melatonin protection against burn-induced liver injury. A review. Open Medicine (Poland), 2014, 9, 148-158.	1.3	5
124	Uncoupled skeletal muscle mitochondria contribute to hypermetabolism in severely burned adults. American Journal of Physiology - Endocrinology and Metabolism, 2014, 307, E462-E467.	3.5	49
125	Insulin effects on glucose tolerance, hypermetabolic response, and circadian-metabolic protein expression in a rat burn and disuse model. American Journal of Physiology - Regulatory Integrative and Comparative Physiology, 2014, 307, R1-R10.	1.8	16
126	Animal models in burn research. Cellular and Molecular Life Sciences, 2014, 71, 3241-3255.	5.4	317
127	Correlation between circulating proteasome activity, total protein and c-reactive protein levels following burn in children. Burns, 2014, 40, 842-847.	1.9	8
128	Bacterial respiratory tract infections are promoted by systemic hyperglycemia after severe burn injury in pediatric patients. Burns, 2014, 40, 428-435.	1.9	17

#	Article	IF	CITATIONS
129	β-Hydroxy-β-methylbutyrate (HMB) and prevention of muscle wasting. Metabolism: Clinical and Experimental, 2014, 63, 5-8.	3.4	15
130	Use of 1H-nuclear magnetic resonance to screen a set of biomarkers for monitoring metabolic disturbances in severe burn patients. Critical Care, 2014, 18, R159.	5.8	17
131	The endocrine response to severe burn trauma. Expert Review of Endocrinology and Metabolism, 2014, 9, 45-59.	2.4	2
132	Histomorphometric Analysis of Early Epithelialization and Dermal Changes in Mid–Partial-Thickness Burn Wounds in Humans Treated With Porcine Small Intestinal Submucosa and Silver-Containing Hydrofiber. Journal of Burn Care and Research, 2014, 35, e330-e337.	0.4	17
133	Evaluation of Intragastric Vs Intraperitoneal Glucose Tolerance Tests in the Evaluation of Insulin Resistance in a Rodent Model of Burn Injury and Glucagon-Like Polypeptide-1 Treatment. Journal of Burn Care and Research, 2014, 35, e66-e72.	0.4	13
134	Survivors Versus Nonsurvivors Postburn. Annals of Surgery, 2014, 259, 814-823.	4.2	110
135	The Role of Aryl Hydrocarbon Receptor in Interleukin-23-Dependent Restoration of Interleukin-22 Following Ethanol Exposure and Burn Injury. Annals of Surgery, 2014, 259, 582-590.	4.2	11
136	Occurrence of Multiorgan Dysfunction in Pediatric Burn Patients. Annals of Surgery, 2014, 259, 381-387.	4.2	56
137	Aerobic exercise training in modulation of aerobic physical fitness and balance of burned patients. Journal of Physical Therapy Science, 2015, 27, 585-589.	0.6	11
138	Long-term musculoskeletal morbidity after adult burn injury: a population-based cohort study. BMJ Open, 2015, 5, e009395.	1.9	39
139	Nutrition and metabolism in the rehabilitative phase of recovery in burn children: a review of clinical and research findings in a speciality pediatric burn hospital. Burns and Trauma, 2015, 3, 7.	4.9	3
140	Skin wound trauma, following high-dose radiation exposure, amplifies and prolongs skeletal tissue loss. Bone, 2015, 81, 487-494.	2.9	7
141	microRNA-98 mediated microvascular hyperpermeability during burn shock phase via inhibiting FIH-1. European Journal of Medical Research, 2015, 20, 51.	2.2	12
142	Influence of Cdp-Choline Administration on Early Burn Edema in Rats. Annals of Plastic Surgery, 2015, 75, 388-392.	0.9	3
143	Severe Burn Injury Induces Thermogenically Functional Mitochondria in Murine White Adipose Tissue. Shock, 2015, 44, 258-264.	2.1	38
144	Persistent inflammatory, immunosuppressed, catabolic syndrome (PICS): A new phenotype of multiple organ failure. Journal of Advanced Nutritional and Human Metabolism, 2015, 1, .	0.0	45
145	Time-Dependent and Organ-Specific Changes in Mitochondrial Function, Mitochondrial DNA Integrity, Oxidative Stress and Mononuclear Cell Infiltration in a Mouse Model of Burn Injury. PLoS ONE, 2015, 10, e0143730.	2.5	65
146	Therapeutic Approaches to Combatting Hypermetabolism in Severe Burn Injuries. Journal of Intensive and Critical Care, 2015, 01, .	0.2	8

#	Article	IF	CITATIONS
147	The utility of C-reactive protein and procalcitonin for sepsis diagnosis in critically burned patients: A preliminary study. Plastic Surgery, 2015, 23, 239-243.	1.0	14
148	Alternative Mechanism for White Adipose Tissue Lipolysis after Thermal Injury. Molecular Medicine, 2015, 21, 959-968.	4.4	17
150	The Role of Exercise in the Rehabilitation of Patients with Severe Burns. Exercise and Sport Sciences Reviews, 2015, 43, 34-40.	3.0	68
151	Serum from human burn victims impairs myogenesis and protein synthesis in primary myoblasts. Frontiers in Physiology, 2015, 6, 184.	2.8	29
152	Pathophysiologic Response to Burns in the Elderly. EBioMedicine, 2015, 2, 1536-1548.	6.1	110
153	Anthropometry, muscular strength and aerobic capacity up to 5 years after pediatric burns. Burns, 2015, 41, 1839-1846.	1.9	10
154	Increased admissions for musculoskeletal diseases after burns sustained during childhood and adolescence. Burns, 2015, 41, 1674-1682.	1.9	13
155	Apelin inhibits the activation of the nucleotide-binding domain and the leucine-rich, repeat-containing family, pyrin-containing 3 (NLRP3) inflammasome and ameliorates insulin resistance in severely burned rats. Surgery, 2015, 157, 1142-1152.	1.9	21
156	Effects of cholecalciferol supplementation and optimized calcium intakes on vitamin D status, muscle strength and bone health: A one-year pilot randomized controlled trial in adults with severe burns. Burns, 2015, 41, 317-325.	1.9	45
157	Effects of pharmacological interventions on muscle protein synthesis and breakdown in recovery from burns. Burns, 2015, 41, 649-657.	1.9	54
158	Selective decontamination of the digestive tract ameliorates severe burn-induced insulin resistance in rats. Burns, 2015, 41, 1076-1085.	1.9	11
159	Browning of Subcutaneous White Adipose Tissue in Humans after Severe Adrenergic Stress. Cell Metabolism, 2015, 22, 219-227.	16.2	331
160	Practice of first aid in burn related injuries in a developing country. Burns, 2015, 41, 1322-1332.	1.9	43
161	Long-term mortality among older adults with burn injury: a population-based study in Australia. Bulletin of the World Health Organization, 2015, 93, 400-406.	3.3	63
162	Evolving paradigms in the nutritional support of critically ill surgical patients. Current Problems in Surgery, 2015, 52, 147-182.	1.1	35
163	Inhibition of Stat3 Activation Suppresses Caspase-3 and the Ubiquitin-Proteasome System, Leading to Preservation of Muscle Mass in Cancer Cachexia. Journal of Biological Chemistry, 2015, 290, 11177-11187.	3.4	164
164	Mortality After Burn Injury in Children: A 33-year Population-Based Study. Pediatrics, 2015, 135, e903-e910.	2.1	76
165	Morbidity and Survival Probability in Burn Patients in Modern Burn Care*. Critical Care Medicine, 2015, 43, 808-815.	0.9	152

