Enumeration of Sulfur-Oxidizing Microorganisms on D Monuments, Cambodia

Microbes and Environments 23, 293-298

DOI: 10.1264/jsme2.me08521

Citation Report

#	Article	IF	CITATIONS
1	Oxidation of Elemental Sulfur by Fusarium solani Strain THIF01 Harboring Endobacterium Bradyrhizobium sp Microbial Ecology, 2010, 60, 96-104.	2.8	56
2	Microbial Community Analysis of Fresh and Old Microbial Biofilms on Bayon Temple Sandstone of Angkor Thom, Cambodia. Microbial Ecology, 2010, 60, 105-115.	2.8	68
3	Seasonal dynamics of airborne fungi in different caves of the Mogao Grottoes, Dunhuang, China. International Biodeterioration and Biodegradation, 2010, 64, 461-466.	3.9	60
4	Thiosulfate-Dependent Chemolithoautotrophic Growth of <i>Bradyrhizobium japonicum</i> . Applied and Environmental Microbiology, 2010, 76, 2402-2409.	3.1	41
5	Mycobacteria Isolated from Angkor Monument Sandstones Grow Chemolithoautotrophically by Oxidizing Elemental Sulfur. Frontiers in Microbiology, 2011, 2, 104.	3.5	53
6	Molecular characterization of airborne fungi in caves of the Mogao Grottoes, Dunhuang, China. International Biodeterioration and Biodegradation, 2011, 65, 726-731.	3.9	27
7	Fungi isolated from Niedźwiedzia Cave in Kletno (Lower Silesia, Poland). International Journal of Speleology, 2013, 42, 161-166.	1.0	45
8	Bacterial Communities in Pigmented Biofilms Formed on the Sandstone Bas-Relief Walls of the Bayon Temple, Angkor Thom, Cambodia. Microbes and Environments, 2013, 28, 422-431.	1.6	58
9	Speleomycological research in underground Osówka complex in Sowie Mountains (Lower Silesia,) Tj ETQq0 0 0	rgBT /Ove	erlock 10 Tf 50
10	Identifying damaged areas inside a masonry monument using a combined interpretation of resistivity	11	9

10	and ground-penetrating radar data. Exploration Geophysics, 2014, 45, 177-188.	1.1	2
11	Assessment of Abundance and Species Composition of Filamentous Fungi in the Underground Rzeczka Complex in Sowie Mountains (Lower Silesia, Poland). Geomicrobiology Journal, 2014, 31, 900-906.	2.0	9
12	The Occurrence of Fungi in the Recently Discovered Jarkowicka Cave in the Karkonosze Mts. (Poland). Geomicrobiology Journal, 2015, 32, 59-67.	2.0	37
13	Higher diversity and abundance of ammonia-oxidizing archaea than bacteria detected at the Bayon Temple of Angkor Thom in Cambodia. International Biodeterioration and Biodegradation, 2016, 115, 234-243.	3.9	52
14	Bats Increase the Number of Cultivable Airborne Fungi in the "Nietoperek―Bat Reserve in Western Poland. Microbial Ecology, 2016, 72, 36-48.	2.8	35
15	Bacterial diversity on rock surface of the ruined part of a French historic monument: The Chaalis abbey. International Biodeterioration and Biodegradation, 2017, 120, 161-169.	3.9	43
16	More wide occurrence and dominance of ammonia-oxidizing archaea than bacteria at three Angkor sandstone temples of Bayon, Phnom Krom and Wat Athvea in Cambodia. International Biodeterioration and Biodegradation, 2017, 117, 78-88.	3.9	66
17	Mycobiota of the disused ore mine of Marcinków in Śnieżnik Masiff (western Poland). Journal of Mountain Science, 2017, 14, 2448-2457.	2.0	3
18	Lithoautotrophical oxidation of elemental sulfur by fungi including Fusarium solani isolated from sandstone Angkor temples. International Biodeterioration and Biodegradation, 2018, 126, 95-102.	3.9	42

