Identification of discrete tumor-induced myeloid-deriv with distinct T cell–suppressive activity

Blood

111, 4233-4244

DOI: 10.1182/blood-2007-07-099226

Citation Report

#	Article	IF	CITATIONS
1	Differential effects of malignant mesothelioma cells on THP-1 monocytes and macrophages. International Journal of Oncology, 1992, 34, 543.	3.3	8
2	From phagocyte diversity and activation to probiotics: Back to Metchnikoff. European Journal of Immunology, 2008, 38, 3269-3273.	2.9	70
3	Immune modulation by melanomaâ€derived factors. Experimental Dermatology, 2008, 17, 977-985.	2.9	69
4	Blood monocytes: distinct subsets, how they relate to dendritic cells, and their possible roles in the regulation of Tâ€cell responses. Immunology and Cell Biology, 2008, 86, 398-408.	2.3	329
5	Modulation of the antitumor immune response by complement. Nature Immunology, 2008, 9, 1225-1235.	14.5	612
6	The role of myeloid cells in the promotion of tumour angiogenesis. Nature Reviews Cancer, 2008, 8, 618-631.	28.4	1,404
7	Role of myeloid cells in tumor angiogenesis and growth. Trends in Cell Biology, 2008, 18, 372-378.	7.9	149
8	Proinflammatory S100 Proteins Regulate the Accumulation of Myeloid-Derived Suppressor Cells. Journal of Immunology, 2008, 181, 4666-4675.	0.8	634
9	Subsets of Myeloid-Derived Suppressor Cells in Tumor-Bearing Mice. Journal of Immunology, 2008, 181, 5791-5802.	0.8	1,447
10	Transforming Growth Factor \hat{I}^2 : Tumor Suppressor or Promoter? Are Host Immune Cells the Answer?. Cancer Research, 2008, 68, 9107-9111.	0.9	129
11	Mononuclear myeloid-derived "suppressor―cells express RAE-1 and activate natural killer cells. Blood, 2008, 112, 4080-4089.	1.4	142
12	Macrophages, PPARs, and Cancer. PPAR Research, 2008, 2008, 1-11.	2.4	41
13	Cancer-Expanded Myeloid-Derived Suppressor Cells Induce Anergy of NK Cells through Membrane-Bound TGF-Î ² 1. Journal of Immunology, 2009, 182, 240-249.	0.8	680
14	Immunosuppressive Myeloid-Derived Suppressor Cells Can Be Converted into Immunogenic APCs with the Help of Activated NKT Cells: An Alternative Cell-Based Antitumor Vaccine. Journal of Immunology, 2009, 182, 1818-1828.	0.8	117
15	Modulating the Expression of IFN Regulatory Factor 8 Alters the Protumorigenic Behavior of CD11b+Gr-1+ Myeloid Cells. Journal of Immunology, 2009, 183, 117-128.	0.8	39
16	Innate Immune CD11b+Gr-1+ Cells, Suppressor Cells, Affect the Immune Response during Theiler's Virus-Induced Demyelinating Disease. Journal of Immunology, 2009, 183, 6971-6980.	0.8	47
17	Sunitinib Mediates Reversal of Myeloid-Derived Suppressor Cell Accumulation in Renal Cell Carcinoma Patients. Clinical Cancer Research, 2009, 15, 2148-2157.	7.0	792
18	Tumor and iatrogenic regulation of myeloid precursors and their potential to limit immune therapy. Immunotherapy, 2009, 1, 5-9.	2.0	O

#	ARTICLE	IF	CITATIONS
19	Vascular Adhesion Protein-1 Enhances Tumor Growth by Supporting Recruitment of Gr-1+CD11b+ Myeloid Cells into Tumors. Cancer Research, 2009, 69, 7875-7883.	0.9	60
20	Endotoxin-Induced Myeloid-Derived Suppressor Cells Inhibit Alloimmune Responses via Heme Oxygenase-1. American Journal of Transplantation, 2009, 9, 2034-2047.	4.7	139
21	Tumor-associated macrophages: Effectors of angiogenesis and tumor progression. Biochimica Et Biophysica Acta: Reviews on Cancer, 2009, 1796, 11-18.	7.4	212
22	Polarization of Tumor-Associated Neutrophil Phenotype by TGF-β: "N1―versus "N2―TAN. Cancer Cell, 2009, 16, 183-194.	16.8	2,522
23	Regulatory T cells control macrophage accumulation and activation in lymphoma. International Journal of Cancer, 2010, 127, 1131-1140.	5.1	22
24	Myeloidâ€derived suppressor cell activation by combined LPS and IFNâ€Î³ treatment impairs DC development. European Journal of Immunology, 2009, 39, 2865-2876.	2.9	217
25	Gr‹ antibody induces STAT signaling, macrophage marker expression and abrogation of myeloidâ€derived suppressor cell activity in BM cells. European Journal of Immunology, 2009, 39, 3538-3551.	2.9	83
26	Myeloidâ€derived suppressor cells in inflammation: Uncovering cell subsets with enhanced immunosuppressive functions. European Journal of Immunology, 2009, 39, 2670-2672.	2.9	126
27	Hierarchy of immunosuppressive strength among myeloidâ€derived suppressor cell subsets is determined by GMâ€CSF. European Journal of Immunology, 2010, 40, 22-35.	2.9	479
28	Pitfalls on the roadmap to $\hat{I}^3\hat{I}^*$ T cell-based cancer immunotherapies. Immunology Letters, 2009, 124, 1-8.	2.5	35
29	Myeloid-derived suppressor cells: A novel therapeutic target. Current Oncology Reports, 2009, 11, 87-93.	4.0	58
30	Tumor eradication after cyclophosphamide depends on concurrent depletion of regulatory T cells: a role for cycling TNFR2-expressing effector-suppressor T cells in limiting effective chemotherapy. Cancer Immunology, Immunotherapy, 2009, 58, 1219-1228.	4.2	127
31	Regulation of triggering receptor expressed on myeloid cells 1 expression on mouse inflammatory monocytes. Immunology, 2009, 128, 185-195.	4.4	29
32	Increase in frequency of myeloidâ€derived suppressor cells in mice with spontaneous pancreatic carcinoma. Immunology, 2009, 128, 141-149.	4.4	111
33	Myeloid Dendritic Cells from Human Cutaneous Squamous Cell Carcinoma Are Poor Stimulators of T-Cell Proliferation. Journal of Investigative Dermatology, 2009, 129, 2451-2462.	0.7	79
34	The novel immunosuppressive enzyme IL4I1 is expressed by neoplastic cells of several B-cell lymphomas and by tumor-associated macrophages. Leukemia, 2009, 23, 952-960.	7.2	84
35	Myeloid-derived suppressor cells as regulators of the immune system. Nature Reviews Immunology, 2009, 9, 162-174.	22.7	5,655
36	Arginase: an emerging key player in the mammalian immune system. British Journal of Pharmacology, 2009, 158, 638-651.	5.4	589

#	Article	IF	CITATIONS
37	Therapeutic targeting of myeloid-derived suppressor cells. Current Opinion in Pharmacology, 2009, 9, 470-481.	3.5	188
38	Cellular and molecular pathways linking inflammation and cancer. Immunobiology, 2009, 214, 761-777.	1.9	238
39	Polymorphonuclear neutrophils and T lymphocytes: strange bedfellows or brothers in arms?. Trends in Immunology, 2009, 30, 522-530.	6.8	237
40	Mechanism Regulating Reactive Oxygen Species in Tumor-Induced Myeloid-Derived Suppressor Cells. Journal of Immunology, 2009, 182, 5693-5701.	0.8	655
41	Blood Monocytes: Development, Heterogeneity, and Relationship with Dendritic Cells. Annual Review of Immunology, 2009, 27, 669-692.	21.8	1,345
42	Myeloid-Derived Suppressor Cells: Linking Inflammation and Cancer. Journal of Immunology, 2009, 182, 4499-4506.	0.8	1,524
43	TGFß, a Potent Regulator of Tumor Microenvironment and Host Immune Response, Implication for Therapy. Current Molecular Medicine, 2010, 10, 374-380.	1.3	40
44	Myeloid-Derived Suppressor Cells in Human Cancer. Cancer Journal (Sudbury, Mass), 2010, 16, 348-353.	2.0	203
45	Immune Tolerance Induction by Integrating Innate and Adaptive Immune Regulators. Cell Transplantation, 2010, 19, 253-268.	2.5	25
46	Targeting distinct tumor-infiltrating myeloid cells by inhibiting CSF-1 receptor: combating tumor evasion of antiangiogenic therapy. Blood, 2010, 115, 1461-1471.	1.4	316
47	Bone marrow myeloid-derived suppressor cells (MDSCs) inhibit graft-versus-host disease (GVHD) via an arginase-1–dependent mechanism that is up-regulated by interleukin-13. Blood, 2010, 116, 5738-5747.	1.4	384
48	A Ribonucleotide Reductase Inhibitor Reverses Burn-Induced Inflammatory Defects. Shock, 2010, 34, 535-544.	2.1	21
49	Development of Monocytes, Macrophages, and Dendritic Cells. Science, 2010, 327, 656-661.	12.6	2,471
50	Myeloid-derived suppressor cells: more mechanisms for inhibiting antitumor immunity. Cancer Immunology, Immunotherapy, 2010, 59, 1593-1600.	4.2	470
51	The multiple roles of monocyte subsets in steady state and inflammation. Cellular and Molecular Life Sciences, 2010, 67, 2685-2693.	5.4	102
52	Macrophages, innate immunity and cancer: balance, tolerance, and diversity. Current Opinion in Immunology, 2010, 22, 231-237.	5.5	1,270
53	Subsets, expansion and activation of myeloid-derived suppressor cells. Medical Microbiology and Immunology, 2010, 199, 273-281.	4.8	150
54	The Tumor Microenvironment in Colorectal Carcinogenesis. Cancer Microenvironment, 2010, 3, 149-166.	3.1	179

#	Article	IF	CITATIONS
55	GM-CSF is one of the main breast tumor-derived soluble factors involved in the differentiation of CD11b-Gr1- bone marrow progenitor cells into myeloid-derived suppressor cells. Breast Cancer Research and Treatment, 2010, 123, 39-49.	2.5	179
56	Infiltrating CD11b ⁺ CD11c ⁺ cells have the potential to mediate inducible nitric oxide synthaseâ€dependent cell death in mammary carcinomas of HERâ€2/neu transgenic mice. International Journal of Cancer, 2010, 126, 896-908.	5.1	34
57	Gr-1+CD11b+ myeloid-derived suppressor cells: Formidable partners in tumor metastasis. Journal of Bone and Mineral Research, 2010, 25, 1701-1706.	2.8	47
58	Galectinâ€9 expands immunosuppressive macrophages to ameliorate Tâ€cellâ€mediated lung inflammation. European Journal of Immunology, 2010, 40, 548-558.	2.9	54
59	Cannabinoid receptor activation leads to massive mobilization of myeloidâ€derived suppressor cells with potent immunosuppressive properties. European Journal of Immunology, 2010, 40, 3358-3371.	2.9	86
60	The biology of myeloidâ€derived suppressor cells: The blessing and the curse of morphological and functional heterogeneity. European Journal of Immunology, 2010, 40, 2969-2975.	2.9	497
61	Myeloidâ€derived suppressor cells in parasitic infections. European Journal of Immunology, 2010, 40, 2976-2985.	2.9	107
62	ILâ€1β regulates a novel myeloidâ€derived suppressor cell subset that impairs NK cell development and function. European Journal of Immunology, 2010, 40, 3347-3357.	2.9	264
63	The growing diversity and spectrum of action of myeloidâ€derived suppressor cells. European Journal of Immunology, 2010, 40, 3317-3320.	2.9	80
64	Myeloid-derived suppressor cell heterogeneity and subset definition. Current Opinion in Immunology, 2010, 22, 238-244.	5.5	579
65	Control of immune response by amino acid metabolism. Immunological Reviews, 2010, 236, 243-264.	6.0	273
66	Unravelling mononuclear phagocyte heterogeneity. Nature Reviews Immunology, 2010, 10, 453-460.	22.7	461
67	Mature natural killer cells with phenotypic and functional alterations accumulate upon sustained stimulation with IL-15/IL-15RÎ \pm complexes. Proceedings of the National Academy of Sciences of the United States of America, 2010, 107, 21647-21652.	7.1	112
68	Immature Immunosuppressive CD14+HLA-DRâ^'/low Cells in Melanoma Patients Are Stat3hi and Overexpress CD80, CD83, and DC-Sign. Cancer Research, 2010, 70, 4335-4345.	0.9	366
69	Distinct populations of metastases-enabling myeloid cells expand in the liver of mice harboring invasive and preinvasive intra-abdominal tumor. Journal of Leukocyte Biology, 2009, 87, 713-725.	3.3	88
70	HIF- $1\hat{l}\pm$ regulates function and differentiation of myeloid-derived suppressor cells in the tumor microenvironment. Journal of Experimental Medicine, 2010, 207, 2439-2453.	8.5	966
71	Mechanism of T Cell Tolerance Induced by Myeloid-Derived Suppressor Cells. Journal of Immunology, 2010, 184, 3106-3116.	0.8	342
72	CD49d Is a New Marker for Distinct Myeloid-Derived Suppressor Cell Subpopulations in Mice. Journal of Immunology, 2010, 185, 203-210.	0.8	101

#	Article	IF	CITATIONS
73	Tumor Cell-Released TLR4 Ligands Stimulate Gr-1+CD11b+F4/80+ Cells to Induce Apoptosis of Activated T Cells. Journal of Immunology, 2010, 185, 2773-2782.	0.8	25
74	Hepatic acute-phase proteins control innate immune responses during infection by promoting myeloid-derived suppressor cell function. Journal of Experimental Medicine, 2010, 207, 1453-1464.	8.5	295
75	Anti-inflammatory Triterpenoid Blocks Immune Suppressive Function of MDSCs and Improves Immune Response in Cancer. Clinical Cancer Research, 2010, 16, 1812-1823.	7.0	252
76	<i>Mycobacterium bovis</i> Bacillus Calmette-Guérin Vaccination Mobilizes Innate Myeloid-Derived Suppressor Cells Restraining In Vivo T Cell Priming via IL-1R–Dependent Nitric Oxide Production. Journal of Immunology, 2010, 184, 2038-2047.	0.8	77
77	Different Tumor Microenvironments Contain Functionally Distinct Subsets of Macrophages Derived from Ly6C(high) Monocytes. Cancer Research, 2010, 70, 5728-5739.	0.9	1,018
78	IL-17 Promotes Tumor Development through the Induction of Tumor Promoting Microenvironments at Tumor Sites and Myeloid-Derived Suppressor Cells. Journal of Immunology, 2010, 184, 2281-2288.	0.8	288
79	Tim-3/Galectin-9 Pathway: Regulation of Th1 Immunity through Promotion of CD11b+Ly-6G+ Myeloid Cells. Journal of Immunology, 2010, 185, 1383-1392.	0.8	243
80	Antigen-Specific Immunity and Cross-Priming by Epithelial Ovarian Carcinoma-Induced CD11b+Gr-1+Cells. Journal of Immunology, 2010, 184, 6151-6160.	0.8	42
81	IL-1-induced inflammation promotes development of leishmaniasis in susceptible BALB/c mice. International Immunology, 2010, 22, 245-257.	4.0	58
82	TGF \hat{I}^21 -Induced Inflammation in Premalignant Epidermal Squamous Lesions Requires IL-17. Journal of Investigative Dermatology, 2010, 130, 2295-2303.	0.7	21
83	TLR4/MyD88-induced CD11b+Gr-1intF4/80+ non-migratory myeloid cells suppress Th2 effector function in the lung. Mucosal Immunology, 2010, 3, 578-593.	6.0	101
84	5-Fluorouracil Selectively Kills Tumor-Associated Myeloid-Derived Suppressor Cells Resulting in Enhanced T Cell–Dependent Antitumor Immunity. Cancer Research, 2010, 70, 3052-3061.	0.9	1,098
85	Granulocyte Colony-Stimulating Factors. Cancer Treatment and Research, 2010, 157, 33-53.	0.5	10
86	Myeloid derived suppressor cells and their role in tolerance induction in cancer. Journal of Dermatological Science, 2010, 59, 1-6.	1.9	75
87	Cancer-Associated Myeloproliferation: Old Association, New Therapeutic Target. Mayo Clinic Proceedings, 2010, 85, 656-663.	3.0	71
88	In vivo labeling with 2H2O reveals a human neutrophil lifespan of 5.4 days. Blood, 2010, 116, 625-627.	1.4	667
89	Direct and Differential Suppression of Myeloid-Derived Suppressor Cell Subsets by Sunitinib Is Compartmentally Constrained. Cancer Research, 2010, 70, 3526-3536.	0.9	269
90	Myeloid-derived suppressor cells: Natural regulators for transplant tolerance. Human Immunology, 2010, 71, 1061-1066.	2.4	55

#	Article	IF	CITATIONS
91	Tolerogenic dendritic cells and myeloid-derived suppressor cells: Potential for regulation and therapy of liver auto- and alloimmunity. Immunobiology, 2010, 215, 698-703.	1.9	41
92	Neutrophils: Cinderella of innate immune system. International Immunopharmacology, 2010, 10, 1325-1334.	3.8	343
93	TGF- \hat{l}^2 and immune cells: an important regulatory axis in the tumor microenvironment and progression. Trends in Immunology, 2010, 31, 220-227.	6.8	805
94	Contribution of myeloid-derived suppressor cells to tumor-induced immune suppression, angiogenesis, invasion and metastasis. Journal of Genetics and Genomics, 2010, 37, 423-430.	3.9	70
95	Elusive Identities and Overlapping Phenotypes of Proangiogenic Myeloid Cells in Tumors. American Journal of Pathology, 2010, 176, 1564-1576.	3.8	137
96	Measurement of Myeloid Cell Immune Suppressive Activity. Current Protocols in Immunology, 2010, 91, Unit 14.17.	3.6	17
97	Characterization of Cytokine-Induced Myeloid-Derived Suppressor Cells from Normal Human Peripheral Blood Mononuclear Cells. Journal of Immunology, 2010, 185, 2273-2284.	0.8	533
98	Plasticity of Ly-6Chi Myeloid Cells in T Cell Regulation. Journal of Immunology, 2011, 187, 2418-2432.	0.8	58
99	Neuroprotection and progenitor cell renewal in the injured adult murine retina requires healing monocyte-derived macrophages. Journal of Experimental Medicine, 2011, 208, 23-39.	8.5	181
100	Antigen specificity of immune suppression by myeloid-derived suppressor cells. Journal of Leukocyte Biology, 2011, 90, 31-36.	3.3	77
102	Tumour-Induced Immune Suppression by Myeloid Cells., 2011,, 49-62.		0
103	Intrinsic modulation of lymphocyte function by stromal cell network: advance in therapeutic targeting of cancer. Immunotherapy, 2011, 3, 1253-1264.	2.0	12
104	Myeloid-derived suppressor cells in the peripheral blood of cancer patients contain a subset of immature neutrophils with impaired migratory properties. Journal of Leukocyte Biology, 2010, 89, 311-317.	3.3	274
105	Signal Transducer and Activator of Transcription 3 (Stat3C) Promotes Myeloid-Derived Suppressor Cell Expansion and Immune Suppression during Lung Tumorigenesis. American Journal of Pathology, 2011, 179, 2131-2141.	3.8	81
106	Myeloid derived suppressor cells in transplantation. Current Opinion in Immunology, 2011, 23, 692-697.	5.5	55
107	Advances in the biology of bone metastasis: How the skeleton affects tumor behavior. Bone, 2011, 48, 6-15.	2.9	164
108	Mononuclear phagocyte heterogeneity in cancer: Different subsets and activation states reaching out at the tumor site. Immunobiology, 2011, 216, 1192-1202.	1.9	88
109	Aberrant PGE2 metabolism in bladder tumor microenvironment promotes immunosuppressive phenotype of tumor-infiltrating myeloid cells. International Immunopharmacology, 2011, 11, 848-855.	3.8	39

#	Article	IF	CITATIONS
110	LPS-induced CD11b+Gr1intF4/80+ regulatory myeloid cells suppress allergen-induced airway inflammation. International Immunopharmacology, 2011, 11, 827-832.	3.8	31
111	Tumor- and organ-dependent infiltration by myeloid-derived suppressor cells. International Immunopharmacology, 2011, 11, 816-826.	3.8	70
112	Hematopoietic cytokine-induced transcriptional regulation and Notch signaling as modulators of MDSC expansion. International Immunopharmacology, 2011, 11, 808-815.	3.8	29
113	Molecular mechanisms regulating myeloid-derived suppressor cell differentiation and function. Trends in Immunology, 2011, 32, 19-25.	6.8	709
114	Macrophage regulation of tumor angiogenesis: Implications for cancer therapy. Molecular Aspects of Medicine, 2011, 32, 123-145.	6.4	152
115	Stem cells in tumor angiogenesis. Journal of Molecular and Cellular Cardiology, 2011, 50, 290-295.	1.9	53
116	The Suppressive Tumor Microenvironment: A Challenge in Cancer Immunotherapy. Molecular Pharmaceutics, 2011, 8, 635-641.	4.6	155
117	Myeloid-derived suppressor cells (MDSC): Another player in the orchestra. Inmunologia (Barcelona,) Tj ETQq1 1 (0.784314	gBT /Overlo
118	A Paradoxical Role for Myeloid-Derived Suppressor Cells in Sepsis and Trauma. Molecular Medicine, 2011, 17, 281-292.	4.4	292
119	T Cell Stimulatory Effects of Korean Red Ginseng through Modulation of Myeloid-Derived Suppressor Cells. Journal of Ginseng Research, 2011, 35, 462-470.	5.7	32
120	Role of Myeloid-Derived Suppressor Cells in Amelioration of Experimental Autoimmune Hepatitis Following Activation of TRPV1 Receptors by Cannabidiol. PLoS ONE, 2011, 6, e18281.	2.5	103
121	SHIP-Deficient Dendritic Cells, Unlike Wild Type Dendritic Cells, Suppress T Cell Proliferation via a Nitric Oxide-Independent Mechanism. PLoS ONE, 2011, 6, e21893.	2.5	7
122	Tumor-Derived G-CSF Facilitates Neoplastic Growth through a Granulocytic Myeloid-Derived Suppressor Cell-Dependent Mechanism. PLoS ONE, 2011, 6, e27690.	2.5	199
123	Messenger RNA-based Vaccines With Dual Activity Induce Balanced TLR-7 Dependent Adaptive Immune Responses and Provide Antitumor Activity. Journal of Immunotherapy, 2011, 34, 1-15.	2.4	281
124	Myeloid-Derived Suppressor Cells: General Characteristics and Relevance to Clinical Management of Pancreatic Cancer. Current Cancer Drug Targets, 2011, 11, 734-751.	1.6	97
125	Decreased accumulation of immune regulatory cells is correlated to the antitumor effect of IFN-Î ³ overexpression in the tumor. International Journal of Oncology, 2011, 39, 1619-27.	3.3	2
126	Glatiramer Acetate Treatment Directly Targets CD11b $<$ sup $>+<$ sup $>$ Ly6G $<$ sup $>$ â * $<$ sup $>$ Monocytes and Enhances the Suppression of Autoreactive T cells in Experimental Autoimmune Encephalomyelitis. Scandinavian Journal of Immunology, 2011, 74, 235-243.	2.7	29
127	Myeloidâ€derived suppressor cells – their role in haematoâ€oncological malignancies and other cancers and possible implications for therapy. British Journal of Haematology, 2011, 153, 557-567.	2.5	49