#	Article	IF	Citations
166	Predictive Value of IL-8 for Sepsis and Severe Infections After Burn Injury. Shock, 2015, 43, 222-227.	. 2.1	94
167	Integrity of airway epithelium in pediatric burn autopsies: Association with age and extent of burn injury. Burns, 2015, 41, 1435-1441.	1.9	9
168	Long-term Effects of Pediatric Burns on the Circulatory System. Pediatrics, 2015, 136, e1323-e1330). 2.1	40
169	Long term mortality in a population-based cohort of adolescents, and young and middle-aged adults with burn injury in Western Australia: A 33-year study. Accident Analysis and Prevention, 2015, 85, 118-124.	5.7	34
170	Stem cell therapies for wounds. , 2016, , 177-200.		2
171	Intraluminal Flagellin Differentially Contributes to Gut Dysbiosis and Systemic Inflammation following Burn Injury. PLoS ONE, 2016, 11, e0166770.	2.5	15
172	Effectiveness of resistance strength training in children and adolescents with ≥30% total body surface area: A systematic review. South African Journal of Physiotherapy, 2016, 72, 303.	0.7	1
173	Impaired Immune Response in Elderly Burn Patients. Annals of Surgery, 2016, 264, 195-202.	4.2	50
174	Burned Adults Develop Profound Glucose Intolerance. Critical Care Medicine, 2016, 44, 1059-1066.	0.9	22
175	Early leukocyte gene expression associated with age, burn size, and inhalation injury in severely burned adults. Journal of Trauma and Acute Care Surgery, 2016, 80, 250-257.	2.1	26
176	The efficacy and safety of adrenergic blockade after burn injury. Journal of Trauma and Acute Care Surgery, 2016, 80, 146-155.	2.1	44
177	Nutritional Support in the Setting of Persistent Inflammation, Immunosuppression, and Catabolism Syndrome (PICS). Current Surgery Reports, 2016, 4, 1.	0.9	3
178	Glucose Control in Severely Burned Patients Using Metformin. Annals of Surgery, 2016, 264, 518-52	27. 4.2	46
179	Propranolol Reduces Cardiac Index But does not Adversely Affect Peripheral Perfusion in Severely Burned Children. Shock, 2016, 46, 486-491.	2.1	12
180	Altered adrenal and gonadal steroids biosynthesis in patients with burn injury. Clinical Mass Spectrometry, 2016, 1, 19-26.	1.9	9
181	Construction of an immunorelated protein–protein interaction network for clarifying the mechanism of burn. Burns, 2016, 42, 405-413.	1.9	8
182	Postburn Hypermetabolism. Journal of Burn Care and Research, 2016, 37, 86-96.	0.4	72
183	Respiratory Morbidity After Childhood Burns: A 10-Year Follow-up Study. Pediatrics, 2016, 138, .	2.1	12

#	Article	IF	CITATIONS
184	The metabolic stress response to burn trauma: current understanding and therapies. Lancet, The, 2016, 388, 1417-1426.	13.7	224
185	The Physiologic Basis of Burn Shock and the Need for Aggressive Fluid Resuscitation. Critical Care Clinics, 2016, 32, 491-505.	2.6	81
186	Pediatric Burn Resuscitation. Critical Care Clinics, 2016, 32, 547-559.	2.6	33
187	Increased admissions for diabetes mellitus after burn. Burns, 2016, 42, 1734-1739.	1.9	34
188	Effects of Mesalamine Treatment on Gut Barrier Integrity After Burn Injury. Journal of Burn Care and Research, 2016, 37, 283-292.	0.4	21
189	Unusual Relationship. Critical Care Medicine, 2016, 44, 1950-1951.	0.9	1
190	Topical Negative Pressure on Burns. Plastic and Reconstructive Surgery - Global Open, 2016, 4, e1117.	0.6	15
191	Long-Term Skeletal Muscle Mitochondrial Dysfunction is Associated with Hypermetabolism in Severely Burned Children. Journal of Burn Care and Research, 2016, 37, 53-63.	0.4	39
192	Recent Advances in Biomarkers in Severe Burns. Shock, 2016, 45, 117-125.	2.1	26
193	Long-term effects of physical exercise during rehabilitation in patients with severe burns. Surgery, 2016, 160, 781-788.	1.9	23
194	Anabolic and anticatabolic agents in critical care. Current Opinion in Critical Care, 2016, 22, 325-331.	3.2	36
195	Cutting-Edge Forward Burn Nutrition: from the Battlefield to the Burn Center. Current Trauma Reports, 2016, 2, 106-114.	1.3	3
196	Clucocorticoid receptor expression and binding capacity in patients with burn injury. Acta Anaesthesiologica Scandinavica, 2016, 60, 213-221.	1.6	9
197	Initial evaluation and management of the critical burn patient. Medicina Intensiva, 2016, 40, 49-59.	0.7	40
198	Effects of sustained release growth hormone treatment during the rehabilitation of adult severe burn survivors. Growth Hormone and IGF Research, 2016, 27, 1-6.	1.1	14
199	Effects of community-based exercise in children with severe burns: A randomized trial. Burns, 2016, 42, 41-47.	1.9	27
200	Initial evaluation and management of the critical burn patient. Medicina Intensiva (English Edition), 2016, 40, 49-59.	0.2	0
201	STAT3 in the systemic inflammation of cancer cachexia. Seminars in Cell and Developmental Biology, 2016, 54, 28-41.	5.0	171

#	Article	IF	CITATIONS
202	Threshold age and burn size associated with poor outcomes in the elderly after burn injury. Burns, 2016, 42, 276-281.	1.9	77
203	Severe burn increased skeletal muscle loss in mdx mutant mice. Journal of Surgical Research, 2016, 202, 372-379.	1.6	4
204	A comprehensive bioinformatics method to screen key genes for severe burn. European Journal of Inflammation, 2016, 14, 18-26.	0.5	0
205	The efficacy and safety of oxandrolone treatment for patients with severe burns: A systematic review and meta-analysis. Burns, 2016, 42, 717-727.	1.9	65
206	Southern Surgical Association: A Tradition of Mentorship in Translational Research. Journal of the American College of Surgeons, 2017, 224, 381-395.	0.5	2
207	Prevalence and severity of bone loss in burned patients. Burns, 2017, 43, 766-770.	1.9	4
208	Nutrition Support for Persistent Inflammation, Immunosuppression, and Catabolism Syndrome. Nutrition in Clinical Practice, 2017, 32, 121S-127S.	2.4	53
209	The biochemical alterations underlying post-burn hypermetabolism. Biochimica Et Biophysica Acta - Molecular Basis of Disease, 2017, 1863, 2633-2644.	3.8	74
210	Persistent Inflammation, Immunosuppression and Catabolism Syndrome. Critical Care Clinics, 2017, 33, 245-258.	2.6	146
211	The role of complement in the acute phase response after burns. Burns, 2017, 43, 1390-1399.	1.9	29
212	The effect of pre-existing malnutrition on pediatric burn mortality in a sub-Saharan African burn unit. Burns, 2017, 43, 1486-1492.	1.9	15
213	The occurrence of single and multiple organ dysfunction in pediatric electrical versus other thermal burns. Journal of Trauma and Acute Care Surgery, 2017, 82, 946-951.	2.1	11
214	Herpesviradae infections in severely burned children. Burns, 2017, 43, 987-992.	1.9	12
215	Improved Survival of Patients With Extensive Burns. Journal of Burn Care and Research, 2017, 38, 187-193.	0.4	38
216	Metabolic and Endocrine Considerations After Burn Injury. Clinics in Plastic Surgery, 2017, 44, 541-553.	1.5	42
217	Burn Serum Stimulates Myoblast Cell Death Associated with IL-6-Induced Mitochondrial Fragmentation. Shock, 2017, 48, 236-242.	2.1	18
218	Management strategies of burns associated hyperthermia: A case report. Burns Open, 2017, 1, 45-47.	0.5	5
219	Clinician's Guide to Nutritional Therapy Following Major Burn Injury. Clinics in Plastic Surgery, 2017, 44, 555-566.	1.5	14