CITATION REPORT

#	Article	IF	CITATIONS
19	Fungal Communities on Rock Surfaces in Demäovská Ice Cave and Demäovská Cave of Liberty (Slovakia). Geomicrobiology Journal, 2018, 35, 266-276.	2.0	8
20	Airborne fungi as indicators of ecosystem disturbance: an example from selected Tatra Mountains caves (Poland). Aerobiologia, 2018, 34, 111-118.	1.7	8
21	Microbiological community of the Royal Palace in Angkor Thom and Beng Mealea of Cambodia by Illumina sequencing based on 16S rRNA gene. International Biodeterioration and Biodegradation, 2018, 134, 127-135.	3.9	47
22	Water is a critical factor in evaluating and assessing microbial colonization and destruction of Angkor sandstone monuments. International Biodeterioration and Biodegradation, 2018, 133, 9-16.	3.9	79
23	Biochemical reactions and mechanisms involved in the biodeterioration of stone world cultural heritage under the tropical climate conditions. International Biodeterioration and Biodegradation, 2019, 143, 104723.	3.9	67
24	A Review on Sampling Techniques and Analytical Methods for Microbiota of Cultural Properties and Historical Architecture. Applied Sciences (Switzerland), 2020, 10, 8099.	2.5	20
25	Microbial deterioration and sustainable conservation of stone monuments and buildings. Nature Sustainability, 2020, 3, 991-1004.	23.7	136
26	Thermographic imaging for early detection of biocolonization on buildings. Building Research and Information, 2020, 48, 856-865.	3.9	6
27	Microbial diversity and composition of the Preah Vihear temple in Cambodia by high-throughput sequencing based on genomic DNA and RNA. International Biodeterioration and Biodegradation, 2020, 149, 104936.	3.9	30
28	The active microbes and biochemical processes contributing to deterioration of Angkor sandstone monuments under the tropical climate in Cambodia – A review. Journal of Cultural Heritage, 2021, 47, 218-226.	3.3	26
29	Microbiota and Biochemical Processes Involved in Biodeterioration of Cultural Heritage and Protection. , 2021, , 37-58.		3
30	Fungal communities in the biofilms colonizing the basalt sculptures of the Leizhou Stone Dogs and assessment of a conservation measure. Heritage Science, 2021, 9, .	2.3	14
31	Sulfur-oxidizing bacteria involved in the blackening of basalt sculptures of the Leizhou Stone Dog. International Biodeterioration and Biodegradation, 2021, 159, 105207.	3.9	10
32	The Organisms on Rock Cultural Heritages: Growth and Weathering. Geoheritage, 2021, 13, 1.	2.8	16
33	Enumeration of Chemoorganotrophic Carbonyl Sulfide (COS)-degrading Microorganisms by the Most Probable Number Method. Microbes and Environments, 2020, 35, n/a.	1.6	6
34	Microclimate Effects on Number and Distribution of Fungi in the WÅ,odarz Underground Complex in the Owl Mountains (Góry Sowie), Poland. Journal of Cave and Karst Studies, 2014, 76, 146-153.	0.6	13
35	The capabilities of bacteria and archaea to alter natural building stones – A review. International Biodegradation, 2021, 165, 105329.	3.9	14
36	Dissolution of red sandstones exposed to siderophore-producing bacterium Pseudomonas fluorescens: Experimental bioweathering coupled to a geochemical model. Construction and Building Materials, 2023, 369, 130584.	7.2	4

#	Article	IF	CITATIONS
37	Bats, monkeys and plants in the time of Covid-19 pandemic at Angkor monuments. International Biodeterioration and Biodegradation, 2023, 182, 105623.	3.9	1
38	Metagenomic and metaproteomic insights into the microbiome and the key geobiochemical potentials on the sandstone of rock-hewn Beishiku Temple in Northwest China. Science of the Total Environment, 2023, 893, 164616.	8.0	3
39	Microscopic evidence of sandstone deterioration and damage by fungi isolated from the Angkor monuments in simulation experiments. Science of the Total Environment, 2023, 896, 165265.	8.0	3
40	Ecological strategies of bacterial communities in prehistoric stone wall paintings across weathering gradients: A case study from the Borana zone in southern Ethiopia. Science of the Total Environment, 2024, 907, 168026.	8.0	0
41	Bioremoval of sulfates from black crust: a case study of St. Augustine Tower, Goa-India. Environmental Sustainability, 0, , .	2.8	0
42	Metagenomic insight into the pathogenic-related characteristics and resistome profiles within microbiome residing on the Angkor sandstone monuments in Cambodia. Science of the Total Environment, 2024, 918, 170402.	8.0	0