#	Article	IF	CITATIONS
128	Anti-tumour synergy of cytotoxic chemotherapy and anti-CD40 plus CpG-ODN immunotherapy through repolarization of tumour-associated macrophages. Immunology, 2011, 132, 226-239.	4.4	111
129	Naìve blood monocytes suppress Tâ€eell function. A possible mechanism for protection from autoimmunity. Immunology and Cell Biology, 2011, 89, 7-13.	2.3	39
130	Toward a functional characterization of blood monocytes. Immunology and Cell Biology, 2011, 89, 2-4.	2.3	60
131	Natural Innate and Adaptive Immunity to Cancer. Annual Review of Immunology, 2011, 29, 235-271.	21.8	1,691
132	Neutrophil Degranulation and Immunosuppression in Patients with GBM: Restoration of Cellular Immune Function by Targeting Arginase I. Clinical Cancer Research, 2011, 17, 6992-7002.	7.0	170
133	Myeloid cell diversification and complexity: an old concept with new turns in oncology. Cancer and Metastasis Reviews, 2011, 30, 27-43.	5.9	36
134	Distinct myeloid suppressor cell subsets correlate with plasma IL-6 and IL-10 and reduced interferon-alpha signaling in CD4+ T cells from patients with GI malignancy. Cancer Immunology, Immunotherapy, 2011, 60, 1269-1279.	4.2	134
135	Enhanced anti-tumor activity of interferon-alpha in SOCS1-deficient mice is mediated by CD4+ and CD8+ T cells. Cancer Immunology, Immunotherapy, 2011, 60, 1281-1288.	4.2	21
136	How tumors might withstand $\hat{l}^3\hat{l}^*$ T-cell attack. Cellular and Molecular Life Sciences, 2011, 68, 2433-2442.	5.4	19
137	Functional characterization of human Cd33+ And Cd11b+ myeloid-derived suppressor cell subsets induced from peripheral blood mononuclear cells co-cultured with a diverse set of human tumor cell lines. Journal of Translational Medicine, 2011, 9, 90.	4.4	186
138	In vivo suppressive function of myeloidâ€derived suppressor cells is limited to the inflammatory site. European Journal of Immunology, 2011, 41, 749-759.	2.9	111
139	Delayed type hypersensitivityâ€induced myeloidâ€derived suppressor cells regulate autoreactive T cells. European Journal of Immunology, 2011, 41, 2871-2882.	2.9	15
140	miRâ€223 suppresses differentiation of tumorâ€induced CD11b ⁺ Gr1 ⁺ myeloidâ€derived suppressor cells from bone marrow cells. International Journal of Cancer, 2011, 129, 2662-2673.	5.1	80
141	Paired Immunoglobin-like Receptor-B Regulates the Suppressive Function and Fate of Myeloid-Derived Suppressor Cells. Immunity, 2011, 34, 385-395.	14.3	144
142	Targeting immune suppressing myeloid-derived suppressor cells in oncology. Critical Reviews in Oncology/Hematology, 2011, 77, 12-19.	4.4	134
143	Immunity and immune suppression in human ovarian cancer. Immunotherapy, 2011, 3, 539-556.	2.0	102
144	Adenosinergic Regulation of the Expansion and Immunosuppressive Activity of CD11b+Gr1+ Cells. Journal of Immunology, 2011, 187, 6120-6129.	0.8	223
145	ADAM10 Overexpression Shifts Lympho- and Myelopoiesis by Dysregulating Site 2/Site 3 Cleavage Products of Notch. Journal of Immunology, 2011, 186, 4244-4252.	0.8	51

#	Article	IF	CITATIONS
146	Role of tyrosine kinase inhibitors in tumor immunology. Immunotherapy, 2011, 3, 107-116.	2.0	13
147	<i>In vivo</i> Inhibition of Human CD19-Targeted Effector T Cells by Natural T Regulatory Cells in a Xenotransplant Murine Model of B Cell Malignancy. Cancer Research, 2011, 71, 2871-2881.	0.9	86
148	Immune Modulation by Chemotherapy or Immunotherapy to Enhance Cancer Vaccines. Cancers, 2011, 3, 3114-3142.	3.7	64
149	Increased Circulating Immunosuppressive CD14 ⁺ HLA-DR ^{â^'/Low} Cells Correlate with Clinical Cancer Stage and Pathological Grade in Patients with Bladder Carcinoma. Journal of International Medical Research, 2011, 39, 1381-1391.	1.0	61
150	COX-2 Blockade Suppresses Gliomagenesis by Inhibiting Myeloid-Derived Suppressor Cells. Cancer Research, 2011, 71, 2664-2674.	0.9	331
151	Tumor-associated macrophages in breast cancer: distinct subsets, distinct functions. International Journal of Developmental Biology, 2011, 55, 861-867.	0.6	255
152	Angiopoietin 2 Stimulates TIE2-Expressing Monocytes To Suppress T Cell Activation and To Promote Regulatory T Cell Expansion. Journal of Immunology, 2011, 186, 4183-4190.	0.8	185
153	Both miR-17-5p and miR-20a Alleviate Suppressive Potential of Myeloid-Derived Suppressor Cells by Modulating STAT3 Expression. Journal of Immunology, 2011, 186, 4716-4724.	0.8	144
154	Myeloid-Derived Suppressor Cells Infiltrate the Heart in Acute ⟨i⟩Trypanosoma⟨/i⟩â€^⟨i⟩cruzi⟨/i⟩ Infection. Journal of Immunology, 2011, 187, 2656-2665.	0.8	74
155	Inhibition of Tumor-Induced Myeloid-Derived Suppressor Cell Function by a Nanoparticulated Adjuvant. Journal of Immunology, 2011, 186, 264-274.	0.8	53
156	Tumors Suppress In Situ Proliferation of Cytotoxic T Cells by Promoting Differentiation of Gr-1+ Conventional Dendritic Cells through IL-6. Journal of Immunology, 2011, 186, 5058-5067.	0.8	19
157	CpG Blocks Immunosuppression by Myeloid-Derived Suppressor Cells in Tumor-Bearing Mice. Clinical Cancer Research, 2011, 17, 1765-1775.	7.0	218
158	Cancer immunotherapy using recombinant <i>Listeria monocytogenes</i> : Transition from bench to clinic. Hum Vaccin, 2011, 7, 497-505.	2.4	29
159	Galectin-9 Attenuates Acute Lung Injury by Expanding CD14 ^{â€"} Plasmacytoid Dendritic Cellâ€"like Macrophages. American Journal of Respiratory and Critical Care Medicine, 2011, 184, 328-339.	5. 6	40
160	Mesenchymal Transition and Dissemination of Cancer Cells Is Driven by Myeloid-Derived Suppressor Cells Infiltrating the Primary Tumor. PLoS Biology, 2011, 9, e1001162.	5.6	302
161	Peritoneal Immune System in Patients with Advance Epithelial Ovarian Cancer. International Reviews of Immunology, 2011, 30, 87-101.	3.3	12
162	Tumor Heterogeneity: Mechanisms and Bases for a Reliable Application of Molecular Marker Design. International Journal of Molecular Sciences, 2012, 13, 1951-2011.	4.1	132
163	Myeloid-Derived Suppressor Cells Participate in Preventing Graft Rejection. Clinical and Developmental Immunology, 2012, 2012, 1-6.	3.3	10

#	Article	IF	CITATIONS
164	Myeloid-derived suppressor cells: mechanisms of action and recent advances in their role in transplant tolerance. Frontiers in Immunology, 2012, 3, 208.	4.8	73
165	Prognostic Significance of the Ratio of Absolute Neutrophil Count to Absolute Lymphocyte Count in Classic Hodgkin Lymphoma. American Journal of Clinical Pathology, 2012, 138, 846-854.	0.7	45
166	Mouse CD11b+Gr-1+ Myeloid Cells Can Promote Th17 Cell Differentiation and Experimental Autoimmune Encephalomyelitis. Journal of Immunology, 2012, 189, 4295-4304.	0.8	150
167	Myeloid cells. Oncolmmunology, 2012, 1, 1360-1367.	4.6	13
168	Bone marrow and the control of immunity. Cellular and Molecular Immunology, 2012, 9, 11-19.	10.5	256
169	Multiple myeloma induces the immunosuppressive capacity of distinct myeloid-derived suppressor cell subpopulations in the bone marrow. Leukemia, 2012, 26, 2424-2428.	7.2	67
170	Functional Changes in Myeloid-Derived Suppressor Cells (MDSCs) during Tumor Growth: FKBP51 Contributes to the Regulation of the Immunosuppressive Function of MDSCs. Journal of Immunology, 2012, 188, 4226-4234.	0.8	44
171	Suppression of Vaccine Immunity by Inflammatory Monocytes. Journal of Immunology, 2012, 189, 5612-5621.	0.8	36
172	MicroRNA-494 Is Required for the Accumulation and Functions of Tumor-Expanded Myeloid-Derived Suppressor Cells via Targeting of PTEN. Journal of Immunology, 2012, 188, 5500-5510.	0.8	236
173	Instruction of myeloid cells by the tumor microenvironment: Open questions on the dynamics and plasticity of different tumor-associated myeloid cell populations. Oncolmmunology, 2012, 1, 1135-1145.	4.6	66
174	Interferon- \hat{l}^3 -producing immature myeloid cells confer protection against severe invasive group A Streptococcus infections. Nature Communications, 2012, 3, 678.	12.8	27
175	Delta Neutrophil Index. Shock, 2012, 37, 242-246.	2.1	102
176	Radiation Combined With Thermal Injury Induces Immature Myeloid Cells. Shock, 2012, 38, 532-542.	2.1	18
177	Cyclophosphamide-induced Myeloid-derived Suppressor Cell Population Is Immunosuppressive But Not Identical to Myeloid-derived Suppressor Cells Induced By Growing TC-1 Tumors. Journal of Immunotherapy, 2012, 35, 374-384.	2.4	45
178	Myeloid-derived Suppressor Cells in Cancer Patients. Journal of Immunotherapy, 2012, 35, 107-115.	2.4	195
179	Pancreatic Ductal Adenocarcinoma. Journal of Investigative Medicine, 2012, 60, 643-663.	1.6	65
180	Control of murine Ly6Chigh monocyte traffic and immunosuppressive activities by atypical chemokine receptor D6. Blood, 2012, 119, 5250-5260.	1.4	33
181	The wound healing chronicles. Blood, 2012, 120, 499-500.	1.4	3

#	Article	IF	Citations
182	CD16+ monocytes control T-cell subset development in immune thrombocytopenia. Blood, 2012, 120, 3326-3335.	1.4	66
183	Coordinated regulation of myeloid cells by tumours. Nature Reviews Immunology, 2012, 12, 253-268.	22.7	3,002
184	An Oncolytic Adenovirus Enhanced for Toll-like Receptor 9 Stimulation Increases Antitumor Immune Responses and Tumor Clearance. Molecular Therapy, 2012, 20, 2076-2086.	8.2	84
185	Macrophage Migration Inhibitory Factor Promotes Tumor Growth and Metastasis by Inducing Myeloid-Derived Suppressor Cells in the Tumor Microenvironment. Journal of Immunology, 2012, 189, 5533-5540.	0.8	172
186	Polymorphonuclear neutrophils promote dyshesion of tumor cells and elastaseâ€mediated degradation of <scp>E</scp> â€cadherin in pancreatic tumors. European Journal of Immunology, 2012, 42, 3369-3380.	2.9	69
187	Pancreatic adenocarcinoma induces bone marrow mobilization of myeloid-derived suppressor cells which promote primary tumor growth. Cancer Immunology, Immunotherapy, 2012, 61, 1373-1385.	4.2	242
188	Cytomegalovirus Impairs Antiviral CD8+ T Cell Immunity by Recruiting Inflammatory Monocytes. Immunity, 2012, 37, 122-133.	14.3	75
189	Subset characterization of myeloid-derived suppressor cells arising during induction of BM chimerism in mice. Bone Marrow Transplantation, 2012, 47, 985-992.	2.4	29
190	Myeloid-derived suppressor cells from tumor-bearing mice impair TGF-Î ² -induced differentiation of CD4+CD25+FoxP3+ Tregs from CD4+CD25â^FoxP3â^T cells. Journal of Leukocyte Biology, 2012, 92, 987-997.	3.3	84
191	Stromal-derived IL-6 alters the balance of myeloerythroid progenitors during <i>Toxoplasma gondii</i> infection. Journal of Leukocyte Biology, 2012, 92, 123-131.	3.3	64
192	Very small size proteoliposomes derived from Neisseria meningitidis: An effective adjuvant for antigen-specific cytotoxic T lymphocyte response stimulation under leukopenic conditions. Vaccine, 2012, 30, 2963-2972.	3.8	11
193	Monocytic CCR2+ Myeloid-Derived Suppressor Cells Promote Immune Escape by Limiting Activated CD8 T-cell Infiltration into the Tumor Microenvironment. Cancer Research, 2012, 72, 876-886.	0.9	313
194	Natural suppressor cells; past, present and future. Frontiers in Bioscience - Elite, 2012, E4, 1237.	1.8	6
195	CD14 ⁺ S100A9 ⁺ Monocytic Myeloid-derived Suppressor Cells and Their Clinical Relevance in Nonâe"Small Cell Lung Cancer. American Journal of Respiratory and Critical Care Medicine, 2012, 186, 1025-1036.	5.6	152
196	Negative Regulation of Myeloid-derived Suppressor Cells in Cancer. Immunological Investigations, 2012, 41, 562-580.	2.0	36
197	Macrophage diversity in cardiac inflammation: A review. Immunobiology, 2012, 217, 468-475.	1.9	51
198	IFN- \hat{l}^3 producing T cells contribute to the increase of myeloid derived suppressor cells in tumor-bearing mice after cyclophosphamide treatment. International Immunopharmacology, 2012, 12, 425-432.	3.8	14
199	Effect of molecular size and modification pattern on the internalization of water soluble \hat{l}^2 -(1 \hat{a} †' 3)-(1 \hat{a} †') Tj ETC 2012, 44, 914-927.	Qq1 1 0.78 2.8	34314 rgBT (24

#	Article	IF	CITATIONS
200	On the armament and appearances of human myeloid-derived suppressor cells. Clinical Immunology, 2012, 144, 250-268.	3.2	168
201	Amino Acid Metabolism Related to Immune Tolerance by MDSCs. International Reviews of Immunology, 2012, 31, 177-183.	3.3	22
202	Immune Suppression: The Hallmark of Myeloid Derived Suppressor Cells. Immunological Investigations, 2012, 41, 581-594.	2.0	60
203	Tumorâ€induced myeloidâ€derived suppressor cell function is independent of <scp>IFN</scp> â€Î³ and <scp>IL</scp> â€4 <scp>R</scp> α. European Journal of Immunology, 2012, 42, 2052-2059.	2.9	66
204	Antiâ€ <scp>IL</scp> â€6 receptor m <scp>A</scp> b eliminates myeloidâ€derived suppressor cells and inhibits tumor growth by enhancing <scp>T</scp> â€cell responses. European Journal of Immunology, 2012, 42, 2060-2072.	2.9	119
205	CD11b+Ly6C++Ly6G- cells show distinct function in mice with chronic inflammation or tumor burden. BMC Immunology, 2012, 13, 69.	2.2	22
206	Characterization of iNOS+ Neutrophil-like ring cell in tumor-bearing mice. Journal of Translational Medicine, 2012, 10, 152.	4.4	19
207	Myeloid cells in tumor inflammation. Vascular Cell, 2012, 4, 14.	0.2	56
208	PGE ₂ -Driven Induction and Maintenance of Cancer-Associated Myeloid-Derived Suppressor Cells. Immunological Investigations, 2012, 41, 635-657.	2.0	131
209	Myeloid-derived Suppressor Cells Adhere to Physiologic STAT3- vs STAT5-dependent Hematopoietic Programming, Establishing Diverse Tumor-Mediated Mechanisms of Immunologic Escape. Immunological Investigations, 2012, 41, 680-710.	2.0	37
210	Myeloid-Derived Suppressor Cells and anti-tumor T cells: a complex relationship. Immunological Investigations, 2012, 41, 595-613.	2.0	106
211	Arginaseâ€dependent suppression by CpGâ€ODN plus IFAâ€induced splenic myeloid CD11b + Gr1 + cells. Immunology and Cell Biology, 2012, 90, 710-721.	2.3	8
212	Multiple antiâ€inflammatory pathways triggered by resveratrol lead to amelioration of staphylococcal enterotoxin Bâ€induced lung injury. British Journal of Pharmacology, 2012, 167, 1244-1258.	5.4	80
213	Characterization of the nature of granulocytic myeloid-derived suppressor cells in tumor-bearing mice. Journal of Leukocyte Biology, 2011, 91, 167-181.	3.3	457
214	The Non-transplant Treatment of Myelodysplastic Syndromesâ€"What's on the Horizon?. Seminars in Hematology, 2012, 49, 350-360.	3.4	1
215	Epidermal $\hat{l}\pm6\hat{l}^24$ integrin stimulates the influx of immunosuppressive cells during skin tumor promotion. Journal of Dermatological Science, 2012, 66, 108-118.	1.9	12
216	Tumor-Infiltrating Monocytic Myeloid-Derived Suppressor Cells Mediate CCR5-Dependent Recruitment of Regulatory T Cells Favoring Tumor Growth. Journal of Immunology, 2012, 189, 5602-5611.	0.8	341
217	Crucial Role of Granulocytic Myeloid-Derived Suppressor Cells in the Regulation of Central Nervous System Autoimmune Disease. Journal of Immunology, 2012, 188, 1136-1146.	0.8	216

#	Article	IF	CITATIONS
218	Phenotypic Plasticity of MDSC in Cancers. Immunological Investigations, 2012, 41, 711-721.	2.0	20
219	Myeloid-derived Suppressor Cells (MDSCs) in Gliomas and Glioma-Development. Immunological Investigations, 2012, 41, 658-679.	2.0	56
220	A randomized study of decitabine versus conventional care for maintenance therapy in patients with acute myeloid leukemia in complete remission. Leukemia, 2012, 26, 2428-2431.	7.2	52
222	S100A9 Interaction with TLR4 Promotes Tumor Growth. PLoS ONE, 2012, 7, e34207.	2.5	133
223	Resveratrol Prevents Endothelial Cells Injury in High-Dose Interleukin-2 Therapy against Melanoma. PLoS ONE, 2012, 7, e35650.	2.5	45
224	Characteristics of "Tip-DCs and MDSCs―and Their Potential Role in Leishmaniasis. Frontiers in Microbiology, 2012, 3, 74.	3.5	23
225	Regulation of Macrophage and Dendritic Cell Responses by Their Lineage Precursors. Journal of Innate Immunity, 2012, 4, 411-423.	3.8	15
226	Regulatory Cells and Multiple Myeloma. , 2012, , .		1
227	A subset of neutrophils in human systemic inflammation inhibits T cell responses through Mac-1. Journal of Clinical Investigation, 2012, 122, 327-336.	8.2	688
228	Myeloid Derived Suppressor Cells: Subsets, Expansion, and Role in Cancer Progression. , 0, , .		4
229	Antigen-Specific CD4+ T Cells Regulate Function of Myeloid-Derived Suppressor Cells in Cancer via Retrograde MHC Class II Signaling. Cancer Research, 2012, 72, 928-938.	0.9	96
230	Adoptive T cell therapy promotes the emergence of genomically altered tumor escape variants. International Journal of Cancer, 2012, 131, 844-854.	5.1	47
231	Grâ€1+CD11b+ cells are responsible for tumor promoting effect of TGFâ€Î² in breast cancer progression. International Journal of Cancer, 2012, 131, 2584-2595.	5.1	62
232	Role of myeloid-derived suppressor cells in tumor immunotherapy. Immunotherapy, 2012, 4, 43-57.	2.0	31
233	Tumor-associated neutrophils: friend or foe?. Carcinogenesis, 2012, 33, 949-955.	2.8	550
234	Myeloid-derived suppressor cells in transplantation and cancer. Immunologic Research, 2012, 54, 275-285.	2.9	73
235	Origin and Functions of Tumor-Associated Myeloid Cells (TAMCs). Cancer Microenvironment, 2012, 5, 133-149.	3.1	81
236	Myeloid-derived suppressor cells control microbial sepsis. Intensive Care Medicine, 2012, 38, 1040-1049.	8.2	71

#	Article	IF	CITATIONS
237	CD99-Dependent Expansion of Myeloid-Derived Suppressor Cells and Attenuation of Graft-Versus-Host Disease. Molecules and Cells, 2012, 33, 259-268.	2.6	5
238	G-CSF stem cell mobilization in human donors induces polymorphonuclear and mononuclear myeloid-derived suppressor cells. Clinical Immunology, 2012, 143, 83-87.	3.2	95
239	On the dual roles and polarized phenotypes of neutrophils in tumor development and progression. Critical Reviews in Oncology/Hematology, 2012, 82, 296-309.	4.4	280
240	S100A9 a new marker for monocytic human myeloidâ€derived suppressor cells. Immunology, 2012, 136, 176-183.	4.4	176
241	Inflammation and immune surveillance in cancer. Seminars in Cancer Biology, 2012, 22, 23-32.	9.6	179
242	Targeting stroma to treat cancers. Seminars in Cancer Biology, 2012, 22, 41-49.	9.6	66
243	Neoplastic "Black Ops― Cancer's subversive tactics in overcoming host defenses. Seminars in Cancer Biology, 2012, 22, 50-59.	9.6	29
244	Regulation of suppressive function of myeloid-derived suppressor cells by CD4+ T cells. Seminars in Cancer Biology, 2012, 22, 282-288.	9.6	65
245	Building the niche: The role of the S100 proteins in metastatic growth. Seminars in Cancer Biology, 2012, 22, 216-225.	9.6	125
246	Immunotherapy for treating metastatic colorectal cancer. Surgical Oncology, 2012, 21, 67-77.	1.6	12
247	Influence of chemotherapy on nitric oxide synthase, indoleâ€amineâ€2,3â€dioxygenase and CD124 expression in granulocytes and monocytes of nonâ€small cell lung cancer. Cancer Science, 2012, 103, 155-160.	3.9	20
249	Consequence of dose scheduling of sunitinib on host immune response elements and vaccine combination therapy. International Journal of Cancer, 2012, 130, 1948-1959.	5.1	115
250	CD15+/CD16low human granulocytes from terminal cancer patients: granulocytic myeloid-derived suppressor cells that have suppressive function. Tumor Biology, 2012, 33, 121-129.	1.8	68
251	Regulatory dendritic cells in the tumor immunoenvironment. Cancer Immunology, Immunotherapy, 2012, 61, 223-230.	4.2	50
252	Immune suppression by neutrophils and granulocytic myeloid-derived suppressor cells: similarities and differences. Cellular and Molecular Life Sciences, 2013, 70, 3813-3827.	5.4	322
253	Therapeutic Cancer Vaccines. Advances in Cancer Research, 2013, 119, 421-475.	5.0	450
254	Myeloid derived suppressor cells – a new therapeutic target in the treatment of cancer. , 2013, 1, 10.		249
255	Modulation of CD8+ T-cell activation events by monocytic and granulocytic myeloid-derived suppressor cells. Immunobiology, 2013, 218, 1385-1391.	1.9	41