#	Article	IF	Citations
220	Functional Exercise Capacity in Children With Electrical Burns. Journal of Burn Care and Research, 2017, 38, e647-e652.	0.4	4
221	Hypertension after injury among burned combat veterans: A retrospective cohort study. Burns, 2017, 43, 290-296.	1.9	15
222	Effects of different duration exercise programs in children with severe burns. Burns, 2017, 43, 796-803.	1.9	24
223	Body Composition Changes in Severely Burned Children During ICU Hospitalization*. Pediatric Critical Care Medicine, 2017, 18, e598-e605.	0.5	16
224	Long term cardiovascular impacts after burn and non-burn trauma: A comparative population-based study. Burns, 2017, 43, 1662-1672.	1.9	28
225	Antioxidant and Trace Element Supplementation Reduce the Inflammatory Response in Critically III Burn Patients. Journal of Burn Care and Research, 2017, 39, 1.	0.4	26
226	Toll-Like Receptor Signaling in Burn Wound Healing and Scarring. Advances in Wound Care, 2017, 6, 330-343.	5.1	47
227	Could severe burn be a cause of male infertility?. Clinical Mass Spectrometry, 2017, 3, 39-40.	1.9	0
228	Transfusion Requirement in Burn Care Evaluation (TRIBE). Annals of Surgery, 2017, 266, 595-602.	4.2	84
229	Rehabilitation in the Acute Versus Outpatient Setting. Clinics in Plastic Surgery, 2017, 44, 729-735.	1.5	9
230	The National Institute on Disability, Independent Living, and Rehabilitation Research Burn Model System. Journal of Burn Care and Research, 2017, 38, e240-e253.	0.4	53
231	Improving Research Enrollment of Severe Burn Patients. Journal of Burn Care and Research, 2017, 38, e807-e813.	0.4	3
232	Long-term effect of critical illness after severe paediatric burn injury on cardiac function in adolescent survivors: an observational study. The Lancet Child and Adolescent Health, 2017, 1, 293-301.	5.6	32
233	The effectiveness of session rating of perceived exertion to monitor resistance training load in acute burns patients. Burns, 2017, 43, 169-175.	1.9	6
234	Human herpes viruses in burn patients: A systematic review. Burns, 2017, 43, 25-33.	1.9	24
235	Burn leads to long-term elevated admissions to hospital for gastrointestinal disease in a West Australian population based study. Burns, 2017, 43, 665-673.	1.9	13
236	Effect of aquatic versus land based exercise programs on physical performance in severely burned patients: a randomized controlled trial. Journal of Physical Therapy Science, 2017, 29, 2201-2205.	0.6	3
237	Co-administration of vancomycin and piperacillin-tazobactam is associated with increased renal dysfunction in adult and pediatric burn patients. Critical Care, 2017, 21, 318.	5.8	30

#	Article	IF	CITATIONS
238	The Protective Effect of Alpha 7 Nicotinic Acetylcholine Receptor Activation on Critical Illness and Its Mechanism. International Journal of Biological Sciences, 2017, 13, 46-56.	6.4	54
239	High-volume hemofiltration in adult burn patients with septic shock and acute kidney injury: a multicenter randomized controlled trial. Critical Care, 2017, 21, 289.	5.8	69
240	The influence of sex steroid hormones on the response to trauma and burn injury. Burns and Trauma, 2017, 5, 29.	4.9	22
241	Metformin adapts its cellular effects to bioenergetic status in a model of metabolic dysfunction. Scientific Reports, 2018, 8, 5646.	3.3	12
242	The Effect of Burn Trauma on Lipid and Glucose Metabolism: Implications for Insulin Sensitivity. Journal of Burn Care and Research, 2018, 39, 713-723.	0.4	12
243	Measuring serum albumin levels at 0 and 24 h: Effect on the accuracy of clinical evaluations in the prediction of burn-related mortality. Burns, 2018, 44, 709-717.	1.9	10
244	Burn-Induced Multiple Organ Injury and Protective Effect of Lutein in Rats. Inflammation, 2018, 41, 760-772.	3.8	12
245	Chronic Critical Illness: Application of What We Know. Nutrition in Clinical Practice, 2018, 33, 39-45.	2.4	41
246	Overfeeding-associated hyperglycemia and injury-response homeostasis in critically ill neonates. Journal of Pediatric Surgery, 2018, 53, 1688-1691.	1.6	9
247	Nutritional Support for Abdominal Sepsis. Hot Topics in Acute Care Surgery and Trauma, 2018, , 389-405.	0.1	0
247 248	Nutritional Support for Abdominal Sepsis. Hot Topics in Acute Care Surgery and Trauma, 2018, , 389-405. Anabolic Therapy for the Treatment of Osteoporosis in Childhood. Current Osteoporosis Reports, 2018, 16, 269-276.	0.1	0 21
247 248 249	Nutritional Support for Abdominal Sepsis. Hot Topics in Acute Care Surgery and Trauma, 2018, , 389-405. Anabolic Therapy for the Treatment of Osteoporosis in Childhood. Current Osteoporosis Reports, 2018, 16, 269-276. Long-lasting Glucagon-like Peptide 1 Analogue Exendin-4 Ameliorates the Secretory and Synthetic Function of Islets Isolated From Severely Scalded Rats. Journal of Burn Care and Research, 2018, 39, 545-554.	0.1 3.6 0.4	0 21 3
247 248 249 250	Nutritional Support for Abdominal Sepsis. Hot Topics in Acute Care Surgery and Trauma, 2018, , 389-405. Anabolic Therapy for the Treatment of Osteoporosis in Childhood. Current Osteoporosis Reports, 2018, 16, 269-276. Long-lasting Glucagon-like Peptide 1 Analogue Exendin-4 Ameliorates the Secretory and Synthetic Function of Islets Isolated From Severely Scalded Rats. Journal of Burn Care and Research, 2018, 39, 545-554. Burn Trauma Acutely Increases the Respiratory Capacity and Function of Liver Mitochondria. Shock, 2018, 49, 466-473.	0.1 3.6 0.4 2.1	0 21 3 16
247 248 249 250 251	Nutritional Support for Abdominal Sepsis. Hot Topics in Acute Care Surgery and Trauma, 2018, , 389-405.Anabolic Therapy for the Treatment of Osteoporosis in Childhood. Current Osteoporosis Reports, 2018, 16, 269-276.Long-lasting Glucagon-like Peptide 1 Analogue Exendin-4 Ameliorates the Secretory and Synthetic Function of Islets Isolated From Severely Scalded Rats. Journal of Burn Care and Research, 2018, 39, 545-554.Burn Trauma Acutely Increases the Respiratory Capacity and Function of Liver Mitochondria. Shock, 2018, 49, 466-473.Pathophysiological Response to Burn Injury in Adults. Annals of Surgery, 2018, 267, 576-584.	0.1 3.6 0.4 2.1 4.2	0 21 3 16 114
247 248 249 250 251 252	Nutritional Support for Abdominal Sepsis. Hot Topics in Acute Care Surgery and Trauma, 2018, , 389-405.Anabolic Therapy for the Treatment of Osteoporosis in Childhood. Current Osteoporosis Reports, 2018, 16, 269-276.Long-lasting Glucagon-like Peptide 1 Analogue Exendin-4 Ameliorates the Secretory and Synthetic Function of Islets Isolated From Severely Scalded Rats. Journal of Burn Care and Research, 2018, 39, 545-554.Burn Trauma Acutely Increases the Respiratory Capacity and Function of Liver Mitochondria. Shock, 2018, 49, 466-473.Pathophysiological Response to Burn Injury in Adults. Annals of Surgery, 2018, 267, 576-584.Propranolol and Oxandrolone Therapy Accelerated Muscle Recovery in Burned Children. Medicine and Science in Sports and Exercise, 2018, 50, 427-435.	0.1 3.6 0.4 2.1 4.2 0.4	0 21 3 16 114 29
247 248 249 250 251 252 253	Nutritional Support for Abdominal Sepsis. Hot Topics in Acute Care Surgery and Trauma, 2018, , 389-405. Anabolic Therapy for the Treatment of Osteoporosis in Childhood. Current Osteoporosis Reports, 2018, 16, 269-276. Long-lasting Clucagon-like Peptide 1 Analogue Exendin-4 Ameliorates the Secretory and Synthetic Function of Islets Isolated From Severely Scalded Rats. Journal of Burn Care and Research, 2018, 39, 545-554. Burn Trauma Acutely Increases the Respiratory Capacity and Function of Liver Mitochondria. Shock, 2018, 49, 466-473. Pathophysiological Response to Burn Injury in Adults. Annals of Surgery, 2018, 267, 576-584. Propranolol and Oxandrolone Therapy Accelerated Muscle Recovery in Burned Children. Medicine and Science in Sports and Exercise, 2018, 50, 427-435. Age-related immune responses after burn and inhalation injury are associated with altered clinical outcomes. Experimental Gerontology, 2018, 105, 78-86.	0.1 3.6 0.4 2.1 4.2 0.4 2.8	0 21 3 16 114 29
 247 248 249 250 251 252 253 254 	Nutritional Support for Abdominal Sepsis. Hot Topics in Acute Care Surgery and Trauma, 2018, , 389-405.Anabolic Therapy for the Treatment of Osteoporosis in Childhood. Current Osteoporosis Reports, 2018, 16, 269-276.Long-lasting Glucagon-like Peptide 1 Analogue Exendin-4 Ameliorates the Secretory and Synthetic Function of Islets Isolated From Severely Scalded Rats. Journal of Burn Care and Research, 2018, 39, 545-554.Burn Trauma Acutely Increases the Respiratory Capacity and Function of Liver Mitochondria. Shock, 2018, 49, 466-473.Pathophysiological Response to Burn Injury in Adults. Annals of Surgery, 2018, 267, 576-584.Propranolol and Oxandrolone Therapy Accelerated Muscle Recovery in Burned Children. Medicine and Science in Sports and Exercise, 2018, 50, 427-435.Age-related immune responses after burn and inhalation injury are associated with altered clinical outcomes. Experimental Gerontology, 2018, 105, 78-86.Septic predictor index: A novel platform to identify thermally injured patients susceptible to sepsis. Surgery, 2018, 163, 409-414.	0.1 3.6 0.4 2.1 4.2 0.4 2.8 1.9	0 21 3 16 114 29 10 15

		CITATION REPORT		
#	Article		IF	CITATIONS
256	Nutritional therapy for burns in children. Journal of Emergency and Critical Care Medic	ne, 0, 2, 54-54.	0.7	1
257	A population-based comparison study of the mental health of patients with intentiona unintentional burns. Burns and Trauma, 2018, 6, 31.	l and	4.9	20
258	Effects of a restrictive blood transfusion protocol on acute pediatric burn care: Transfu threshold in pediatric burns. Journal of Trauma and Acute Care Surgery, 2018, 85, 104	ısion 8-1054.	2.1	13
259	The changes and prognostic value of liver function in young adults with severe burn. N (United States), 2018, 97, e13721.	ledicine	1.0	12
260	Major trauma and acceleration of the ageing process. Ageing Research Reviews, 2018,	48, 32-39.	10.9	12
261	Vitamin C in burns, sepsis, and trauma. Journal of Trauma and Acute Care Surgery, 201	8, 85, 782-787.	2.1	7
262	Renal Replacement Therapy in Severe Burns: A Multicenter Observational Study. Journa and Research, 2018, 39, 1017-1021.	al of Burn Care	0.4	27
263	The model for computation of electroaerosol flows for burn injuries treatment. , 2018,			2
264	Biomarkers in Burn Patient Care. , 2018, , 232-235.e2.			6
265	The Hepatic Response to Thermal Injury. , 2018, , 259-267.e3.			5
266	Nutritional Needs and Support for the Burned Patient. , 2018, , 287-300.e2.			5
267	Modulation of the Hypermetabolic Response after Burn Injury. , 2018, , 301-306.e3.			7
268	Etiology and Prevention of Multisystem Organ Failure. , 2018, , 307-317.e5.			4
269	Critical Care in the Severely Burned. , 2018, , 328-354.e4.			3
270	A retrospective cohort study to compare post-injury admissions for infectious diseases patients, non-burnÂtrauma patients and uninjured people. Burns and Trauma, 2018, 6	; in burn , 17.	4.9	5
271	Sepsis criteria versus clinical diagnosis of sepsis in burn patients: A validation of currer scores. Surgery, 2018, 164, 1241-1245.	t sepsis	1.9	42
272	Accumulation of myeloid lineage cells is mapping out liver fibrosis post injury: a target using Ketanserin. Experimental and Molecular Medicine, 2018, 50, 1-13.	able lesion	7.7	7
273	Chronic Critical Illness and the Persistent Inflammation, Immunosuppression, and Cata Syndrome. Frontiers in Immunology, 2018, 9, 1511.	bolism	4.8	167

#	Article	IF	CITATIONS
274	Estimated versus achieved maximal oxygen consumption in severely burned children maximal oxygen consumption in burned children. Burns, 2018, 44, 2026-2033.	1.9	5
275	Vitamin D status and its influence on outcomes following major burn injury and critical illness. Burns and Trauma, 2018, 6, 11.	4.9	23
276	Buprenorphine-Sustained Release Alters Hemodynamic Parameters in a Rat Burn Model. Journal of Surgical Research, 2018, 232, 154-159.	1.6	8
278	HMGB1/IL-1β complexes in plasma microvesicles modulate immune responses to burn injury. PLoS ONE, 2018, 13, e0195335.	2.5	33
279	Incidence of Laryngotracheal Stenosis after Thermal Inhalation Airway Injury. Journal of Burn Care and Research, 2019, 40, 961-965.	0.4	7
280	1H-NMR Metabolomics Identifies Significant Changes in Metabolism over Time in a Porcine Model of Severe Burn and Smoke Inhalation. Metabolites, 2019, 9, 142.	2.9	7
281	Nutrition for Chronic Critical Illness and Persistent Inflammatory, Immunosuppressed, Catabolic Syndrome. , 2019, , 407-413.		2
282	Mussel-Inspired Hydrogel with Potent <i>in Vivo</i> Contact-Active Antimicrobial and Wound Healing Promoting Activities. ACS Applied Bio Materials, 2019, 2, 3329-3340.	4.6	58
283	Hypercoagulation and Hypermetabolism of Fibrinogen in Severely Burned Adults. Journal of Burn Care and Research, 2019, 41, 23-29.	0.4	2
284	PrescripciÃ ³ n del ejercicio fÃsico y sus implicaciones en adultos que han sufrido quemaduras. Revista Facultad De Medicina, 2019, 67, 135-143.	0.2	0
285	Burn-induced reductions in mitochondrial abundance and efficiency are more pronounced with small volumes of colloids in swine. American Journal of Physiology - Cell Physiology, 2019, 317, C1229-C1238.	4.6	10
286	Cardiac Structure and Function in Well-Healed Burn Survivors. Journal of Burn Care and Research, 2019, 40, 235-241.	0.4	10
287	Myocardial Adipose Triglyceride Lipase Overexpression Protects against Burn-Induced Cardiac Lipid Accumulation and Injury. Oxidative Medicine and Cellular Longevity, 2019, 2019, 1-16.	4.0	2
288	Anti-Xa guided enoxaparin dose adjustment improves pharmacologic deep venous thrombosis prophylaxis in burn patients. Burns, 2019, 45, 818-824.	1.9	19
289	Mitochondrial DNA-Induced Inflammatory Responses and Lung Injury in Thermal Injury Murine Model: Protective Effect of Cyclosporine-A. Journal of Burn Care and Research, 2019, 40, 355-360.	0.4	25
290	Emerging trends of antimicrobial susceptibility and resistance in burn patients. Burns Open, 2019, 3, 51-55.	0.5	2
291	Blood–Brain Barrier Dysfunction After Smoke Inhalation Injury, With and Without Skin Burn. Shock, 2019, 51, 634-649.	2.1	12
292	Novel pharmacotherapy for burn wounds: what are the advancements. Expert Opinion on Pharmacotherapy, 2019, 20, 305-321.	1.8	26