#	Article	IF	CITATIONS
256	A novel role of hematopoietic CCL5 in promoting triple-negative mammary tumor progression by regulating generation of myeloid-derived suppressor cells. Cell Research, 2013, 23, 394-408.	12.0	119
257	Anaphylatoxins coordinate innate and adaptive immune responses in allergic asthma. Seminars in Immunology, 2013, 25, 2-11.	5.6	40
258	Tumorâ€induced myeloidâ€derived suppressor cell subsets exert either inhibitory or stimulatory effects on distinct <scp>CD</scp> 8 ⁺ <scp>T</scp> â€cell activation events. European Journal of Immunology, 2013, 43, 2930-2942.	2.9	73
259	Activated human hepatic stellate cells induce myeloid derived suppressor cells from peripheral blood monocytes in a CD44-dependent fashion. Journal of Hepatology, 2013, 59, 528-535.	3.7	117
260	JAK/STAT Signaling inÂMyeloid Cells. , 2013, , 435-449.		0
261	Tumor-induced Myeloid-derived Suppressor Cells. , 2013, , 473-496.		2
262	Myeloid-Derived Suppressor Cells Regulate Growth of Multiple Myeloma by Inhibiting T Cells in Bone Marrow. Journal of Immunology, 2013, 190, 3815-3823.	0.8	176
263	Myeloid derived suppressor cells in physiological and pathological conditions: the good, the bad, and the ugly. Immunologic Research, 2013, 57, 172-184.	2.9	89
264	Reciprocal Relationship between Myeloid-Derived Suppressor Cells and T Cells. Journal of Immunology, 2013, 191, 17-23.	0.8	156
265	Rapid Deletion and Inactivation of CTLs upon Recognition of a Number of Target Cells over a Critical Threshold. Journal of Immunology, 2013, 191, 3534-3544.	0.8	15
266	Myeloid-derived suppressor cells are associated with disease progression and decreased overall survival in advanced-stage melanoma patients. Cancer Immunology, Immunotherapy, 2013, 62, 1711-1722.	4.2	113
267	G-CSF/anti-G-CSF antibody complexes drive the potent recovery and expansion of CD11b+Gr-1+ myeloid cells without compromising CD8+ T cell immune responses. Journal of Hematology and Oncology, 2013, 6, 75.	17.0	12
268	Myeloid derived suppressor cells (MDSCs) can induce the generation of Th17 response from na \tilde{A} -ve CD4+ T cells. Immunobiology, 2013, 218, 718-724.	1.9	43
269	Mechanisms of antitumor and immune-enhancing activities of MUC1/sec, a secreted form of mucin-1. Immunologic Research, 2013, 57, 70-80.	2.9	7
270	History of myeloid-derived suppressor cells. Nature Reviews Cancer, 2013, 13, 739-752.	28.4	974
271	Unsuspected allies: Chemotherapy teams up with immunity to fight cancer. European Journal of Immunology, 2013, 43, 2538-2542.	2.9	7
272	Tumor-promoting immune-suppressive myeloid-derived suppressor cells in the multiple myeloma microenvironment in humans. Blood, 2013, 121, 2975-2987.	1.4	335
273	Ly6C ⁺ Ly6G ^{â^'} Myeloidâ€derived suppressor cells play a critical role in the resolution of acute inflammation and the subsequent tissue repair process after spinal cord injury. Journal of Neurochemistry, 2013, 125, 74-88.	3.9	90

#	Article	IF	CITATIONS
274	Epigenetic silencing of retinoblastoma gene regulates pathologic differentiation of myeloid cells in cancer. Nature Immunology, 2013, 14, 211-220.	14.5	306
275	Scavenger receptor a restrains T-cell activation and protects against concanavalin A-induced hepatic injury. Hepatology, 2013, 57, 228-238.	7.3	38
276	Regulation of accumulation and function of myeloid derived suppressor cells in different murine models of hepatocellular carcinoma. Journal of Hepatology, 2013, 59, 1007-1013.	3.7	154
277	Immune Dysregulation in Immune Thrombocytopenia. Seminars in Hematology, 2013, 50, S63-S67.	3.4	45
278	The immunosuppressive tumour network: myeloidâ€derived suppressor cells, regulatory T cells and natural killer T cells. Immunology, 2013, 138, 105-115.	4.4	643
279	Myeloid-cell differentiation redefined in cancer. Nature Immunology, 2013, 14, 197-199.	14.5	28
280	Changing course by lymphocyte lineage redirection. Nature Immunology, 2013, 14, 199-201.	14.5	6
281	Role of Macrophage Targeting in the Antitumor Activity of Trabectedin. Cancer Cell, 2013, 23, 249-262.	16.8	721
282	Dynamic Change and Impact of Myeloid-Derived Suppressor Cells in Allogeneic Bone Marrow Transplantation in Mice. Biology of Blood and Marrow Transplantation, 2013, 19, 692-702.	2.0	61
283	Ly6 family proteins in neutrophil biology. Journal of Leukocyte Biology, 2013, 94, 585-594.	3.3	227
284	Division of labor between lung dendritic cells and macrophages in the defense against pulmonary infections. Mucosal Immunology, 2013, 6, 464-473.	6.0	223
285	Myeloid-derived suppressor cells have a central role in attenuated Listeria monocytogenes-based immunotherapy against metastatic breast cancer in young and old mice. British Journal of Cancer, 2013, 108, 2281-2290.	6.4	95
286	The pre-metastatic niche: finding common ground. Cancer and Metastasis Reviews, 2013, 32, 449-464.	5.9	364
287	βâ€Glucan enhances antitumor immune responses by regulating differentiation and function of monocytic myeloidâ€derived suppressor cells. European Journal of Immunology, 2013, 43, 1220-1230.	2.9	108
288	Myeloidâ€derived suppressor cells in cancer: recent progress and prospects. Immunology and Cell Biology, 2013, 91, 493-502.	2.3	196
289	The Tumor Immunoenvironment. , 2013, , .		4
290	Metronomic chemotherapy with low-dose cyclophosphamide plus gemcitabine can induce anti-tumor T cell immunity in vivo. Cancer Immunology, Immunotherapy, 2013, 62, 383-391.	4.2	100
291	Host-related carcinoembryonic antigen cell adhesion molecule 1 promotes metastasis of colorectal cancer. Oncogene, 2013, 32, 849-860.	5.9	40

#	Article	IF	CITATIONS
292	A modified superantigen rescues Ly6Gâ^'CD11b+blood monocyte suppressor function and suppresses antigen-specific inflammation in EAE. Autoimmunity, 2013, 46, 269-278.	2.6	5
293	Immature mouse granulocytic myeloid cells are characterized by production of ficolin-B. Molecular Immunology, 2013, 56, 488-496.	2.2	13
294	Immune microenvironment profiles of tumor immune equilibrium and immune escape states of mouse sarcoma. Cancer Letters, 2013, 340, 124-133.	7.2	52
295	Twist and miR-34a Are Involved in the Generation of Tumor-Educated Myeloid-Derived Suppressor Cells. International Journal of Molecular Sciences, 2013, 14, 20459-20477.	4.1	13
296	Monitoring Regulatory Immune Responses in Tumor Immunotherapy Clinical Trials. Frontiers in Oncology, 2013, 3, 109.	2.8	18
297	A Pan-Inhibitor of DASH Family Enzymes Induces Immune-mediated Regression of Murine Sarcoma and Is a Potent Adjuvant to Dendritic Cell Vaccination and Adoptive T-cell Therapy. Journal of Immunotherapy, 2013, 36, 400-411.	2.4	12
298	Host B7x Promotes Pulmonary Metastasis of Breast Cancer. Journal of Immunology, 2013, 190, 3806-3814.	0.8	59
299	Hampering Immune Suppressors. Cancer Journal (Sudbury, Mass), 2013, 19, 490-501.	2.0	56
300	Down-regulation of PLCγ2–β-catenin pathway promotes activation and expansion of myeloid-derived suppressor cells in cancer. Journal of Experimental Medicine, 2013, 210, 2257-2271.	8.5	71
301	Tumor STAT1 Transcription Factor Activity Enhances Breast Tumor Growth and Immune Suppression Mediated by Myeloid-derived Suppressor Cells. Journal of Biological Chemistry, 2013, 288, 11676-11688.	3.4	107
302	Mast Cell–deficient <i>KitW-sh</i> "Sash―Mutant Mice Display Aberrant Myelopoiesis Leading to the Accumulation of Splenocytes That Act as Myeloid-Derived Suppressor Cells. Journal of Immunology, 2013, 190, 5534-5544.	0.8	36
303	Clinical Perspectives on Targeting of Myeloid Derived Suppressor Cells in the Treatment of Cancer. Frontiers in Oncology, 2013, 3, 49.	2.8	133
304	Increased Myeloid-Derived Suppressor Cells in Gastric Cancer Correlate with Cancer Stage and Plasma S100A8/A9 Proinflammatory Proteins. Journal of Immunology, 2013, 190, 794-804.	0.8	216
305	Both MC5r and A2Ar Are Required for Protective Regulatory Immunity in the Spleen of Post–Experimental Autoimmune Uveitis in Mice. Journal of Immunology, 2013, 191, 4103-4111.	0.8	59
306	Combining low-dose or metronomic chemotherapy with anticancer vaccines. Oncolmmunology, 2013, 2, e27058.	4.6	30
307	Infection and Cancer: Revaluation of the Hygiene Hypothesis. Clinical Cancer Research, 2013, 19, 2834-2841.	7.0	57
308	Neutrophilic myeloid-derived suppressor cells in cord blood modulate innate and adaptive immune responses. Clinical and Experimental Immunology, 2013, 174, 45-52.	2.6	124
309	In Vivo Ablation of Plasmacytoid Dendritic Cells Inhibits Autoimmunity through Expansion of Myeloid-Derived Suppressor Cells. Journal of Immunology, 2013, 190, 2631-2640.	0.8	33

#	Article	IF	CITATIONS
310	Melanoma-Educated CD14+ Cells Acquire a Myeloid-Derived Suppressor Cell Phenotype through COX-2–Dependent Mechanisms. Cancer Research, 2013, 73, 3877-3887.	0.9	160
311	Myeloid-derived suppressor cells in glioma. Expert Review of Neurotherapeutics, 2013, 13, 1395-1406.	2.8	36
312	Induction and stability of human Th17 cells require endogenous NOS2 and cGMP-dependent NO signaling. Journal of Experimental Medicine, 2013, 210, 1433-1445.	8.5	101
313	Neutrophils and Myeloid-Derived Suppressor Cells in Cancer. , 2013, , 378-398.		0
314	Recruitment of a myeloid cell subset (CD11b/Gr1 ^{mid}) via CCL2/CCR2 promotes the development of colorectal cancer liver metastasis*. Hepatology, 2013, 57, 829-839.	7.3	183
315	Myeloid-derived Suppressor Cells in the Inflammatory Bowel Diseases. Inflammatory Bowel Diseases, 2013, 19, 2468-2477.	1.9	44
316	Monophosphoryl lipid A induces bone marrow precursor cells to differentiate into myeloid-derived suppressor cells. Molecular Medicine Reports, 2013, 8, 1074-1078.	2.4	8
317	Peripherally Administered Nanoparticles Target Monocytic Myeloid Cells, Secondary Lymphoid Organs and Tumors in Mice. PLoS ONE, 2013, 8, e61646.	2.5	116
318	The Impact of the Myeloid Response to Radiation Therapy. Clinical and Developmental Immunology, 2013, 2013, 1-14.	3.3	43
319	Myeloid Derived Suppressor Cells (MDSCs) Are Increased and Exert Immunosuppressive Activity Together with Polymorphonuclear Leukocytes (PMNs) in Chronic Myeloid Leukemia Patients. PLoS ONE, 2014, 9, e101848.	2.5	71
321	Evolution of Our Understanding of Myeloid Regulatory Cells: From MDSCs to Mregs. Frontiers in Immunology, 2014, 5, 303.	4.8	25
322	Myeloid-Derived Suppressor Cells are Generated during Retroviral Transduction of Murine Bone Marrow. Cell Transplantation, 2014, 23, 73-85.	2.5	13
323	Adjuvants and myeloid-derived suppressor cells: Enemies or allies in therapeutic cancer vaccination. Human Vaccines and Immunotherapeutics, 2014, 10, 3251-3260.	3.3	37
324	Preemptive Donor Apoptotic Cell Infusions Induce IFN-γ–Producing Myeloid-Derived Suppressor Cells for Cardiac Allograft Protection. Journal of Immunology, 2014, 192, 6092-6101.	0.8	37
325	Myeloid expression of angiotensin-converting enzyme facilitates myeloid maturation and inhibits the development of myeloid-derived suppressor cells. Laboratory Investigation, 2014, 94, 536-544.	3.7	23
326	The roles of myeloid-derived suppressor cells in transplantation. Expert Review of Clinical Immunology, 2014, 10, 1385-1394.	3.0	35
327	Intravascular staining for discrimination of vascular and tissue leukocytes. Nature Protocols, 2014, 9, 209-222.	12.0	612
328	ATP/P2X7 axis modulates myeloid-derived suppressor cell functions in neuroblastoma microenvironment. Cell Death and Disease, 2014, 5, e1135-e1135.	6.3	102

#	Article	IF	CITATIONS
329	all- <i>trans</i> -Retinoic acid improves immunocompetence in a murine model of lipopolysaccharide-induced immunosuppression. Clinical Science, 2014, 126, 355-365.	4.3	18
330	Pancreatic Cancer Cells Isolated from Muc1-Null Tumors Favor the Generation of a Mature Less Suppressive MDSC Population. Frontiers in Immunology, 2014, 5, 67.	4.8	12
331	Orchestration of Angiogenesis by Immune Cells. Frontiers in Oncology, 2014, 4, 131.	2.8	99
332	Specific Inhibition of the VEGFR-3 Tyrosine Kinase by SAR131675 Reduces Peripheral and Tumor Associated Immunosuppressive Myeloid Cells. Cancers, 2014, 6, 472-490.	3.7	28
333	Dissecting the Role of Bone Marrow Stromal Cells on Bone Metastases. BioMed Research International, 2014, 2014, 1-11.	1.9	26
334	Myeloid-Derived Suppressor Activity Is Mediated by Monocytic Lineages Maintained by Continuous Inhibition of Extrinsic and Intrinsic Death Pathways. Immunity, 2014, 41, 947-959.	14.3	121
335	Salmonella enterica Serovar Typhimurium Infection-Induced CD11b ⁺ Gr1 ⁺ Cells Ameliorate Allergic Airway Inflammation. Infection and Immunity, 2014, 82, 1052-1063.	2.2	6
336	Dexamethasone inhibits in vivo tumor growth by the alteration of bone marrow CD11b+ myeloid cells. International Immunopharmacology, 2014, 21, 494-500.	3.8	9
337	CD40L gene therapy tilts the myeloid cell profile and promotes infiltration of activated T lymphocytes. Cancer Gene Therapy, 2014, 21, 95-102.	4.6	20
338	Adoptive cytotoxic T lymphocyte therapy triggers a counter-regulatory immunosuppressive mechanism <i>via</i> recruitment of myeloid-derived suppressor cells. International Journal of Cancer, 2014, 134, 1810-1822.	5.1	40
339	Complexity and challenges in defining myeloid-derived suppressor cells. , 2014, , n/a-n/a.		102
340	Laquinimod Delays and Suppresses Nephritis in Lupusâ€Prone Mice and Affects Both Myeloid and Lymphoid Immune Cells. Arthritis and Rheumatology, 2014, 66, 674-685.	5.6	47
341	Myeloidâ€derived suppressor cells are key players in the resolution of inflammation during a model of acute infection. European Journal of Immunology, 2014, 44, 184-194.	2.9	67
342	Enhanced suppressive capacity of tumorâ€infiltrating myeloidâ€derived suppressor cells compared with their peripheral counterparts. International Journal of Cancer, 2014, 134, 1077-1090.	5.1	62
343	DNA demethylating agent 5-azacytidine inhibits myeloid-derived suppressor cells induced by tumor growth and cyclophosphamide treatment. Journal of Leukocyte Biology, 2014, 95, 743-753.	3.3	43
344	Location, location, location: functional and phenotypic heterogeneity between tumor-infiltrating and non-infiltrating myeloid-derived suppressor cells. Oncolmmunology, 2014, 3, e956579.	4.6	60
345	Disruption of CXCR2-Mediated MDSC Tumor Trafficking Enhances Anti-PD1 Efficacy. Science Translational Medicine, 2014, 6, 237ra67.	12.4	579
346	Myeloid-Derived Suppressor Cells as Therapeutic Target in Hematological Malignancies. Frontiers in Oncology, 2014, 4, 349.	2.8	92

#	Article	IF	CITATIONS
347	Anti-melanoma vaccines engineered to simultaneously modulate cytokine priming and silence PD-L1 characterized using <i>ex vivo </i> myeloid-derived suppressor cells as a readout of therapeutic efficacy. Oncolmmunology, 2014, 3, e945378.	4.6	37
348	A Circulating Subpopulation of Monocytic Myeloid-Derived Suppressor Cells as an Independent Prognostic/Predictive Factor in Untreated Non-Small Lung Cancer Patients. Journal of Immunology Research, 2014, 2014, 1-12.	2.2	106
349	Increased Levels of Granulocytic Myeloid-Derived Suppressor Cells in Peripheral Blood and Tumour Tissue of Pancreatic Cancer Patients. Journal of Immunology Research, 2014, 2014, 1-9.	2.2	109
350	Mechanisms Driving Macrophage Diversity and Specialization in Distinct Tumor Microenvironments and Parallelisms with Other Tissues. Frontiers in Immunology, 2014, 5, 127.	4.8	162
351	The Impact of the Immune System on Tumor: Angiogenesis and Vascular Remodeling. Frontiers in Oncology, 2014, 4, 69.	2.8	129
352	The synthetic retinoid Am80 delays recovery in a model of multiple sclerosis by modulating myeloid-derived suppressor cell fate and viability. Neurobiology of Disease, 2014, 67, 149-164.	4.4	29
353	Monocyte-Derived Cells of the Brain and Malignant Gliomas: The Double Face of Janus. World Neurosurgery, 2014, 82, 1171-1186.	1.3	24
354	Myeloid-Derived Suppressor Cells Protect Mouse Models from Autoimmune Arthritis via Controlling Inflammatory Response. Inflammation, 2014, 37, 670-677.	3.8	39
355	<scp>IFN</scp> â€Î³ regulates survival and function of tumorâ€induced <scp>CD</scp> 11b ⁺ <scp>G</scp> râ€I ^{high} myeloid derived suppressor cells by modulating the antiâ€apoptotic molecule <scp>B</scp> cl2a1. European Journal of Immunology, 2014, 44, 2457-2467.	2.9	57
356	Circulating hematopoietic stem and progenitor cells are myeloid-biased in cancer patients. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111, 4221-4226.	7.1	160
357	Interaction of Immune and Cancer Cells. , 2014, , .		0
358	Macrophages Are More Potent Immune Suppressors Ex Vivo Than Immature Myeloid-Derived Suppressor Cells Induced by Metastatic Murine Mammary Carcinomas. Journal of Immunology, 2014, 192, 512-522.	0.8	35
359	Transmembrane TNF-α Promotes Suppressive Activities of Myeloid-Derived Suppressor Cells via TNFR2. Journal of Immunology, 2014, 192, 1320-1331.	0.8	148
360	Adoptively Transferred Immune T Cells Eradicate Established Tumors despite Cancer-Induced Immune Suppression. Journal of Immunology, 2014, 192, 1286-1293.	0.8	17
361	Tumor Microenvironment and Cellular Stress. Advances in Experimental Medicine and Biology, 2014, 772, v-viii.	1.6	29
362	Hemin Controls T Cell Polarization in Sickle Cell Alloimmunization. Journal of Immunology, 2014, 193, 102-110.	0.8	60
363	Failed renoprotection by alternatively activated bone marrow macrophages is due to a proliferation-dependent phenotype switch in vivo. Kidney International, 2014, 85, 794-806.	5.2	56
364	Graft Monocytic Myeloid-Derived Suppressor Cell Content Predicts the Risk of Acute Graft-versus-Host Disease after Allogeneic Transplantation of Granulocyte Colony-Stimulating Factor–Mobilized Peripheral Blood Stem Cells. Biology of Blood and Marrow Transplantation, 2014, 20. 2049-2055.	2.0	60

#	Article	IF	CITATIONS
365	Macrophages: Biology and Role in the Pathology of Diseases. , 2014, , .		13
366	Subpopulations of myeloidâ€derived suppressor cells impair T cell responses through independent nitric oxideâ€related pathways. International Journal of Cancer, 2014, 134, 2853-2864.	5.1	230
367	Monocytic suppressor cells derived from human peripheral blood suppress xenogenic immune reactions. Xenotransplantation, 2014, 21, 46-56.	2.8	10
368	CD16xCD33 bispecific killer cell engager (BiKE) activates NK cells against primary MDS and MDSC CD33+ targets. Blood, 2014, 123, 3016-3026.	1.4	220
369	Myeloid derived suppressor cells are numerically, functionally and phenotypically different in patients with multiple myeloma. Leukemia and Lymphoma, 2014, 55, 2893-2900.	1.3	96
370	CpG-mediated modulation of MDSC contributes to the efficacy of Ad5-TRAIL therapy against renal cell carcinoma. Cancer Immunology, Immunotherapy, 2014, 63, 1213-1227.	4.2	32
371	Hypoxiaâ€inducible factors in regulation of immune responses in tumour microenvironment. Immunology, 2014, 143, 512-519.	4.4	270
372	Targeted STAT3 disruption in myeloid cells alters immunosuppressor cell abundance in a murine model of spontaneous medulloblastoma. Journal of Leukocyte Biology, 2013, 95, 357-367.	3.3	53
373	microRNAs as potential regulators of myeloid-derived suppressor cell expansion. Innate Immunity, 2014, 20, 227-238.	2.4	37
374	Tracking Cellular and Immune Therapies in Cancer. Advances in Cancer Research, 2014, 124, 257-296.	5.0	25
375	Functional significance of mononuclear phagocyte populations generated through adult hematopoiesis. Journal of Leukocyte Biology, 2014, 96, 969-980.	3.3	22
376	<scp>IFNγ</scp> â€responsiveness of endothelial cells leads to efficient angiostasis in tumours involving downâ€regulation of Dll4. Journal of Pathology, 2014, 233, 170-182.	4.5	25
377	Aging, Immunosenescence, and Cancer. , 2014, , 55-69.		2
378	Immune modulatory therapies for spinal cord injury – Past, present and future. Experimental Neurology, 2014, 258, 91-104.	4.1	59
379	Innate immune regulation by <scp>STAT</scp> â€mediated transcriptional mechanisms. Immunological Reviews, 2014, 261, 84-101.	6.0	53
380	Gr-1dimCD11b+ Immature Myeloid-Derived Suppressor Cells but Not Neutrophils Are Markers of Lethal Tuberculosis Infection in Mice. Journal of Immunology, 2014, 192, 4718-4727.	0.8	104
381	Molecular Pathways: Myeloid Complicity in Cancer. Clinical Cancer Research, 2014, 20, 5157-5170.	7.0	44
382	The Stress-Response Sensor Chop Regulates the Function and Accumulation of Myeloid-Derived Suppressor Cells in Tumors. Immunity, 2014, 41, 389-401.	14.3	200

#	Article	IF	CITATIONS
383	Human fibrocytic myeloidâ€derived suppressor cells express IDO and promote tolerance via Tregâ€cell expansion. European Journal of Immunology, 2014, 44, 3307-3319.	2.9	104
384	Myeloidâ€derived suppressor cell functionality and interaction with <i>Leishmania major</i> parasites differ in C57BL/6 and BALB/c mice. European Journal of Immunology, 2014, 44, 3295-3306.	2.9	33
385	Chronic intake of high fish oil diet induces myeloid-derived suppressor cells to promote tumor growth. Cancer Immunology, Immunotherapy, 2014, 63, 663-673.	4.2	17
386	Myeloid-Derived Suppressor Cells in Cancer: Therapeutic, Predictive, and Prognostic Implications. Seminars in Oncology, 2014, 41, 174-184.	2.2	147
387	IL-17A Produced by $\hat{l}^3\hat{l}'T$ Cells Promotes Tumor Growth in Hepatocellular Carcinoma. Cancer Research, 2014, 74, 1969-1982.	0.9	218
388	The potential to target CCL5/CCR5 in breast cancer. Expert Opinion on Therapeutic Targets, 2014, 18, 1265-1275.	3.4	86
389	Lung-Residing Myeloid-derived Suppressors Display Dual Functionality in Murine Pulmonary Tuberculosis. American Journal of Respiratory and Critical Care Medicine, 2014, 190, 1053-1066.	5.6	143
390	Tumor-Induced Immune Suppression., 2014,,.		3
392	The critical role of myeloid-derived suppressor cells and FXR activation in immune-mediated liver injury. Journal of Autoimmunity, 2014, 53, 55-66.	6.5	34
393	Roles of miRNAs in regulating the differentiation and maturation of myeloid-derived suppressor cells. Medical Hypotheses, 2014, 83, 151-153.	1.5	4
394	Myeloid-derived suppressor cells are increased in frequency but not maximally suppressive in peripheral blood of Type 1 Diabetes Mellitus patients. Clinical Immunology, 2014, 153, 156-164.	3.2	41
395	Differential control of immune cell homeostasis by Foxp3 ⁺ regulatory T cells in murine peripheral lymph nodes and spleen. European Journal of Microbiology and Immunology, 2014, 4, 147-155.	2.8	4
396	Regulatory Myeloid Cells in Transplantation. Transplantation, 2014, 97, 367-379.	1.0	34
397	Functional characterization of myeloidâ€derived suppressor cell subpopulations during the development of experimental arthritis. European Journal of Immunology, 2015, 45, 464-473.	2.9	37
398	Immune Regulation in Neuroblastoma. Pediatric and Adolescent Medicine, 2015, , 138-149.	0.4	1
399	In vitro-generated MDSCs prevent murine GVHD by inducing type 2 T cells without disabling antitumor cytotoxicity. Blood, 2015, 126, 1138-1148.	1.4	71
400	Increase in Both CD14-Positive and CD15-Positive Myeloid-Derived Suppressor Cell Subpopulations in the Blood of Patients With Glioma But Predominance of CD15-Positive Myeloid-Derived Suppressor Cells in Glioma Tissue. Journal of Neuropathology and Experimental Neurology, 2015, 74, 390-400.	1.7	98
401	Polysaccharide <i>Agaricus blazei</i> Murill stimulates myeloid derived suppressor cell differentiation from M2 to M1 type, which mediates inhibition of tumour immuneâ€evasion via the Tollâ€ike receptor 2 pathway. Immunology, 2015, 146, 379-391.	4.4	43

#	Article	IF	CITATIONS
402	FcÎ ³ R requirements leading to successful immunotherapy. Immunological Reviews, 2015, 268, 104-122.	6.0	41
403	Vasoactive intestinal peptide induces CD14+HLA-DRâ^²/low myeloid-derived suppressor cells in gastric cancer. Molecular Medicine Reports, 2015, 12, 760-768.	2.4	13
404	Multiple myeloma induces Mcl-1 expression and survival of myeloid-derived suppressor cells. Oncotarget, 2015, 6, 10532-10547.	1.8	64
405	The bone marrow microenvironment enhances multiple myeloma progression by exosome-mediated activation of myeloid-derived suppressor cells. Oncotarget, 2015, 6, 43992-44004.	1.8	127
406	A Disintegrin and Metalloproteinase (ADAM) 10 and 17 in Th2 Mediated Responses. , 2015, , .		0
407	Differential Induction of Ly6G and Ly6C Positive Myeloid Derived Suppressor Cells in Chronic Kidney and Liver Inflammation and Fibrosis. PLoS ONE, 2015, 10, e0119662.	2.5	43
408	Myeloid-Derived Suppressor Cells and Therapeutic Strategies in Cancer. Mediators of Inflammation, 2015, 2015, 1-12.	3.0	80
409	Beyond the Immune Suppression: The Immunotherapy in Prostate Cancer. BioMed Research International, 2015, 2015, 1-9.	1.9	23
410	Pre- and post-operative evaluation: percentages of circulating myeloid-derived suppressor cells in rectal cancer patients. Neoplasma, 2015, 62, 239-249.	1.6	13
411	Mechanisms of sickle cell alloimmunization. Transfusion Clinique Et Biologique, 2015, 22, 178-181.	0.4	20
412	Myeloid-Derived Suppressor Cells. Advances in Cancer Research, 2015, 128, 95-139.	5.0	419
413	Inflammatory and Innate Immune Cells in Cancer Microenvironment and Progression. , 2015, , 9-28.		6
414	6-Thioguanine-loaded polymeric micelles deplete myeloid-derived suppressor cells and enhance the efficacy of T cell immunotherapy in tumor-bearing mice. Cancer Immunology, Immunotherapy, 2015, 64, 1033-1046.	4.2	56
415	Insights into Myeloid-Derived Suppressor Cells in Inflammatory Diseases. Archivum Immunologiae Et Therapiae Experimentalis, 2015, 63, 269-285.	2.3	29
416	IFN- \hat{l}^3 differentially regulates subsets of Gr-1+CD11b+ myeloid cells in chronic inflammation. Molecular Immunology, 2015, 66, 451-462.	2.2	20
417	Temsirolimus targets multiple hallmarks of cancer to impede mesothelioma growth <i>in vivo</i> . Respirology, 2015, 20, 1263-1271.	2.3	12
418	Wound healingâ€like immune program facilitates postpartum mammary gland involution and tumor progression. International Journal of Cancer, 2015, 136, 1803-1813.	5.1	112
419	Role of Myeloid-Derived Suppressor Cells in Glucocorticoid-Mediated Amelioration of FSGS. Journal of the American Society of Nephrology: JASN, 2015, 26, 2183-2197.	6.1	31

#	Article	IF	CITATIONS
420	Complexity and challenges in defining myeloid-derived suppressor cells., 2015, 88, 77-91.		119
421	T-cell-mediated antitumor immunity in B-cell non-Hodgkin lymphoma: activation, suppression and exhaustion. Leukemia and Lymphoma, 2015, 56, 2498-2504.	1.3	18
422	Invasive breast cancer reprograms early myeloid differentiation in the bone marrow to generate immunosuppressive neutrophils. Proceedings of the National Academy of Sciences of the United States of America, 2015, 112, E566-75.	7.1	329
423	Myeloid-Derived Suppressor Cells: Paradoxical Roles in Infection and Immunity. Journal of Innate Immunity, 2015, 7, 116-126.	3.8	76
424	Myeloid derived suppressor cell infiltration of murine and human gliomas is associated with reduction of tumor infiltrating lymphocytes. Journal of Neuro-Oncology, 2015, 122, 293-301.	2.9	122
425	Tasquinimod Modulates Suppressive Myeloid Cells and Enhances Cancer Immunotherapies in Murine Models. Cancer Immunology Research, 2015, 3, 136-148.	3.4	75
426	Granulocytic myeloid-derived suppressor cells inversely correlate with plasma arginine and overall survival in critically ill patients. Clinical and Experimental Immunology, 2015, 180, 280-288.	2.6	23
427	Myeloid-derived suppressor cells regulate T cell and B cell responses during autoimmune disease. Journal of Leukocyte Biology, 2015, 97, 573-582.	3.3	90
429	î"9-Tetrahydrocannabinol-mediated epigenetic modifications elicit myeloid-derived suppressor cell activation via STAT3/S100A8. Journal of Leukocyte Biology, 2015, 97, 677-688.	3.3	52
430	CCL2 Promotes Colorectal Carcinogenesis by Enhancing Polymorphonuclear Myeloid-Derived Suppressor Cell Population and Function. Cell Reports, 2015, 12, 244-257.	6.4	287
431	Immunosuppressive and Prometastatic Functions of Myeloid-Derived Suppressive Cells Rely upon Education from Tumor-Associated B Cells. Cancer Research, 2015, 75, 3456-3465.	0.9	133
432	MicroRNA-9 Regulates the Differentiation and Function of Myeloid-Derived Suppressor Cells via Targeting Runx1. Journal of Immunology, 2015, 195, 1301-1311.	0.8	76
433	Tofacitinib Facilitates the Expansion of Myeloidâ€Derived Suppressor Cells and Ameliorates Arthritis in SKG Mice. Arthritis and Rheumatology, 2015, 67, 893-902.	5.6	37
434	Activation of neuroimmune pathways increases therapeutic effects of radiotherapy on poorly differentiated breast carcinoma. Brain, Behavior, and Immunity, 2015, 48, 174-185.	4.1	22
435	Subsets of myeloid-derived suppressor cells in hepatocellular carcinoma express chemokines and chemokine receptors differentially. International Immunopharmacology, 2015, 26, 314-321.	3.8	33
436	Highlights on mechanisms of drugs targeting MDSCs: providing a novel perspective on cancer treatment. Tumor Biology, 2015, 36, 3159-3169.	1.8	9
437	CD14++CD16+ Monocytes Are Enriched by Glucocorticoid Treatment and Are Functionally Attenuated in Driving Effector T Cell Responses. Journal of Immunology, 2015, 194, 5150-5160.	0.8	59
439	Myeloid derived suppressor cells—An overview of combat strategies to increase immunotherapy efficacy. Oncolmmunology, 2015, 4, e954829.	4.6	219

#	Article	IF	CITATIONS
440	Mesenchymal Stem/Stromal Cells Protect against Autoimmunity via CCL2-Dependent Recruitment of Myeloid-Derived Suppressor Cells. Journal of Immunology, 2015, 194, 3634-3645.	0.8	54
441	Particulate \hat{l}^2 -glucan regulates the immunosuppression of granulocytic myeloid-derived suppressor cells by inhibiting NFIA expression. Oncolmmunology, 2015, 4, e1038687.	4.6	24
442	The nitric oxide radical scavenger carboxy-PTIO reduces the immunosuppressive activity of myeloid-derived suppressor cells and potentiates the antitumor activity of adoptive cytotoxic T lymphocyte immunotherapy. Oncolmmunology, 2015, 4, e1019195.	4.6	20
443	A subpopulation that may correspond to granulocytic myeloid-derived suppressor cells reflects the clinical stage and progression of cutaneous melanoma. International Immunology, 2016, 28, 87-97.	4.0	21
444	Neutrophils: important contributors to tumor progression and metastasis. Cancer and Metastasis Reviews, 2015, 34, 735-751.	5.9	185
445	Myeloid-derived suppressor cells inhibit T cell proliferation in human extranodal NK/T cell lymphoma: a novel prognostic indicator. Cancer Immunology, Immunotherapy, 2015, 64, 1587-1599.	4.2	71
446	Monocytic MDSCs regulate macrophage-mediated xenogenic cytotoxicity. Transplant Immunology, 2015, 33, 140-145.	1.2	16
447	Bone marrow derived myeloid cells orchestrate antiangiogenic resistance in glioblastoma through coordinated molecular networks. Cancer Letters, 2015, 369, 416-426.	7.2	52
448	ROR1C Regulates Differentiation of Myeloid-Derived Suppressor Cells. Cancer Cell, 2015, 28, 147-149.	16.8	20
449	Exploiting natural anti-tumor immunity for metastatic renal cell carcinoma. Human Vaccines and Immunotherapeutics, 2015, 11, 1612-1620.	3.3	16
450	Reduced Myeloid-derived Suppressor Cells in the Blood and Endometrium is Associated with Early Miscarriage. American Journal of Reproductive Immunology, 2015, 73, 479-486.	1.2	83
451	Subpopulations of M-MDSCs from mice infected by an immunodeficiency-causing retrovirus and their differential suppression of T- vs B-cell responses. Virology, 2015, 485, 263-273.	2.4	24
452	Inhibition of Fatty Acid Oxidation Modulates Immunosuppressive Functions of Myeloid-Derived Suppressor Cells and Enhances Cancer Therapies. Cancer Immunology Research, 2015, 3, 1236-1247.	3.4	387
453	The CUL4B/AKT/ \hat{I}^2 -Catenin Axis Restricts the Accumulation of Myeloid-Derived Suppressor Cells to Prohibit the Establishment of a Tumor-Permissive Microenvironment. Cancer Research, 2015, 75, 5070-5083.	0.9	42
454	Role of Tumor Pericytes in the Recruitment of Myeloid-Derived Suppressor Cells. Journal of the National Cancer Institute, 2015, 107, djv209.	6.3	57
455	Splenectomy inhibits non-small cell lung cancer growth by modulating anti-tumor adaptive and innate immune response. Oncolmmunology, 2015, 4, e998469.	4.6	41
456	Fas Ligand Deficiency Impairs Tumor Immunity by Promoting an Accumulation of Monocytic Myeloid-Derived Suppressor Cells. Cancer Research, 2015, 75, 4292-4301.	0.9	26
457	Emerging strategies for cancer immunoprevention. Oncogene, 2015, 34, 6029-6039.	5.9	39

#	Article	IF	Citations
458	Mast cell/MDSC a liaison immunosuppressive for tumor microenvironment. Oncolmmunology, 2015, 4, e1001232.	4.6	25
459	COX-2 promotes metastasis in nasopharyngeal carcinoma by mediating interactions between cancer cells and myeloid-derived suppressor cells. Oncolmmunology, 2015, 4, e1044712.	4.6	79
460	\hat{l} "9-Tetrahydrocannabinol attenuates allogeneic host-versus-graft response and delays skin graft rejection through activation of cannabinoid receptor 1 and induction of myeloid-derived suppressor cells. Journal of Leukocyte Biology, 2015, 98, 435-447.	3.3	40
461	Transcriptional regulation of myeloid-derived suppressor cells. Journal of Leukocyte Biology, 2015, 98, 913-922.	3.3	276
462	Myeloid-derived suppressor cells in B cell malignancies. Tumor Biology, 2015, 36, 7339-7353.	1.8	53
463	Myeloid-Derived Cells in Tumors: Effects of Radiation. Seminars in Radiation Oncology, 2015, 25, 18-27.	2.2	116
464	Cyclic adenosine monophosphate–responsive element modulator alpha overexpression impairs function of hepatic myeloidâ€derived suppressor cells and aggravates immuneâ€mediated hepatitis in mice. Hepatology, 2015, 61, 990-1002.	7.3	31
465	Targeting the bone marrow microenvironment in multiple myeloma. Immunological Reviews, 2015, 263, 160-172.	6.0	323
466	Host miR155 Promotes Tumor Growth through a Myeloid-Derived Suppressor Cell–Dependent Mechanism. Cancer Research, 2015, 75, 519-531.	0.9	92
467	Dopamine inhibits the function of Gr-1+CD115+ myeloid-derived suppressor cells through D1-like receptors and enhances anti-tumor immunity. Journal of Leukocyte Biology, 2015, 97, 191-200.	3.3	29
468	Regulation of Tumor Metastasis by Myeloid-Derived Suppressor Cells. Annual Review of Medicine, 2015, 66, 97-110.	12.2	406
469	Mast Cells Boost Myeloid-Derived Suppressor Cell Activity and Contribute to the Development of Tumor-Favoring Microenvironment. Cancer Immunology Research, 2015, 3, 85-95.	3.4	59
470	MicroRNA regulons in tumor microenvironment. Oncogene, 2015, 34, 3085-3094.	5.9	164
471	Exosomes released by granulocytic myeloid-derived suppressor cells attenuate DSS-induced colitis in mice. Oncotarget, 2016, 7, 15356-15368.	1.8	97
472	p53 Mutation: Critical Mediator of Therapy Resistance against Tumor Microenvironment. Biochemistry & Physiology, 2016, 05, .	0.2	4
473	Tumor-Derived CXCL1 Promotes Lung Cancer Growth via Recruitment of Tumor-Associated Neutrophils. Journal of Immunology Research, 2016, 2016, 1-11.	2.2	67
474	Granulocyte-like myeloid derived suppressor cells (G-MDSC) are increased in multiple myeloma and are driven by dysfunctional mesenchymal stem cells (MSC). Oncotarget, 2016, 7, 85764-85775.	1.8	80
475	Myeloid-Derived Suppressor Cells in Bacterial Infections. Frontiers in Cellular and Infection Microbiology, 2016, 6, 37.	3.9	99

#	Article	IF	CITATIONS
476	The anti-tumor effect of the quinoline-3-carboxamide tasquinimod: blockade of recruitment of CD11b+Ly6Chi cells to tumor tissue reduces tumor growth. BMC Cancer, 2016, 16, 440.	2.6	14
477	Mesenchymal Stem Cells (MSC) Regulate Activation of Granulocyte-Like Myeloid Derived Suppressor Cells (G-MDSC) in Chronic Myeloid Leukemia Patients. PLoS ONE, 2016, 11, e0158392.	2.5	30
478	Induction of Suppressor Cells and Increased Tumor Growth following Chronic Psychosocial Stress in Male Mice. PLoS ONE, 2016, 11, e0159059.	2.5	47
479	Potential Anticancer Drugs Targeting Immune Pathways. , 0, , .		0
480	Vaccines and Their Role in CD8 T Cell-Mediated Antitumor Immunity. , 2016, , 534-541.		0
481	Neutrophil extracellular traps â€" the dark side of neutrophils. Journal of Clinical Investigation, 2016, 126, 1612-1620.	8.2	368
482	Relevance of Interferon Regulatory Factor-8 Expression in Myeloid–Tumor Interactions. Journal of Interferon and Cytokine Research, 2016, 36, 442-453.	1.2	19
483	Myeloidâ€derived suppressor cells as effectors of immune suppression in cancer. International Journal of Cancer, 2016, 139, 1915-1926.	5.1	80
484	<scp>CD</scp> 33 ⁺ / <scp>HLA</scp> â€ <scp>DR</scp> ^{neg} andCD33 ⁺ / <scp>HLA</scp> â€ <scp>DR</scp> ^{+/â°} Cells: Rare Populations in the Human Decidua with Characteristics of <scp>MDSC</scp> . American Journal of Reproductive Immunology, 2016, 75, 539-556.	1.2	24
485	Periostin promotes immunosuppressive premetastatic niche formation to facilitate breast tumour metastasis. Journal of Pathology, 2016, 239, 484-495.	4.5	81
486	$17 < b > \hat{l}^2 < /b >$ -Oestradiol enhances the expansion and activation of myeloid-derived suppressor cells via signal transducer and activator of transcription (STAT) \hat{a} 3 signalling in human pregnancy. Clinical and Experimental Immunology, 2016, 185, 86-97.	2.6	64
487	The influence of myeloidâ€derived suppressor cells on angiogenesis and tumor growth after cancer surgery. International Journal of Cancer, 2016, 138, 2688-2699.	5.1	42
488	In VivoMobilization and Functional Characterization of Nonhuman Primate Monocytic Myeloid-Derived Suppressor Cells. American Journal of Transplantation, 2016, 16, 661-671.	4.7	14
489	Re-polarizing Myeloid-derived Suppressor Cells (MDSCs) with Cationic Polymers for Cancer Immunotherapy. Scientific Reports, 2016, 6, 24506.	3.3	54
490	Tumor-Induced Myeloid-Derived Suppressor Cells. Microbiology Spectrum, 2016, 4, .	3.0	28
491	The Ontogeny and Microenvironmental Regulation of Tumor-Associated Macrophages. Antioxidants and Redox Signaling, 2016, 25, 775-791.	5.4	45
492	Anti-GD2 mAb and Vorinostat synergize in the treatment of neuroblastoma. Oncolmmunology, 2016, 5, e1164919.	4.6	45
493	Oncogenic mTOR signalling recruits myeloid-derived suppressor cells to promote tumour initiation. Nature Cell Biology, 2016, 18, 632-644.	10.3	174

#	Article	IF	CITATIONS
494	Phenotypic and functional dissection of myeloid-derived suppressor cells. Applied Biological Chemistry, 2016, 59, 367-371.	1.9	5
495	Cutaneous squamous cell carcinomas with markers of increased metastatic risk are associated with elevated numbers of neutrophils and/or granulocytic myeloid derived suppressor cells. Journal of Dermatological Science, 2016, 83, 124-130.	1.9	16
496	Combined treatment with dabrafenib and trametinib with immune-stimulating antibodies for BRAF mutant melanoma. Oncolmmunology, 2016, 5, e1052212.	4.6	83
497	Drafting the proteome landscape of myeloidâ€derived suppressor cells. Proteomics, 2016, 16, 367-378.	2.2	26
498	Shaping the Immune Landscape in Cancer by Galectin-Driven Regulatory Pathways. Journal of Molecular Biology, 2016, 428, 3266-3281.	4.2	67
499	CXCR2-Mediated Granulocytic Myeloid-Derived Suppressor Cells' Functional Characterization and Their Role in Maternal Fetal Interface. DNA and Cell Biology, 2016, 35, 358-365.	1.9	36
500	The effect of immunosuppressive drug cyclosporine A on myeloid-derived suppressor cells in transplanted mice. Inflammation Research, 2016, 65, 679-688.	4.0	24
501	Low dose gemcitabine-loaded lipid nanocapsules target monocytic myeloid-derived suppressor cells and potentiate cancer immunotherapy. Biomaterials, 2016, 96, 47-62.	11.4	118
502	Timing of CSF-1/CSF-1R signaling blockade is critical to improving responses to CTLA-4 based immunotherapy. Oncolmmunology, 2016, 5, e1151595.	4.6	57
503	Suppressive effects of low-dose 5-fluorouracil, busulfan or treosulfan on the expansion of circulatory neutrophils and myeloid derived immunosuppressor cells in tumor-bearing mice. International Immunopharmacology, 2016, 40, 41-49.	3.8	13
504	Interferon regulatory factor 4 (IRF4) controls myeloid-derived suppressor cell (MDSC) differentiation and function. Journal of Leukocyte Biology, 2016, 100, 1273-1284.	3.3	39
505	Myeloid-derived suppressor cells expressing a self-antigen ameliorate experimental autoimmune encephalomyelitis. Experimental Neurology, 2016, 286, 50-60.	4.1	21
506	Reengineering the Tumor Microenvironment to Alleviate Hypoxia and Overcome Cancer Heterogeneity. Cold Spring Harbor Perspectives in Medicine, 2016, 6, a027094.	6.2	119
507	High fat diet exacerbates dextran sulfate sodium induced colitis through disturbing mucosal dendritic cell homeostasis. International Immunopharmacology, 2016, 40, 1-10.	3.8	72
508	Signal transducer and activator of transcription proteins: regulators of myeloid-derived suppressor cell-mediated immunosuppression in cancer. Archives of Pharmacal Research, 2016, 39, 1597-1608.	6.3	32
509	Myeloidâ€Derived Suppressor Cells in Cancers and Inflammatory Diseases: Angel or Demon?. Scandinavian Journal of Immunology, 2016, 84, 255-261.	2.7	11
510	Neutrophils in cancer. Immunological Reviews, 2016, 273, 312-328.	6.0	166
511	CRISPR/Cas9-Mediated <i>Trp53</i> and <i>Brca2</i> Knockout to Generate Improved Murine Models of Ovarian High-Grade Serous Carcinoma. Cancer Research, 2016, 76, 6118-6129.	0.9	145