#	Article	IF	CITATIONS
293	The time-course of the inflammatory response to major burn injury and its relation to organ failure and outcome. Burns, 2019, 45, 354-363.	1.9	49
294	Relationship between lean body mass and isokinetic peak torque of knee extensors and flexors in severely burned children. Burns, 2019, 45, 114-119.	1.9	6
295	Effects of Community-Based Exercise in Adults With Severe Burns: A Randomized Controlled Trial. Archives of Physical Medicine and Rehabilitation, 2020, 101, S36-S41.	0.9	10
296	Potential role of adipose tissue and its hormones in burns and critically III patients. Burns, 2020, 46, 259-266.	1.9	7
297	IL-1β–Primed Mesenchymal Stromal Cells Improve Epidermal Substitute Engraftment and Wound Healing via Matrix Metalloproteinases and Transforming Growth Factor-β1. Journal of Investigative Dermatology, 2020, 140, 688-698.e21.	0.7	31
298	Results of a Multicenter Feasibility Study of an Automated Bedside Glucose Monitoring System in the Burn Intensive Care Setting. Journal of Burn Care and Research, 2020, 41, 535-538.	0.4	2
299	Mouse models in burns research: Characterisation of the hypermetabolic response to burn injury. Burns, 2020, 46, 663-674.	1.9	30
300	Determination of Serum Levels of Interleukin-6, Interleukin-8, Interleukin-10, and Tumor Necrosis-Alpha and their Relationship With The Total Body Surface Area in Children. Journal of Burn Care and Research, 2020, 41, 539-543.	0.4	7
301	Assessing the effects of 6 weeks of intermittent aerobic exercise on aerobic capacity, muscle fatigability, and quality of life in diabetic burned patients: Randomized control study. Burns, 2020, 46, 1193-1200.	1.9	8
302	Increased oxidative phosphorylation in lymphocytes does not atone for decreased cell numbers after burn injury. Innate Immunity, 2020, 26, 403-412.	2.4	6
303	Inhibition of Lipolysis With Acipimox Attenuates Postburn White Adipose Tissue Browning and Hepatic Fat Infiltration. Shock, 2020, 53, 137-145.	2.1	17
304	An Australian study of long-term hospital admissions and costs comparing patients with unintentional burns and uninjured people. Burns, 2020, 46, 199-206.	1.9	4
305	Current problems in burn hypermetabolism. Current Problems in Surgery, 2020, 57, 100709.	1.1	18
306	The Effect of Burn Resuscitation Volumes on the Gut Microbiome in a Swine Model. Shock, 2020, 54, 368-376.	2.1	9
307	Anabolic and anticatabolic agents used in burn care: What is known and what is yet to be learned. Burns, 2020, 46, 19-32.	1.9	14
308	Hepatic inflammation after burn injury is associated with necroptotic cell death signaling. Journal of Trauma and Acute Care Surgery, 2020, 89, 768-774.	2.1	11
309	Bioelements in the treatment of burn injuries – The complex review of metabolism and supplementation (copper, selenium, zinc, iron, manganese, chromium and magnesium). Journal of Trace Elements in Medicine and Biology, 2020, 62, 126616.	3.0	24
310	Adipose Tissue Metabolic Function and Dysfunction: Impact of Burn Injury. Frontiers in Cell and Developmental Biology, 2020, 8, 599576.	3.7	13

#	Article	IF	CITATIONS
311	Pediatric Burn Survivors Have Long-Term Immune Dysfunction With Diminished Vaccine Response. Frontiers in Immunology, 2020, 11, 1481.	4.8	13
312	The Pediatric Burn. Anesthesiology Clinics, 2020, 38, 517-530.	1.4	5
313	Role and mechanism of PI3K/AKT/FoxO1/PDX-1 signaling pathway in functional changes of pancreatic islets in rats after severe burns. Life Sciences, 2020, 258, 118145.	4.3	19
314	Six-minute walk test in burned subjects: Applicability, reproducibility and performance at hospital discharge. Burns, 2020, 46, 1540-1547.	1.9	4
315	Burn Shock and Resuscitation: Many Priorities, One Goal. , 0, , .		5
316	Pathological Responses of Cardiac Mitochondria to Burn Trauma. International Journal of Molecular Sciences, 2020, 21, 6655.	4.1	7
318	Age-dependent influence of premorbid underweight status on mortality in severe burn patients: An administrative database study. Burns, 2020, 47, 1314-1321.	1.9	1
319	Plasma glucagon-like peptide 1 was associated with hospital-acquired infections and long-term mortality in burn patients. Surgery, 2020, 167, 1016-1022.	1.9	4
320	Scientific Impact and Clinical Influence: Identifying Landmark Studies in Burns. Journal of Burn Care and Research, 2020, 41, 1240-1252.	0.4	3
321	Expression of Pancreatic Stone Protein is Unaffected by Trauma and Subsequent Surgery in Burn Patients. World Journal of Surgery, 2020, 44, 3000-3009.	1.6	8
322	Pharmacokinetics and pharmacodynamics of TTI-101, a STAT3 inhibitor that blocks muscle proteolysis in rats with chronic kidney disease. American Journal of Physiology - Renal Physiology, 2020, 319, F84-F92.	2.7	15
323	Safety, Pharmacodynamics, and Efficacy of High- Versus Low-Dose Ascorbic Acid in Severely Burned Adults. Journal of Burn Care and Research, 2020, 41, 871-877.	0.4	11
324	Burns: modified metabolism and the nuances of nutrition therapy. Journal of Wound Care, 2020, 29, 184-191.	1.2	9
325	Early Enteral Nutrition in Geriatric Burn Patients: Is There a Benefit?. Journal of Burn Care and Research, 2020, 41, 986-991.	0.4	4
326	The benefits of an unsupervised exercise program in persons with well-healed burn injuries within the International Classification of Functioning, Disability and Health (ICF). Burns, 2020, 46, 1280-1288.	1.9	5
327	NLRP3 Inflammasome in Inflammation and Metabolism: Identifying Novel Roles in Postburn Adipose Dysfunction. Endocrinology, 2020, 161, .	2.8	10
328	Effectiveness and mechanism study of glutamine on alleviating hypermetabolism in burned rats. Nutrition, 2020, 79-80, 110934.	2.4	4
329	Geometric framework reveals that a moderate protein, high carbohydrate intake is optimal for severe burn injury in mice. British Journal of Nutrition, 2020, 123, 1056-1067.	2.3	3

#	Article	IF	Citations
330	Laryngotracheal Reconstruction in the Pediatric Burn Patient: Surgical Techniques and Decision Making. Journal of Burn Care and Research, 2020, 41, 882-886.	0.4	1
331	Management Outcome of Burn Injury and Associated Factors among Hospitalized Children at Ayder Referral Hospital, Tigray, Ethiopia. International Journal of Pediatrics (United Kingdom), 2020, 2020, 1-9.	0.8	16
332	Review: Insulin resistance and mitochondrial dysfunction following severe burn injury. Peptides, 2020, 126, 170269.	2.4	10
333	Burn injury. Nature Reviews Disease Primers, 2020, 6, 11.	30.5	564
334	ls persistent critical illness a syndrome of ongoing inflammation/immunosuppression/catabolism?. , 2020, , 285-290.e1.		0
335	Assessing the NephroCheck® Test System in Predicting the Risk of Death or Dialysis in Burn Patients. Journal of Burn Care and Research, 2020, 41, 633-639.	0.4	3
336	Burns as the Outlier in Early Enteral Nutrition in Critical Illness. Current Surgery Reports, 2020, 8, 1.	0.9	1
337	Evaluation of Tp-e interval and Tp-e/QT ratio in major burn patients. Journal of Electrocardiology, 2020, 60, 67-71.	0.9	2
338	Commentary regarding the impact of malnutrition (nutritional imbalance) on pediatric surgical outcome. Journal of Pediatric Surgery, 2021, 56, 446-448.	1.6	0
339	Influence of burn severity on endothelial glycocalyx shedding following thermal trauma: A prospective observational study. Burns, 2021, 47, 621-627.	1.9	8
340	Multicentre observational study describing the systemic response to small-area burns in children. Burns, 2021, 47, 560-568.	1.9	3
341	Measures of Systemic Innate Immune Function Predict the Risk of Nosocomial Infection in Pediatric Burn Patients. Journal of Burn Care and Research, 2021, 42, 488-494.	0.4	7
342	Predictability of exercise capacity following pediatric burns: a preliminary investigation. Disability and Rehabilitation, 2021, 43, 703-712.	1.8	1
343	Red wine-inspired tannic acid–KH561 copolymer: its adhesive properties and its application in wound healing. RSC Advances, 2021, 11, 5182-5191.	3.6	9
344	Pseudomonal Meningoencephalitis With Ventriculitis Secondary to Bacteremia in a Burn Patient: A Novel Case. Journal of Burn Care and Research, 2021, 42, 832-835.	0.4	2
345	The pathogenesis and diagnosis of sepsis post burn injury. Burns and Trauma, 2021, 9, tkaa047.	4.9	63
347	Persistent Systemic Inflammation in Patients With Severe Burn Injury Is Accompanied by Influx of Immature Neutrophils and Shifts in T Cell Subsets and Cytokine Profiles. Frontiers in Immunology, 2020, 11, 621222.	4.8	41
348	Metabolic alterations in the critically ill child: a narrative review. Pediatric Medicine, 0, 4, 8-8.	2.7	3