#	Article	IF	CITATIONS
512	mTOR masters monocytic myeloid-derived suppressor cells in mice with allografts or tumors. Scientific Reports, 2016, 6, 20250.	3.3	88
513	Inhibiting MDSC differentiation from bone marrow with phytochemical polyacetylenes drastically impairs tumor metastasis. Scientific Reports, 2016, 6, 36663.	3 . 3	29
514	TLR7-based cancer immunotherapy decreases intratumoral myeloid-derived suppressor cells and blocks their immunosuppressive function. Oncolmmunology, 2016, 5, e1230578.	4.6	65
515	Myeloid-derived suppressor cells in murine AIDS inhibit B-cell responses in part via soluble mediators including reactive oxygen and nitrogen species, and TGF-Î ² . Virology, 2016, 499, 9-22.	2.4	26
516	The interplay of epigenetic therapy and immunity in locally recurrent or metastatic estrogen receptor-positive breast cancer: Correlative analysis of ENCORE 301, a randomized, placebo-controlled phase II trial of exemestane with or without entinostat. Oncolmmunology, 2016, 5, e1219008.	4.6	58
517	Glucocorticoid Induces Hepatic Steatosis by Inhibiting Activating Transcription Factor 3 (ATF3)/S100A9 Protein Signaling in Granulocytic Myeloid-derived Suppressor Cells. Journal of Biological Chemistry, 2016, 291, 21771-21785.	3.4	21
518	Immune Suppressive Myeloid-Derived Suppressor Cells in Cancer. , 2016, , 512-525.		3
519	One microenvironment does not fit all: heterogeneity beyond cancer cells. Cancer and Metastasis Reviews, 2016, 35, 601-629.	5. 9	58
520	Targeting inflammasome/IL-1 pathways for cancer immunotherapy. Scientific Reports, 2016, 6, 36107.	3.3	216
521	Recommendations for myeloid-derived suppressor cell nomenclature and characterization standards. Nature Communications, 2016, 7, 12150.	12.8	2,076
522	Splenectomy suppresses growth and metastasis of hepatocellular carcinoma through decreasing myeloid-derived suppressor cells in vivo. Journal of Huazhong University of Science and Technology [Medical Sciences], 2016, 36, 667-676.	1.0	10
523	MicroRNA expression profiles of granulocytic myeloid-derived suppressor cells from mice bearing Lewis lung carcinoma. Molecular Medicine Reports, 2016, 14, 4567-4574.	2.4	6
524	Colonization of xenograft tumors by oncolytic vaccinia virus (VACV) results in enhanced tumor killing due to the involvement of myeloid cells. Journal of Translational Medicine, 2016, 14, 340.	4.4	7
525	mTOR inhibitors effects on regulatory T cells and on dendritic cells. Journal of Translational Medicine, 2016, 14, 152.	4.4	57
526	The Bone Microenvironment: a Fertile Soil for Tumor Growth. Current Osteoporosis Reports, 2016, 14, 151-158.	3.6	52
527	Challenges in vaccine therapy in hematological malignancies and strategies to overcome them. Expert Opinion on Biological Therapy, 2016, 16, 1093-1104.	3.1	3
528	CD11b ⁺ Gr-1 ⁺ myeloid-derived suppressor cells reduce atherosclerotic lesion development in LDLr deficient mice. Cardiovascular Research, 2016, 111, 252-261.	3.8	34
529	Myeloid derived suppressor cells and autoimmunity. Human Immunology, 2016, 77, 631-636.	2.4	70

#	Article	IF	CITATIONS
530	Trim33/Tif1 \hat{l}^3 is involved in late stages of granulomonopoiesis in mice. Experimental Hematology, 2016, 44, 727-739.e6.	0.4	13
531	Improving cancer immunotherapy by targeting the STATe of MDSCs. Oncolmmunology, 2016, 5, e1196312.	4.6	50
532	Myeloid-derived suppressor cells have a proinflammatory role in the pathogenesis of autoimmune arthritis. Annals of the Rheumatic Diseases, 2016, 75, 278-285.	0.9	128
533	Yeast-Derived Particulate \hat{l}^2 -Glucan Treatment Subverts the Suppression of Myeloid-Derived Suppressor Cells (MDSC) by Inducing Polymorphonuclear MDSC Apoptosis and Monocytic MDSC Differentiation to APC in Cancer. Journal of Immunology, 2016, 196, 2167-2180.	0.8	86
534	The potential therapeutic role of myeloid-derived suppressor cells in autoimmune arthritis. Seminars in Arthritis and Rheumatism, 2016, 45, 490-495.	3.4	39
535	Synergistic COX2 Induction by IFNÎ 3 and TNFÎ $^\pm$ Self-Limits Type-1 Immunity in the Human Tumor Microenvironment. Cancer Immunology Research, 2016, 4, 303-311.	3.4	53
536	The roles of sepsis-induced myeloid derived suppressor cells in mice corneal, skin and combined transplantation. Transplant Immunology, 2016, 34, 8-13.	1.2	24
537	Myeloid derived suppressor cells in inflammatory conditions of the central nervous system. Biochimica Et Biophysica Acta - Molecular Basis of Disease, 2016, 1862, 368-380.	3.8	38
538	Ranitidine modifies myeloid cell populations and inhibits breast tumor development and spread in mice. Oncolmmunology, 2016, 5, e1151591.	4.6	29
539	Natural killer cells require monocytic Gr-1 ⁺ /CD11b ⁺ myeloid cells to eradicate orthotopically engrafted glioma cells. Oncolmmunology, 2016, 5, e1163461.	4.6	28
540	Tungsten Promotes Sex-Specific Adipogenesis in the Bone by Altering Differentiation of Bone Marrow-Resident Mesenchymal Stromal Cells. Toxicological Sciences, 2016, 150, 333-346.	3.1	17
542	Granulocytic myeloid-derived suppressor cells maintain feto-maternal tolerance by inducing Foxp3 expression in CD4+CD25â^'T cells by activation of the TGF- \hat{l}^2/\hat{l}^2 -catenin pathway. Molecular Human Reproduction, 2016, 22, 499-511.	2.8	68
543	An initial top-down proteomic analysis of the standard cuprizone mouse model of multiple sclerosis. Journal of Chemical Biology, 2016, 9, 9-18.	2.2	20
544	The emerging role of myeloid-derived suppressor cells in lung diseases. European Respiratory Journal, 2016, 47, 967-977.	6.7	46
545	Immunosuppressive CD11b+Ly6Chi monocytes in pristane-induced lupus mouse model. Journal of Leukocyte Biology, 2016, 99, 1121-1129.	3.3	20
546	Aminoacyl-tRNA synthetase-interacting multifunctional protein 1 suppresses tumor growth in breast cancer-bearing mice by negatively regulating myeloid-derived suppressor cell functions. Cancer lmmunology, Immunotherapy, 2016, 65, 61-72.	4.2	24
547	Myeloid-derived suppressor cells in patients with myeloproliferative neoplasm. Leukemia Research, 2016, 43, 39-43.	0.8	47
548	TNFα-induced M-MDSCs promote transplant immune tolerance via nitric oxide. Journal of Molecular Medicine, 2016, 94, 911-920.	3.9	35

#	Article	IF	Citations
549	Neutrophils: Critical components in experimental animal models of cancer. Seminars in Immunology, 2016, 28, 197-204.	5.6	41
550	The Microenvironment of Lung Cancer and Therapeutic Implications. Advances in Experimental Medicine and Biology, 2016, 890, 75-110.	1.6	96
551	Phenotype, development, and biological function of myeloid-derived suppressor cells. Oncolmmunology, 2016, 5, e1004983.	4.6	154
552	MDSCs in cancer: Conceiving new prognostic and therapeutic targets. Biochimica Et Biophysica Acta: Reviews on Cancer, 2016, 1865, 35-48.	7.4	68
554	Targeting Ornithine Decarboxylase by \hat{l}_{\pm} -Difluoromethylornithine Inhibits Tumor Growth by Impairing Myeloid-Derived Suppressor Cells. Journal of Immunology, 2016, 196, 915-923.	0.8	55
555	The immunobiology of myeloid-derived suppressor cells in cancer. Tumor Biology, 2016, 37, 1387-1406.	1.8	83
556	Tolerance and immune suppression in the tumor microenvironment. Cellular Immunology, 2016, 299, 23-29.	3.0	41
557	Intravenous administration of bone marrow-derived multipotent mesenchymal stromal cells enhances the recruitment of CD11b+ myeloid cells to the lungs and facilitates B16-F10 melanoma colonization. Experimental Cell Research, 2016, 345, 141-149.	2.6	6
558	The delicate balance of macrophages in colorectal cancer; their role in tumour development and therapeutic potential. Immunobiology, 2017, 222, 21-30.	1.9	31
559	Human Myeloid-derived Suppressor Cells are Associated With Chronic Immune Suppression After Severe Sepsis/Septic Shock. Annals of Surgery, 2017, 265, 827-834.	4.2	196
560	Matricellular proteins tune myeloid-derived suppressor cell recruitment and function in breast cancer. Journal of Leukocyte Biology, 2017, 102, 287-292.	3.3	20
561	Radiotherapy and immunotherapy: a beneficial liaison?. Nature Reviews Clinical Oncology, 2017, 14, 365-379.	27.6	760
562	Immunosuppressive tumor-infiltrating myeloid cells mediate adaptive immune resistance via a PD-1/PD-L1 mechanism in glioblastoma. Neuro-Oncology, 2017, 19, now287.	1.2	128
563	Energy metabolism drives myeloid-derived suppressor cell differentiation and functions in pathology. Journal of Leukocyte Biology, 2017, 102, 325-334.	3.3	38
564	Dependence of Glomerulonephritis Induction on Novel Intraglomerular Alternatively Activated Bone Marrow–Derived Macrophages and Mac-1 and PD-L1 in Lupus-Prone NZM2328 Mice. Journal of Immunology, 2017, 198, 2589-2601.	0.8	32
565	The innate and adaptive infiltrating immune systems as targets for breast cancer immunotherapy. Endocrine-Related Cancer, 2017, 24, R123-R144.	3.1	64
566	Intratumoral administration of cGAMP transiently accumulates potent macrophages for anti-tumor immunity at a mouse tumor site. Cancer Immunology, Immunotherapy, 2017, 66, 705-716.	4.2	128
567	MUC1-mediated induction of myeloid-derived suppressor cells in patients with acute myeloid leukemia. Blood, 2017, 129, 1791-1801.	1.4	130

#	Article	IF	CITATIONS
568	Exploiting tumor-associated dendritic cell heterogeneity for novel cancer therapies. Journal of Leukocyte Biology, 2017, 102, 317-324.	3.3	32
569	Differential effects of low-dose fludarabine or 5-fluorouracil on the tumor growth and myeloid derived immunosuppression status of tumor-bearing mice. International Immunopharmacology, 2017, 47, 173-181.	3.8	7
570	Phenformin Inhibits Myeloid-Derived Suppressor Cells and Enhances theÂAnti-Tumor Activity of PD-1 Blockade inÂMelanoma. Journal of Investigative Dermatology, 2017, 137, 1740-1748.	0.7	107
571	Metabolic regulation of suppressive myeloid cells in cancer. Cytokine and Growth Factor Reviews, 2017, 35, 27-35.	7.2	27
572	Arsenic trioxide inhibits tumor-induced myeloid-derived suppressor cells and enhances T-cell activity. Oncology Letters, 2017, 13, 2141-2150.	1.8	12
573	Myeloid-derived suppressor cells and their role in pancreatic cancer. Cancer Gene Therapy, 2017, 24, 100-105.	4.6	71
574	Reduced PU.1 expression underlies aberrant neutrophil maturation and function in \hat{l}^2 -thalassemia mice and patients. Blood, 2017, 129, 3087-3099.	1.4	26
575	The mTOR signal regulates myeloid-derived suppressor cells differentiation and immunosuppressive function in acute kidney injury. Cell Death and Disease, 2017, 8, e2695-e2695.	6.3	81
576	SETD1B Activates iNOS Expression in Myeloid-Derived Suppressor Cells. Cancer Research, 2017, 77, 2834-2843.	0.9	54
577	Monocytic myeloidâ€derived suppressor cells regulate Tâ€cell responses against vaccinia virus. European Journal of Immunology, 2017, 47, 1022-1031.	2.9	6
578	Myeloid-derived suppressor cells and T regulatory cells in tumors: unraveling the dark side of the force. Journal of Leukocyte Biology, 2017, 102, 407-421.	3.3	32
579	Myeloid-derived suppressor cells and myeloid regulatory cells in cancer and autoimmune disorders. Experimental and Therapeutic Medicine, 2017, 13, 378-388.	1.8	14
580	Suppression of T cells by myeloid-derived suppressor cells in cancer. Human Immunology, 2017, 78, 113-119.	2.4	62
582	Subversion of NK-cell and TNF $\hat{l}\pm$ Immune Surveillance Drives Tumor Recurrence. Cancer Immunology Research, 2017, 5, 1029-1045.	3.4	22
583	Epithelial-mesenchymal transition and inflammation at the site of the primary tumor. Seminars in Cancer Biology, 2017, 47, 177-184.	9.6	128
584	STAT1 gene deficient mice develop accelerated breast cancer growth and metastasis which is reduced by IL-17 blockade. Oncolmmunology, 2017, 6, e1361088.	4.6	30
585	Host STING-dependent MDSC mobilization drives extrinsic radiation resistance. Nature Communications, 2017, 8, 1736.	12.8	304
586	Nitric oxide mediated inhibition of antigen presentation from DCs to CD4+ T cells in cancer and measurement of STAT1 nitration. Scientific Reports, 2017, 7, 15424.	3.3	68

#	Article	IF	CITATIONS
587	Recruitment of CD11b+Ly6C+ monocytes in non-small cell lung cancer xenografts challenged by anti-VEGF antibody. Oncology Letters, 2017, 14, 615-622.	1.8	8
588	Predicting the response to CTLA-4 blockade by longitudinal noninvasive monitoring of CD8 T cells. Journal of Experimental Medicine, 2017, 214, 2243-2255.	8.5	187
589	Phenotypically resembling myeloid derived suppressor cells are increased in children with HIV and exposed/infected with <i>Mycobacterium tuberculosis</i> . European Journal of Immunology, 2017, 47, 107-118.	2.9	27
590	Macrophage Migration Inhibitory Factor (MIF): Biological Activities and Relation with Cancer. Pathology and Oncology Research, 2017, 23, 235-244.	1.9	113
591	Myeloid-Derived Suppressor Cell Subset Accumulation in Renal Cell Carcinoma Parenchyma Is Associated with Intratumoral Expression of IL1β, IL8, CXCL5, and Mip-1α. Clinical Cancer Research, 2017, 23, 2346-2355.	7.0	148
592	l-Arginine and Macrophages: Role in Classical and Alternative Activation. , 2017, , 117-129.		0
593	Macrophage NOS2 in Tumor Leukocytes. Antioxidants and Redox Signaling, 2017, 26, 1023-1043.	5.4	17
594	Stat3 and C/EBPβ synergize to induce miRâ€21 and miRâ€181b expression during sepsis. Immunology and Cell Biology, 2017, 95, 42-55.	2.3	55
595	p16Ink4a and p21Cip1/Waf1 promote tumour growth by enhancing myeloid-derived suppressor cells chemotaxis. Nature Communications, 2017, 8, 2050.	12.8	47
596	Tumor Immune Microenvironment in Cancer Progression and Cancer Therapy. Advances in Experimental Medicine and Biology, 2017, , .	1.6	9
597	Targeting Myeloid-Derived Suppressor Cells in Cancer. Advances in Experimental Medicine and Biology, 2017, 1036, 105-128.	1.6	49
598	Novel GM-CSF signals via IFN- \hat{I}^3 R/IRF-1 and AKT/mTOR license monocytes for suppressor function. Blood Advances, 2017, 1, 947-960.	5.2	78
599	Major Challenges and Potential Microenvironment-Targeted Therapies in Glioblastoma. International Journal of Molecular Sciences, 2017, 18, 2732.	4.1	26
600	The Role of Myeloid-Derived Suppressor Cells in Immunosuppression in Brain Tumors. , 2017, , 63-82.		5
601	Immunotherapeutic Concepts to Target Acute Myeloid Leukemia: Focusing on the Role of Monoclonal Antibodies, Hypomethylating Agents and the Leukemic Microenvironment. International Journal of Molecular Sciences, 2017, 18, 1660.	4.1	33
602	Critical Role of Myeloid-Derived Suppressor Cells in Tumor-Induced Liver Immune Suppression through Inhibition of NKT Cell Function. Frontiers in Immunology, 2017, 8, 129.	4.8	25
603	Inflammasomes in Inflammation-Induced Cancer. Frontiers in Immunology, 2017, 8, 271.	4.8	76
604	Myeloid-derived suppressor cells in ovarian cancer: friend or foe?. Central-European Journal of Immunology, 2017, 42, 383-389.	1.2	8

#	Article	IF	CITATIONS
605	Chemotherapy and tumor microenvironment of pancreatic cancer. Cancer Cell International, 2017, 17, 68.	4.1	91
606	Immunomodulatory activity of microRNAs: potential implications for multiple myeloma treatment. Current Cancer Drug Targets, 2017, 17, 1-1.	1.6	12
607	On the origin of myeloid-derived suppressor cells. Oncotarget, 2017, 8, 3649-3665.	1.8	156
608	Trans-sialidase-based vaccine candidate protects against <i>Trypanosoma cruzi</i> infection, not only inducing an effector immune response but also affecting cells with regulatory/suppressor phenotype. Oncotarget, 2017, 8, 58003-58020.	1.8	23
609	Under-Evaluated or Unassessed Pathogenic Pathways in Autoimmune Hepatitis and Implications for Future Management. Digestive Diseases and Sciences, 2018, 63, 1706-1725.	2.3	13
610	Molecular Regulation of Bone Metastasis Pathogenesis. Cellular Physiology and Biochemistry, 2018, 46, 1423-1438.	1.6	52
611	Myeloid-derived suppressor cells in lymphoma: The good, the bad and the ugly. Blood Reviews, 2018, 32, 490-498.	5.7	29
612	Myeloid cell heterogeneity in cancer: not a single cell alike. Cellular Immunology, 2018, 330, 188-201.	3.0	127
613	Anti-cancer vaccine therapy for hematologic malignancies: An evolving era. Blood Reviews, 2018, 32, 312-325.	5.7	19
614	Polymorphonuclear Leukocytes in Pulmonary Hypertension and Fibrosis: Not Always What They Appear to Be. American Journal of Respiratory Cell and Molecular Biology, 2018, 58, 135-137.	2.9	0
615	Myeloid-derived suppressor cells coming of age. Nature Immunology, 2018, 19, 108-119.	14.5	1,285
616	Targeting tumorâ€infiltrating Ly6G ⁺ myeloid cells improves sorafenib efficacy in mouse orthotopic hepatocellular carcinoma. International Journal of Cancer, 2018, 142, 1878-1889.	5.1	46
617	A Retroviral Replicating Vector Encoding Cytosine Deaminase and 5-FC Induces Immune Memory in Metastatic Colorectal Cancer Models. Molecular Therapy - Oncolytics, 2018, 8, 14-26.	4.4	26
618	Biology of Myeloid-Derived Suppressor Cells. , 2018, , 181-197.		2
619	Myeloid-Derived Suppressor Cells: Immune-Suppressive Cells That Impair Antitumor Immunity and Are Sculpted by Their Environment. Journal of Immunology, 2018, 200, 422-431.	0.8	404
620	IFN- \hat{l}^3 decreased the suppressive function of CD33+HLA-DRlow myeloid cells through down-regulation of PD-1/PD-L2 signaling pathway. Molecular Immunology, 2018, 94, 107-120.	2.2	17
621	Age-related inflammatory bone marrow microenvironment induces ineffective erythropoiesis mimicking del(5q) MDS. Leukemia, 2018, 32, 1023-1033.	7.2	51
622	Tumor-Derived GM-CSF Promotes Granulocyte Immunosuppression in Mesothelioma Patients. Clinical Cancer Research, 2018, 24, 2859-2872.	7.0	40

#	Article	IF	Citations
623	<i>Lnc-chop</i> Promotes Immunosuppressive Function of Myeloid-Derived Suppressor Cells in Tumor and Inflammatory Environments. Journal of Immunology, 2018, 200, 2603-2614.	0.8	54
624	Plasticity of myeloid-derived suppressor cells in cancer. Current Opinion in Immunology, 2018, 51, 76-82.	5.5	281
625	Oncolytic Reovirus Inhibits Immunosuppressive Activity of Myeloid-Derived Suppressor Cells in a TLR3-Dependent Manner. Journal of Immunology, 2018, 200, 2987-2999.	0.8	34
626	Immature myeloid cells in the tumor microenvironment: Implications for immunotherapy. Clinical Immunology, 2018, 189, 34-42.	3.2	37
627	Neutrophils at the Biological–Material Interface. ACS Biomaterials Science and Engineering, 2018, 4, 1128-1136.	5.2	32
628	The Effect of Closed-Eye Tear Film Conditions on Blood-Isolated Neutrophils, In Vitro. Ocular Immunology and Inflammation, 2018, 26, 706-716.	1.8	5
629	Immunomodulatory effects of myeloid-derived suppressor cells in diseases: Role in cancer and infections. Immunobiology, 2018, 223, 432-442.	1.9	43
630	Clinical Significance of T-Cell Immunoglobulin Mucin 3 Expression on Peripheral Blood Mononuclear Cells in Pediatric Acute Immune Thrombocytopenia. Clinical and Applied Thrombosis/Hemostasis, 2018, 24, 936-943.	1.7	2
631	Daunorubicin conjugated with alpha-fetoprotein selectively eliminates myeloid-derived suppressor cells (MDSCs) and inhibits experimental tumor growth. Cancer Immunology, Immunotherapy, 2018, 67, 101-111.	4.2	19
632	Effects of oral and subcutaneous administration of HSP60 on myeloid-derived suppressor cells and atherosclerosis in ApoE \hat{a} '/ \hat{a} ' mice. Biochemical and Biophysical Research Communications, 2018, 498, 701-706.	2.1	10
633	CD1d is a novel cell-surface marker for human monocytic myeloid-derived suppressor cells with T cell suppression activity in peripheral blood after allogeneic hematopoietic stem cell transplantation. Biochemical and Biophysical Research Communications, 2018, 495, 519-525.	2.1	9
634	A functional characteristic of cysteineâ€rich protein 61: Modulation of myeloidâ€derived suppressor cells in liver inflammation. Hepatology, 2018, 67, 232-246.	7.3	39
635	Phenotypic and Functional Diversities of Myeloid-Derived Suppressor Cells in Autoimmune Diseases. Mediators of Inflammation, 2018, 2018, 1-8.	3.0	15
636	From Friend to Enemy: Dissecting the Functional Alteration of Immunoregulatory Components during Pancreatic Tumorigenesis. International Journal of Molecular Sciences, 2018, 19, 3584.	4.1	10
637	The Yin and Yang of Myeloid Derived Suppressor Cells. Frontiers in Immunology, 2018, 9, 2776.	4.8	58
638	Arginase-1 Is Responsible for IL-13-Mediated Susceptibility to Trypanosoma cruzi Infection. Frontiers in Immunology, 2018, 9, 2790.	4.8	19
639	Roles of Myeloid-Derived Suppressor Cell Subpopulations in Autoimmune Arthritis. Frontiers in Immunology, 2018, 9, 2849.	4.8	35
640	Dexmedetomidine expands monocytic myeloid-derived suppressor cells and promotes tumour metastasis after lung cancer surgery. Journal of Translational Medicine, 2018, 16, 347.	4.4	28

#	Article	IF	CITATIONS
641	The Emerging Role of CD244 Signaling in Immune Cells of the Tumor Microenvironment. Frontiers in Immunology, 2018, 9, 2809.	4.8	91
642	Chemokine (Câ€Xâ€C motif) ligand 1 and <scp>CXCL</scp> 2 produced by tumor promote the generation of monocytic myeloidâ€derived suppressor cells. Cancer Science, 2018, 109, 3826-3839.	3.9	50
643	Embelin impairs the accumulation and activation of MDSCs in colitis-associated tumorigenesis. Oncolmmunology, 2018, 7, e1498437.	4.6	17
644	Diamonds in the Rough: Harnessing Tumor-Associated Myeloid Cells for Cancer Therapy. Frontiers in Immunology, 2018, 9, 2250.	4.8	35
645	Developmental and Functional Heterogeneity of Monocytes. Immunity, 2018, 49, 595-613.	14.3	609
646	Radiation, inflammation and the immune response in cancer. Mammalian Genome, 2018, 29, 843-865.	2.2	131
647	LC3-Associated Phagocytosis in Myeloid Cells Promotes Tumor Immune Tolerance. Cell, 2018, 175, 429-441.e16.	28.9	242
648	<i>Lnc-C/EBPÎ2</i> Negatively Regulates the Suppressive Function of Myeloid-Derived Suppressor Cells. Cancer Immunology Research, 2018, 6, 1352-1363.	3.4	56
649	Targeting myeloid-derived suppressor cells for cancer immunotherapy. Cancer Immunology, Immunotherapy, 2018, 67, 1181-1195.	4.2	95
650	Cancerâ€related circulating and tumorâ€associated neutrophils – subtypes, sources and function. FEBS Journal, 2018, 285, 4316-4342.	4.7	156
651	Inhibition of pregnancy-associated granulocytic myeloid-derived suppressor cell expansion and arginase-1 production in preeclampsia. Journal of Reproductive Immunology, 2018, 127, 48-54.	1.9	32
652	Immune suppression and reversal of the suppressive tumor microenvironment. International Immunology, 2018, 30, 445-455.	4.0	110
653	Immunosuppressive Role of Myeloid-Derived Suppressor Cells and Therapeutic Targeting in Lung Cancer. Journal of Immunology Research, 2018, 2018, 1-9.	2.2	42
654	Tracking the fate of adoptively transferred myeloid-derived suppressor cells in the primary breast tumor microenvironment. PLoS ONE, 2018, 13, e0196040.	2.5	11
655	Myeloid-derived suppressor cells exacerbate Sjögren's syndrome by inhibiting Th2 immune responses. Molecular Immunology, 2018, 101, 251-258.	2.2	16
656	Macrophages are exploited from an innate wound healing response to facilitate cancer metastasis. Nature Communications, 2018, 9, 2951.	12.8	81
657	Long non-coding RNA RUNXOR accelerates MDSC-mediated immunosuppression in lung cancer. BMC Cancer, 2018, 18, 660.	2.6	47
658	Monocytes Differentiate to Immune Suppressive Precursors of Metastasis-Associated Macrophages in Mouse Models of Metastatic Breast Cancer. Frontiers in Immunology, 2017, 8, 2004.	4.8	122

#	Article	IF	CITATIONS
659	Hydrogen Sulfide Reduces Myeloid-Derived Suppressor Cell-Mediated Inflammatory Response in a Model of Helicobacter hepaticus-Induced Colitis. Frontiers in Immunology, 2018, 9, 499.	4.8	27
660	Factors Influencing the Differentiation of Human Monocytic Myeloid-Derived Suppressor Cells Into Inflammatory Macrophages. Frontiers in Immunology, 2018, 9, 608.	4.8	41
661	Targeting Macrophages in Cancer: From Bench to Bedside. Frontiers in Oncology, 2018, 8, 49.	2.8	385
662	CD45+CD33lowCD11bdim myeloid-derived suppressor cells suppress CD8+ T cell activity via the IL-6/IL-8-arginase I axis in human gastric cancer. Cell Death and Disease, 2018, 9, 763.	6.3	40
663	Microarray analysis of long non-coding RNA expression profiles in monocytic myeloid-derived suppressor cells in Echinococcus granulosus-infected mice. Parasites and Vectors, 2018, 11, 327.	2.5	32
664	Granulocyte-macrophage colony-stimulating factor as a mediator of autoimmunity in multiple sclerosis. Journal of Neuroimmunology, 2018, 323, 1-9.	2.3	15
665	Monocytic myeloid-derived suppressor cells generated from rhesus macaque bone marrow enrich for regulatory T cells. Cellular Immunology, 2018, 329, 50-55.	3.0	4
666	Abscopal effect of radiotherapy combined with immune checkpoint inhibitors. Journal of Hematology and Oncology, 2018, 11, 104.	17.0	303
667	MiRâ€486 promotes proliferation and suppresses apoptosis in myeloid cells by targeting Cebpa in vitro. Cancer Medicine, 2018, 7, 4627-4638.	2.8	17
668	Intraperitoneal neutrophils activated by KRAS-induced ovarian cancer exert antitumor effects by modulating adaptive immunity. International Journal of Oncology, 2018, 53, 1580-1590.	3.3	9
669	Sphingosine 1-phosphate receptor modulator ONO-4641 stimulates CD11b+Gr-1+ cell expansion and inhibits lymphocyte infiltration in the lungs to ameliorate murine pulmonary emphysema. Mucosal Immunology, 2018, 11, 1606-1620.	6.0	17
670	The reciprocal function and regulation of tumor vessels and immune cells offers new therapeutic opportunities in cancer. Seminars in Cancer Biology, 2018, 52, 107-116.	9.6	57
671	Treating the Intestine with Oral ApoA-I Mimetic Tg6F Reduces Tumor Burden in Mouse Models of Metastatic Lung Cancer. Scientific Reports, 2018, 8, 9032.	3.3	31
672	Lnc-C/EBPÎ ² Modulates Differentiation of MDSCs Through Downregulating IL4i1 With C/EBPÎ ² LIP and WDR5. Frontiers in Immunology, 2019, 10, 1661.	4.8	24
673	Preliminary assessment of the feasibility of autologous myeloid-derived suppressor cell infusion in non-human primate kidney transplantation. Transplant Immunology, 2019, 56, 101225.	1.2	6
674	Myeloid-Derived Suppressor Cells Confer Infectious Tolerance to Dampen Virus-Induced Tissue Immunoinflammation. Journal of Immunology, 2019, 203, 1325-1337.	0.8	11
675	The role of myeloid-derived suppressor cells in the pathogenesis of rheumatoid arthritis; anti- or pro-inflammatory cells?. Artificial Cells, Nanomedicine and Biotechnology, 2019, 47, 4149-4158.	2.8	30
676	The Interplay Between the Genetic and Immune Landscapes of AML: Mechanisms and Implications for Risk Stratification and Therapy. Frontiers in Oncology, 2019, 9, 1162.	2.8	25

#	ARTICLE	IF	CITATIONS
677	Long Non-coding RNAs as Communicators and Mediators Between the Tumor Microenvironment and Cancer Cells. Frontiers in Oncology, 2019, 9, 739.	2.8	32
678	Targeting myeloid-derived suppressor cells in combination with primary mammary tumor resection reduces metastatic growth in the lungs. Breast Cancer Research, 2019, 21, 103.	5.0	55
679	Peptostreptococcus anaerobius promotes colorectal carcinogenesis and modulates tumour immunity. Nature Microbiology, 2019, 4, 2319-2330.	13.3	281
680	Tuberculosis Host-Pathogen Interactions. , 2019, , .		0
681	Patients with BRCA mutated ovarian cancer may have fewer circulating MDSC and more peripheral CD8+ T cells compared with women with BRCA wild‑type disease during the early disease course. Oncology Letters, 2019, 18, 3914-3924.	1.8	5
682	Neutrophils as Suppressors of T Cell Proliferation: Does Age Matter?. Frontiers in Immunology, 2019, 10, 2144.	4.8	40
683	Tumors vs. Chronic Wounds: An Immune Cell's Perspective. Frontiers in Immunology, 2019, 10, 2178.	4.8	52
684	Metformin inhibits the function of granulocytic myeloid-derived suppressor cells in tumor-bearing mice. Biomedicine and Pharmacotherapy, 2019, 120, 109458.	5.6	39
685	Conceptual Development of Immunotherapeutic Approaches to Gastrointestinal Cancer. International Journal of Molecular Sciences, 2019, 20, 4624.	4.1	5
686	Impaired antigenâ€specific lymphocyte priming in mice after Tollâ€like receptor 4 activation via induction of monocytic myeloidâ€derived suppressor cells. European Journal of Immunology, 2019, 49, 546-563.	2.9	19
687	mTOR and Aging: An Old Fashioned Dress. International Journal of Molecular Sciences, 2019, 20, 2774.	4.1	64
688	High Salt Inhibits Tumor Growth by Enhancing Anti-tumor Immunity. Frontiers in Immunology, 2019, 10, 1141.	4.8	34
689	Candida/Staphylococcal Polymicrobial Intra-Abdominal Infection: Pathogenesis and Perspectives for a Novel Form of Trained Innate Immunity. Journal of Fungi (Basel, Switzerland), 2019, 5, 37.	3.5	27
690	Temporal and spatial profile of polymorphonuclear myeloid-derived suppressor cells (PMN-MDSCs) in ischemic stroke in mice. PLoS ONE, 2019, 14, e0215482.	2.5	20
691	Myeloid Derived Suppressor Cells Interactions With Natural Killer Cells and Pro-angiogenic Activities: Roles in Tumor Progression. Frontiers in Immunology, 2019, 10, 771.	4.8	146
692	The Prospective Value of Dopamine Receptors on Bio-Behavior of Tumor. Journal of Cancer, 2019, 10, 1622-1632.	2.5	55
693	Long noncoding RNA Pvt1 regulates the immunosuppression activity of granulocytic myeloid-derived suppressor cells in tumor-bearing mice. Molecular Cancer, 2019, 18, 61.	19.2	117
694	Regulation of Tumor-Associated Myeloid Cell Activity by CBP/EP300 Bromodomain Modulation of H3K27 Acetylation. Cell Reports, 2019, 27, 269-281.e4.	6.4	37

#	Article	IF	CITATIONS
695	The presence and suppressive activity of myeloid-derived suppressor cells are potentiated after interferon- \hat{l}^2 treatment in a murine model of multiple sclerosis. Neurobiology of Disease, 2019, 127, 13-31.	4.4	32
696	Nicotinamide Phosphoribosyltransferase Acts as a Metabolic Gate for Mobilization of Myeloid-Derived Suppressor Cells. Cancer Research, 2019, 79, 1938-1951.	0.9	58
697	H2S suppresses indoleamine 2, 3-dioxygenase 1 and exhibits immunotherapeutic efficacy in murine hepatocellular carcinoma. Journal of Experimental and Clinical Cancer Research, 2019, 38, 88.	8.6	19
698	Regulation of Blood and Lymphatic Vessels by Immune Cells in Tumors and Metastasis. Annual Review of Physiology, 2019, 81, 535-560.	13.1	44
699	Different role of circulating myeloid-derived suppressor cells in patients with multiple myeloma undergoing autologous stem cell transplantation. , 2019, 7, 35.		20
700	Frontline Science: Induction of experimental autoimmune encephalomyelitis mobilizes Th17-promoting myeloid derived suppressor cells to the lung. Journal of Leukocyte Biology, 2019, 105, 829-841.	3.3	19
701	Allies or Enemiesâ€"The Multifaceted Role of Myeloid Cells in the Tumor Microenvironment. Frontiers in Immunology, 2019, 10, 2746.	4.8	41
702	Interleukin-35 Regulates Immune Microenvironment of Autoimmune Hepatitis Through Inducing the Expansion of Myeloid-Derived Suppressor Cells. Frontiers in Immunology, 2019, 10, 2577.	4.8	11
703	Defective FasL expression is associated with increased resistance to melanoma liver metastases and enhanced natural killer cell activity. Melanoma Research, 2019, 29, 401-412.	1.2	0
704	Myeloidâ€Derived Suppressor Cells in Hematologic Diseases: Promising Biomarkers and Treatment Targets. HemaSphere, 2019, 3, e168.	2.7	41
705	Immunotherapies for pediatric cancer: current landscape and future perspectives. Cancer and Metastasis Reviews, 2019, 38, 573-594.	5.9	20
706	LPS expands MDSCs by inhibiting apoptosis through the regulation of the GATA2/letâ€ 7 e axis. Immunology and Cell Biology, 2019, 97, 142-151.	2.3	4
707	The role of tumour microenvironment: a new vision for cholangiocarcinoma. Journal of Cellular and Molecular Medicine, 2019, 23, 59-69.	3.6	27
708	Immunosuppression mediated by myeloid-derived suppressor cells (MDSCs) during tumour progression. British Journal of Cancer, 2019, 120, 16-25.	6.4	504
709	Antibiotic Perturbation of Gut Microbiota Dysregulates Osteoimmune Cross Talk in Postpubertal Skeletal Development. American Journal of Pathology, 2019, 189, 370-390.	3.8	39
710	Novel modulation on myeloid-derived suppressor cells (MDSCs) by methionine encephalin (MENK). International Immunopharmacology, 2019, 68, 193-203.	3.8	7
711	CD33 ⁺ CD14 ⁺ CD11b ⁺ HLAâ€DR ^{â^'} monocytic myeloidâ€deri suppressor cells recruited and activated by CCR9/CCL25 are crucial for the pathogenic progression of endometriosis. American Journal of Reproductive Immunology, 2019, 81, e13067.	ived 1.2	25
712	Role and Therapeutic Implications of MDSCs in Sarcomas. , 2019, , 3-15.		0

#	Article	IF	Citations
713	Myeloidâ€derived suppressor cells and tumor: Current knowledge and future perspectives. Journal of Cellular Physiology, 2019, 234, 9966-9981.	4.1	40
714	Methods to Measure MDSC Immune Suppressive Activity <i>In Vitro</i> and <i>In Vivo</i> . Current Protocols in Immunology, 2019, 124, e61.	3.6	35
715	Diversity and environmental adaptation of phagocytic cell metabolism. Journal of Leukocyte Biology, 2018, 105, 37-48.	3.3	42
716	CD8+ T-cell exhaustion in cancer: mechanisms and new area for cancer immunotherapy. Briefings in Functional Genomics, 2019, 18, 99-106.	2.7	77
717	Stimulation of TNF receptor type 2 expands regulatory T cells and ameliorates established collagen-induced arthritis in mice. Cellular and Molecular Immunology, 2019, 16, 65-74.	10.5	35
718	Tumor inherent interferons: Impact on immune reactivity and immunotherapy. Cytokine, 2019, 118, 42-47.	3.2	17
719	Surgical Stress Increases Circulating Low-Density Neutrophils Which May Promote Tumor Recurrence. Journal of Surgical Research, 2020, 246, 52-61.	1.6	34
720	Modulation of the functions of myeloidâ€derived suppressor cells : a new strategy of hydrogen sulfide antiâ€cancer effects. British Journal of Pharmacology, 2020, 177, 884-897.	5.4	22
721	Immunity, Hypoxia, and Metabolism–the Ménage à Trois of Cancer: Implications for Immunotherapy. Physiological Reviews, 2020, 100, 1-102.	28.8	190
722	Crosstalk between myeloid-derived suppressor cells and the immune system in prostate cancer. Journal of Leukocyte Biology, 2020, 107, 43-56.	3.3	28
723	Loss of myeloidâ€specific lamin A/C drives lung metastasis through Gfiâ€1 and C/EBPεâ€mediated granulocytic differentiation. Molecular Carcinogenesis, 2020, 59, 679-690.	2.7	3
724	Chimeric antigen receptor T cells in solid tumors: a war against the tumor microenvironment. Science China Life Sciences, 2020, 63, 180-205.	4.9	40
725	Myeloid-driven mechanisms as barriers to antitumor CD8+ T cell activity. Molecular Immunology, 2020, 118, 165-173.	2.2	22
726	Targeting innate sensing in the tumor microenvironment to improve immunotherapy. Cellular and Molecular Immunology, 2020, 17, 13-26.	10.5	76
727	Sequential depletion of myeloid-derived suppressor cells and tumor cells with a dual-pH-sensitive conjugated micelle system for cancer chemoimmunotherapy. Journal of Controlled Release, 2020, 317, 43-56.	9.9	27
728	$1\hat{l}\pm$, 25 Dihydroxyvitamin D (1,25(OH)2D) inhibits the T cell suppressive function of myeloid derived suppressor cells (MDSC). Journal of Steroid Biochemistry and Molecular Biology, 2020, 198, 105557.	2.5	32
729	Cell Reprogramming for Immunotherapy. Methods in Molecular Biology, 2020, , .	0.9	2
730	Targeted deletion of PD-1 in myeloid cells induces antitumor immunity. Science Immunology, 2020, 5, .	11.9	287

#	Article	IF	CITATIONS
731	Neutrophil: A New Player in Metastatic Cancers. Frontiers in Immunology, 2020, 11, 565165.	4.8	63
732	Splenic Hematopoietic and Stromal Cells in Cancer Progression. Cancer Research, 2021, 81, 27-34.	0.9	19
733	Connections between Metabolism and Epigenetic Modification in MDSCs. International Journal of Molecular Sciences, 2020, 21, 7356.	4.1	12
734	The functions of EZH2 in immune cells: Principles for novel immunotherapies. Journal of Leukocyte Biology, 2021, 110, 77-87.	3.3	16
735	Systemic Reprogramming of Monocytes in Cancer. Frontiers in Oncology, 2020, 10, 1399.	2.8	68
736	Construction of chlorogenic acid-containing liposomes with prolonged antitumor immunity based on T cell regulation. Science China Life Sciences, 2021, 64, 1097-1115.	4.9	16
737	Myeloid-Derived Suppressor Cells in Tumors: From Mechanisms to Antigen Specificity and Microenvironmental Regulation. Frontiers in Immunology, 2020, 11, 1371.	4.8	139
738	The spleen contributes to the increase in PMN-MDSCs in orthotopic H22 hepatoma mice. Molecular Immunology, 2020, 125, 95-103.	2.2	14
739	The Gut Microbiota, Kynurenine Pathway, and Immune System Interaction in the Development of Brain Cancer. Frontiers in Cell and Developmental Biology, 2020, 8, 562812.	3.7	37
740	Advances of Nanoparticles for Leukemia Treatment. ACS Biomaterials Science and Engineering, 2020, 6, 6478-6489.	5.2	19
741	Innate Immune Defense Mechanisms by Myeloid Cells That Hamper Cancer Immunotherapy. Frontiers in Immunology, 2020, 11, 1395.	4.8	11
742	The New Era of Cancer Immunotherapy: Targeting Myeloid-Derived Suppressor Cells to Overcome Immune Evasion. Frontiers in Immunology, 2020, 11, 1680.	4.8	194
743	Bone metastases: a comprehensive review of the literature. Molecular Biology Reports, 2020, 47, 6337-6345.	2.3	28
744	Cell interactions in the bone marrow microenvironment affecting myeloid malignancies. Blood Advances, 2020, 4, 3795-3803.	5.2	42
745	Mechanisms of immune suppression by myeloid-derived suppressor cells: the role of interleukin-10 as a key immunoregulatory cytokine. Open Biology, 2020, 10, 200111.	3.6	58
746	Myeloid-derived suppressor cell cytokine secretion as prognostic factor in myelodysplastic syndromes. Innate Immunity, 2020, 26, 703-715.	2.4	9
747	Dual roles of neutrophils in metastatic colonization are governed by the host NK cell status. Nature Communications, 2020, 11, 4387.	12.8	73
748	Granulocytic Myeloid-Derived Suppressor Cells as Negative Regulators of Anticancer Immunity. Frontiers in Immunology, 2020, 11, 1963.	4.8	41

#	Article	IF	CITATIONS
749	Carbamylated erythropoietin regulates immune responses and promotes long-term kidney allograft survival through activation of PI3K/AKT signaling. Signal Transduction and Targeted Therapy, 2020, 5, 194.	17.1	14
750	Dendritic Cells and Myeloid Derived Suppressor Cells Fully Responsive to Stimulation via Toll-Like Receptor 4 Are Rapidly Induced from Bone-Marrow Cells by Granulocyte-Macrophage Colony-Stimulating Factor. Vaccines, 2020, 8, 522.	4.4	8
751	Donor myeloid derived suppressor cells (MDSCs) prolong allogeneic cardiac graft survival through programming of recipient myeloid cells in vivo. Scientific Reports, 2020, 10, 14249.	3.3	4
753	Revealing the Disturbed Vaginal Micobiota Caused by Cervical Cancer Using High-Throughput Sequencing Technology. Frontiers in Cellular and Infection Microbiology, 2020, 10, 538336.	3.9	17
754	Chimeric Antigen Receptor (CAR)-Modified Immune Effector Cell Therapy for Acute Myeloid Leukemia (AML). Cancers, 2020, 12, 3617.	3.7	7
755	Expansion of Polymorphonuclear Myeloid-Derived Suppressor Cells in Patients With Gout. Frontiers in Immunology, 2020, 11, 567783.	4.8	4
756	MicroRNAs and IncRNAsâ€"A New Layer of Myeloid-Derived Suppressor Cells Regulation. Frontiers in Immunology, 2020, 11, 572323.	4.8	17
757	Cysteine cathepsins L and X differentially modulate interactions between myeloid-derived suppressor cells and tumor cells. Cancer Immunology, Immunotherapy, 2020, 69, 1869-1880.	4.2	10
758	Using Preclinical Data to Design Combination Clinical Trials of Radiation Therapy and Immunotherapy. Seminars in Radiation Oncology, 2020, 30, 158-172.	2.2	10
759	The Role of Tumor-Associated Myeloid Cells in Modulating Cancer Therapy. Frontiers in Oncology, 2020, 10, 899.	2.8	44
760	Dasatinib exacerbates splenomegaly of mice inoculated with Epstein-Barr virus-infected lymphoblastoid cell lines. Scientific Reports, 2020, 10, 4355.	3.3	4
761	A Bump in the Road: How the Hostile AML Microenvironment Affects CAR T Cell Therapy. Frontiers in Oncology, 2020, 10, 262.	2.8	48
762	The Generation and Identity of Human Myeloid-Derived Suppressor Cells. Frontiers in Oncology, 2020, 10, 109.	2.8	77
763	Myeloid-Derived Suppressor Cells as a Therapeutic Target for Cancer. Cells, 2020, 9, 561.	4.1	281
764	Renal cancer-derived exosomes induce tumor immune tolerance by MDSCs-mediated antigen-specific immunosuppression. Cell Communication and Signaling, 2020, 18, 106.	6.5	29
765	The role of myeloid cells in prevention and control of group A streptococcal infections. Biosafety and Health, 2020, 2, 130-134.	2.7	2
766	Tumor Microenvironment. Advances in Experimental Medicine and Biology, 2020, , .	1.6	3
767	Role of l â€arginine and CD11b+Grâ€1+ cells in immunosuppression induced by Heligmosomoides polygyrus bakeri. Parasite Immunology, 2020, 42, e12704.	1.5	4

#	Article	IF	CITATIONS
768	Functional assay to assess T-cell inhibitory properties of myeloid derived suppressor cells (MDSCs) isolated from the tumor microenvironment of murine glioma models. Methods in Enzymology, 2020, 632, 215-228.	1.0	5
769	Ibrutinib treatment inhibits breast cancer progression and metastasis by inducing conversion of myeloid-derived suppressor cells to dendritic cells. British Journal of Cancer, 2020, 122, 1005-1013.	6.4	52
770	CD244 represents a new therapeutic target in head and neck squamous cell carcinoma. , 2020, 8, e000245.		28
771	Tumor-Derived Prostaglandin E2 Promotes p50 NF-κB-Dependent Differentiation of Monocytic MDSCs. Cancer Research, 2020, 80, 2874-2888.	0.9	81
772	Quantification of Early-Stage Myeloid-Derived Suppressor Cells in Cancer Requires Excluding Basophils. Cancer Immunology Research, 2020, 8, 819-828.	3.4	25
773	Granulocyte Colony-Stimulating Factor Attenuates Renal Ischemia-Reperfusion Injury by Inducing Myeloid-Derived Suppressor Cells. Journal of the American Society of Nephrology: JASN, 2020, 31, 731-746.	6.1	29
774	Innate Activation of IFN-γ—iNOS Axis During Infection With Salmonella Represses the Ability of T Cells to Produce IL-2. Frontiers in Immunology, 2020, 11, 514.	4.8	14
775	Myeloid-Derived Suppressor Cells. Methods in Molecular Biology, 2021, , .	0.9	2
776	Myeloid-Derived Suppressor Cells: Facilitators of Cancer and Obesity-Induced Cancer. Annual Review of Cancer Biology, 2021, 5, 17-38.	4.5	17
777	The effect of macrophage-targeted interventions on blood pressure – a systematic review and meta-analysis of preclinical studies. Translational Research, 2021, 230, 123-138.	5.0	2
778	Response to radiotherapy in pancreatic ductal adenocarcinoma is enhanced by inhibition of myeloid-derived suppressor cells using STAT3 anti-sense oligonucleotide. Cancer Immunology, Immunotherapy, 2021, 70, 989-1000.	4.2	20
779	VLA-1 Binding to Collagen IV Controls Effector T Cell Suppression by Myeloid-Derived Suppressor Cells in the Splenic Red Pulp. Frontiers in Immunology, 2020, 11, 616531.	4.8	2
780	Club Cell Protein 16 Attenuates CD16brightCD62dim Immunosuppressive Neutrophils in Damaged Tissue upon Posttraumatic Sepsis-Induced Lung Injury. Journal of Immunology Research, 2021, 2021, 1-14.	2.2	3
781	CD205 + polymorphonuclear myeloidâ€derived suppressor cells suppress antitumor immunity by overexpressing GLUT3. Cancer Science, 2021, 112, 1011-1025.	3.9	14
782	The CXCL12 Crossroads in Cancer Stem Cells and Their Niche. Cancers, 2021, 13, 469.	3.7	28
783	Epithelial and Immune Cell Responses to Helicobacter pylori That Shape the Gastric Tumor Microenvironment. Physiology in Health and Disease, 2021, , 155-197.	0.3	0
784	The Functional Crosstalk between Myeloid-Derived Suppressor Cells and Regulatory T Cells within the Immunosuppressive Tumor Microenvironment. Cancers, 2021, 13, 210.	3.7	86
785	Immunotherapy in colorectal cancer. Advances in Cancer Research, 2021, 151, 137-196.	5.0	18