#	Article	IF	CITATIONS
349	A prospective pilot study of the energy balance profiles in acute non-severe burn patients. Burns, 2022, 48, 184-190.	1.9	5
350	Contemporary Aspects of Burn Care. Medicina (Lithuania), 2021, 57, 386.	2.0	5
351	Managing Persistent Hypertension and Tachycardia Following Septic Shock, Limb Ischemia, and Amputation: The Role for β-Blockade. Clinical Pediatrics, 2021, 60, 226-229.	0.8	0
352	Validation of the modified NUTrition Risk Score (mNUTRIC) in mechanically ventilated, severe burn patients: A prospective multinational cohort study. Burns, 2021, 47, 1739-1747.	1.9	5
353	Electrical and visible light dual-responsive ZnO nanocomposite with multiple wound healing capability. Materials Science and Engineering C, 2021, 124, 112066.	7.3	13
354	Glucose Metabolism in Burns—What Happens?. International Journal of Molecular Sciences, 2021, 22, 5159.	4.1	7
355	Chronic Critical Illness and PICS Nutritional Strategies. Journal of Clinical Medicine, 2021, 10, 2294.	2.4	8
356	Adiposeâ€specific ATGL ablation reduces burn injuryâ€induced metabolic derangements in mice. Clinical and Translational Medicine, 2021, 11, e417.	4.0	16
357	Muscle deteriorations become prominent within 24 hours after admission in severely burned adults. Journal of Trauma and Acute Care Surgery, 2021, 91, S176-S181.	2.1	0
358	Histological Studies on a Newly Isolated Bacillus subtilis D10 Protease in the Debridement of Burn Wound Eschars Using Mouse Model. Pharmaceutics, 2021, 13, 923.	4.5	6
359	Cardiopulmonary Exercise Testing in Critically Ill Coronavirus Disease 2019 Survivors: Evidence of a Sustained Exercise Intolerance and Hypermetabolism. , 2021, 3, e0491.		12
360	Burn-Induced Cardiac Dysfunction: AÂBrief Review and Long-Term Consequences for Cardiologists in ClinicalÂPractice. Heart Lung and Circulation, 2021, 30, 1829-1833.	0.4	0
361	Characteristics and predictors of mortality in-hospital mortality following burn injury in infants in a resource-limited setting. Burns, 2022, 48, 602-607.	1.9	1
362	An Exploratory Study Demonstrating That Salivary Cytokine Profiles Are Altered in Children With Small Area Thermal Injury. Journal of Burn Care and Research, 2022, 43, 613-624.	0.4	4
363	Long-term sequelae of critical illness in sepsis, trauma and burns: A systematic review and meta-analysis. Journal of Trauma and Acute Care Surgery, 2021, 91, 736-747.	2.1	13
364	Rehabilitative Exercise Training for Burn Injury. Sports Medicine, 2021, 51, 2469-2482.	6.5	14
365	Cerium Nitrate Treatment in the Management of Burns. Advances in Wound Care, 2022, 11, 443-454.	5.1	2
366	Hypoglycemic episodes predict length of stay in patients with acute burns. Journal of Critical Care, 2021, 64, 68-73.	2.2	1

#	Article	IF	CITATIONS
367	Lipid engineered nanoparticle therapy for burn wound treatment. Current Pharmaceutical Biotechnology, 2021, 22, .	1.6	1
368	Circulating sFasL Levels Predict the Severity and Outcome of Burn Injury: A Prospective Observational Study. Journal of Surgical Research, 2021, 265, 1-10.	1.6	3
369	Response of Aerobic Capacity to Low-Level Laser Therapy in Burned Patients. Journal of Burn Care and Research, 2021, , .	0.4	1
370	Effects of Wii Fit Rehabilitation on Lower Extremity Functional Status in Adults With Severe Burns: A Randomized Controlled Trial. Archives of Physical Medicine and Rehabilitation, 2022, 103, 289-296.	0.9	0
371	Improving respiratory muscle strength and health status in burn patients: a randomized controlled trial. Quality of Life Research, 2022, 31, 769-776.	3.1	3
372	The status quo of early burn wound excision: Insights from the German burn registry. Burns, 2021, 47, 1259-1264.	1.9	5
373	Skeletal muscle wasting after a severe burn is a consequence of cachexia and sarcopenia. Journal of Parenteral and Enteral Nutrition, 2021, 45, 1627-1633.	2.6	3
374	DATING DRY BURN INJURY IN HUMAN PATIENTS BY FLOW CYTOMETRY OF CD4+ AND CD8+ T-CELLS IN THE BLOOD. The Egyptian Journal of Forensic Sciences and Applied Toxicology, 2021, 21, 61-73.	0.2	0
375	Drugs Interfering with Insulin Resistance and Their Influence on the Associated Hypermetabolic State in Severe Burns: A Narrative Review. International Journal of Molecular Sciences, 2021, 22, 9782.	4.1	8
377	Role of metabolomics to investigate combined effect of radiation and burn. , 2021, , 401-420.		0
378	A review of potential biomarkers for assessing physical and psychological trauma in paediatric burns. Burns and Trauma, 2021, 9, tkaa049.	4.9	8
379	Burn Rehabilitation. , 2011, , 1403-1417.		1
381	Clinical predictors of pulmonary functions, respiratory/peripheral muscle strength and exercise capacity at discharge in adults with burn injury. Disability and Rehabilitation, 2021, 43, 2875-2881.	1.8	12
382	Hepatic Apoptosis Postburn Is Mediated by C-Jun N-Terminal Kinase 2. Shock, 2013, 39, 183-188.	2.1	12
383	Dietary intake and Biochemical Indicators and their association with Wound Healing Process among Adult Burned Patients in the Gaza Strip. Current Research in Nutrition and Food Science, 2019, 7, 169-181.	0.8	1
384	Enteral Nutrition Support in Burn Care: A Review of Current Recommendations as Instituted in the Ross Tilley Burn Centre. Nutrients, 2012, 4, 1554-1565.	4.1	53
386	Beyond the Acute Phase: Understanding Relationships Among Cardiorespiratory Response to Exercises, Physical Activity Levels, and Quality of Life in Children After Burn Injuries. Journal of Burn Care and Research, 2022, 43, 827-833.	0.4	1
387	Histological Changes and Testicular Dysfunction in Severely Burned Rats. Macedonian Journal of Medical Sciences, 2011, 4, 227-233.	0.0	1

\sim	T A T I	ON	DEDO	DT
			REDU	
<u> </u>	/		ILLI U	- C - L

#	Article	IF	CITATIONS
389	Browning of subcutaneous white adipose tissue in humans after severe adrenergic stress (1160.5). FASEB Journal, 2014, 28, 1160.5.	0.5	1
390	THE STATE OF THE ANTIOXIDANT SYSTEM OF THE INTERNAL ORGANS IN RATS DURING BURN DISEASE. Bulletin of Siberian Medicine, 2014, 13, 51-55.	0.3	1
391	Burns Cardiomyopathy in a Nigerian Child. Journal of Cardiovascular Disease Research (discontinued), 2015, 6, 200-203.	0.1	0
392	Hypermetabolic Response to Burn Injury. , 2016, , 227-245.		2
393	Morphological Changes in the Rats' Myocardium under the Conditions of Infusion Correction of the Experimental Burning Disease. UkraÃ⁻nsʹkij žurnal Medicini BìologìÃ⁻ Ta Sportu, 2017, 2, 69-73.	0.2	0
394	Burns in the Older Adult. , 2019, , 1-11.		0
395	Pathophysiology of Burn Injuries. , 2020, , 229-245.		2
396	Critical Care in Burns. , 2020, , 255-278.		1
397	The intensity of the processes of oxidative modification of proteins and the activity of enzymes of the antioxidant protection system of broiler chickens under the action of vitamins E and C. Ukrainian Journal of Veterinary and Agricultural Sciences, 2019, 2, 19-22.	0.5	0
398	Secondary Hypertension of Other Type. , 2020, , 683-748.		0
399	Antioxidants Reduce Tissue Necrosis in The Zone of Stasis: Review of Burn Wound Conversion. Jurnal Plastik Rekonstruksi, 2020, 7, 18-28.	0.2	2
400	Syndrome of persistent inflammation, the immune suppression and catabolism in surgery. Klinichna Khirurhiia, 2020, 87, 78-85.	0.2	1
401	Pediatric burn resuscitation, management, and recovery for the pediatric anesthesiologist. Current Opinion in Anaesthesiology, 2020, 33, 360-367.	2.0	3
402	Meta-analysis of peptides to detect protein significance. Statistics and Its Interface, 2020, 13, 465-474.	0.3	0
403	An Assessment of Research Priorities to Dampen the Pendulum Swing of Burn Resuscitation. Journal of Burn Care and Research, 2021, 42, 113-125.	0.4	10
404	Critical Care of Burn Victims Including Inhalation Injury. , 2021, , 37-55.		0
405	Skin Architecture and Function. , 2020, , 27-40.		0
406	Burns in the Older Adult. , 2020, , 1195-1205.		0