#	Article	IF	Citations
786	Apoptotic Donor Cells in Transplantation. Frontiers in Immunology, 2021, 12, 626840.	4.8	6
787	Curcumin inhibits the growth of liver cancer by impairing myeloidâ€'derived suppressor cells in murine tumor tissues. Oncology Letters, 2021, 21, 286.	1.8	29
788	Befriending the Hostile Tumor Microenvironment in CAR T-Cell Therapy. Frontiers in Immunology, 2020, 11, 618387.	4.8	38
789	TRAF6 Regulates the Immunosuppressive Effects of Myeloid-Derived Suppressor Cells in Tumor-Bearing Host. Frontiers in Immunology, 2021, 12, 649020.	4.8	8
790	Neem leaf glycoprotein salvages T cell functions from Myeloid-derived suppressor cells-suppression by altering IL-10/STAT3 axis in melanoma tumor microenvironment. Melanoma Research, 2021, 31, 130-139.	1.2	3
791	The Immune Microenvironment in Multiple Myeloma: Friend or Foe?. Cancers, 2021, 13, 625.	3.7	21
792	Arginase 1 ⁺ ILâ€10 ⁺ polymorphonuclear myeloidâ€derived suppressor cells are elevated in patients with active pemphigus and correlate with an increased Th2/Th1 response. Experimental Dermatology, 2021, 30, 782-791.	2.9	4
793	Changes in the tumor microenvironment and outcome for TME-targeting therapy in glioblastoma: A pilot study. PLoS ONE, 2021, 16, e0246646.	2.5	15
794	Gentamicin Induced Microbiome Adaptations Associate With Increased BCAA Levels and Enhance Severity of Influenza Infection. Frontiers in Immunology, 2020, 11, 608895.	4.8	8
795	Targeting the MDSCs of Tumors In Situ With Inhibitors of the MAPK Signaling Pathway to Promote Tumor Regression. Frontiers in Oncology, 2021, 11, 647312.	2.8	9
796	The role of myeloidâ€derived suppressor cells in gastrointestinal cancer. Cancer Communications, 2021, 41, 442-471.	9.2	15
797	Novel Combinatorial Approaches to Tackle the Immunosuppressive Microenvironment of Prostate Cancer. Cancers, 2021, 13, 1145.	3.7	13
798	Adoptive Transfer of Regulatory Immune Cells in Organ Transplantation. Frontiers in Immunology, 2021, 12, 631365.	4.8	12
799	Therapeutic Approaches Targeting the Natural Killer-Myeloid Cell Axis in the Tumor Microenvironment. Frontiers in Immunology, 2021, 12, 633685.	4.8	4
800	HDAC11 regulates expression of C/EBP \hat{l}^2 and immunosuppressive molecules in myeloid-derived suppressor cells. Journal of Leukocyte Biology, 2021, 109, 891-900.	3.3	7
801	Myeloid-Derived Suppressor Cells (MDSCs) and the Immunoinflammatory Response to Injury (Mini) Tj ETQq1 1 ().784314 i 2.1	rgBT Overloc
802	Combined Effects of Myeloid Cells in the Neuroblastoma Tumor Microenvironment. Cancers, 2021, 13, 1743.	3.7	7
803	Monocytic myeloid-derived suppressor cells home to tumor-draining lymph nodes via CCR2 and locally modulate the immune response. Cellular Immunology, 2021, 362, 104296.	3.0	7

#	Article	IF	CITATIONS
804	New Insights into the Multifaceted Role of Myeloid-Derived Suppressor Cells (MDSCs) in High-Grade Gliomas: From Metabolic Reprograming, Immunosuppression, and Therapeutic Resistance to Current Strategies for Targeting MDSCs. Cells, 2021, 10, 893.	4.1	23
805	CSF1/CSF1R Axis Blockade Limits Mesothelioma and Enhances Efficiency of Anti-PDL1 Immunotherapy. Cancers, 2021, 13, 2546.	3.7	31
806	MDSC in Mice and Men: Mechanisms of Immunosuppression in Cancer. Journal of Clinical Medicine, 2021, 10, 2872.	2.4	39
807	Comments on the ambiguity of selected surface markers, signaling pathways and omics profiles hampering the identification of myeloid-derived suppressor cells. Cellular Immunology, 2021, 364, 104347.	3.0	4
808	MDSCs interactions with other immune cells and their role in maternal-fetal tolerance. International Reviews of Immunology, 2022, 41, 534-551.	3.3	8
809	Heterogeneous Myeloid Cells in Tumors. Cancers, 2021, 13, 3772.	3.7	30
810	TGF-Î ² Increases MFGE8 Production in Myeloid-Derived Suppressor Cells to Promote B16F10 Melanoma Metastasis. Biomedicines, 2021, 9, 896.	3.2	3
811	ITLN1 inhibits tumor neovascularization and myeloid derived suppressor cells accumulation in colorectal carcinoma. Oncogene, 2021, 40, 5925-5937.	5.9	14
812	Myeloid-Derived Suppressor Cells in Trypanosoma cruzi Infection. Frontiers in Cellular and Infection Microbiology, 2021, 11, 737364.	3.9	10
813	Interpreting Immunoregulation in Lung Fibrosis: A New Branch of the Immune Model. Frontiers in Immunology, 2021, 12, 690375.	4.8	13
814	Multimodal Intralesional Therapy for Reshaping the Myeloid Compartment of Tumors Resistant to Anti–PD-L1 Therapy via IRF8 Expression. Journal of Immunology, 2021, 207, 1298-1309.	0.8	8
815	Amino Acid Transport and Metabolism in Myeloid Function. Frontiers in Immunology, 2021, 12, 695238.	4.8	19
816	Decoding the Myeloid-Derived Suppressor Cells in Lymphoid Malignancies. Journal of Clinical Medicine, 2021, 10, 3462.	2.4	8
817	Analysis of therapeutic potential of monocytic myeloid-derived suppressor cells in cardiac allotransplantation. Transplant Immunology, 2021, 67, 101405.	1.2	4
818	Bringing Macrophages to the Frontline against Cancer: Current Immunotherapies Targeting Macrophages. Cells, 2021, 10, 2364.	4.1	13
819	Granulocytic and Monocytic Myeloid-Derived Suppressor Cells are Functionally and Prognostically Different in Patients with Chronic Myeloid Leukemia. Annals of Laboratory Medicine, 2021, 41, 479-484.	2.5	1
820	Modulating tumor infiltrating myeloid cells to enhance bispecific antibody-driven T cell infiltration and anti-tumor response. Journal of Hematology and Oncology, 2021, 14, 142.	17.0	21
821	PMA induces the differentiation of monocytes into immunosuppressive MDSCs. Clinical and Experimental Immunology, 2021, 206, 216-225.	2.6	6

#	Article	IF	Citations
822	CD123-Directed Bispecific Antibodies for Targeting MDS Clones and Immunosuppressive Myeloid-Derived Suppressor Cells (MDSC) in High-Risk Adult MDS Patients. Frontiers in Aging, 2021, 2, .	2.6	3
823	Swertianolin ameliorates immune dysfunction in sepsis via blocking the immunosuppressive function of myeloid- derived suppressor cells. European Journal of Histochemistry, 2021, 65, .	1.5	2
824	Inhibition of NLRP3 inflammasome activation in myeloid-derived suppressor cells by andrographolide sulfonate contributes to 5-FU sensitization in mice. Toxicology and Applied Pharmacology, 2021, 428, 115672.	2.8	7
825	Evaluation of autophagy mediators in myeloid-derived suppressor cells during human tuberculosis. Cellular Immunology, 2021, 369, 104426.	3.0	7
826	Targeted delivery and reprogramming of myeloid-derived suppressor cells (MDSCs) in cancer. , 2022, , 409-435.		1
827	Myeloidâ€derived suppressor cells: Bridging the gap between inflammation and pancreatic adenocarcinoma. Scandinavian Journal of Immunology, 2021, 93, e13021.	2.7	6
828	The Potential of T Cell Factor 1 in Sustaining CD8+ T Lymphocyte-Directed Anti-Tumor Immunity. Cancers, 2021, 13, 515.	3.7	3
829	Myeloid-derived suppressor cells in gastrointestinal cancers: A systemic review. World Journal of Gastrointestinal Oncology, 2021, 13, 1-11.	2.0	11
830	Lipid Metabolism in Tumor-Associated Myeloid-Derived Suppressor Cells. Advances in Experimental Medicine and Biology, 2021, 1316, 103-115.	1.6	3
831	An Overview of Advances in Cell-Based Cancer Immunotherapies Based on the Multiple Immune-Cancer Cell Interactions. Methods in Molecular Biology, 2020, 2097, 139-171.	0.9	2
832	In Vitro Generation of Murine Myeloid-Derived Suppressor Cells, Analysis of Markers, Developmental Commitment, and Function. Methods in Molecular Biology, 2021, 2236, 99-114.	0.9	11
833	Depletion and Maturation of Myeloid-Derived Suppressor Cells in Murine Cancer Models. Methods in Molecular Biology, 2021, 2236, 67-75.	0.9	2
834	Escape Mechanisms from Antiangiogenic Therapy: An Immune Cell's Perspective. Advances in Experimental Medicine and Biology, 2014, 772, 83-99.	1.6	11
835	Negative Regulators in Cancer Immunology and Immunotherapy. , 2011, , 229-249.		1
836	Role of Myeloid-Derived Suppressor Cells and Regulatory T-Cells in the Tuberculous Granuloma. , 2019, , 63-93.		2
837	Myeloid-Derived Suppressor Cells in the Tumor Microenvironment. Advances in Experimental Medicine and Biology, 2020, 1224, 117-140.	1.6	141
838	The Role of Innate Immune Signaling in Regulation of Tumor-Associated Myeloid Cells. , 2015, , 25-47.		2
839	Morphine and Immunosuppression in the Context of Tumor Growth and Metastasis., 2013,, 31-46.		2

#	Article	IF	CITATIONS
840	Immune crosstalk in cancer progression and metastatic spread: a complex conversation. Nature Reviews Immunology, 2020, 20, 483-497.	22.7	241
841	EP4 Antagonism by E7046 diminishes Myeloid immunosuppression and synergizes with Treg-reducing IL-2-Diphtheria toxin fusion protein in restoring anti-tumor immunity. Oncolmmunology, 2017, 6, e1338239.	4.6	54
842	Tumor-Induced Myeloid-Derived Suppressor Cells. , 0, , 833-856.		1
843	ILT3 (LILRB4) Promotes the Immunosuppressive Function of Tumor-Educated Human Monocytic Myeloid-Derived Suppressor Cells. Molecular Cancer Research, 2021, 19, 702-716.	3.4	32
844	Therapies for tuberculosis and AIDS: myeloid-derived suppressor cells in focus. Journal of Clinical Investigation, 2020, 130, 2789-2799.	8.2	26
845	Intranasal Poly-IC treatment exacerbates tuberculosis in mice through the pulmonary recruitment of a pathogen-permissive monocyte/macrophage population. Journal of Clinical Investigation, 2010, 120, 1674-1682.	8.2	259
846	IL-12 triggers a programmatic change in dysfunctional myeloid-derived cells within mouse tumors. Journal of Clinical Investigation, 2011, 121, 4746-4757.	8.2	283
847	STAT3 regulates arginase-I in myeloid-derived suppressor cells from cancer patients. Journal of Clinical Investigation, 2013, 123, 1580-1589.	8.2	430
848	ER stress regulates myeloid-derived suppressor cell fate through TRAIL-R–mediated apoptosis. Journal of Clinical Investigation, 2014, 124, 2626-2639.	8.2	286
849	Myeloid-derived suppressor cells in the tumor microenvironment: expect the unexpected. Journal of Clinical Investigation, 2015, 125, 3356-3364.	8.2	846
850	Tumor-induced myeloid deviation: when myeloid-derived suppressor cells meet tumor-associated macrophages. Journal of Clinical Investigation, 2015, 125, 3365-3376.	8.2	443
851	Ly6Clo monocytes drive immunosuppression and confer resistance to anti-VEGFR2 cancer therapy. Journal of Clinical Investigation, 2017, 127, 3039-3051.	8.2	124
852	ELF5 Drives Lung Metastasis in Luminal Breast Cancer through Recruitment of Gr1+ CD11b+ Myeloid-Derived Suppressor Cells. PLoS Biology, 2015, 13, e1002330.	5.6	59
853	Mast Cells Mobilize Myeloid-Derived Suppressor Cells and Treg Cells in Tumor Microenvironment via IL-17 Pathway in Murine Hepatocarcinoma Model. PLoS ONE, 2010, 5, e8922.	2.5	145
854	T Cells Contribute to Tumor Progression by Favoring Pro-Tumoral Properties of Intra-Tumoral Myeloid Cells in a Mouse Model for Spontaneous Melanoma. PLoS ONE, 2011, 6, e20235.	2.5	19
855	Characterization of the MDSC Proteome Associated with Metastatic Murine Mammary Tumors Using Label-Free Mass Spectrometry and Shotgun Proteomics. PLoS ONE, 2011, 6, e22446.	2.5	35
856	Transcriptomic Analysis Comparing Tumor-Associated Neutrophils with Granulocytic Myeloid-Derived Suppressor Cells and Normal Neutrophils. PLoS ONE, 2012, 7, e31524.	2.5	247
857	Properties of Immature Myeloid Progenitors with Nitric-Oxide-Dependent Immunosuppressive Activity Isolated from Bone Marrow of Tumor-Free Mice. PLoS ONE, 2013, 8, e64837.	2.5	8

#	Article	IF	CITATIONS
858	The Peripheral Myeloid Expansion Driven by Murine Cancer Progression Is Reversed by Radiation Therapy of the Tumor. PLoS ONE, 2013, 8, e69527.	2.5	36
859	Flagellin Treatment Prevents Increased Susceptibility to Systemic Bacterial Infection after Injury by Inhibiting Anti-Inflammatory IL-10+ IL-12- Neutrophil Polarization. PLoS ONE, 2014, 9, e85623.	2.5	52
860	Suppression of Proteoglycan-Induced Autoimmune Arthritis by Myeloid-Derived Suppressor Cells Generated In Vitro from Murine Bone Marrow. PLoS ONE, 2014, 9, e111815.	2.5	34
861	Characterization of the Murine Myeloid Precursor Cell Line MuMac-E8. PLoS ONE, 2014, 9, e113743.	2.5	9
862	MicroRNA-200c Promotes Suppressive Potential of Myeloid-Derived Suppressor Cells by Modulating PTEN and FOG2 Expression. PLoS ONE, 2015, 10, e0135867.	2.5	38
863	Characterization of Liver Monocytic Myeloid-Derived Suppressor Cells and Their Role in a Murine Model of Non-Alcoholic Fatty Liver Disease. PLoS ONE, 2016, 11, e0149948.	2.5	20
864	Finasteride Enhances the Generation of Human Myeloid-Derived Suppressor Cells by Up-Regulating the COX2/PGE2 Pathway. PLoS ONE, 2016, 11, e0156549.	2.5	10
865	Immune Dysfunction Induced by Myeloid-Derived Suppressor Cells in Lymphoma. Cancer Cell & Microenvironment, 0, , .	0.8	1
866	Perivascular Cells and NADPH Oxidase Inhibition Partially Restore Hyperglycemia-Induced Alterations in Hematopoietic Stem Cell and Myeloid-Derived Suppressor Cell Populations in the Bone Marrow. International Journal of Stem Cells, 2019, 12, 63-72.	1.8	8
868	RPN13/ADRM1 inhibitor reverses immunosuppression by myeloid-derived suppressor cells. Oncotarget, 2016, 7, 68489-68502.	1.8	24
869	Myeloid-derived suppressor cell and macrophage exert distinct angiogenic and immunosuppressive effects in breast cancer. Oncotarget, 2017, 8, 54173-54186.	1.8	34
870	Inflammatory microenvironment in the initiation and progression of bladder cancer. Oncotarget, 2017, 8, 93279-93294.	1.8	61
871	Canonical NF-κB signaling in myeloid cells promotes lung metastasis in a mouse breast cancer model. Oncotarget, 2018, 9, 16775-16791.	1.8	3
872	Interactome analysis of myeloid-derived suppressor cells in murine models of colon and breast cancer. Oncotarget, 2014, 5, 11345-11353.	1.8	29
873	Elevated endoplasmic reticulum stress reinforced immunosuppression in the tumor microenvironment <i>via</i> myeloid-derived suppressor cells. Oncotarget, 2014, 5, 12331-12345.	1.8	87
874	Hematopoietic stem cell specific V-ATPase controls breast cancer progression and metastasis via cytotoxic T cells. Oncotarget, 2018, 9, 33215-33231.	1.8	10
875	Expansion of myeloid-derived suppressor cells with arginase activity lasts longer in aged than in young mice after CpG-ODN plus IFA treatment. Oncotarget, 2015, 6, 13448-13461.	1.8	9
876	SHIP represses lung inflammation and inhibits mammary tumor metastasis in BALB/c mice. Oncotarget, 2016, 7, 3677-3691.	1.8	12

#	Article	IF	CITATIONS
877	Interplay between myeloid-derived suppressor cells (MDSCs) and Th17 cells: foe or friend?. Oncotarget, 2016, 7, 35490-35496.	1.8	20
878	Signal transducer and activator of transcription 3 in myeloid-derived suppressor cells: an opportunity for cancer therapy. Oncotarget, 0, 7, 42698-42715.	1.8	34
879	Granulocytic myeloid-derived suppressor cells promote angiogenesis in the context of multiple myeloma. Oncotarget, 2016, 7, 37931-37943.	1.8	78
880	Myeloid Derived Suppressor Cells and Their Role in Diseases. Current Medicinal Chemistry, 2013, 20, 1437-1444.	2.4	65
881	Lentiviral Vectors: A Versatile Tool to Fight Cancer. Current Molecular Medicine, 2013, 13, 602-625.	1.3	27
883	Targeting Tumor-Associated Macrophages in the Pediatric Sarcoma Tumor Microenvironment. Frontiers in Oncology, 2020, 10, 581107.	2.8	14
884	Understanding the Differentiation, Expansion, Recruitment and Suppressive Activities of Myeloid-Derived Suppressor Cells in Cancers. International Journal of Molecular Sciences, 2020, 21, 3599.	4.1	35
885	Emerging roles of myeloid derived suppressor cells in hepatic inflammation and fibrosis. World Journal of Gastrointestinal Pathophysiology, 2015, 6, 43.	1.0	41
886	Role of myeloid-derived suppressor cells in autoimmune disease. World Journal of Immunology, 2014, 4, 26.	0.5	67
887	Predictive Role of the Neutrophil Lymphocyte Ratio for Invasion with Gestational Trophoblastic Disease. Asian Pacific Journal of Cancer Prevention, 2014, 15, 4203-4206.	1.2	18
888	Understanding the glioblastoma immune microenvironment as basis for the development of new immunotherapeutic strategies. ELife, 2020, 9, .	6.0	154
889	Immunological Tolerance., 2021, , .		3
890	Metabolic reprograming of MDSCs within tumor microenvironment and targeting for cancer immunotherapy. Acta Pharmacologica Sinica, 2022, 43, 1337-1348.	6.1	9
891	A Complex Metabolic Network Confers Immunosuppressive Functions to Myeloid-Derived Suppressor Cells (MDSCs) within the Tumour Microenvironment. Cells, 2021, 10, 2700.	4.1	25
892	Beyond immunosuppressive effects: dual roles of myeloid-derived suppressor cells in bone-related diseases. Cellular and Molecular Life Sciences, 2021, 78, 7161-7183.	5.4	18
893	Myeloid-derived suppressor cells (MDSCs) in brain cancer: challenges and therapeutic strategies. Inflammopharmacology, 2021, 29, 1613-1624.	3.9	11
894	Landscape of Myeloid-derived Suppressor Cell in Tumor Immunotherapy. Biomarker Research, 2021, 9, 77.	6.8	41
895	Therapeutic Values of Myeloid-Derived Suppressor Cells in Hepatocellular Carcinoma: Facts and Hopes. Cancers, 2021, 13, 5127.	3.7	15

#	Article	IF	CITATIONS
896	Graft-Versus-Host Disease Prevention by In Vitro-Generated Myeloid-Derived Suppressor Cells Is Exclusively Mediated by the CD11b+CD11c+ MDSC Subpopulation. Frontiers in Immunology, 2021, 12, 754316.	4.8	2
897	ILâ€6 is associated with expansion of myeloidâ€derived suppressor cells and enhanced immunosuppression in pancreatic adenocarcinoma patients. Scandinavian Journal of Immunology, 2021, 94, e13107.	2.7	3
898	Role of myeloid-derived suppressor cells in viral respiratory infections; Hints for discovering therapeutic targets for COVID-19. Biomedicine and Pharmacotherapy, 2021, 144, 112346.	5 . 6	27
899	Effects of Tumor Microenvironment on Immunity and Consequent Clinical Considerations. , 2009, , 157-179.		0
900	Improvement of Anti-Tumor DNA Vaccination by Co-Immunization at a Distant Site with a Plasmid Encoding the Hemagglutinin-Neuraminidase Protein of Newcastle Disease Virus. The Open Cancer Immunology Journal, 2010, 3, 15-21.	0.2	O
901	Recurrent Malignant Primary Brain Tumor: the Pathophysiology and Management. , 0, , .		O
902	The stem cell vascular niche in brain tumorigenesis. Cureus, 2011, , .	0.5	0
903	Myeloid-Derived Suppressive Cells and Their Regulatory Mechanisms in Cancer. , 2012, , 231-250.		0
904	Myeloid-Derived Suppressor Cells in Cancer. , 2012, , 217-229.		0
905	Basic Principles of Immunology in Urology. , 2012, , 495-529.e5.		0
906	Functions of Diverse Myeloid Cells in the Tumor Micro-Environment. , 0, , .		0
907	Macrophage Differentiation and Activation States in the Tumor Microenvironment., 2013,, 405-430.		1
908	Inflammation, Tumor Progression, and Immune Suppression., 2013,, 177-196.		0
909	The Role of Tumor Associated Neutrophils in Cancer. , 2013, , 457-478.		0
910	Programming of MDSC: New Opportunities for Targeted Therapy. , 2013, , 567-584.		0
911	Myeloid-Derived Suppressor Cells in Cancer. , 2014, , 3-17.		0
912	Myeloid-Derived Suppressor Cells and Tumor Growth. , 2014, , 91-109.		2
913	Myeloid-Derived Suppressor Cells in Tumor-Induced T Cell Suppression and Tolerance. , 2014, , 99-150.		2

#	ARTICLE	IF	CITATIONS
914	Myelomonocytic Subsets in Tumor Microenvironment. , 2014, , 405-423.		0
915	Interaktion von disseminierten Tumorzellen mit Stamm- und Immunzellen im prÄmetastatischen Knochenmarkmilieu., 2014,, 3-12.		0
916	S100A9, Inflammation, and Regulation of Immune Suppression in Cancer. , 2014, , 295-310.		0
917	Tumor-Associated Macrophages. , 2014, , 425-443.		1
918	Regulation of Anti-Tumor Immune Responses. , 2015, , 143-158.		0
919	Tumor Induces the Expansion of Foxp3+CD25high and CD11b+Gr-1+ Cell Population in the Early Phase of Tumor Progression. Biomedical Science Letters, 2015, 21, 172-180.	0.3	2
920	Signal Transducer and Activation of Transcription 3: A Master Regulator of Myeloid-Derived Suppressor Cells. SpringerBriefs in Immunology, 2016, , 73-90.	0.1	0
921	Immunoregulatory Myeloid Cells in the Tumor Microenvironment. SpringerBriefs in Immunology, 2016, , 61-71.	0.1	0
922	Controversies in Neoplastic Myeloplasia. SpringerBriefs in Immunology, 2016, , 1-24.	0.1	0
923	Aiming the Immune System to Improve the Antitumor Efficacy of Radiation Therapy. , 2016, , 159-181.		0
924	Myeloid-Derived Suppressor Cells in Aged Humans. , 2018, , 1-12.		1
925	Multi-target analysis of neoplasms for the evaluation of tumor progression: stochastic approach of biologic processes. AIMS Molecular Science, 2018, 5, 14-62.	0.5	0
926	Molecular Psychology. Interdisciplinary Science Letters, 2019, 03, 1-5.	0.1	0
927	Myeloid-Derived Suppressor Cells in Aged Humans. , 2019, , 733-744.		0
928	Role of C-Reactive Protein (CRP) in Sepsis: Severity and Outcome., 2020,, 249-290.		0
929	KLF4-Mediated Plasticity of Myeloid-Derived Suppressor Cells (MDSCs)., 0,,.		0
930	Immune Correlates of Non-Necrotic and Necrotic Granulomas in Pulmonary Tuberculosis: A Pilot Study. Journal of Respiration, 2021, 1 , 248-259.	1.1	5
931	Immunometabolism and Its Potential to Improve the Current Limitations of Immunotherapy. Methods in Molecular Biology, 2020, 2184, 233-263.	0.9	1

#	Article	IF	CITATIONS
932	Hypoxic Transformation of Immune Cell Metabolism Within the Microenvironment of Oral Cancers. Frontiers in Oral Health, 2020, 1, 585710.	3.0	5
933	Liver Tumor Microenvironment. Advances in Experimental Medicine and Biology, 2020, 1296, 227-241.	1.6	8
934	Models for Monocytic Cells in the Tumor Microenvironment. Advances in Experimental Medicine and Biology, 2020, 1224, 87-115.	1.6	8
935	Immune Regulation of Tumors in Bone. , 2020, , 254-264.		0
936	Myeloid‑derived suppressor cells infiltration in non‑small‑cell lung cancer tumor and MAGE‑A4 and NY‑ESO‑1 expression. Oncology Letters, 2020, 19, 3982-3992.	1.8	3
938	Phenotypical Characterization and Isolation of Tumor-Derived Mouse Myeloid-Derived Suppressor Cells. Methods in Molecular Biology, 2021, 2236, 29-42.	0.9	0
939	Isolation of Human Circulating Myeloid-Derived Suppressor Cells and Analysis of Their Immunosuppressive Activity. Methods in Molecular Biology, 2021, 2236, 43-56.	0.9	1
941	Protection by LPS-induced inhibitory CD11b(+) cells on corneal allograft. International Journal of Clinical and Experimental Medicine, 2015, 8, 4101-7.	1.3	2
943	MicroRNA 449c Mediates the Generation of Monocytic Myeloid-Derived Suppressor Cells by Targeting STAT6. Molecules and Cells, 2020, 43, 793-803.	2.6	3
944	The role of myeloid-derived suppressor cells in lung cancer and targeted immunotherapies. Expert Review of Anticancer Therapy, 2022, 22, 65-81.	2.4	9
945	Dual Targeting of Multiple Myeloma Stem Cells and Myeloid-Derived Suppressor Cells for Treatment of Chemotherapy-Resistant Multiple Myeloma. Frontiers in Oncology, 2021, 11, 760382.	2.8	8
946	Statins mediate anti- and pro-tumourigenic functions by remodelling the tumour microenvironment. DMM Disease Models and Mechanisms, 2022, 15 , .	2.4	7
947	Glucosamine Interferes With Myelopoiesis and Enhances the Immunosuppressive Activity of Myeloid-Derived Suppressor Cells. Frontiers in Nutrition, 2021, 8, 762363.	3.7	1
948	Interleukin-1beta triggers the expansion of circulating granulocytic myeloid-derived suppressor cell subset dependent on Erk1/2 activation. Immunobiology, 2022, 227, 152165.	1.9	2
949	Effect of early endometriosis on ovarian reserve and reproductive outcome. Frontiers in Bioscience - Scholar, 2015, 7, 40-45.	2.1	4
950	An Overview of the Tumor Microenvironment and Response to Immunotherapy in Gastrointestinal Malignancies., 2021,, 3-28.		О
951	Immunosuppressive Features of the Microenvironment in Lymph Nodes Granulomas from Tuberculosis and HIV–Co-Infected Patients. American Journal of Pathology, 2022, 192, 653-670.	3.8	7
952	Inflammation and Myeloid Cells in Cancer Progression and Metastasis. Frontiers in Cell and Developmental Biology, 2021, 9, 759691.	3.7	12

#	Article	IF	Citations
953	Immunometabolism in the Bladder Cancer Microenvironment. Endocrine, Metabolic and Immune Disorders - Drug Targets, 2022, 22, 1201-1216.	1.2	4
954	The downregulation of type I IFN signaling in G-MDSCs under tumor conditions promotes their development towards an immunosuppressive phenotype. Cell Death and Disease, 2022, 13, 36.	6.3	8
955	Cancer cell-expressed BTNL2 facilitates tumour immune escape via engagement with IL-17A-producing $\hat{I}^3\hat{I}'$ T cells. Nature Communications, 2022, 13, 231.	12.8	14
956	Roles of the Exosomes Derived From Myeloid-Derived Suppressor Cells in Tumor Immunity and Cancer Progression. Frontiers in Immunology, 2022, 13, 817942.	4.8	4
957	The Role of Long Non-Coding RNAs in the Tumor Immune Microenvironment. Frontiers in Immunology, 2022, 13, 851004.	4.8	12
958	Tumor-Infiltrating Myeloid Cells Co-Express TREM1 and TREM2 and Elevated TREM-1 Associates With Disease Progression in Renal Cell Carcinoma. Frontiers in Oncology, 2021, 11, 662723.	2.8	11
959	Rationally targeted anti-VISTA antibody that blockades the C-C' loop region can reverse VISTA immune suppression and remodel the immune microenvironment to potently inhibit tumor growth in an Fc independent manner. , 2022, 10, e003382.		25
960	Differential pre-malignant programs and microenvironment chart distinct paths to malignancy in human colorectal polyps. Cell, 2021, 184, 6262-6280.e26.	28.9	125
961	The Role of Myeloid-Derived Suppressor Cells in Tumor Growth and Metastasis. Experientia Supplementum (2012), 2022, 113, 189-217.	0.9	6
962	Infection-Derived Monocytic MDSCs Require TGF- \hat{l}^2 to Suppress Filarial-Specific IFN- \hat{l}^3 But Not IL-13 Release by Filarial-Specific CD4+ T Cells In Vitro. Frontiers in Tropical Diseases, 2022, 2, .	1.4	3
963	High-Grade Endometrial Stromal Sarcoma: Molecular Alterations and Potential Immunotherapeutic Strategies. Frontiers in Immunology, 2022, 13, 837004.	4.8	6
964	Immune Metabolism–An Opportunity to Better Understand Allergic Pathology and Improve Treatment of Allergic Diseases?. Frontiers in Allergy, 2022, 3, 825931.	2.8	7
965	Synergistic Anti-Tumor Effect by the Combination of Cyclophosphamide and Dendritic Cell Vaccination in Murine Tumor Model that CEA Expressing. Korean Journal of Clinical Laboratory Science, 2022, 54, 38-48.	0.3	0
966	MDSCs and T cells in solid tumors and non-Hodgkin lymphomas: an immunosuppressive speech. Clinical and Experimental Immunology, 2022, 208, 147-157.	2.6	3
967	Expression of H _v 1 proton channels in myeloid-derived suppressor cells (MDSC) and its potential role in T cell regulation. Proceedings of the National Academy of Sciences of the United States of America, 2022, 119, e2104453119.	7.1	9
968	Anti-Gr-1 Antibody Provides Short-Term Depletion of MDSC in Lymphodepleted Mice with Active-Specific Melanoma Therapy. Vaccines, 2022, 10, 560.	4.4	3
969	CCR4+ monocytic myeloid-derived suppressor cells are associated with the increased epithelial-mesenchymal transition in pancreatic adenocarcinoma patients. Immunobiology, 2022, 227, 152210.	1.9	6
970	Immune Regulatory Processes of the Tumor Microenvironment under Malignant Conditions. International Journal of Molecular Sciences, 2021, 22, 13311.	4.1	54

#	Article	IF	CITATIONS
971	The dual role of neutrophils in cancer. Seminars in Immunology, 2021, 57, 101582.	5.6	26
972	Current Limitations and Perspectives of Chimeric Antigen Receptor-T-Cells in Acute Myeloid Leukemia. Cancers, 2021, 13, 6157.	3.7	12
974	Myeloid-Derived Suppressor Cells and Radiotherapy. Cancer Immunology Research, 2022, 10, 545-557.	3.4	32
1002	Direct and indirect regulation of the tumor immune microenvironment by VEGF. Journal of Leukocyte Biology, 2022, 111, 1269-1286.	3.3	28
1004	Controlling Immunoregulatory Cell Activity for Effective Photodynamic Therapy of Cancer. Methods in Molecular Biology, 2022, 2451, 569-577.	0.9	1
1005	Neutrophils and polymorphonuclear myeloid-derived suppressor cells: an emerging battleground in cancer therapy. Oncogenesis, 2022, 11 , 22 .	4.9	16
1006	Tumor-directed dysregulation of erythroid progenitors drives immunosuppressive myeloid cells. Cancer Cell, 2022, 40, 597-599.	16.8	4
1007	Tumor-induced erythroid precursor-differentiated myeloid cells mediate immunosuppression and curtail anti-PD-1/PD-L1 treatment efficacy. Cancer Cell, 2022, 40, 674-693.e7.	16.8	41
1008	Rapid Profiling of Tumorâ€Immune Interaction Using Acoustically Assembled Patientâ€Derived Cell Clusters. Advanced Science, 2022, 9, .	11.2	21
1009	c-Rel-dependent monocytes are potent immune suppressor cells in cancer. Journal of Leukocyte Biology, 2022, 112, 845-859.	3.3	2
1011	Nanotechnology-Based siRNA Delivery Systems to Overcome Tumor Immune Evasion in Cancer Immunotherapy. Pharmaceutics, 2022, 14, 1344.	4.5	8
1012	Bv8 Blockade Sensitizes Anti-PD1 Therapy Resistant Tumors. Frontiers in Immunology, 0, 13, .	4.8	0
1013	Loss-of-function of the hippo transducer TAZ reduces mammary tumor growth through a myeloid-derived suppressor cell-dependent mechanism. Cancer Gene Therapy, 0, , .	4.6	0
1014	MDSCs in sepsis-induced immunosuppression and its potential therapeutic targets. Cytokine and Growth Factor Reviews, 2023, 69, 90-103.	7.2	17
1015	Phototheranostics of Splenic Myeloid-Derived Suppressor Cells and Its Impact on Spleen Metabolism in Tumor-Bearing Mice. Cancers, 2022, 14, 3578.	3.7	5
1016	Synergistic effect of combining sunitinib with a peptide-based vaccine in cancer treatment after microenvironment remodeling. Oncolmmunology, 2022, 11 , .	4.6	1
1017	<scp>USP12</scp> positively regulates <scp>Mâ€MDSC</scp> function to inhibit antitumour immunity through deubiquitinating and stabilizing p65. Immunology, 0, , .	4.4	7
1018	B7H3-dependent myeloid-derived suppressor cell recruitment and activation in pulmonary fibrosis. Frontiers in Immunology, 0, 13, .	4.8	5

#	Article	IF	CITATIONS
1019	The antitumor activity of hPRDX5 against pancreatic cancer and the possible mechanisms. Brazilian Journal of Medical and Biological Research, 0, 55, .	1.5	1
1020	Immunosuppression in tumor immune microenvironment and its optimization from CAR-T cell therapy. Theranostics, 2022, 12, 6273-6290.	10.0	25
1021	Immunotherapy of targeting MDSCs in tumor microenvironment. Frontiers in Immunology, $0,13,.$	4.8	16
1022	Mechanisms of tumor resistance to immune checkpoint blockade and combination strategies to overcome resistance. Frontiers in Immunology, 0, 13 , .	4.8	11
1023	Myeloid-derived suppressor cells: an emerging target for anticancer immunotherapy. Molecular Cancer, 2022, 21, .	19.2	84
1024	Tumor Environment Promotes Lnc57Rik-Mediated Suppressive Function of Myeloid-Derived Suppressor Cells. Journal of Immunology, 2022, 209, 1401-1413.	0.8	5
1025	Granulocytic MDSC with Deficient CCR5 Alleviates Lipogenesis and Inflammation in Nonalcoholic Fatty Liver Disease. International Journal of Molecular Sciences, 2022, 23, 13048.	4.1	0
1026	The paradoxical role of radiationâ€induced <scp>cGAS–STING</scp> signalling network in tumour immunity. Immunology, 2023, 168, 375-388.	4.4	11
1027	Immune Modulation by Myeloid-Derived Suppressor Cells in Diabetic Kidney Disease. International Journal of Molecular Sciences, 2022, 23, 13263.	4.1	5
1028	The PMN-MDSC – A key player in glucocorticoid resistance following combined physical and psychosocial trauma. Brain, Behavior, and Immunity, 2023, 108, 148-161.	4.1	2
1029	Myeloid-derived suppressor cell: A crucial player in autoimmune diseases. Frontiers in Immunology, 0, 13, .	4.8	5
1030	Nanotechnology: A New Strategy for Lung Cancer Treatment Targeting Pro-Tumor Neutrophils. Engineering, 2023, 27, 106-126.	6.7	2
1031	The Yin-Yang of myeloid cells in the leukemic microenvironment: Immunological role and clinical implications. Frontiers in Immunology, 0, 13 , .	4.8	1
1032	Celecoxib promotes the efficacy of <scp>STING</scp> â€targeted therapy by increasing antitumor <scp>CD8</scp> ⁺ Tâ€cell functions via modulating glucose metabolism of <scp>CD11b</scp> ⁺ cells. International Journal of Cancer, 2023, 152, 1685-1697.	5.1	4
1033	N1 versus N2 and PMNâ€MDSC: A critical appraisal of current concepts on tumorâ€associated neutrophils and new directions for human oncology. Immunological Reviews, 2023, 314, 250-279.	6.0	15
1034	Knowing the myeloid-derived suppressor cells: Another enemy of sarcomas patients. International Review of Cell and Molecular Biology, 2023, , 93-116.	3.2	0
1035	Myeloid-derived suppressor cells in head and neck squamous cell carcinoma. International Review of Cell and Molecular Biology, 2023, , 33-92.	3.2	2
1036	Modified method for differentiation of myeloid-derived suppressor cells in vitro enhances immunosuppressive ability via glutathione metabolism. Biochemistry and Biophysics Reports, 2023, 33, 101416.	1.3	1

#	Article	IF	Citations
1037	Monocytic Myeloid-Derived Suppressor Cells from Tumor Tissue Are a Differentiated Cell with Limited Fate Plasticity. ImmunoHorizons, 2022, 6, 790-806.	1.8	0
1038	<i>NFE2L2</i> Mutations Enhance Radioresistance in Head and Neck Cancer by Modulating Intratumoral Myeloid Cells. Cancer Research, 2023, 83, 861-874.	0.9	16
1039	Myeloid-Derived Suppressor Cells in Cancer and COVID-19 as Associated with Oxidative Stress. Vaccines, 2023, 11, 218.	4.4	4
1040	Role of myeloid-derived suppressor cells during Trypanosoma cruzi infection. International Review of Cell and Molecular Biology, 2023, , 117-163.	3.2	0
1041	Myeloid-derived suppressor cells: Emerging players in cancer and beyond. International Review of Cell and Molecular Biology, 2023, , xiii-xix.	3.2	0
1042	Inflammation Control and Tumor Growth Inhibition of Ovarian Cancer by Targeting Adhesion Molecules of E-Selectin. Cancers, 2023, 15, 2136.	3.7	0
1043	Interactions between Macrophages and Biofilm during <i>Staphylococcus aureus</i> -Associated Implant Infection: Difficulties and Solutions. Journal of Innate Immunity, 2023, 15, 499-515.	3.8	9
1044	JAK/STAT pathway: Extracellular signals, diseases, immunity, and therapeutic regimens. Frontiers in Bioengineering and Biotechnology, 0, 11 , .	4.1	24
1045	Myeloid-Derived Suppressor–Cell Dynamics Control Outcomes in the Metastatic Niche. Cancer Immunology Research, 2023, 11, 614-628.	3.4	6
1046	Antitumor Therapy Targeting the Tumor Microenvironment. Journal of Oncology, 2023, 2023, 1-16.	1.3	4
1047	Targeting myeloid-derived suppressor cells in tumor immunotherapy: Current, future and beyond. Frontiers in Immunology, $0,14,1$	4.8	3
1048	Neutralizing IL-8 potentiates immune checkpoint blockade efficacy for glioma. Cancer Cell, 2023, 41, 693-710.e8.	16.8	17
1049	The Voltage-Gated Hv1 H+ Channel Is Expressed in Tumor-Infiltrating Myeloid-Derived Suppressor Cells. International Journal of Molecular Sciences, 2023, 24, 6216.	4.1	3
1050	Innate immune cellular therapeutics in transplantation. , 0, 2, .		0
1051	Modulation of T-cell function by myeloid-derived suppressor cells in hematological malignancies. Frontiers in Cell and Developmental Biology, 0, 11 , .	3.7	4
1052	Immune-checkpoint inhibitor resistance in cancer treatment: Current progress and future directions. Cancer Letters, 2023, 562, 216182.	7.2	15
1053	Role of voltage-gated proton channel (Hv1) in cancer biology. Frontiers in Pharmacology, 0, 14, .	3.5	1
1055	The Role of Myeloid-Derived Suppressor Cells in Multiple Sclerosis and Its Animal Model., 2023, .		O

#	Article	IF	CITATIONS
1056	AN UPDATE REVIEW ON IMMUNOSUPPRESSIVE CELLS; MYELOID DERIVED SUPPRESSOR CELLS (MDSCS) IN CANCERS. , 2020, 5, 58-76.		0
1057	Myeloid-derived suppressor cells and pulmonary hypertension. Frontiers in Immunology, 0, 14, .	4.8	2
1058	The Neonatal Immune System and Respiratory Pathogens. Microorganisms, 2023, 11, 1597.	3.6	1
1059	Cancer immune exclusion: breaking the barricade for a successful immunotherapy. Frontiers in Oncology, 0, 13, .	2.8	2
1060	Myeloid-derived suppressor cells: Key immunosuppressive regulators and therapeutic targets in cancer. Pathology Research and Practice, 2023, 248, 154711.	2.3	0
1061	The recent progress of myeloidâ€derived suppressor cell and its targeted therapies in cancers. MedComm, 2023, 4, .	7.2	1
1062	Tumourâ€derived exosomes promote the induction of monocytic myeloidâ€derived suppressor cells from peripheral blood mononuclear cells by delivering <scp>miR</scp> â€106aâ€5p and <scp>miR</scp> â€146aâ€5p in multiple myeloma. British Journal of Haematology, 2023, 203, 426-438.	n2 . 5	O
1063	<i>Candida</i> -induced granulocytic myeloid-derived suppressor cells are protective against polymicrobial sepsis. MBio, 2023, 14, .	4.1	2
1064	Isolation of myeloid-derived suppressor cells (MDSC) from endometriotic mice model and their immunomodulatory functions. Methods in Cell Biology, 2023, , .	1,1	0
1065	Implications of Rectal Cancer Radiotherapy on the Immune Microenvironment: Allies and Foes to Therapy Resistance and Patients' Outcome. Cancers, 2023, 15, 5124.	3.7	0
1066	Cisplatinâ€induced <scp>oxPAPC</scp> release enhances <scp>MDSCs</scp> infiltration into <scp>LL2</scp> tumour tissues through <scp>MCP</scp> â€1/ <scp>CCL2</scp> and <scp>LTB4</scp> / <scp>LTB4R</scp> pathways. Cell Proliferation, 0, , .	5. 3	O
1067	Exploiting innate immunity for cancer immunotherapy. Molecular Cancer, 2023, 22, .	19.2	6
1068	Resveratrol Attenuates 2,3,7,8-Tetrachlorodibenzo-p-dioxin-Mediated Induction of Myeloid-Derived Suppressor Cells (MDSC) and Their Functions. Nutrients, 2023, 15, 4667.	4.1	0
1069	Metabolic Interplay in the Tumor Microenvironment: Implications for Immune Function and Anticancer Response. Current Issues in Molecular Biology, 2023, 45, 9753-9767.	2.4	O
1070	Innate immunity: Looking beyond T-cells in radiation and immunotherapy combinations. Neoplasia, 2023, 46, 100940.	5. 3	1
1071	Myeloid-derived suppressor cells in cancer and cancer therapy. Nature Reviews Clinical Oncology, 2024, 21, 147-164.	27.6	1
1072	Tumor-infiltrating monocytic myeloid-derived suppressor cells contribute to the development of an immunosuppressive tumor microenvironment in gastric cancer. Gastric Cancer, 2024, 27, 248-262.	5. 3	0
1073	Alteration of functionality and differentiation directed by changing gene expression patterns in myeloid-derived suppressor cells (MDSCs) in tumor microenvironment and bone marrow through early to terminal phase of tumor progression. Journal of Leukocyte Biology, 2024, 115, 958-984.	3.3	O

#	Article	IF	Citations
1074	Role of myeloid-derived suppressor cells in chronic brucellosis. Frontiers in Cellular and Infection Microbiology, $0,14,.$	3.9	0
1075	Intracerebellar injection of monocytic immature myeloid cells prevents the adverse effects caused by stereotactic surgery in a model of cerebellar neurodegeneration. Journal of Neuroinflammation, 2024, 21, .	7.2	0
1076	Simple protocol for measuring CD11b+ GR-1+ (Ly6C+/Ly6G+) myeloid cells from a minimum volume of mouse peripheral blood. Methods in Cell Biology, 2024, , 59-68.	1.1	0
1077	Molecular Subtypes, microRNAs and Immunotherapy Response in Metastatic Colorectal Cancer. Medicina (Lithuania), 2024, 60, 397.	2.0	0
1078	Myeloid-Derived Suppressor Cells: Therapeutic Target for Gastrointestinal Cancers. International Journal of Molecular Sciences, 2024, 25, 2985.	4.1	0
1079	Pivotal role of <scp>myeloidâ€derived</scp> suppressor cells in <scp>infectionâ€related</scp> tumor growth. Cancer Medicine, 2024, 13, .	2.8	0
1080	Targeting the innate immune system in pediatric and adult AML. Leukemia, 0, , .	7.2	0
1081	The ecotinâ€like peptidase inhibitor of <i>Trypanosoma cruzi</i> prevents <scp>TMPRSS2â€PAR2â€TLR4</scp> crosstalk downmodulating infection and inflammation. FASEB Journal, 2024, 38, .	0.5	O