#	Article	IF	CITATIONS
407	Effects of inverse ratio ventilation combined with lung protective ventilation on pulmonary function in patients with severe burns for surgery. Libyan Journal of Medicine, 2020, 15, 1767276.	1.6	1
408	Special Considerations in Organ Failure. , 2020, , 285-313.		0
409	Multicentre, longitudinal, observational cohort study to examine the relationship between neutrophil function and sepsis in adults and children with severe thermal injuries: a protocol for the Scientific Investigation of the Biological Pathways Following Thermal Injury-2 (SIFTI-2) study. BMJ Open, 2021, 11, e052035.	1.9	2
410	Ozon Tedavisinin Termal Yanık Yara İyleşmesine Etkisi; Deneysel bir Çaşlışma. Konuralp Tip Dergisi, 20 511-518.	20, 12, 0.3	2
411	MODULATION OF HYPERMETABOLISM IN BURN PATIENTS BY ADMINISTRATION OF PROPRANOLOL IN FIRST TWO WEEKS AND ASSESSING ITS EFFECT BY USING CLINICALAND BIOCHEMICAL PARAMETERS. , 2020, , 84-86.		0
412	Burn enhances toll-like receptor induced responses by circulating leukocytes. International Journal of Clinical and Experimental Medicine, 2012, 5, 136-44.	1.3	13
413	Aging and the pathogenic response to burn. , 2012, 3, 171-80.		27
414	Cardiovascular dysfunction in burns: review of the literature. Annals of Burns and Fire Disasters, 2012, 25, 26-37.	0.3	35
415	Whole body and skeletal muscle protein turnover in recovery from burns. International Journal of Burns and Trauma, 2013, 3, 9-17.	0.2	38
416	Can we use C-reactive protein levels to predict severe infection or sepsis in severely burned patients?. International Journal of Burns and Trauma, 2013, 3, 137-43.	0.2	29
417	Renal dysfunction in burns: a review. Annals of Burns and Fire Disasters, 2013, 26, 16-25.	0.3	25
419	A retrospective study of 572 patients with hand burns treated at the Department of Plastic Surgery Kosovo during the period 2000-2010. International Journal of Burns and Trauma, 2014, 4, 7-13.	0.2	6
421	Alcohol's Burden on Immunity Following Burn, Hemorrhagic Shock, or Traumatic Brain Injury. , 2015, 37, 263-78.		7
422	The utility of C-reactive protein and procalcitonin for sepsis diagnosis in critically burned patients: A preliminary study. Plastic Surgery, 2015, 23, 239-43.	1.0	4
423	Have we really decreased mortality due to severe burn injury in children?. Translational Pediatrics, 2015, 4, 201-2.	1.2	4
424	Progress in burns research: a review of advances in burn pathophysiology. Annals of Burns and Fire Disasters, 2015, 28, 105-15.	0.3	17
425	Burn injury: review of pathophysiology and therapeutic modalities in major burns. Annals of Burns and Fire Disasters, 2017, 30, 95-102.	0.3	55
426	Xanthine oxidase contributes to sustained airway epithelial oxidative stress after scald burn. International Journal of Burns and Trauma, 2017, 7, 98-106.	0.2	5

#	Article	IF	CITATIONS
427	The systemic immune response to pediatric thermal injury. International Journal of Burns and Trauma, 2018, 8, 6-16.	0.2	11
428	The role of invasive monitoring in the resuscitation of major burns: a systematic review and meta-analysis. International Journal of Burns and Trauma, 2019, 9, 28-40.	0.2	4
429	Impact of clinical factors on calorie and protein intakes during Icu stay in adults trauma patients: results from a prospective observational study. International Journal of Burns and Trauma, 2019, 9, 59-65.	0.2	0
430	Effects of empirical antibiotic administration on the level of C-Reactive protein and inflammatory markers in severe burn patients. Annals of Burns and Fire Disasters, 2020, 33, 20-26.	0.3	2
431	Profile and factors influencing resting energy expenditure in adult burn patients. International Journal of Burns and Trauma, 2020, 10, 55-59.	0.2	0
432	Post-burn temporal dynamics of blood plasma histamine during the initial 6 days from injury. International Journal of Burns and Trauma, 2020, 10, 68-75.	0.2	0
433	Influence of inhalation injury on resting energy expenditure and plasma metabolic hormones in adult burn patients. Annals of Burns and Fire Disasters, 2020, 33, 112-115.	0.3	0
434	Changing of serum metabolic hormone and liver size during acute phase of severe adult burn patients. International Journal of Burns and Trauma, 2020, 10, 107-112.	0.2	0
435	Prevalence, species distribution, and risk factors of fungal colonization and infection in patients at a burn intensive care unit in Vietnam. Current Medical Mycology, 2020, 6, 42-49.	0.8	0
436	Effect of Collagen Hydrolysate and Fish Oil on High-Sensitivity C-Reactive Protein and Glucose Homeostasis in Patients with severe Burn; a Randomized Clinical Trial. Archives of Academic Emergency Medicine, 2021, 9, e50.	0.4	1
437	Protective effect of Isoliquiritigenin on skin ischemia-reperfusion injury in rats. Israel Journal of Plant Sciences, 2021, 68, 90-98.	0.5	1
438	Five-Year Retrospective Analysis of a Vented Mobility Algorithm in the Burn ICU. Journal of Burn Care and Research, 2022, 43, 1129-1134.	0.4	2
439	Prevalence, species distribution, and risk factors of fungal colonization and infection in patients at a burn intensive care unit in Vietnam. Current Medical Mycology, 2020, 6, 42-49.	0.8	0
440	Management of non-severe burn wounds in children and adolescents: optimising outcomes through all stages of the patient journey. The Lancet Child and Adolescent Health, 2022, 6, 269-278.	5.6	10
441	Small animal models of thermal injury. Methods in Cell Biology, 2022, 168, 161-189.	1.1	5
442	The involvement of the adrenergic nervous system in activating human brown adipose tissue and browning. Hormones, 2022, 21, 195-208.	1.9	2
443	Controlled dual release of dihydrotestosterone and flutamide from polycaprolactone electrospun scaffolds accelerate burn wound healing. FASEB Journal, 2022, 36, e22310.	0.5	2
444	Urine Hydrogen Peroxide Levels and Their Relation to Outcome in Patients with Sepsis, Septic Shock, and Major Burn Injury. Biomedicines, 2022, 10, 848.	3.2	5

#	Article	IF	CITATIONS
445	Physical, Psychological, and Social Outcomes in Pediatric Burn Survivors Ages 5 to 18 Years: A Systematic Review. Journal of Burn Care and Research, 2022, 43, 343-352.	0.4	8
446	Hepatic Functional Pathophysiology and Morphological Damage Following Severe Burns: A Systematic Review and Meta-analysis. Journal of Burn Care and Research, 2021, , .	0.4	1
447	Techniques to Assess Long-Term Outcomes after Burn Injuries. European Journal of Burn Care, 2022, 3, 328-339.	0.8	1
448	Differential benefits of steroid therapies in adults following major burn injury. Journal of Plastic, Reconstructive and Aesthetic Surgery, 2022, , .	1.0	4
450	Aging Impairs the Cellular Interplay between Myeloid Cells and Mesenchymal Cells during Skin Healing in Mice. , 2022, 13, 540.		4
453	The effects of short bouts of ergometric exercise for severely burned children in intensive care: A randomized controlled trial. Clinical Rehabilitation, 2022, , 026921552210956.	2.2	1
454	Short- and long term hyposmia, hypogeusia, dysphagia and dysphonia after facial burn injury – A prospective matched cohort study. Burns, 2022, , .	1.9	1
455	Long-term laryngotracheal complications after inhalation injury: a scoping review. Journal of Burn Care and Research, 2022, , .	0.4	0
456	Adults with wellâ€healed burn injuries have lower pulmonary function values decades after injury. Physiological Reports, 2022, 10, e15264.	1.7	3
457	Effects Of Oxandrolone On Lean Body Mass (Lbm) In Severe Burn Patients: A Randomized, Double Blind, Placebo-Controlled Trial Annals of Burns and Fire Disasters, 2022, 35, 55-61.	0.3	1
458	RELATIONSHIP OF ZINC LEVEL WITH PATHOGENETICALLY SIGNIFICANT HOMEOSTASIS DISORDERS IN SEVERELY BURNED PATIENTS. Klinichescheskaya Laboratornaya Diagnostika, 2023, 67, .	0.5	3
459	Regulation of Key Immune-Related Genes in the Heart Following Burn Injury. Journal of Personalized Medicine, 2022, 12, 1007.	2.5	3
460	Nutritional Support with Omega-3 Fatty Acids in Burn Patients: A Systematic Review with Meta-Analysis of Randomized Controlled Trials. Nutrients, 2022, 14, 2874.	4.1	2
461	Exercise Limitation after Critical versus Mild COVID-19 Infection: A Metabolic Perspective. Journal of Clinical Medicine, 2022, 11, 4322.	2.4	4
462	Application of nanomedicine and mesenchymal stem cells in burn injuries for the elderly patients. Smart Materials in Medicine, 2023, 4, 78-90.	6.7	3
463	Stress-Induced Cardiomyopathy. , 0, , .		0
464	Assessment of histopathological changes in the thyroid gland of fatal burn patients: A cross-sectional study. Burns Open, 2022, 6, 164-167.	0.5	0
465	Current understanding of thermo(dys)regulation in severe burn injury and the pathophysiological influence of hypermetabolism, adrenergic stress and hypothalamic regulation—a systematic review. Burns and Trauma, 2022, 10, .	4.9	1

#	Article	IF	CITATIONS
466	Systemic anti-inflammatory effects of mesenchymal stem cells in burn: A systematic review of animal studies. Journal of Clinical and Translational Research, 0, , .	0.3	2
467	A bibliometric analysis of publications on burn sepsis using VOSviewer. Frontiers in Medicine, 0, 9, .	2.6	3
468	Genetic and immune crosstalk between severe burns and blunt trauma: A study of transcriptomic data. Frontiers in Genetics, 0, 13, .	2.3	1
469	The Immune and Regenerative Response to Burn Injury. Cells, 2022, 11, 3073.	4.1	27
470	A Spiking Neural Network Based on Retinal Ganglion Cells for Automatic Burn Image Segmentation. Entropy, 2022, 24, 1526.	2.2	2
471	An Introduction to Burns. Physical Medicine and Rehabilitation Clinics of North America, 2022, 33, 871-883.	1.3	1
472	Accurate and early prediction of the wound healing outcome of burn injuries using the wavelet Shannon entropy of terahertz time-domain waveforms. Journal of Biomedical Optics, 2022, 27, .	2.6	7
473	Researches on cognitive sequelae of burn injury: Current status and advances. Frontiers in Neuroscience, 0, 16, .	2.8	3
474	Lipidomic signatures align with inflammatory patterns and outcomes in critical illness. Nature Communications, 2022, 13, .	12.8	19
476	Outcome of burn injury and associated factor among patient visited at Addis Ababa burn, emergency and trauma hospital: a two years hospital-based cross-sectional study. BMC Emergency Medicine, 2022, 22, .	1.9	4
477	Short-term and long-term increased mortality in elderly patients with burn injury: a national longitudinal cohort study. BMC Geriatrics, 2023, 23, .	2.7	2
478	Modulation of Burn Hypermetabolism in Preclinical Models. Cureus, 2023, , .	0.5	1
479	Investigation of the monocyte/highâ€density lipoprotein ratio as a prognostic criterion in burn patients. Wound Repair and Regeneration, 0, , .	3.0	0
480	The Complexity of the Post-Burn Immune Response: An Overview of the Associated Local and Systemic Complications. Cells, 2023, 12, 345.	4.1	17
481	VARIABLES INFLUENCING THE DIFFERENTIAL HOST RESPONSE TO BURNS IN PEDIATRIC AND ADULT PATIENTS. Shock, 2023, 59, 145-154.	2.1	2
482	Current understanding of the chronic stress response to burn injury from human studies. Burns and Trauma, 2023, 11, .	4.9	4
483	Molecular mechanisms of postâ€burn muscle wasting and the therapeutic potential of physical exercise. Journal of Cachexia, Sarcopenia and Muscle, 2023, 14, 758-770.	7.3	7
484	The Potential of Medicinal Plants and Natural Products in the Treatment of Burns and Sunburn—A Review. Pharmaceutics, 2023, 15, 633.	4.5	5

ARTICLE IF CITATIONS # Burns: Classification, Pathophysiology, and Treatment: A Review. International Journal of Molecular 485 4.1 12 Sciences, 2023, 24, 3749. The ultra-acute steroid response to traumatic injury: a cohort study. European Journal of 486 3.7 Endocrinology, 2023, 188, 290-299. 487 The Burn Wound. Surgical Clinics of North America, 2023, , . 1.5 0 Metabolic and Nutritional Support. Surgical Clinics of North America, 2023, 103, 473-482. 488 Critical Care of the Burn Patient. Surgical Clinics of North America, 2023, 103, 415-426. 489 1.51 Burn excision within 48 hours portends better outcomes than standard management: A nationwide analysis. Journal of Trauma and Acute Care Surgery, 2023, 95, 111-115. 2.1 TNF-R1 Cellular Nanovesicles Loaded on the Thermosensitive F-127 Hydrogel Enhance the Repair of 491 5.2 0 Scalded Skin. ACS Biomaterials Science and Engineering, 0, , . Single-nuclei RNA Profiling Reveals Disruption of Adipokine and Inflammatory Signaling in Adipose 4.2 Tissue of Burn Patients. Annals of Surgery, 2023, 278, e1267-e1276. Acute muscle mass loss was alleviated with HMGB1 neutralizing antibody treatment in severe burned 493 3.3 2 rats. Scientific Reports, 2023, 13, . Propranolol normalizes metabolomic signatures thereby improving outcomes after burn. Annals of 494 4.2 Surgery, 0, , . Early cutaneous inflammatory response at different degree of burn and its significance for clinical 495 2.0 1 diagnosis and management. Journal of Tissue Viability, 2023, 32, 550-563. Postburn skeletal muscle wasting is mainly regulated by a decrease in anabolic signaling in the early flow phase. Burns, 2023, , . Effectiveness of Early Physiotherapy Rehabilitation Approach for Split Skin Grafting Post-burn in a 498 0.5 0 Pediatric Patient. Cureus, 2023, , . Pathophysiology and Hypermetabolic Response to Burn., 2023, , 29-84. Fibrosis in burns: an overview of mechanisms and therapies. American Journal of Physiology - Cell 501 4.6 3 Physiology, 2023, 325, C1545-C1557. Tilapia Fish Skin Treatment of Third-Degree Skin Burns in Murine Model. Journal of Functional 4.4 Biomaterials, 2023, 14, 512. Traversing the blaze: Uncovering the challenges in burn care for older adults. Surgery, 2023, 174, 503 1.9 0 1279-1280. Monocytes and T cells incorporated in full skin equivalents to study innate or adaptive immune 504 4.8 reactions after burn injury. Frontiers in Immunology, 0, 14, .

#	Article	IF	CITATIONS
505	Metallicâ€Polyphenolic Nanoparticles Reinforced Cationic Guar Gum Hydrogel for Effectively Treating Burn Wound. Macromolecular Bioscience, 0, , .	4.1	0
506	Mesenchymal stem cell transplantation in burn wound healing: uncovering the mechanisms of local regeneration and tissue repair. Histochemistry and Cell Biology, 0, , .	1.7	2
507	Fish Skin Grafts Affect Adenosine and Methionine Metabolism during Burn Wound Healing. Antioxidants, 2023, 12, 2076.	5.1	0
508	Comparing the Effectiveness of Glucocorticoids in Preventing Hypertrophic Scar Diagnosis in Burn Patients. Medicina (Lithuania), 2023, 59, 1970.	2.0	0
509	CytoSorb® in burn patients with septic shock and Acute Kidney Injury on Continuous Kidney Replacement Therapy is associated with improved clinical outcome and survival. Burns, 2024, , .	1.9	0